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Cloud-assisted Dissemination in Social Overlays

Abstract—Decentralized social networks are an emerging so-
lution to the privacy issues plaguing mainstream centralized
architectures. Social overlays—overlay networks mirroring the
social relationships among node owners—are particularly in-
triguing, as they limit communication within one’s friend circle.
Previous work investigated efficient protocols for peer-to-peer
(P2P) dissemination in social overlays, but also showed that the
churn induced by users, combined with the topology constraints
posed by these overlays, may yield unacceptable latency.

In this paper, we combine P2P dissemination on the social
overlay with occasional access to the cloud. When updates from
a friend are not received for a long time, the cloud serves as
an external channel to verify their presence. The outcome is
disseminated in a P2P fashion, quenching cloud access from
other nodes and, if an update exists, speeding dissemination. We
show that our protocol performs close to mainstream centralized
architectures and incurs only modest monetary costs.

I. INTRODUCTION

Online social networks (OSNs) play a key role in the way
we communicate over the Internet, as witnessed by the recent
announce that Facebook has broken the psychological barrier
of one billion active users. Unfortunately, this popularity is
accompanied by concerns about privacy, amplified by some
well-known incidents [8]. The root of the problem lies in the
centralized architecture of mainstream OSNs, which requires
the user to surrender control of sensitive personal data. As
a consequence, interest in decentralized alternatives [14] has
greatly increased in the last few years.
Decentralized OSNs and social overlays. In a decentralized
OSN, users run clients on their machines. These clients form
a peer-to-peer (P2P) overlay network collectively sharing and
replicating content, and serving it on behalf of offline users
when needed. Among the features offered by OSNs, arguably
the most important is the ability to browse the profile of
friends, and post updates to it. User profiles are the OSN
equivalent of personal Web pages, to which both the owner and
her friends can freely post updates as text and/or media [7].

Several proposals for P2P OSNs [9], [10], [18] rely on
distributed hash tables (DHT) for content dissemination and
storage. As a consequence, their operation ignores social
relationships, and may result in security issues. In this paper,
we are interested instead in approaches that rely on social
overlays: overlay networks that mirror the social network. In
these approaches [1], [12], [16], [21], communication is al-
lowed only between two nodes whose owners are friends. This
latter constraint is the key to improve, by design, privacy (non-
friends do not see the information disseminated), locality (due
to network homophily), and cooperation (due to friendship).
Limitations of social overlays. Similar to any other P2P
system, those based on social overlays must cope with nodes
joining and leaving of their own volition, according to user
availability patterns known to be highly heterogeneous [22].

However, our previous work [2] has shown that, irrespective
of the specific dissemination protocol, churn is a more severe
concern in social overlays. A topology that could be easily re-
paired (e.g., using a DHT) may experience greater unreliability
due to the smaller set of links available for reconfiguration
(i.e., only those among friends). This results in large delays
in the dissemination of profile updates that, according to [2],
may exceed 3 hours for 1% of the receivers—unacceptable for
a world-scale service like today’s Facebook or Twitter.
P2P and the cloud: getting the best of both worlds. The
problem of any purely decentralized dissemination protocol
for social overlay is that the latter does not provide enough
“options” to propagate updates in the presence of churn.
Our idea is simple and yet effective: create an out-of-band
channel that can “patch” connectivity if and when needed, by
leveraging the persistence and ubiquity of cloud services.

In a nutshell, the scheme works as follows. The bulk of
profile update dissemination is still carried out in a fully
decentralized, P2P fashion on the social overlay. Specifically,
we reuse the gossip-based protocol described in [1], due to
its inherent simplicity. In addition, each node u is associated
with a profile store, which is hosted on the cloud. Updates to
u’s profile (by u or some of its friends) are always performed
first on the profile store, and then disseminated via the social
overlay. Therefore, the profile store of u contains an always-
available, consistent copy of its profile.

