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Abstract – The classical hexagonal honeycomb theory for the uniaxial loading case, developed by
Gibson and Ashby, considers buckling of the cell walls parallel to one symmetry axis. In general,
buckling may also occur in the cell walls inclined with respect to the two symmetry axes. Therefore,
in this letter, under the uniaxial loading conditions, we derive the critical stresses of buckling
and bending collapses of nanohoneycombs, for which the surface effect is included. Furthermore,
the competition between the two failure modes is studied. The present theory could be used to
design new nanoporous materials, e.g., scaffolds for the regenerative medicine or energy-absorption
materials.

Copyright c© EPLA, 2012

Introduction. – Porous materials, which can be often
found in Nature [1], have high mechanical efficiency and
are widely used as modern materials; for instance, they
are used as core materials in sandwich structures [2],
common in aerospace engineering, or as energy-absorption
materials to reduce the loading impact and improve the
resistance to crushing [3]. The mechanical properties of a
honeycomb, and in particular its failure mechanisms, are
therefore of great interest to material scientists. A number
of pioneering studies [4–11] analyzed its in-plane and
out-of-plane mechanical behaviors (e.g., elastic buckling);
for the in-plane deformation mechanism, the stress-strain
curve [3,7,10] is described by the linear elastic, plastic
plateau and densification regions. Lee et al. [12] studied
the mechanical behavior and deformation mechanism of
a honeycomb composite at the temperature ranging from
25 ◦C to 300 ◦C. The classical approach was developed by
Gibson and Ashby [10]. They systematically investigated
elastic buckling, plastic and brittle collapses of the 2D
hexagonal honeycombs for uniaxial and biaxial loading
cases. In the uniaxial loading case, the classical prediction
only considers the buckling of the cell walls parallel to one
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symmetry axis; in spite of this, buckling could occur first
in the inclined cell walls.
When the cell size comes down into the nanoscale,

the surface effect, due to the high surface-to-volume
ratio [13,14], starts to play an important role in deter-
mining the mechanical properties of the structure. Exten-
sive works [15–18] studied the influence of surface effect
on linear elastic and plastic properties of nanomaterials.
Considering the above statements, here we develop a

theory to determine the buckling competition between the
inclined and parallel cell walls with respect to the symme-
try axes (in the following text, we simply call them inclined
and parallel cell wall, respectively) of nanohoneycombs,
under the uniaxial loading condition. Moreover, we sepa-
rately establish the criteria for the competition of failure
modes between buckling and bending collapses in the two
principal directions [19]. The present theory could be used
to design new stronger and stiffer honeycomb nanomate-
rials and in general to tune their mechanical response.

The surface effect on Young’s modulus and the
buckling of inclined columns. –

The surface effect on Young’s modulus. As the struc-
tural size reduces to nanoscale, the surface-to-volume
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Fig. 1: Schematic of an inclined column.

ratio increases and the surface effect, induced by the
surface atoms of the structure, dominates the mechanical
behavior. A classical expression of surface stresses, basing
on the energy method, has been derived for the linear-
elastic body [14]:

τij = τ
0
ij +Sij : εij , (1)

where, τij is the 2-rank surface stress tensor, τ
0
ij is the

surface residual stress tensor, Sij is the surface stiffness
matrix, εij is the surface strain tensor and the symbol
“:” represents the inner product of tensors. For the one-
dimensional case, it can be expressed in a linear form [15]:

τs = τ0+Esε, (2)

where, τs is the surface stress, τ0 is the surface residual
stress, Es is the surface Young’s modulus and ε is the
surface strain.
To predict the effective Young’s modulus Eeff , we apply

Miller and Shenoy’s [20] approach:

Eeff

E
= 1+

Es

Et

(
6+2

t

b

)
, (3)

where, E is the Young’s modulus without considering the
surface effect, Es is the surface Young’s modulus, whereas,
t and b are the cross-sectional thickness and width of the
cell wall, respectively.
Equation (3) obeys the simple linear scaling law [21]
Eeff

/
E = 1+αlin/L, lin representing a material intrinsic

length, under which surface effect plays an important role;
α is a dimensionless constant, which depends on the geom-
etry of the structural elements and their deformations and
L≡ t. Note that the term in the bracket will be close to 6
if t� b (plate) or 8 if t= b (square beam).
The buckling of inclined columns. Basing on the large

deflection theory, Chang [22] derived the buckling formulas
of inclined columns (fig. 1) with different boundary condi-
tions. A numerical factor β reflects the boundary condi-
tions and it is defined as

β2 =−ϕR2 (4)

with

ϕ=−(f ′ sin θ′+ g′ cos θ′),
where R= l/r is the slenderness ratio; f ′ = F/(AE) and
g′ = f ′ cot θ′ are constraint forces acting in the vertical

