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Abstract

IP Telephony has become very popular and Session Initiation Protocol (SIP)-
based telephony systems are almost substituting the traditional PSTN systems.
Being so widespread and ubiquitous, the protocol’s resilience and security in
presence of incorrect, malformed or malicious messages is fundamental for the
correct management of a network. This is of particular importance for the
session-based applications since they appear to be much more sensitive very
sensitive not only to malicious attacks, but also to errors, and even incorrect
interpretation of the standard. To have an in-depth knowledge about the net-
work behavior is primary requirement to design and tune any attack or anomaly
detection system. In the context of VoIP, traffic analysis plays a very significant
role due to the fact that SIP based VoIP traffic does not follow any generic model
to describe its characteristics like traditional telephony. To this end, we have
performed a thorough analysis on SIP traces captured from the VoIP network
of our institution. Here, we use social network analysis techniques to capture
the relationship behavior of users and to explore distinct behavioral patterns of
users inside the VoIP network. Knowledge about the normal behavior of the
system and users gained from the traffic analysis is helpful in detecting intrusion
and anomalies. In this paper, we also present an anomaly detection architecture
where we train an automated machine with the normal behavioral pattern of
the users. The machine, thus trained, is capable of identifying malicious users.
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1. Introduction

The transition of telephony over IP platforms has entered its final phase:
VoIP directly to the home/business users. All major operators in EU and US
are now running SIP-based telephony networks as it provides higher flexibility
and more features than traditional architecture. As the popularity and use of
SIP-based VoIP application increases, it is attracting the attention of hackers
who might inject erroneous SIP messages in a network with malicious or even
criminal intentions. Thus it calls for careful attention to the possibility of trans-
ferring malformed, incorrect, or malicious SIP messages that can cause problems
ranging from relatively innocuous disturbances to full blown attacks and frauds.
Moreover, SIP-based applications, appear to be much more sensitive than web
services or e-mails to intrusion and mis-functioning, if not for else, because their
real-time nature prevents on-line inspection or semantic analysis of the content.
Analysis and anomaly detection of SIP based system has thus become an active
area of research.

The first step of any protection and anomaly detection process is to acquire
a solid insight of the system behavior. Infact, without a deep knowledge of the
normal behavior of the network only major service failures would be detectable,
and even these would still require huge amount of time for their root cause iden-
tification. Even worse, silent problems (e.g., telemarketers sending unsolicited
communications using bot machines, billing fraud, etc) not leading to an im-
mediate service meltdown would be completely untraceable reducing the users’
confidence and satisfaction in the overall service.

In the context of VoIP, a thorough understanding of network behavior is
of paramount importance due to the fact that SIP based VoIP traffic is very
different from the traffic model of traditional POTS and ISDN. Though the
extensibility and features’ richness of SIP protocol determined its success, but
also decreed the drawback of making SIP the most complex IETF standard
ever. This, together with the additional extensions added by other standards
organizations and consortiums, have turned SIP in a protocol hard to debug
and troubleshoot. As if this was not enough, telecommunications operators are
using today SIP to implement many different services resulting in a complex in-
terdependency across numerous network and service elements. Thus, it changes
non marginally the rules of the game in that the characteristics of voice traffic do
not match any more the traditional Erlang models, so that a new understanding
of the traffic characteristics for SIP-based services is badly needed.

For the reasons outlined above, we have focused on analysis and classifica-
tion of SIP based VoIP traffic. To this end a filtering system is proposed in [1, 2]
that examines all incoming messages to discard all the syntactically incorrect
and semantically meaningless messages in the stream of SIP messages. While
the identification of syntactically incorrect SIP messages is straightforward (e.g.,
either a messages belongs to the language defined by the protocol [3] or it does
not), detection of semantically meaningless and harmful content requires the
filters to be integrated with the information about normal system and users
behavior. For instance, due to low cost VoIP telephony, spammers can very eas-



ily transmit huge number of unsolicited voice messages to legitimate users with
telemarketing, phishing or fraud goals. Unlike “spam” in e-mail systems, VoIP
“spam” (also known as Spam Over Internet Telephony) calls have to be identi-
fied in real time. Content analysis techniques that prove very effective in e-mail
spam detection, is not applicable at all in VoIP scenarios due to the fact that
content analysis is not possible before the call establishment. Before attending
the call the only information available is the identity of the caller and the call
recipient. At this stage, detection of spam calls by checking the single message
without any prior knowledge about the normal behavior of the system and users
is not possible. It requires information about the social interaction pattern of
both the caller and the receiver, and also the trust relationship between them
to suspect a call as “spam” before attending.