The availability of the profile store is key in overcoming the
aforementioned delays in the propagation of profile updates.
When a node v, friend of u, has not heard any update from
u for a predefined time interval, it assumes that the update
has been delayed, and verifies if this is the case by polling
the profile store. In principle, this naı̈ve solution is enough
to overcome the limitations above. However, cloud access has
a monetary cost, and we show that this solution has a poor
performance/money tradeoff. We improve over this baseline
by disseminating the outcome of polling the profile store back
on the social overlay. This has the beneficial effect of quench-
ing cloud access from other nodes (i.e., saving money) and
speeding update dissemination. Results show that, compared to
fully decentralized solutions, our hybrid one reduces maximum
delays from hours to minutes, average delays from minutes to
seconds, and places only a small cost to users.

Our approach inevitably reveals some information to the
cloud provider—a limitation shared with other proposals [11].
Nevertheless, we argue that it is a significant departure from
the status quo of centralized systems like Facebook. Indeed,
the service agreement of the latter implies that user informa-
tion is fully surrendered, while the service of cloud providers
promises data confidentiality. Still, we share the belief of [11]
that providers should be exposed to as little sensitive content
as possible, and therefore keep the data in profile stores



encrypted, safeguarding our users from prying eyes.
Roadmap. The rest of the paper is organized as follows. Sec-
tion II presents the system model, including our assumptions
w.r.t. user availability, profile updates, and cloud access. Sec-
tion III states the problem of mitigating dissemination delays
over social overlays in the presence of churn. Section IV
illustrates our hybrid solution leveraging the combination of
P2P dissemination on the social overlay and occasional cloud
access, which is then evaluated in Section V. Section VI places
our work in the context of related efforts. Section VII draws
conclusions and points at opportunities for future work.

II. SYSTEM MODEL

We represent the social overlay as an undirected graph G,
with V (G) denoting its vertices, and E(G) its edges. We
define the ego network Gv of a node v ∈ V (G) as the subgraph
of G composed of v, the friends of v (its one-hop neighbors),
and the edges among them. To simplify exposition we assume,
without loss of generality, that there is a one-to-one mapping
between nodes and users in the system. We therefore use the
words “user” and “node” interchangeably.

Every user u in the network is associated to a unique profile
page, which we denote as pp(u), that represents a typical
OSN profile page, and might contain textual posts, pictures,
comments from friends, among others.

We use a simplified model for the underlying physical
network in which two nodes are able to communicate as long
as they are online at the same time. We further do not model
network transmission latencies since, as we will later see, these
are relatively small w.r.t. to other sources of delay.

We assume clocks to be loosely synchronized, within the
order of minutes. This can be easily achieved by NTP [20].
Node Availability. The P2P portion of our system, the social
overlay, is composed of |V (G)| nodes. Each node, at any point
in time, is either logged in (online) or out (offline).

To drive this online/offline behavior, we adopt the well-
known availability model of Yao et al. [22], henceforth referred
to as the Yao model, in which an alternating renewal process
is associated to each network node u. In the particular instance
of the model we adopt, both the session lengths (online
time between a login and the next logout) and the inter-
session lengths (offline time between a logout and the next
login) are exponentially distributed, with expected value 0.5
and 1.0 hours, respectively. In line with other works in the
literature [19], we use exponential distributions instead of
heavy-tailed ones because the latter would make simulations
intractable. Heterogeneity is modelled as in [22].
Update Size. Although users share content of different nature,
the vast majority of what is shared in the profile pages of
modern OSNs are small objects under 150 kB, the average
size of a Facebook picture. Such objects include text snippets,
messages, and low-resolution pictures. While users also share
larger objects, e.g. videos or high-resolution pictures, we argue
that most of the times these are not part of profile pages
themselves, but rather linked from third-party services such
as YouTube or Flickr. Updates, therefore, are usually small,

and concerns about latency take priority over bandwidth when
gauging the quality of a dissemination technique.
Cloud Access. We assume the existence of a highly available,
cloud-based service which nodes can access to store and re-
trieve data. Such a cloud service allows users to create personal
storage areas under their control, i.e, they can selectively allow
or deny read/write access to other users.

