

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

DIS TRIBUTED ACCESS CONTROL FOR WEB
AND BUSINESS PROCESSES

Hristo Koshutanski

June 2003

Technical Report # DIT-03-034

Also: submitted to IEEE Internet Computing (January/February 2004)

.

Distributed Access Control for Web and Business Processes

A Survey at the Beginning of the Millennium

Hristo Koshutanski

Dip. di Informatica e Telecomunicazioni - Univ. di Trento

via Sommarive 14 - 38050 Povo di Trento (ITALY)

hristo.koshutanski@dit.unitn.it

June 2003

Abstract

Middleware influenced the research community in developing a number of systems for controlling

access to distributed resources. Nowadays a new paradigm for the lightweight integration of business

resources from different partners is starting to take hold – Web Services and Business Processes for

Web Services.

Security and access control policies for Web Services protocols and distributed systems are well

studied and almost standardized, but there is not yet a comprehensive proposal for an access control

architecture for business processes. So, it is worth looking at the available approaches to distributed

authorization as a starting point for a better understanding of what they already have and what

they still need to address the security challenges for business processes.

Keywords: survey, distributed access control, security architecture, distributed systems security, web
services, web services processes, web services security.

1

Contents

1 Connection on Web and Business Processes 2

2 Security Requirements for Web and Business Processes 3

3 Distributed Authorization Architectures 4

4 Conclusions 9

5 BOX: Web Services and Business Processes on the Web 11

A Appendix: A Primer on Web Services and Business Processes 14

1 Connection on Web and Business Processes

Access control has been a constant security issue as the IT sector has been developed through the time.
At the end of the past millennium it became an inevitable security issue when the call for integration
of enterprise resources took a main place in IT development. Middleware was a trendy word connected
with products as CORBA, COM+, EJB that emerged at that time. Nowadays a new paradigm for the
lightweight integration of business resources of different enterprises is taking place – Web Services and
Business Processes for Web Services. Now everything is run over the Web. Web Services are network-
accessible using standards as UDDI (discovery), WSDL (interface) and SOAP as a transport protocol
that connects them.

The general idea of Web Services (WS for short) is to encapsulate enterprise resources and make them
available for using by other enterprises. Moving up in the paradigm from single enterprises to orches-
tration of their business resources we find virtual enterprises to result. Here the proposed standards as
Business Process Execution Language for Web Services (BPEL4WS), Electronic Business XML initiative
(ebXML) are in place to describe the behavior of complex business and workflow processes. For a primer
on Web Services and business processes see Appendix.

Since middleware became a main paradigm for offering a transparent view of distributed resources
of a single enterprise much work has been done in controlling access to those resources. We find on the
research market a number of papers for access control models for basic WS and XML documents [9, 14, 3]
and architectural approaches (Section 3) for enforcing access control models in a distributed enterprise
environment.

Considering the nature of virtual enterprises – orchestration and choreography of WS, global and
local business processes, complex business transactions – the picture changes. Crossing of administrative
boundaries is the main bottleneck in tailoring the available access control architectures to WS business
processes.

The goal of this paper is to survey the architectural approaches for distributed access control available
at academic and industrial environments. It is a good starting point for a better understanding of what
are the basic components one needs in building a security architecture for business processes.

2

The remainder of this paper is organized as follows. Section 2 explains the security requirements for
an access control architecture for WS business processes. Then the architectural overview of the systems
for distributed authorization is presented in Section 3. Section 4 summarizes the described access control
systems and the security features available at each of them and concludes the paper.

2 Security Requirements for Web and Business Processes

This section describes the security requirements that have to be considered in building an access control
architecture for business processes.

Let us consider again the nature of virtual enterprises - many partners each with its own security
policy and requirements. It is unrealistic to equalize (restructure) each partner’s security infrastructure
for each inter-organizational workflow. This identifies the first security requirement - separation of
partners’ specific security policies and requirements from the WS workflow.

The next step in considering security requirements is how to express security policies at workflow
level. Different partners with different security policies are just partners in the Web process, so they may
not be willing to disclose their policies directly to the workflow system or even may not want to disclose
them at all, so just combining them is not sufficient. This identifies the second security requirement -
orchestrating requests grant/deny/counter request (additional requirements) of many different partners.