Considering this, we have focused on an in-depth analysis of the network
to learn the normal behavior of the system. In telecommunication it is quite
common to analyze the individual attributes to understand user behavior, such
as the average billing, frequency, amount and time of service usage, and so on.
Besides these individual attributes, social network analysis, is a good technique
to know how each individual behaves inside the network. Infact, the information
about the relations among the individuals within a social network is usually
more relevant than the attributes of the individuals to reveal the users [4],
specially, social network analysis techniques are suitable to recognize patterns
of behavior of users in large amounts of telecomm data. Telecommunications,
being an increasingly competitive market, information about patterns of user
behavior is very helpful for marketing (e.g., launch new business events, policy,
products, etc), applying security solutions and anomaly detection. We use the
social behavior analysis techniques in the stream of SIP messages to exploit
different levels of behavioral patterns of users. Later, a filtering architecture is
proposed where a classifier trained with the normal system behavior is used in
detecting harmful contents in SIP traffic.

The rest of this paper is structured as follows: In Section 3 the overall orga-
nization of the filtering architecture is briefly outlined. In Section 4 the off-line
analysis of the captured SIP trace is presented. Section 6 summarizes the exper-
iments and evaluates the performance of the SIP traffic filtering application.

2. Related Work

Works on traffic analysis and intrusion detection of VoIP system in general
are too numerous for a comprehensive presentation here, so this section high-
lights the papers that focus on analyzing the social tie between the users of the
network.

Author of [4] suggests the use of social network techniques to capture the
relationship between customers inside the telecommunications network. Infor-
mation about the social relationship between the users helps the telecom com-
pany in customer management, deployment of new business strategy, and even
fraud detection.



Author of [5, 6, 7, 8,9, 10, 11] consider the social relationship between users
as a measure of preventing social threats. Social threats are attacks ranging from
the generation of unsolicited communications which are annoying and disturbing
for the users to more dangerous data stealing (Vishing) attacks. These are silent
attacks and are difficult to identify. In these papers, the notion of trust and
reputation helps to discover the social communities inside a network and later
such information is used to improve the accuracy of identifying unwanted calls.

In a manner similar to our work, [12] analyses a very large data set of call
detail records. Their goal to explore the users behavior, as well as of their
mutual interaction and communication patterns, allowing to identify certain
easily separable user categories. Later, an in-depth analysis is conducted to
identify the behavioral pattern of the users that were classified as malicious. The
authors suggest that this knowledge about the behavioral pattern of malicious
user can be useful in intrusion detection.

3. Filtering Methodology

With the growing acceptance of SIP as the underlying protocol for multi-
media applications, many hardware/firmware implementations of this protocol
have been developed to be embedded in commercial gateways/routers. Malfunc-
tions or non-strict adherence to the SIP protocol specifications can cause these
devices to produce malformed (e.g., syntactically wrong) or semantically erro-
neous (e.g., syntactically correct, but, have no meaning, cannot be interpreted,
are ambiguous, or lead to a deadlock, etc) SIP messages. Moreover, attackers
might manipulate SIP messages to take advantage of existing security problems
in the target system, or to exploit SIP weak points. These messages are correctly
formatted, but are harmful and should be discarded without further execution.

Messages that do not belong to the language defined by the grammar spec-
ified by the protocol can be easily checked by a fairly straight-forward lexical
analyzer. On the other hand, detection of semantically erroneous messages and
malicious messages require a more delicate handling, as it require the correlation
of different messages and it is also not a sharp decision whether a message is
semantically meaningful or not.

Based on the considerations above, we have developed a two module filter
for analyzing traffic and to detect anomalous messages within a stream of SIP
messages. The first one is the traffic analysis module which is responsible for
the social behavior analysis of the VoIP users, while the second one is the SIP
messages filtering module that indentifies anomalous SIP messages. Figure 1
shows the logical architecture of the SIP traffic analysis & filtering system.
Description of the modules and their working procedure is described below:

3.1. First Module : Traffic Analysis

This module deals with the analysis of SIP traffic. The social behavior of
users inside the system is analyzed here to get a deep knowledge about the
normal system behavior. Social network analysis techniques are used here to
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Figure 1: System Architecture for SIP message classification

represent user relationships that can be derived along the network paths and
eventually to exploit different levels of patterns. This analysis is conducted off-
line on a stream of SIP traffic of specific observation window. Details about this
analysis is discussed in section 4.

3.2. Second Module : SIP Message Filtering

To identify the various kinds of errors (e.g., malformed, semantically incor-
rect, malicious, etc) that can be found in a SIP messages, we have developed
two separate filters. The first one controls individual SIP messages. It consists
of a lexical analyzer and a supervised classifier to discard the messages that are
syntacticaly and semanticaly incorrect. Details about this fist stage filtering is
found [1, 2].

The stream of SIP messages passed from the first filter are syntactically and
semantically well-formed, but, still they can carry “malicious” contents. Detec-
tion of “malicious” content is “fuzzy”, since there is no clear cut algorithmic
dividing line that separates all harmful “malicious” content and “good” ones.
Any hope of tackling this problem with an algorithmic or table-drive approach
is destined to run up against the combinatorial explosion of the cases that need
to be considered, as there are endless ways of forming a malicious message.