User profiles are relatively small (a few GB) and likely
within the free quota currently allowed by some cloud
providers, e.g., DropBox. However, for the sake of general-
ity and to better elucidate the trade-off between delay and
monetary cost, we adopt the requester-pays billing scheme
of Amazon S3 [6], where users accessing data are charged
for it. In other words, if a user v decides that she wants to
download the new updates from her friend u directly from u’s
personal storage area (and is authorized to do so by u), it is
up to v to pay for the download costs. This is important as it
establishes the basis for the fair cost model of our solution:
a user might opt to either go directly to the cloud and pay
to immediately download updates from his friends, or use the
free P2P network instead, possibly at a performance penalty.

In S3, costs can be broken down into three components:
• Storage costs. Keeping data in the cloud has a fixed

monthly cost which increases with the amount of data
stored, and is independent of whether or not it is accessed.
These costs are very small in our case. First, profile
pages consist of small-size content, so the total amount
of data stored by a user should also be small (e.g., a few
gigabytes). Second, storage is cheap: at the time of this
writing, the yearly cost for 1 GB is around $1. Since
storage costs do not impact our figures to a measurable
extent, we choose to abstract them away altogether.

• Bandwidth costs. Similar considerations hold for band-
width: updates are small and, as shown later, our protocol
works by favoring many lightweight requests (a few
hundred bytes per request) over fewer, larger requests.

• Cost per request. In S3, a user pays 0.01¢ for every
10, 000 GET requests, or every 1, 000 PUT requests.
We assume a similar cost model where read requests are
cheaper than writes. The cost per read is the dominant
one, and is therefore the one we focus on in this paper.

III. PROBLEM STATEMENT

The problem of update dissemination consists in diffusing,
on a social overlay, copies of small updates posted by a sender
node to a set of receiver nodes, with an acceptable delay.

A. Update Dissemination in Ego Networks

In an OSN, updates posted to a profile page pp(u) must be
made available to all friends of u: when a friend of ours posts
some content, we want to know about it. Less straightforward,
perhaps, is to see that u is not the only one who can post new
content to pp(u)—indeed, any friend of u might originate new
updates by, say, sharing new content in u’s “timeline” (as in
Facebook), or by posting comments to existing content. The
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Fig. 1. User u posts a photo, user v posts a comment, user w just watches.

typical scenario we wish to support is depicted in Figure 1,
where:

1) u starts by posting a picture to his profile page pp(u);
2) the system disseminates the update to the remainder of

the ego network of u, namely v and w;
3) v sees the update and posts a comment to pp(u);
4) the comment once again gets disseminated to the remain-

der of the ego network of u, namely u and w.

Formally, let Gu be the ego network of some node u. We
want to be able to disseminate updates from a sender node
v ∈ V (Gu) to all other receivers in V (Gu). In particular, it
could be that v = u, i.e., the sender is posting an update
to its own profile, but v 6= u is just as likely, e.g. when v
replies to a previous post in the profile of u. Further, to reap
the benefits of friend-to-friend cooperation, avoid spamming
uninterested nodes, and avoid leaking updates to nodes who
are not supposed to see them, we want to disseminate this
update using only nodes from Gu itself.

B. Dissemination Delays and Churn

Disseminating updates with low latency over ego networks
can be done efficiently when nodes are always online, as
shown in [1]. When availability is taken into account, however,
things get much more difficult. Friends may be rarely online at
the same time, meaning that updates may be relayed across a
chain of intermediate nodes before reaching their destination.
This, in turn, may introduce communication delays.