As mentioned before because of the heterogeneous nature of WS processes a client needs a way
of fulfilling all partners’ requirements. Privacy considerations make gathering all potentially needed
credentials from a client difficult. Furthermore, this may simply be impossible. An airline may want to
ask confidential information directly to its frequent fliers (e.g., conformation of religious preferences for
the food) and not to the workflow system. This calls for the third security requirement - client-servent1

interactive communications. We need a way of how to incrementally disclose required information to the
client.

The following security requirements are implications from the above discussed ones:

• Support of different authorization languages – in order to separate partners’ specific security policies
and requirements from the access control system, we should abstract from the internal represen-
tation of each partner’s policies and how the local access decision is taken. So, an access control
system should treat each partner as a distinct object encapsulating its own authorization policy
(written in a specific language) with an engine for an appropriate evaluation. The partner’s policy
evaluator should be accessible by the access control system in a unified way;

• Separate entities for policy repository and policy evaluation – this separation simplifies the autho-
rization server’s logic and reduces the cost of access control administration;

• Credential/Certificate based access control – it is a mechanism that requires the client to provide a
certificate (a ticket) that indicates some type of access right. The mechanism also requires the client
to acquire this certificate before performing an access and presenting it at the time of access. This
mechanism prevails the classical role-based access control because all the information necessary for

1Here the servent is considered as an entity that acts either as a server or as a client.

3

Figure 1: Splitting the server role

computing an access decision is available outside of the access control system - in the partners local
policies. While in the classical role-based access control all the information needed for computing
client’s access right is internally available in the system. So, the client just needs to authenticate
itself to the system;

• Decentralized security administration – because of the distributed nature of WS processes adminis-
tration of security policies should be done autonomously and independently by the partners’ specific
system administrators. Coordinating policy across different domains is not straightforward;

• Modular authorization – it allows the authorization service to work with current and future au-
thentication and attribute services, i.e. the authorization service depends on the authentication
service for reliable authentication of principals, but should not depend on the specific kind of
authentication mechanism;

• Authorization server as a separate entity – the main objective of this separation is to decouple
authorization logic from application logic. The authorization logic is encapsulated into an autho-
rization service external to the application. This approach significantly reduces the cost of access
control administration, as well as, enables coherent and consistent authorization policies across
heterogeneous systems.

3 Distributed Authorization Architectures

Because web service arena is highly distributed and heterogeneous, and is open to the public world there
is a pressing need to control who can access what kind of resources under what conditions. And the most
important question now is how to enforce and administrate a security policy across an entire environment
with multiple distributed and heterogeneous systems.

The goal of this section is to survey the architectural approaches and solutions, attempting to solve
the above mention problem, available at academic or industrial environment.

If we look at the proposals for distributed access control architectures [21, 13, 5, 23, 1, 19, 11, 7, 10]
the main building block is splitting the server role into two: an Application Server and an Authorization
Server, i.e. decoupling access control logic from application logic (see Figure 1), and possibly distribute
the access control component [11, 10].

One of the earliest work on providing a general framework for expressing authorizations was proposed
by Woo and Lam [22, 21]. In their work the main component of the system is an Authorization Server

4

Figure 2: Message exchanges in Woo and Lam framework [21, page 3]

that performs authorization on behalf of an End Server. As shown in Figure 2, after a Client has
requested the End Server for invoking a service, the End Server elects an Authorization Server in order
to offload its access control policy for further evaluation. Then the Authorization Server takes the final
access decision and hands out authorization certificates to authorized Clients. These certificates are to
be forwarded by the Clients to the End Server along with their requests.

There are tree more components in the framework: A System Monitor that tracks the system states;
A Group Server that provides group membership information in the form of certificates (membership
and nonmembership); and an Authentication Server that authenticates users during their initial sign-on,
as well as, performs mutual authentication between every two entities in the system. All the components
and their message exchanges are shown in Figure 2.

The approach scales well in the distributed WS environment where each basic Web service can choose
its authorization server for getting an authorization decision. But the idea of ”offloading access policies”
does not fit into the nature business processes, because catering the needs of many different partners from
one authorization server (as the idea is) makes it complex and heavy in evaluating different authorization
policies written in different languages.

Other two approaches, which are based entirely on digitally-signed documents (certificates), are Akenti
[17, 13] and PERMIS [7]. The general idea of the projects is that all the information needed for getting
an access decision, such as identity, authorization, and attributes is stored and conveyed in certificates,
which are widely dispersed over the Internet (e.g. LDAP directories, Web servers etc.). Both approaches
use three types of certificates: X.509 identity certificates for authenticating the users; certificates for
storing access control policies; and certificates for storing users’ credentials. Figures 3 and 4 show the
major components of Akenti and PERMIS systems and how these components communicate each other
for geting an authorization decision. In general the authorization engine has to gather and verify all the
certificates needed for the current user’s request and evaluate the user’s right to access it based on these
certificates. Evaluating the certificates is consistent because are generated by standard tools available at
each system.