Fig. 2: (a) Geometrical parameters of a unit cell; (b) loading
in the x-direction; (c) loading in the y-direction; (d) stress
distribution on the cross-section of cell walls. The moments
in each scheme are identical due to the lattice periodicity.

and horizontal directions at the deformable end, respec-
tively; θ′ is the inclined angle made by the column and
the horizontal line after the column’s deformation; l is the
length of the column; r is the radius of gyration; F is the
external force; A is the cross-sectional area; E is Young’s
modulus.
Considering the inclined columns as fixed at both ends,

the eigenvalue equation with respect to β is [22]:

β2

R2
cot2 θ+2

1− cos β
β sin β

− 1 = 0. (5)

For the sake of simplicity, when 50<R< 500, β is consid-
ered as a constant and equal to 8.669, because it has a
minor change when θ varies in the range 15◦–75◦. Note
that β = 8.669 (i.e., θ= 15◦) is conservative, compared
with 8.986 when θ= 75◦. Rearranging eq. (4) and substi-
tuting r=

√
I/A into it, we find the buckling load of the

inclined columns at the initial state (θ′ = θ) as

F =
β2EI sin θ

l2
, (6)

where I is the cross-sectional moment of inertia.

Failure analysis in the x-direction. –

Buckling. As discussed before, the inclined cell walls
are columns clamped at both ends. In the x -direction
(fig. 2(b)), the area, on which the external stress acts,
is k1b(l2+ l1 sin θ), where k1 is the number of unit cells,
b is the width of the cell wall, θ is the angle between the
inclined cell wall and the horizontal line, and l2, l1 are the
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lengths of the parallel and inclined cell walls, respectively.
Therefore, the equivalent force acting on each inclined cell
wall is F1 = σb(l2+ l1 sin θ), where σ is the external stress
acting on the unit cell. Thus, substituting F1 into eq. (6)
and considering the surface effect, the external critical
buckling stress is calculated as

σbcr,1 =
β2Eeff1
12

cos θ

α+sin θ

(
t1

l1

)3
with α= l2/l1. (7)

Competition between buckling and bending failure. The
yield stress of the constituent material is denoted by
σys, and the elastic-plastic stress distribution is shown in
fig. 2(d); then, the related failure moment due to bending
is

Mmax,p = σysbt
2
1

[
c

t1

(
1− c
t1

)
+
2

3

(
1

2
− c
t1

)2]
. (8)

According to Ashby and Gibson [4], the maximum bending
moment Mmax,1 = F1l1 sin θ/2 of the cell wall is at its
two ends. Then, the critical condition for the competition
between elastic buckling and plastic collapse can be
obtained by setting

Mmax,p =Mmax,1. (9)

Thus, we find the critical stress for plastic collapse:

σpcr,1 =

2

[
c

t1

(
1− c
t1

)
+
2

3

(
1

2
− c
t1

)2]
σys

(α+sin θ) sin θ

(
t1

l1

)2
.

(10)
Accordingly, by comparing σbcr,1 = σ

p
cr,1, we find the crite-

rion for the competition between buckling and bending
collapses in the x -direction as

(
t1

l1

)
crit

=

48

[
c
t1

(
1− c
t1

)
+ 23

(
1

2
− c
t1

)2]

β2 sin 2θ

σys

Eeff1
. (11)

Failure analysis in the y-direction. – In the y-
direction (fig. 2(c)), since the buckling collapse may take
place in both the inclined and parallel cell walls, the
analysis is different from that for the x -direction. Here,
we first consider the buckling competition between the
two types of cell walls.

Buckling competition between the inclined and parallel
cell walls. In this case, the inclined cell walls are treated
as those in the x -direction. The area, on which the external
stress acts, is 2k2bl1 cos θ, where k2 is the number of unit
cells in the y-direction. Correspondingly, the number of
cell walls is 2k2, thus, the equivalent force acting on each
inclined cell wall is F2 = σbl1 cos θ and the buckling stress
is obtained as

σ
(1)
cr,2 =

β2Eeff1
12

tan θ

(
t1

l1

)3
. (12)

Regarding the critical buckling stress of the parallel cell
walls, when t1 = t2, the classical result yields [10]

σ
(2)
cr,2 =

(nπ)2Eeff2
24

1

cos θ
α

(
t2

l2

)3
, (13)

where n, determined by α, is a numerical factor and
reflects the boundary conditions. The external buckling
stress, in the y-direction, is the minimum between the
buckling stresses of the inclined and parallel cell walls:

σbcr,2 =min(σ
(1)
cr,2, σ

(2)
cr,2). (14)

Competition between buckling and bending fail-
ure. Similarly, the maximum bending moment
Mmax,2 = F2l1 cos θ/2 of the beam is at its two ends.
Thus, the critical condition for the competition between
elastic buckling and plastic collapse can be obtained
through

Mmax,p =Mmax,2; (15)

and the critical stress for plastic collapse is obtained as

σpcr,2 =

2

[
c

t1

(
1− c
t1

)
+
2

3

(
1

2
− c
t1

)2]
σys

cos2 θ

(
t1

l1

)2
.