The dynamics through which such delays arise is depicted
in Figure 2 where, at time instant t = 0, node v starts
disseminating an update over Gu. Since nodes a, u, and h
are offline, the update cannot initially be disseminated beyond
v himself. At time t = 1, node a comes online, allowing the
update to flow over a path through a towards node d. At time
t = 2 node h comes online, and the update flows to h, e and
g. Finally, at time t = 3 node u comes online, and the update
can reach the remaining nodes, completing dissemination.
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Fig. 2. Interplay between availability and dissemination delay.
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C. Receiver Delay vs. End-to-End Delay

We consider two notions of delay. The first one is network-
centric, defined as the total time elapsed from the instant t0 at
which an update is posted by a source v to the instant tw at
which it is received by a receiver w. We refer to this metric
as the end-to-end delay from v to w w.r.t. t0, or ed(v, w, t0).
It can be easily computed as tw − t0.

Being network-centric, ed is not representative of user
experience. We capture the latter by measuring how long a user
had to wait online before receiving an update. The intuition
is that a receiver that logs in infrequently does not care if an
update was posted a long ago (i.e., with a high ed), provided
it is received shortly after login. We refer to this metric as the
receiver delay from v to w w.r.t. t0, or rd(v, w, t0).

These two notions of delay are compared in Figure 3, where
we look more closely at nodes b and f of Figure 2: while
ed = 3 for both nodes, b had to wait online for longer. User
experience was therefore better for f than it was for b, and
this is reflected in the lower rd value.

D. Putting a Bound on Delays

As we have demonstrated in our previous work [2], relying
on a purely P2P social overlay for disseminating updates over
ego networks is not feasible in general. Delays can become
unacceptably large, with average receiver delays of hours for
a significant fraction (1%) of the nodes, and remaining above
tens of minutes for over 10% of the nodes.

Our goal is to solve the problem of Section III-A while
providing an acceptable user experience. Formally, we can
express this goal as a target delay bound δ on update delivery.
In other words, we would like to ensure that:

rd(v, w, t0) ≤ δ (1)

for every source v, receiver w, and time instant t0.
Putting a cap on rd, however, is not enough, as it allows

for some undesirable situations to emerge. Suppose we set δ
to 20 minutes and, for the sake of argument, assume a receiver
behaving as in Figure 4, logging in for 5 minutes every day.
From the point of view of Equation (1), the bound is honored
as long as we deliver the update before the end of the 4th day.

But this is too long: a 4-day old update is not as useful as
a 1-day old one. Further, the receiver did log in repeatedly
during these 4 days, i.e., there were multiple windows of
opportunity to deliver the update. This shows the main weak-
ness of using a pure rd bound: it allows end-to-end delays to
become excessively, unnecessarily large. We need a stronger
bound, which can be established based on ed. Yet, bounding
ed directly is generally not possible. Figure 4 illustrates why:



if the receiver were offline at the instant when the bound is
crossed, it would be impossible to deliver the update on time.

We reach a compromise by allowing a soft delay bound on
ed. The idea is that as soon as the target delay bound δ is
crossed, the system must deliver the update at the next login
of the receiver. We express this by adding some slack time to
the bound in case w is offline. This slack time represents the
residual offline time Roff of w until its next login. Formally:

ed(v, w, t0) ≤
{

δ if w online at t0 + δ

δ +Roff otherwise
(2)

The slack time is a random variable, whose probability
distribution results directly from the availability model. The
bound in Equation (2), therefore, is no longer an exact, one-
size-fits-all bound, but a probabilistic one exhibiting different
statistical behavior for each receiver. This makes sense, since
a different availability leads to different guarantees. Finally,
note that since the slack is composed entirely of offline time,
it does not count as receiver delay. Therefore, by honouring
Equation (2) we are also automatically honouring Equation (1).

The goal of this paper, then, is providing a hybrid cloud/P2P
dissemination protocol which can honor the soft latency
bounds of Equation (2) while being efficient and low-cost.

IV. CLOUD TO THE RESCUE!

The need for cloud resources arises because the social over-
lay cannot provide acceptable delays to all source/destination
pairs in the network. As Figure 5 shows, this happens because
the absence of certain nodes can create transient partitions that
disrupt communication paths and introduce delay.