Considering the above two systems from the point of view of Web and business processes one can

5

Figure 3: Overview of Akenti Architecture [17, page 3] Figure 4: PERMIS Architecture [7, page 5]

Figure 5: RAD Architecture [5, page 7]

use them (with modifications) for achieving access control for business processes in a very rough way
– collecting all needed partners’ policies (contained in certificates) related to the current process and
evaluating them. Modifications are needed to specify how to combine different partners’ policies.

A step closer to what we need for orchestrating Web services is in [5]. In the work authorizations
are managed by an Authorization Service and its Access Decision Object (ADO). The ADO obtains
references to all policy evaluators related to the client request, asks a decision combinator for combining
decisions returned by various evaluators (according to a suitable combination policy), and returns the
decision back to the client (see Figure 5).

The proposal uses Policy Evaluators as distinct authorities each with its own security policies. Their
role is to encapsulate different authorization policies with their internal representation and evaluation –
a step closer to the security requirement for separation of partner’s specific security infrastructure from
WS workflow.

Other solutions that have common key principles in the design of an authorization service for dis-

6

Figure 6: Adage Architecture [23, page 4] Figure 7: Praesidium Authorization Server [18, page 5]

tributed applications can be found in [23, 18]. In [23] is presented the architecture of Adage system
(Figure 6) and in [18] is proposed the architecture of an authorization server that has been deployed by
Hewlett-Packard and called Praesidium authorization server (Figure 7). Both approaches offer:

• centralized security administration - for establishing security policies clients have to communicate
with the authorization server through administrative API. Here clients are categorized by the
interface(s) they access (management clients or application clients)

• modular authorization - it allows the authorization service to work with current and future authen-
tication and attribute services.

Again here the Application Server communicates with the Authorization Server for obtaining authoriza-
tion decision (see Figures 6 and 7). The authorization server by its side communicates with Identity
and Attribute Servers in order to obtain additional information for the client. However – here one can
spot a sample feature making sense only for architectures working within one administrative domain –
during the computation of the access control decision the authorization server determines whether the
user needs some roles to be activated and tries to activate them on its own.

Each of the two systems can be considered as consisting of two domains: Administrative domain –
concerned with the setting up and management of privileges, policies, and profiles granted to principals.
Runtime domain – optimized for efficient processing of authorization requests. It uses the information
available at administrative domain translated in a form suitable for getting fast and efficient decisions.

Because of the centralized administration of policies and privileges follows that each partner has to
offload (reveal) its own security policies to the authorization server for translation and evaluation.

If we continue looking for other real-world approaches, we will inevitably encounter the OASIS ar-
chitecture [2, 11]. Figure 8 shows the interactions between a principle and an OASIS secured service. In
these interactions the first thing (steps 1,2 in Figure 8a) that the principal has to do in order to invoke
a service is to obtain enough credentials, i.e. to activate some (specific) roles. To do this it needs to
contact a role activation service, specific per domain-based, which as a result issues a Role Membership
Certificate (RMC) that stores all the credentials the user has activated. Role activation is carried out by
the Certificate Issuing and Authentication (CIA) service on behalf of all services in a domain. After the
certificate has been issued it has to be forwarded by the Client together with a request for the service

7

Figure 8: OASIS Architecture [2, page 3]

(step 3 in Figure 8) to the OASIS access control engine. By its side the access control engine performs a
procedure for certificate validation (step 3 in Figure 8b), in asking an appropriate CIA service, and then
enforces access control on the base of client’s current credentials and the authorization policy related to
the requested service. If the result from the evaluation is positive then is invoked the requested service
and the result is returned back to the client (step 4 in Figure 8).

The proposal well encapsulates each partner’s (domain) requirements for credentials with their in-
ternal interpretation and evaluation. So, in this case a partner does not need to reveal its security
requirements to another server orchestrator of a process, but present it as a service. Trying to fit this
into the WS business processes picture one meets difficulties in orchestrating independent partners’ access
control policies.