Hence, the strategy we adopted for this second stage filter is to make it
adaptable in a way that takes into account previous experiences. Of the many
different techniques that learn from previous examples, we have selected the
Support Vector Machines (SVMs) of Vapnik [13] that recently have found use-
ful in numerous problem areas. The basic idea is to provide a sufficiently rich set
of examples with their correct classification and “train” a machine automaton
to carry out such classification, even on messages that were never seen before.
An added bonus of this approach is in its flexibility to fit new kinds of bad



messages that might become common at a later time, perhaps as a new breed of
malicious messages is introduced when some weakness of the protocol is uncov-
ered. The adaptation to the changed operating scenario can be obtained simply
by retraining the machine automaton while including the new messages, duly
identified as bad.

We have used LibSVM [14], a freely available library for Support Vector
Machines, for filtering “malicious” calls and users. As mentioned before, in order
to detect hidden “malicious” content, it is highly imperative for the classifier to
be integrated with the social behavioral pattern of the users. Considering this,
we “train” our SVM classifier with the normal behavioral pattern of the users
that are revealed during the traffic analysis in first module 3.1. Information
about the normal system behavior helps the classifier in identifying “malicious”
calls or users in a test set. Here, a test set contains unlabeled syntactically and
semantically well-formed SIP messages that are passed from the first filter. This
SVM classifier does not work on individual SIP messages, so, the SIP messages
in the test set are further processed and a set of CDRs (call detail record) are
extracted by considering the messages involved in each call session. A CDR can
have the following information about a call: the identities of the caller and the
callee, the time of the call, the duration of the call, a call release reason, the
number of packets transferred in both directions, which party disconnected the
call, among others. Details about the “training” and performance evaluation of
the “train” through various experiments are reported in section 6.

4. Analysis of the Social Behavior of VoIP users

As mentioned in the introduction 1, social network analysis approach is
very promising to recognize patterns of users’ behavior in the context of VoIP
network. To this end, we established an agreement with our institution that
allowed us to collect SIP traces by mirroring the port in front of the SIP Proxy
server. Qur objective is to analyze the social connection between the VoIP users
with the final goal to explore normal system behavior.

4.1. Description of Dataset

Traffic analysis is performed on a subset of the captured real SIP trace that
contains traces for over six months (July 2012- December 2012). Around 1.5
million call attempts are retrieved from the captured SIP messages. For our
analysis purpose each call is represented as a CDR (Call Detail Record) where
each CDR is represented as 4-tuple {x,y,t,l,n}, where user x is the caller, user
y is the callee, t is the time of the call arrival, and I is the duration of the call
and n is the call status (e.g., successful or cancelled). Among these 1.5 million
calls, 483,261 calls are successfully established.

Figure 2 shows the average call arrival rate in the dataset. Based on the
arrival pattern of call request (INVITE message), it is noticed that the busy
hour starts from around 8 am and ends around 5 pm.



Figure 3 shows the average interarrival time of call requests during the peak
hours in weekdays. Figure 4 shows that the interarrival time of the call requests
during the peak hours in weekdays follows exponential distribution.
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Figure 2: SIP INVITE Message arrival pattern in captured trace

4.2. Call Establishment Time

The average time for establishment of a call through a three-way handshake
of INVITE/200 OK/ACK messages is shown in figure 5. Figure 6 shows the
distribution of the call establishment time during weekdays.

4.83. Call Duration Distribution

Figure 7 shows the distribution of call durations during the observation
period. For this plotting, all the calls including unsuccessfull are considered.
Thats why figure shows huge amount of calls having call duration less that 10
seconds, which indicates the amount of rejected of cancelled calls.

4.4. Call Distribution over Users

Figure 9 and 11 shows the distribution of the calls over the users during the
observation period.

5. Social Networks of VoIP Users

After an initial analysis of the CDRs extracted from the captured SIP traces,
a total of 89,152 users (SIP uris) are found that dialed or received at least one
call during the whole observation period. In this study, we construct a social
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Table 1: Number of users and percentage of calls generated by user groups

User Group Num of Users Call Percentage
Internal Active Users 1,780 63%

Internal Inactive Users 5,520 14%

External Active Users 283 1%

External Inactive Users 81,569 19%

network of these VoIP users from the data set consisting of their VoIP phone call
records over a period of one year. Of those, 7,300 are found to be internal users
and the remaining 81,852 are identified as external users (e.g., mobile/land line
outside the university domain). The set of internal users consists of adminis-
trative, technical, teaching and research stuffs.

We noticed that a large number of users generate a call only once or twice
during the observation period. Thus, an activity threshold is used to differen-
tiate the least active users from the most active ones. The threshold is defined
based on the activity of users during the observation window. An user is defined
as active if he/she remains active for at least 25% of the time of the observation
period to generate or receive calls. This indicates that an active user dialed
or receive successful calls for at least 45 days (can be non-consecutive) during
the total 184 observation days. Both sets of internal and external users are
divided into active, and inactive users. Table 1 shows the number of users and
percentages of calls generated by the four user groups.