We need to “patch” such partitions somehow. A simple way
to do so would be associating each node u to an alias ũ of itself
in the cloud. ũ would ideally be indistinguishable from u to
interacting nodes, and would be activated on-demand to satisfy
requests on behalf of u, should u be offline. Such cloud aliases
would effectively remove the transient partitions in Figure 5
and their associated delays, thus solving our problem.

Unfortunately this solution has several drawbacks. First,
cloud providers that allow instances to be run on-demand
(e.g., EC2 [5]) charge high prices per hour; running an alias
for extended periods of time rapidly becomes economically
unattractive. Hiring permanent, always-on hosting is also ex-
pensive, as lower-cost providers (e.g. [15]) charge more than
$100 for one-year contracts. Second, we want avoid exposing
the full memory state of the running software to the cloud
provider, as this might reveal sensitive information (e.g. private
keys). Finally, and most importantly, this solution requires that
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Fig. 4. Delay bounds for cloud-assisted dissemination.
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the nodes on the critical path of the transient partitions use and
pay for an alias—not a feasible strategy in general.

A. Update Dissemination with Profile Stores

The aforementioned problems led us to an alternative solu-
tion where ũ is no longer a full clone of u, but rather a simple
high-availability profile store in which pp(u) is kept.

Publishing an update to a profile store is simple: if user
v wants to post something to pp(u), it simply writes this
update directly to ũ. Access control is also not a problem, since
the primitives provided by services such as Amazon’s S3 [6]
make it straightforward to ensure that only authorized users
get to write to ũ. By adopting the requester-pays model of S3,
we ensure that each user has complete control over costs, as
discussed in Section II. To minimize exposure of sensitive data
to the cloud provider, all data stored in ũ is encrypted before
upload. This is in stark contrast with centralized solutions
such as Facebook, whose business model effectively precludes
storing encrypted data from being acceptable practice.

However, differently from cloud aliases, profile stores are
passive in that they cannot initiate interactions with other
nodes. Therefore, to actively overcome the transient partitions
that cause delays, we resort to periodic polling.
Naı̈ve approach. In its simplest form, our protocol works by
having each node w ∈ V (Gu) independently poll ũ every δ
time instants, retrieving any updates to pp(u) posted in the
meantime. If w happens to be offline after δ time instants
have passed, then w accesses the cloud immediately once it
logs back in. This simple protocol, we refer to as PUREPOLL,
allows us to circumvent the transient partitions of Figure 5
through an out-of-band channel, satisfying Equation (2).
Hybrid approach. While simple, PUREPOLL is wasteful in
that it disregards the existence of low-delay paths in the social
overlay which could be used to our advantage. To understand
how, note that if we were to discard all paths in the social
overlay that have delays above or close to the delay bound δ
we wish to maintain—such as the paths that go through node b
in Figure 5—we would be left with a set of disjoint groups for
which the internal delays are low, as illustrated in Figure 6.
We call these delay groups. To get a message disseminated
over a set of delay groups while respecting the delay bound δ,
all we have to do is to ensure that at least one node in each of
these groups actually accesses the cloud every δ time instants.
The other nodes can then get the update from this accessing
node over the social overlay—which is fast enough inside the
group—and avoid accessing the cloud themselves.

The second method we propose, named HYBRID, does just
that. Each node w ∈ V (Gu) keeps track of the last instant in
time at which it heard any news from u. Whenever w goes
for more than δ time instants without hearing from u, it polls



the profile store of u to see if there are new updates. If there
are, w downloads them from the cloud and pushes them into
the social overlay by means of an appropriate dissemination
protocol— [1] in our case, whose specifics are not important.
Otherwise, w pushes a special QUENCH message that contains
the time t0 at which w accessed the cloud and found nothing
new. This message serves to inform other nodes that, as of
t0, there are no new updates, and that they can therefore
refrain themselves from accessing the cloud for an extra δ
time instants. We call this mechanism access quenching.