Another approach for distributed authorization can be found in [1]. In this paper is proposed a
technique of using one-shot authorization tokens. A smart card is used as an authorization device that
stores client’s tokens in a secure and mobile way. In the proposed authorization scheme there are three
main elements: a security server; a client workstation; and an application server. The security server
provides centralized security services such as authentication and authorization, as well as, administers
all the application servers and users in the same security domain. The authorization server administers
centrally the access rights of all authenticated users – in providing initial access rights (credentials)
to them in the form of authorization token; and administers the access control information in each
application server - in updating and revoking users’ tokens in the application servers’ ACLs.

Considering again the nature of Web business processes here the authorization server communicates
with other authorization servers from different domains (partners) in order to set up credentials and
requirements in the form of a token (see Figure 9). In this case each partner does not need to offload
(reveal) its policy to another partner orchestrator of the process, but just issues credentials and/or

8

Figure 9: Cross-domain Authorization [1, page 6]

requirements as a secure token. Again here arises the problem of orchestrating different partner’s decisions
and presenting them to the client.

A more advanced effort for enforcing and administrating authorization policies across heterogeneous
systems is the OASIS security framework [16, 10]. The main actor in the framework is the Policy Decision
Point (PDP) responsible for retrieving the applicable to the client’s request policies, evaluating them, and
rendering an authorization decision (see Figure 10). The work also considers the combination of different
policies from different partners using some policy combining algorithms and getting an authorization
decision on the base of evaluating them. In this case the PDP has access to each partner’s security
policy, i.e. each partner has to reveal its security policy to the PDP in order to be computed an access
decision on the overall business process. But as we have specified in Section 2 we need a way of how to
orchestrate different partners’ security policies and requirements instead of just combining them.

4 Conclusions

As we have have hinted at the beginning of the paper there are many access control models for Web ser-
vices and XML documents [9, 14, 3, 10, 8]. Stepping towards virtual enterprises the picture changes. WS
business processes describe the behavior of complex business logic and in this way forming the so called
Web services workflow. Web services workflow may contain many tasks of different levels of abstraction
where a task may be a (recursive) reference to another Web services workflow or a simple one performed
by a computer program, database transaction, etc. Considering these levels of abstraction applying the
already reviewed architectural approaches for access control is no longer applicable (sufficient).

9

Figure 10: XACML data-flow diagram [10, page 19]

Auth. Modular Decentralized Credential/ Separate Support Combining Orchest. Interactive Separation
Server Auth. Security Certificate entities different different partners’ Client/ partners’

AC Systems \ Features Admin. based AC for policy auth. sec. auth. Servent spec. sec.
repository languages policies requests comm-ns policies

and from
evaluation AC system

Woo&Lam
√ √ √ √ √ × × × × ×

Akenti
√ × √ × √ × × × × ×

PERMIS
√ √ √ × √ × × × × ×

RAD
√ √ √ × √ √ √ × × √

Adage
√ √ × × × × × × × ×

Praesidium
√ √ × × × × × × × ×

OASIS
√ √ √ √ √ √ × × × √

One-shot auth. token
√ √ × √ √ × × × × √

OASIS (XACML&SAML)
√ √ √ √ √ × √ × × ×

Web&Business Processes
√ √ √ √ √ √ √ √ √ √

Table 1: Access control systems and security features

Table 1 summarizes the access control systems described in the previous section and compares each of
them against the security requirements specified in Section 2. The last row of Table 1 identifies the
security requirements for a possible Web and business process access control system.

Looking at the first security requirement (Section 2) and considering Table 1 we find a good approx-
imation in proposals [5, 2, 1] in which we need a unified way of asking different partners involved in a
business process for their access decisions – grant/deny/counter request (additional requirements).

Looking at the second security requirement (Section 2) we find at the access control field a good
approximation of combining policies at the logical level [4, 15, 20, 12] and (considering Table 1) at the

10

architectural level [10, 5].
In most proposals, the possibility that servers may get back to the calling clients with some counter

requests is not considered. This even in the case where the client is actually an authorization server
querying different partners’ policy evaluators – the third security requirement. Here we find a proposal
[6] for controlling release of information. The work proposed by Bonatti and Samarati introduces the idea
of interactive release of information in a single client/server communications. It proposes a framework
allowing two parties to communicate their requirements with respect to the information disclosure rules
and a language for the specification of such requirements. This work can be used as an endpoint access
control model (on the level of basic Web services – see Figure 11 in Appendix) in a possible architecture
for business processes .

Because of the dynamic and pervasive nature of business processes there is a pressing need for a
proposal that synthesizes all the above mentioned aspects into one access control architecture for business
processes for Web services – an area that should be investigated in the near future.