In our endeavor to construct a social network from the CDRs, we first need to
properly define the set of “nodes” connected by one or more “links” (e.g., distinct
types of relationships between “nodes”). In the context of VoIP, it is quite
common that “nodes” are assigned to users and “links” are the communication
(e.g., call, sms, video chat, etc) between them. It is found, if we consider the
whole set of users that are observed during the observation window, the social
network becomes huge, with a really large number of “nodes” (total 89,152
users) and “links” (here, frequecy of calls between users). It is hard to analyze
such a large social network and to understand its structure, pattern, and member
behavior. Inorder to avoid the trouble of analyzing a huge social network, we
have only consider the set of “internal active” users. The reason of excluding
the other groups of users shown in table 1 is because their activity is very
limited during the observation window, thus, analyzing their behavior does not
provide any helpful indication about the users behavior and characteristics. So,
an in-depth analysis of the relationship among the “internal active” users is
performed to identify common behaviors of users, with the aim of making some
usage patterns emerge from the data.

First, we build a caller-callee social network considering the frequency of
communication between the “internal active” users. This is a directed weighted
call graph G(V, E), where, V(G) is a vertex representing the “internal active”
users and E(G) is an edge that exists if users have at least one call between
them. It is found that this call graph captures only 10% information of the total
calls being generated during one year observation window. We also measure the
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density of the call graph G(V, E) to reveal how closely the group of “internal
active” users is connected. Density of a graph is measured by the percentage of
the number of actual ties/connection/links present in the group relative to the
number of possible links in the group (i .e., if everyone had a relationship with
everyone else in the group). Density of the call graph G(V, E) is 0.023 which
indicates that the graph is very sparse (e.g., internal communication between
the “internal active” users is not frequent). Infact, call graph G(V, E) only
explores the inter and intra departmental communication structure, it does not
reveal the social behavior of the “internal active” users with the outside world.
Figure 11 shows that based on the frequency of communication the group of
“internal active” users can be divided into 10 communities, in this context these
communities refer to different departments.

Figure 11: Communities of “internal active” users based on frequency of internal communi-
cation

In order to explore the social behavior of the “internal active” users, we have
redefined the previous call graph. We represent a undirected weighted graph
G1(V, E), where, V(G1) is a vertex representing the “internal active” users and
E(G1) is an edge refering the strength of social interaction between users and
is expressed by a value range from 0 to 1. similarity of call pattern between
two users. The strength of social interaction between two users ¢ and j can be
measured by the similarity of their call patterns (e.g., a set of common friends)
and intensity of their internal communication. The strength of the similarity
between two users can be expressed by a value range from 0 to 1. We measure
the similarity between the users through their internal communication and also

13



the communication with the neighbors (e.g., a set of common friends), the two
indices are described below:

e Intensity of internal Communication IC(i, j):
This is measured by taking account the percentage of dialed calls between
two users, over the total number of calls. For example, internal commu-
nication between users ¢ and j is defined as follows:

IC(Z, .7) = Total nuljn]%n:)vf (c)zfil(l:salll)i/bieiw%iréa‘fsslirlrfrcl)(fi ialls by j
e Similarity of Call Pattern - J(i, j):

Similarity of call pattern between two users is measured by considering the
number of their common neighbors/friends. We measure it by the Jaccard
similarity coefficient, a frequently used statistic measure for comparing
the similarity and diversity of sample sets. It is defined as the size of the
intersection divided by the size of the union of the sample sets. Here, it is
used to measure the percentage of common friends between two users. For
example, the Jaccard similarity coefficient between user i and j is defined
as follows:

.. ANB
J(i,5) = {3581

where A and B are the sets of users called by user ¢ and by
user j, respectively.

The social similarity/relationship measure Sim(i,j) between two users ¢ and
j is then defined as the sum of the two indices above:

Sim(i,j)= J(i,j) + IC(i,j)

5.1. Community/Cluster Detection

Social network analysis techniques look at the individual in the network as
a communitiy instead of considering as a single entity. A commuinty is com-
prised of individuals with similar behavior and characteristics. The concept
of community is one of everyday familiarity and community analysis is quite
relevant to reveal distinctive patterns inside networks. In telecommunication,
for instance, where the entire network is huge and sparse, the identifications
and analysis of smaller internal communities is quite relevant for not only for
business purposes but also to retrieve comprehensive information from their
structure. Infact, in such context, consideration of the rich set of interactions
between individuals in the network can discover complex community structure,
capturing highly connected circles of friends, families, or professional cliques in
the observed network. Thus the issue of detection and characterization of com-
munity structure in networks has received a considerable amount of attention
[15, 16, 17, 18, 19, 20].