To see how HYBRID approximates the ideal situation of
dissemination over delay groups we described previously,
note that if two nodes belong to the same delay group then
one will likely hear from the access of the other, resulting
in access quenching. If two nodes do not belong to the
same delay group, instead, it is unlikely that they hear each
other in time to promote quenching, and two separate cloud
accesses will ensue. Therefore, the protocol adjusts to the
delay characteristics of the surrounding network, and provides
a self-organizing mechanism for bridging transient partitions
by polling.

Randomizing cloud accesses. A side effect of the protocol
we described is that it induces nodes belonging to the same
delay group to synchronize their accesses to the profile store.

The issue is illustrated in Figure 7a, in which node w1

initially accesses ũ at time t0 and, having found no new
updates, schedules its next access to t0 + δ to respect the soft
delay bound. At the same time, w1 propagates this knowledge
over the P2P network by means of a QUENCH message. Upon
receiving the QUENCH message, node w2 learns that, as of
time t0, there are no new updates to pp(u), and therefore it
can refrain itself from accessing the cloud until t0 + δ. The
two nodes are now synchronized. When we get to instant
t0 + δ (Figure 7a), the two nodes access ũ at the same
time. Having again found no updates, they disseminate their
QUENCH messages, but to no effect: since the accesses are too
close to one another, quenching is ineffective.

We address the problem by scattering access times near t0+
δ as follows. First, we divide δ into a fixed component ψ
and a random component α, such that δ = ψ + α. Then,
let T be a random variable drawn from a uniform distribution
U(0, α). When node w1 accesses the cloud and, later, when w2

receives the QUENCH message, we now set their access times
to t0+ψ+T. This causes w1 and w2 to have slightly different
access times after t0 + ψ which, provided α is sufficiently
large, is enough to make quenching effective (Figure 7b). Since
0 ≤ T ≤ α, this implies ψ+T ≤ δ, i.e., the modified protocol
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still honours the soft bounds of Equation (2).

B. Hybrid in Detail

In HYBRID, every node w ∈ V (G) keeps track of a last
seen timestamp last[u] which represents the last time instant
at which w has heard any news from u. It also keeps track
of a version number version[u] for pp(u), used to determine
whether its local version of pp(u) is up-to-date w.r.t. the one
in the profile store ũ. In addition, w keeps track of its current,
randomized target delay bound target[u].

Whenever the target delay bound is crossed and w has not
heard any news from u, it accesses the cloud. The description
of the access protocol is given in Algorithm 1. The first action
w takes, since it is about to acquire fresh first-hand information
on the status of pp(u), is to suspend the dissemination of
any QUENCH messages (lines 1–2), as these are effectively
immediately stale. Next, w updates its last seen timestamp
last[u], as it is about to get the latest updates concerning u.

Then, w downloads all the identifiers of u’s updates that
are more recent than version[u] (line 4). If U is not empty
(line 5), version[u] is set to the largest update version number
contained in U , and all the updates that have not been received
yet are downloaded from the cloud. The precise nature of the
cloud operations depend on the API provided. For example,
in S3 [6], this could be obtained through the versioning

Algorithm 1: OnTimeout
Trigger: Target delay bound is crossed

(clock()− last[u] > target[u]).