5 BOX: Web Services and Business Processes on the Web

Web Services Miscellaneous – www.webservices.org

WSDL 1.1 specification – www.w3.org/TR/wsdl.html

UDDI pages – www.uddi.org

BPEL4WS 1.0 specification – www-106.ibm.com/developerworks/ webservices/library/ws-bpel/

WSIL 1.0 specification – www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

W3C Web Services Architecture – www.w3.org/TR/ws-arch

Web Services Conceptual Architecture (WSCA 1.0) – http://www-3.ibm.com/software/solutions /web-
services/pdf/WSCA.pdf

ebXML Business Process Specification Schema v1.01 – www.ebxml.org/specs/ebBPSS.pdf

References

[1] Au, R., Looi, M., and Ashley, P. Cross-domain one-shot authorization using smart cards. In
Proceedings of the 7th ACM conference on Computer and communications security (2000), ACM
Press, pp. 220–227.

[2] Bacon, J., and Moody, K. Toward open, secure, widely distributed services. Communications
of the ACM 45, 6 (2002), 59–64.

[3] Bertino, E., Castano, S., and Ferrari, E. On specifying security policies for Web documents
with an XML-based language. In Proceedings of the Sixth ACM Symposium on Access control models
and technologies (2001), ACM Press, pp. 57–65.

11

[4] Bertino, E., Ferrari, E., and Atluri, V. The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Transactions on Information and System
Security (TISSEC) 2, 1 (1999), 65–104.

[5] Beznosov, K., Deng, Y., Blakley, B., Burt, C., and Barkley, J. A resource access decision
service for CORBA-based distributed systems. In Proceedings of 15th IEEE Annual Computer
Security Applications Conference. (ACSAC ’99) (1999), IEEE Press, pp. 310–319.

[6] Bonatti, P., and Samarati, P. A unified framework for regulating access and information release
on the Web. Journal of Computer Security . (to appear).

[7] Chadwick, D. W., and Otenko, A. The PERMIS X.509 role-based privilege management
infrastructure. In Seventh ACM Symposium on Access Control Models and Technologies (2002),
ACM Press, pp. 135–140.

[8] Damiani, E., di Vimercati, S. D. C., Paraboschi, S., and Samarati, P. Fine grained access
control for SOAP E-services. In Proceedings of the tenth international conference on World Wide
Web (2001), ACM Press, pp. 504–513.

[9] Damiani, E., Samarati, P., De Capitani di Vimercati, S., and Paraboschi, S. Controlling
access to XML documents. IEEE Internet Computing 5, 6 (Nov.-Dec. 2001), 18–28.

[10] Godik, S., and Moses, T. eXtensible Access Control Markup Language (XACML). OASIS,
February 2003. www.oasis-open.org/committees/xacml/.

[11] Hine, J. A., Yao, W., Bacon, J., and Moody, K. An architecture for distributed OASIS
services. In IFIP/ACM International Conference on Distributed systems platforms (2000), Springer-
Verlag New York, Inc., pp. 104–120.

[12] Jajodia, S., Samarati, P., Subrahmanian, V. S., and Bertino, E. A unified framework for
enforcing multiple access control policies. In Proceedings of the 1997 ACM SIGMOD international
conference on Management of data (1997), ACM Press, pp. 474–485.

[13] Johnston, W., Mudumbai, S., and Thompson, M. Authorization and attribute certificates
for widely distributed access control. In Proceedings of Seventh IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE ’98) (1998), IEEE
Press, pp. 340–345.

[14] Joshi, J. B. D., Aref, W. G., Ghafoor, A., and Spafford, E. H. Security models for
web-based applications. Communications of the ACM 44, 2 (2001), 38–44.

[15] Li, N., Grosof, B. N., and Feigenbaum, J. Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information and System Security (TISSEC) 6, 1
(2003), 128–171.

[16] OASIS Security Services TC. Security Assertion Markup Language (SAML). OASIS, November
2002. www.oasis-open.org/committees/security/.

12

[17] Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K., and Essiari, A.

Certificate-based access control for widely distributed resources. In Proceedings of Eighth USENIX
Security Symposium (Security’99) (August 1999), pp. 215–228.

[18] Varadharajan, V., Crall, C., and Pato, J. Authorization in enterprise-wide distributed
system: a practical design and application. In Proceedings of 14th IEEE Annual Computer Security
Applications Conference (1998), IEEE Press, pp. 178–189.