We have performed different experiments to explore different community
structures from the network we are considering. We want to discover this struc-
ture in our network rather than impose a certain size of community or fix the
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number of communities, so we go for unsupervised clustering to find out k
communities. K-means clustering algorithm [21, 22], a widely used machine
learning technique for unsupervised classification of data, is used here to group
together the set of 1,780 “internal active” users into pre-defined k communi-
ties/clusters where users insider a cluster are of similar social behavior. Briefly,
the k-means clustering algorithm takes a set of n observations and a (fixed)
integer k (1 <= k <= n) and proceeds to partition the n observations into k
clusters so that some optimization measure is optimized — typically one wants
observations belonging to the same cluster to have a high “similarity” measure,
while observations belonging to different clusters should have a very low “simi-
larity” measure. Intuitively, data points in a cluster should be “densely packed”,
while different clusters should be well “separated” from one another. Figure 12
shows an example of classification using k-means clustering algorithm.

Inter-cluster
variance is
maximized

Intra-cluster
variance is
minimized

Figure 12: Example: k-means clustering

5.1.1. Determining the number of Clusters (k)

Determining the optimal number of clusters is essential for effective and
efficient data clustering. The correct choice of k is often ambiguous and depends
on the shape and scale of the distribution of points in a data set. There are
several techniques of choosing the suitable number of clusters. Though neither
of them guarantee to discover the “best” solution, but, can give an idea of the
possible cluster structure.

We have started with the common method which is to compare the intra-
cluster variance for a number of cluster solutions. It is noted that increasing k
(number of cluster) without penalty will always reduce the amount of error in
the resulting clustering, to the extreme case of zero error if each data point is
considered its own cluster (i.e., when k equals the number of data points, n).
Intuitively then, the optimal choice of k will strike a balance between maxi-
mum compression of the data using a single cluster, and maximum accuracy by
assigning each data point to its own cluster.

The plot (in figure 13) of the intra-cluster variance (“within cluster sum
of squares (WSS)”) against a series of sequential clusters (here, 2<k<20) on
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our dataset provides a useful graphical way to choose an appropriate number
of clusters with lowest lower intra-cluster distance. Intra-cluster distance of a
cluster ¢ is measured by the sum of squared Euclidean distances between the

data instances and its center. It is known as “within cluster sum of squares

; 2
(WSS)” and is calculated as : >_ i g (@] —¢;) , where ¢; is the centroid of ith

cluster. . ,
Total “WSS” for k clusters can be evaluated as : Zle dowies, (@] —ci)

Usually for a clearly separable data set the reduction in “WSS” drops dra-
matically till a point with the increase of the number of cluster (k) and after
that it reaches a plateau. This produce an “elbow” (The largest magnitude
difference between two points) in the plot. The location of the “elbow” in the
resulting plot indicates [23, 24, 25] that a satisfactory number of clusters have
been reached. This “elbow” cannot always be unambiguously identified. For
example, in case of our dataset we do not find such a sharp reduction (“elbow”)
of “WSS” with the with the increase of number of cluster (shown in figure 13).
Though it is noticed that k=9 can be a suitable solution as further increasing the
number of cluster (e.g., k>9) do not have a substantial impact on the clustering
solutions.

100
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Intra—Cluster Distance
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Figure 13: Intra-cluster distance for different values of k (number of clusters)

We have also followed probabilistic approach (expectation maximization in
Gaussian Mixture Models) to solve the problem of determining the optimum
number of clusters [26]. Here, we assume that our dataset x is drawn from k
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Gaussian distributions, f(z) = Zle Ai fi(z), where f; is the probability density
function of the observations in group k, and A; is the probability that an obser-
vation comes from the k* mixture component (); € (0,1) and Zle Ai = 1).
The Expectation- Maximization algorithm is used to estimate the parameter
(e.g., number of Gaussian distributions in the mixture density /number of clus-
ter) through maximum likelihood. In selection of the “best” model that fit
our data, we extend the use of Expectation- Maximization algorithm within
a varying range of possible number of clusters (1<k<20) and then models are
compared using Bayesian Information Criterion (BIC) [27], a statistical criterion
for model selection. Figure 14 shown the result of such model based approach.
Model with the highest BIC indicates the “best” model to fit the data. Figure
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Figure 14: Selection of best model using Bayesian information criterion (BIC)

14 shows that the best model is “VEV” which indicates that the model is el-
lipsoidal with 9 components/clusters where the shapes of all clusters are equal
while their volume and orientation may vary. Details about all the models is
found in [28].

5.1.2. Cluster Analysis

By applying k-means clustering algorithm the set of “internal active” users
are divided into 9 communities/clusters in terms of distinct behavior. Figure 15
shows the 9 clusters of users in two dimensional space. In the figure the clusters
are not clearly distingushable as the first two components cover only 28% of the
total variance (shown in table 2) among the 12 components/features that are
used to describe our dataset. Figure 16 shows the call flow between clusters of
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Table 2: Importance of 12 components

Comp. No 1 2 3 4 5 6 7 8 9 10 11 12
Standard 0.09| 0.08| 0.07| 0.07| 0.06| 0.06| 0.06| 0.06| 0.06| 0.05| 0.05| 0.05
deviation
Proportion 0.15| 0.13| 0.11| 0.10| 0.08| 0.08| 0.07| 0.06| 0.06| 0.06| 0.05| 0.05
of Variance
Cumulative | 0.15| 0.28| 0.39| 0.49| 0.57| 0.65| 0.72| 0.78| 0.84| 0.90| 0.95| 1.00
Proportion
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Figure 15: Clusters of users based on behavior similarity
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“internal active” users, and the remaining users groups (e.g., “internal inactive”,
“external active” and “external inactive”).