M ← P2P.query(〈QUENCH, u, ·〉)1
forall m′ ∈M do P2P.remove(m′)2
last[u]← clock()3
U ← cloud.list(u, version[u])4
if U 6= ∅ then5

version[u]← max(U)6
foreach id ∈ U − delivered do7

upd← cloud.download(u, id)8
deliver(upd)9
delivered← delivered ∪ {id}10
P2P.disseminate(〈UPDATE, u, last[u], id, upd〉)

else11
P2P.disseminate(〈QUENCH, u, last[u]〉)12

target[u]← ψ + uniform(0, α)13



Algorithm 2: OnReceive
Trigger: Message is received from the P2P layer.
Input: Message m.

switch m.type do1
case UPDATE2

if m.id 6∈ delivered then3
deliver(m.upd)4

case QUENCH5
if m.t ≤ last[u] or clock()−m.t > δ then6

P2P.remove(m)7

if m.t > last[u] then8
last[u]← m.t9
M ← P2P.query(〈QUENCH, u, ·〉)10
forall m′ ∈M : m′.t < m.t do P2P.remove(m′)11
target[u]← ψ + uniform(0, α)12

mechanism and the “GET bucket object versions” primitive.
After download, w delivers the updates to the application

layer (lines 9–10) and to the P2P dissemination layer (line 10),
from where they are spread over the ego network Gu. As
shown in line 10, update messages contain five fields: a type
descriptor (UPDATE), the identifier of the owner of the profile
page to which the update is addressed (u), the timestamp of
when the update was downloaded (last[u]), the identifier of
the update (id), and the update itself (upd).

If instead no updates are found (line 11), w disseminates a
QUENCH message with the identifier of the profile page owner
and the access timestamp (lines 11–12). Finally, w randomizes
its target delay bound target[u], as described in Section IV-A.

Upon receiving a message m, a node w executes Algo-
rithm 2. If the message is an update (line 2) whose content is
unknown to the receiver, it is delivered to the application layer
(line 4). If m is a QUENCH message, and either its timestamp
is older than last[u] or the difference between the current local
time and m’s timestamp is larger than δ, the message is too
old and its dissemination is interrupted (line 7).

Regardless of the type of message received, w updates
last[u] and its target delay bound whenever the timestamp
of the message is more recent than its own—which will
cause quenching at w—and stops disseminating any QUENCH
messages with timestamp smaller than that of m (lines 10–11),
since the knowledge contained in m is more recent.

Finally, it could happen that a node w joins the network
being already timed out w.r.t. target[u]. In this case w would
execute Algorithm 1. Yet, there could be some neighbor of w
in the P2P network with recent updates on u, which would
make cloud access unnecessary. To avoid this situation, in our
simulations we ensure nodes first process incoming neighbor
messages, if any, and then react to timeouts, if these still stand.
In a practical implementation, a joining node could achieve the
same effect by allowing some short grace period on login, thus
giving neighbors enough time to send any new information.

V. EVALUATION

In this section we evaluate our protocol towards two goals:
1) provide supporting evidence that it performs significantly

better than a pure P2P approach, and it is competitive with
centralized approaches; 2) estimate what kind of monetary and
network costs one should expect from running it.

A. Baselines

We compare our protocol against three baselines: i) PURE-
POLL, which is the naı̈ve protocol we described in Section IV;
ii) PUREP2P, which disseminates updates exclusively over
the social overlay, allowing us to measure the improvement
brought by using the cloud; and iii) SERVER, which emulates
a centralized approach akin to Facebook. This is achieved by
adding a special server node which is connected to all the
others, manages all profile pages, and can relay updates with
zero delay. This represents the best performance reference for
our system. Clearly, we wish to perform as close as possible
to SERVER, while incurring only modest monetary costs.

B. Experimental Setting

Protocols are evaluated over a sample of 700 ego networks
picked uniformly at random from the Orkut crawl of Mislove
et al. [3]. The original graph contains 3 million vertices (i.e.,
3 million ego networks), 223 million (undirected) edges, and
has an average clustering coefficient of 0.171. Our sample
includes around 5% of the vertices in the graph, and its
average clustering coefficient is slightly smaller. A summary
of statistics can be found in Table I. This is the same dataset
we used in our previous work on social overlay delays [2].
For each ego network Gu in our sample, we pick one source
node v ∈ V (Gu) uniformly at random. This leads to the set
of 700 (source, ego network) pairs we use for simulations.
Let (v,Gu) be one pair. In a nutshell, we simulate updates
originating at v, and measure delays towards receivers in
V (Gu)/v, along with the metrics discussed in Section V-C.
We then compute estimators (e.g., averages and empirical
distribution functions), and base our discussions on those.