[19] Varadharajan, V., Crall, C., and Pato, J. Issues in the design of secure authorization service
for distributed applications. In Global Telecommunications Conference. GLOBECOM 1998. The
Bridge to Global Integration (1998), vol. 2, IEEE Press, pp. 874–879.

[20] Wijesekera, D., and Jajodia, S. Policy algebras for access control the predicate case. In
Proceedings of the 9th ACM conference on Computer and Communications Security (2002), ACM
Press, pp. 171–180.

[21] Woo, T. Y. C., and Lam, S. Designing a distributed authorization service. In Proceedings
of Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies.
INFOCOM (1998), vol. 2, IEEE Press, pp. 419–429.

[22] Woo, T. Y. C., and Lam, S. S. A framework for distributed authorization. In Proceedings of the
1st ACM conference on Computer and communications security (1993), ACM Press, pp. 112–118.

[23] Zurko, M., Simon, R., and Sanfilippo, T. A user-centered, modular authorization service built
on an RBAC foundation. In Proceedings of the IEEE Symposium on Security and Privacy (1999),
IEEE Press, pp. 57–71.

13

Appendix

A A Primer on Web Services and Business Processes

Figure 11: Web Services Technology Stack & Access Control Issues

A Web Service as defined by IBM is: an interface that describes a collection of operations that are
network-accessible through standardized XML messaging. A Web service is described using a standard,
formal XML notion, called its service description. It covers all the details necessary to interact with the
service, including message formats (that detail the operations), transport protocols and location.

The idea behind Web services is to encapsulate and make available enterprise resources in a new
heterogeneous and distributed way.

The WS architecture, as defined by W3C, is divided into five layers grouped into three main com-
ponents - Wire, Description, and Discovery (Figure 11). The Wire component comprises the messaging
and transport layers with the SOAP protocol and the XML message format. Discovery offers users a
unified and systematic way to find, discover, and inspect service providers over the Internet. There are
two standards proposed at this level - Universal Description, Discovery and Integration (UDDI) and Web
Service Inspection Language (WSIL). Moving forward we found the Service Description layer and the
Business Process Orchestration layer. The service description layer is responsible for describing the basic
format of offered services (protocols and encodings, where a service resides, and how to invoke it). The
standard for describing the communication details at this layer is Web Service Description Language
(WSDL). The Business Process Orchestration layer is an extension of the service model defined at the
description layer. This layer is responsible for describing the behavior of complex business and work-
flow processes. Intuitively, business processes are graphs where each node represents a business activity
and primitive nodes are in WSDL. The recently released standard at this layer is the Business Process
Execution Language for WS (BPEL4WS).

The BPEL4WS primitive activities are the following:

<invoke> invoking an operation on some Web service;
<receive> waiting for an operation to be invoked by someone externally;
<reply> generating the response of an input/output operation;

14

<process>
<sequence>

<receive partner="Customer"
portType="purchaseOrderPT"
operation="SendPurchaseOrder"
container="PO">

</receive>
<invoke partner="CreditBureau"

portType="CheckCreditPT"
operation="CheckCredit">

</invoke>
<invoke partner="shippingProvider"

portType="shippingPT"
operation="RequestShipping"
inputContainer="shipingRequest"
outputContainer="shippingInfo">

<source linkName="ship-to-invoice">
</invoke>
<reply partner="Customer"

portType="purchaseOrderPT"
operation="SendPurchaseOrder"
container="Invoice"/>

</sequence>
</process>

Figure 12: Example of BPEL4WS Process

<assign> copying data from one place to another.

More complex activities can be constructed by composition:

<sequence> - allows the developer to define an ordered sequence of steps;
<switch> - allows the developer to have branching;
<while> - allows the developer to define a loop;
<flow> - allows the developer to define that a collection of steps has to be executed in parallel.

An example of compositions of services is shown in Figure 12: a buyer service is ordering goods from
a seller service, i.e. the buyer service invokes the order method on the seller service, whose interface is
defined using WSDL. The seller service invokes a credit validation service to ensure that the buyer can
pay for the goods and after that continue by shipping the goods to the buyer. The credit validation
service can take place at a credit bureau site in a separate security domain. Notice that a number of
partners participate in the process that therefore crosses administrative boundaries.

The XML code shown in Figure 12 is a very brief example of the scenario described above in the
notations of BPEL4WS primitives. The structure of the processing section is defined by the <sequence>
element, which states that the elements contained inside are executed in this order. The node contents
is self explanatory.

15