Figure 16: Communication between user groups. Vertex label C1-C9 indicates clusters of
“internal active”users, II, EA adn EI indicates “internal inactive”, “external active” and
“external inactive” users. Size of the vertex corresponds to the size of the user group, smallest
one indicates at least 78 users. A thinnest edge between two groups indicates at least 4000
calls)

A deep analysis of these clusters of users can discover network normal behav-
ior. Analyzing the behavior of users inside 9 clusters, three behavioral patterns
are noticed. These behavioral patterns are described in table 3 using a set of
features. Few important features are follows:

e Interactivity of User- Defined by the ratio of the incoming and outgoing
calls (of an user) during the observation period.

. ___Dialed Call by User A
Interactivity of User A = g e M "t &

e Activity Duration of User- Defined by the ratio of the time an user
remains active and the total observation window.

tol . . _ Period when user A remain active
Activity Duration of user A = Total observation period

e Sociality of Users- An user is called “social” if he intend to call to a
variety of people instead of maintaining communication only with fixed
set of people. These is measured through the features “sociality” and
“dynamicity” :

S e __ Number of contacted Callees by User A
SOClahty of User A = Total calls generated by User A
. s __ Number of contacted Callees by User A
Dynamlclty Of User A = Total Number of Users .
In our analysis, an users can be tagged as “social” if it is found that during

the observation window his “sociality” >=0.5 and “dynamicity” >0.06.

19



Table 3: Three distinct social behavioral pattern of “internal active”

users

Feature

Pattern 1

Pattern 2

Pattern 3

Num of users

619

2, 674

487

Interactivity of users

90% users are receiver

87% users are caller

90% users are both
caller and receivers

Num of clusters 5 3 1

Num of “social” user 38 63 24

Activity Duration 80% 70% 92%

Internal Communication Very Little Very Little Very Little

Num. of Dialled Call

Num.Tgft%%e(cjgll\}ed Call if(jo ig? gz«;%
Total Call 0 0 0

Active Hour in a day 8-17 8-17 8-17

Inactive Months

August & December

August & Decem-
ber

August & Decem-
ber

Description of these patterns is found below:

e User Behavior Pattern 1 -
Users of cluster 1, 5, 6, 7 and 8 follow this behavioral patter. The main
characteristics of this pattern is that the users are mainly receivers. Infact,
about 90% (554 out of 619) users receive calls at least five times large

number of calls than they generate (here, R]Zéﬁig dcgliub %YUGZ;AA <= 0.3).

Users of these 5 clusters receive 45% calls of the total calls generated by
all the users during the observation window. Most of the users of these
clusters remain active for 70% time of the observation window. Here, in
most of the cases, the users of same cluster are not closely connected,
because, they only intend to receive a lot of calls instead of generate.
That is why very few internal friend groups are found inside these clusters.
Figure 17 shows the internal communication between users of cluster 5.

e User Behavior Pattern 2 -
Users of cluster 2, 3, and 4 follow this behavioral patter. The main charac-
teristics of this pattern is that the users are mainly callers. Infact, about
87% (586 out of 674) users generate at least three times large number of

calls than they receive (here, RE;Z}?/‘; dcgglfjﬁyUS‘zerA >=3). Users of these 3

clusters generate 50% calls of the total calls generated by all the clusters
of “internal active” users. Most of the users of these clusters remain ac-
tive for 80% time of the observation window. Though, here users generate
huge call, most of their calls are directed to other clusters, “internal inac-
tive” and “external” user groups. That is why, users of the same clusters
are very lightly connected with each other. Figure 18 shows the internal
communication between users of cluster 21.

e User Behavior Pattern 3-

1Red filled “circle” indicates callers, grey filled “circle” indicates receivers, “square” in-
dicates both caller and receiver. Size of the vertex corresponds to the frequency of dialed &
received called by user.
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Figure 17: Internal communication between users of Cluster 5 (Thinnest edge indicates 10
call)

o 4

Figure 18: Internal communication between users of Cluster 2 (Thinnest edge indicates 10
call)
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Users of cluster 9 follow this behavioral patter. The main characteristics
of this pattern is that most of the users not only dial calls but also receive
a large number of calls. The “interactivity” of the users of these clusters

. 0.4<Dialed Call by User A . .
can be defined as : - by Uscr A < 3). These users remain active

usually for 60% time of the observation window. Though, here users gen-
erate and receive huge call, most of their calls are directed to other user
groups. That is why, users of the same clusters are very lightly connected
with each other. Figure 19 shows the internal communication between
users of cluster 9*.