(16)
Then, the competition between buckling and bending

collapses is described by setting σbcr,2 = σ
p
cr,2, i.e.,

(
t1

l1

)
crit

= cos θ

√√√√√√√
min(σ

(1)
cr,2, σ

(2)
cr,2)

2

[
c

t1

(
1− c
t1

)
+
2

3

(
1

2
− c
t1

)2]
σys

.

(17)

Analytic results. – Here, we employ aluminum
as a case study; Young’s modulus is E = 75GPa,
the surface Young’s modulus is Es = 2.45N/m [20],
σys = 4.3GPa [23], t1 = 5nm and b� t1. Accordingly, we
obtain Eeff1 = 75.5GPa. For the x -direction, the results of
the parametric analysis are reported in fig. 3. Figure 3(a)
shows that the critical buckling stress decreases as
α increases, when the inclined angle θ is fixed. This
is because the force acting on the inclined cell walls
increases with increasing α, under the same external
stress, and thus a constant buckling force of the cell
walls results in a smaller external stress for increasing α.
It also shows that the buckling stress decreases as the
inclined angle θ increases, when α is fixed. As for the
competition between buckling and bending collapses,
the analytical result is reported in fig. 3(b); we can see
that the criteria are symmetric with respect to θ= 45o,
for which the lowest critical value of t1/l1 emerges; also
the load for fully plastic failure (c= 0) is higher than that
for brittle failure (c= t1/2). This is because fully plastic
failure requires larger moments. Figure 3(c) provides a
schematic of the failure mechanisms.
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Fig. 3: (Colour on-line) (a) Critical buckling stress vs. θ influenced by α, for when t1/l1 = 0.1; (b) critical value of t1/l1 for
buckling and bending competing failures in the x -direction; (c) schematics of the failure modes reported in (b). Note that the
black parts in (c) denote points subjected to bending failure.

Fig. 4: (Colour on-line) (a) Buckling stresses σ
(1)
cr,2 and σ

(2)
cr,2

vs. θ, as a function of α; (b) critical value of t1/l1 for buckling
and bending competing failures; (c) schematics of the failure
modes for the case α= 1/9 reported in (b). Note that the black
parts in (c) denote points subjected to bending failure.

If we consider t1/l1 = 0.05, t1 = t2 = 5nm, we find

Eeff2 =Eeff1 = 75.5GPa. For the y-direction, the analytic
results of buckling stress and t1/l1 are reported in fig. 4.
Figure 4(a) shows that buckling of inclined cell walls
takes place (for t1 = t2) as the length ratio α decreases

and the failure-transition points (from σ
(1)
cr,2 to σ

(2)
cr,2) move

forwardly to large angles; in particular, when α= 1/4 or
1/5, the buckling only occurs in the parallel cell walls.

This is because σ
(1)
cr,2 increases when θ increases and

σ
(2)
cr,2 increases when α decreases. Figure 4(b) shows that
decreasing t1/l1 leads to buckling. Besides, we can also
see that if α= 1/5, the competition is only between the
buckling of the parallel cell walls, as shown in fig. 4(a),
and bending collapses of the inclined cell walls. For
α= 1/9 the buckling of inclined cell walls gets involved,
namely, the curve denotes a critical condition between the
buckling of inclined cell walls and its bending collapses
when θ < θc and that between the buckling of parallel cell

walls and bending collapses of the inclined cell walls when
θ > θc. Figure 4(c) provides a schematic of the failure
mechanisms (α= 1/9).
Compared with the classical honeycomb theory, our

analytical approach gives us an interesting result about
the failure transition of a nanohoneycomb under the
uniaxial loading case, governed by the parameter t1/l1.
The derivation includes the surface effect, but it can be
neglected when the cross-sectional size t1 is larger than
∼100 nm [24].
Conclusions. – In this letter, under the uniaxial

loading conditions, we have derived the buckling stress
of the inclined cell walls in nanohoneycombs, which is
not treated in the classical approach by Gibson and
Ashby. Then, basing on the existing buckling and plastic-
failure theory, the competition between these two failure
mechanisms is studied, including the surface effect peculiar
of the nanoscale.
The present theory could be used to design new

nanoporous materials, e.g., scaffolds for the regenerative
medicine or energy-absorption materials.
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