Figure 19: Internal communication between users of Cluster 9 (Thinnest edge indicates 10
call)

6. Experimental Results & Performance Evaluation

This section describes the details about the configuration and performance
evaluation of the filtering system defined in Section 3.

6.1. Training of SVM Classifier

Application of social network analysis techniques in the stream of SIP mes-
sages (captured from our institution) reveals normal behavioral pattern of the
“internal” users (both “active” and “inactive”) in the system (described in Sec-
tion 4). Specially, three behavioral patterns of the “internal active” users are

noticed and we consider all of them to be “legitimate”?.

2VoIP network of our institution being a closed network, the probability of transmitting
“harmful” messages is low. This condition is however about to change as our institution is
going to directly connected with public VoIP networks. This work is an attempt to prepare
ourselves for protecting the network from malicious users in such public environment.
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The SVM classifier is trained with the “legitimate” behavior patterns of
“active” and “inactive” internal users. The classifier, thus, learned about the
behavior of “internal” users, examines the unlabeled call vectors in the test set.
During this process, the classifier observes the behavior of the “internal” users
and any suspected deviation of their behavior is identified.

6.2. Performance Evaluation

The performance of the SIP message filtering system proposed in section 3
is evaluated through various experiments. For these experiments a statistically
relevant collection of data (in this context, a large number of SIP traces) would
be needed. As no such publicly available VoIP corpus is found for testing the
classifier, we used real SIP traces that is captured through an agreement with
our institution that allowed us to collect SIP traces by mirroring the port in
front of the SIP Proxy server.

The collected sample contained over six months (January 2013- July 2013)
SIP trace with around 46 millions SIP messages. The SIP messages are further
processed and 422,687 calls are retrieved from the 46 million SIP messages
among which 230,816 were successfully established. Each call is represented
with the information about the arrival time, duration, caller and receiver name
of the call which is known as the CDR (call detail record). Around 48 thousand
SIP uris are found that are related to these calls, among these 8,498 are internal
users while the remaining are external users.

Dataset collected from our institution do not contain any messages that
were maliciously sent with the intention of harming the network due to the fact
that this is a closed network. To counteract the lack of “malicious” calls in
our collected sample, we randomly inject synthetic “malicious” calls into the
stream of real VoIP calls. Inorder to generate synthetic traces, we developed
“VoIPTG”3, a flexible and generic traffic generator, which is capable to emulate
the real world VoIP traffic including normal and attack scenarios.

6.3. Injection of Synthetic Malicious Traces

Though there are various kinds of “attacks” listed in the literature*:5 [29, 30],
in this experiment, we have focused on detection of social threats and toll fraud.
Social threats are transmission of unsolicited voice messages with telemarketing,
phishing or even fraud goals. While, toll fraud is the unauthorized usage of paid
communication services.

We focus on these two atatcks as detection of these silent attacks are dif-
ficult. For instance, the characteristics of the spam callers are not always
clearly separable from that of the “legitimate” users. Usualy, telemarketers

3VoIPTG: VoIP Traffic Generator. http://disi.unitn.it/~ferdous/VoIPTG.html
4VoIP Security and Privacy Threat Taxonomy, VOIPSA (2005),
www.voipsa.org/Activities/ VOIPSA _Threat_Taxonomy_0.1.pdf
5VoIP Security Threats,S. Niccolini, 2006
http://tools.ietf.org/id /draft-niccolini-speermint-voipthreats-00.txt
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Table 4: Description of synthetic synthetic attacks scenarios

Scenario Description Time Total “Internal” “Malicious”)
Call Users Users
“Spam” calls 2 week (weekdays) | 8 am-5 pm 40,000 30 30
“Spam” calls 1 week (weekdays) | 8 am-12 pm | 30,000 40 30
“Spam” calls 1 week (weekdays) | 11 am-6 pm | 30,000 40 30
“Toll Fraud” 4 week (weekdays | 8 am-11 pm | 80,000 40 30
& weekends)
“Toll Fraud” 2 week (weekdays) | 8 am-5 pm 20,000 20 30

and advertisers tend to call a large number of people to deliver their messages
[31, 32, 5, 6, 7, 10, 11] often resulting in short duration calls as the other party
quickly hangs up after realizing that the call is spam. On the other hand, traffic
analysis of real trace collected from our institution shows that a large number
of “legitimate” users only generate calls while receives very few or no call at
all during the whole observation period. In such context, it requires a deli-
cate handling to distinguish the group of “legitimate” callers from the group of
Sspammers.

Inorder to imitate social attack scenario, we inject a huge amount of “spam”
calls randomly selected 110 “internal” (70 “active” and 40 “inactive”) users
among 8,498 users found in the dataset containing real VoIP calls. Following
the general assumption about the characteristics of the “spam” calls, these
synthetic calls are generated during peak hour, with very low interarrival time
difference and of short duration. Callers of these calls are a set of synthetically
generated “external” SIP uris that refers to the set of spam callers.

In toll fraud attack, due to the deployment of inadequate security, “mali-
cious” users can make unauthorized usage of paid communication services (such
as international calling) where they may call few subscribers (“legitimate” users)
of the network and prepended a “malicious” number (mostly in some other coun-
try) to which the system sets up calls. In result, the organization has to pay
a huge phone bill that is way higher than its typical monthly bill. Inorder to
imitate such scenario, we randomly select 60 “internal” users (30 “active” and
30 “inactive”). A large number of synthetic calls are injected into the real trace
indicating that these calls are generated from these 60 users to a set of external
sip uris (indicating “malicious” numbers). Figure 20 shows the call distribu-
tion per user per day during synthetic attacks and legitimate normal scenarios.
Details about the synthetic attack scenarios are reported in table 4.

6.4. “Test” set

Detail about the new “test” set (combination of real and synthetic calls) and
the achieved accuracy by the SVM classifier on this “test” set is found in table
5.

The SVM classifier checks the behavior of all the 8,498 internal users (ob-
served in the test set). Total 1,020 “internal” users are found those were not
present during the training period. The classifier declares them as “good” user
as they follow the behavioral pattern of “legitimate” users during the observation
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Figure 20: Daily call distribution per user during synthetic attacks and legitimate normal
scenarios

Table 5: SIP call classification result using SVM

Description Value
Total Calls 430,816
Number of real “good” calls 230,816
Number of synthetic “spam” calls 100,000
Number of synthetic “toll fraud” calls 100,000

User Description

Total Number of Users observed in test set 48,699
Number of “internal active” users found in test set 1,985
Number of “internal inactive” users found in test set 6,513
Number of “external active” users found in test set 412
Number of “external inactive” users found in test set 39,789
New “internal active” users not found during training 33
New “internal inactive” users not found during training 987
Number of “internal” users who receive synthetic “spam” calls 110
Number of “internal” users who generate synthetic “toll 60

fraud” calls

SVM Classifier Result

True positive( “malicious” users identified as “malicious”) 161
False positive(“good” users identified as “malicious”) 426
True negative(“good” users identified as “good”) 8,072
False negative(“malicious” users identified as “good”) 9
Accuracy 94.98%

25



window. On the other hand, behavior of 426 users are identified as “suspicious”
due to the fact that these users suddenly become “active” during “test” period,
while they were “inactive” during training. These users infact are “legitimate”.

We also focused on the time required for the SVM classifier to detect an at-
tack scenario. This classifier observes every call and checks the behavior of the
“internal” users associated with that call. As soon as it notices any significant
deviation of the behavior of any of the “internal” users from his/her “normal”
behavior, the classifier suspects that user as “malicious”. In the synthetic at-
tack scenarios (described in table tab:syntheticmaliciousscenarios), the attack
starts slowly from zero and increases until it reaches the maximum rate, then,
the maximum rate is maintained constant until the attack duration stops. We
noticed that the SVM classifier is able to detect the attacks as soon as the traf-
fic reaches the maximum rate. For example, during synthetic “social” attack
scenario, huge amount of calls (at least 100 call/day) are directed to an “inter-
nal” users (named “A”) for five consequitive days. This changes their behavior
significantly in the context of receiving calls as they normally recieve at most
10/20 calls per day. The classifier observes each call directed to this user and
it notices a dramatic increase in the frequency of received calls by user “A”. At
the end of the day, considering the patterns (low duration and interarrival time)
of those incoming calls towards user “A”, the classifier suspects that user “A”
is receiving a lot of “spam” calls. All our experiments are done in a machine of
Intel Core i7 CPU, 2.0 GHz Quad-core and 8 GB RAM memory.

6.5. Experiment with “Spitter” tool

The efficiency of our proposed filtering system is also tested through “Spit-
ter” © which a publicly available tool implemented by the author of [30] to
perform VoIP spam testing. This tool uses the Asterisk IP PBX as a platform
from which it launches SPIT calls (i.e. VoIP SPAM). Details about experiments
with the tool “Spitter” and performance accuracy is found in table 6.

7. Conclustion

In this paper, we have performed a in-depth analysis of SIP based VoIP traffic
captured from our institution. In order to explore the legitimate behavioral
structure of the internal users, we have used social network analysis techniques.
We have shown that information retrieved from the traffic analysis can be useful
in applying security measures in the network. To this end, we propose a filtering
approach for detecting malicious users.

6 «Spitter” - http://www.hackingvoip.com/tools/spitter.tar.gz
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Table 6: Experiments performed on traces generated by “Spitter” tool

Description Value
Total Calls 5,000
Number of “good” calls 3,128
Number of “spam” calls 1,872
Total Number of “good” users 100
Total Number of “good” users 20

SVM Classifier Result
True positive(“malicious” users identified as “malicious”) 18
False positive(“good” users identified as “malicious”) 3
True negative(“good” users identified as “good”) 97
False negative(“malicious” users identified as “good”) 2
Accuracy 95.83%
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