Our reliance on estimators motivates our choice to sparsely
cover many ego networks (i.e., to pick 700 ego networks,
and only one source within it) instead of covering fewer ego
networks but more densely (e.g., to pick one big ego network,
and 700 distinct sources in it). Since unbiased estimation relies
on independent sampling, we want to insert as much variability
as possible in the structure of the ego networks we study, to
ensure that the values of metrics are uncorrelated.

We then repeat, for each (source, ego network) pair, the
following experiment 100 times. First, we set all nodes in Gu

to offline and, for PUREPOLL and HYBRID, we also set all the
values of last[u] (the last time instant at which a node heard
from u) to zero. Since this initial state is not representative of

Metric Value
Number of Vertices 137892
Number of Edges 1460043
Average Clustering Coefficient 0.112
Average Egonet Size 197.5
Maximum Egonet Size 2181

TABLE I
STATISTICS FOR THE EGO NETWORK SAMPLE USED IN OUR EXPERIMENTS.



the steady-state regime of our system, we run the simulation
for a burn-in period γ in which no measurement is taken.
During burn-in, we simulate the churn model and, in the case
of PUREPOLL and HYBRID, we also simulate the polling of
the cloud and the propagation of QUENCH messages.

The goal is to obtain a representative online/offline con-
figuration for the network before we start injecting updates,
but also a representative number of QUENCH messages going
around and a representative “phase shift” for the last seen
timestamps last[u] at the various nodes. The nodes are initially
all synchronized at last[u] = 0 but, as the burn-in progresses,
they access the cloud at different rates due to their different
inter-session lengths, causing their values of last[u] to become
different, particularly for nodes in different delay groups. We
have empirically established, with heuristics similar to [4], that
setting γ to 48 hours is enough to produce unbiased results.

After burn-in, the experiment progresses by waiting for the
first login of the source v, at which point we cause v to post an
update to pp(u). To avoid having to deal with the complexities
of building a user model—which would not buy us much in
any case for the kind of performance and cost measurements
we do—we choose to be pessimistic and assume that nodes
always post their updates at beginning of one of their sessions
(the earliest time instant when a user can post).

The posting of the update by the source marks the beginning
of our measurement session, which proceeds until the update
reaches all destinations in V (Gu)/{v}. At that point, the
experiment ends. To enable a more precise discussion of the
metrics we compute, described next, we represent the set of
n = 100 independent experiments we run for an ego network
Gu with source node v as S(Gu) = {e1, · · · , en}. The
measurement session of experiment ei starts at time instant si
and ends at time instant fi, and has duration d(ei) = fi− si.

C. Metrics

Delay. We focus on the average end-to-end delay, which we
refer to as aed, and the average receiver delay, ard. Each
experiment e ∈ S(Gu) generates exactly one ed and one rd
delay sample per source/destination pair (v, w) in Gu. If we
denote the ed sample for pair (v, w) generated by experiment
e as ed(v, w, e), we can compute aed as the sample average:

aed(v, w) =
1

|S(Gu)|
∑

e∈S(Gu)

ed(v, w, e)

and ard can be computed with a similar formula.
Monetary cost. We measure the yearly costs of running the
system by counting, for each node w ∈ V (Gu) and each
experiment e ∈ S(Gu), the total number of times cs(w, e)
that w accesses the cloud over the measurement session of e.
We define the average access rate of w over Gu as:

acs(w,Gu) =

∑
e∈S(Gu)

cs(w, e)
∑

e∈S(Gu)
d(e)

access
hour

As mentioned in Section II, we assume that the dominant cost
is the price of GET requests, identified by ρ. The yearly cost

incurred on node w for keeping up-to-date with the updates
of one profile page pp(u) can be therefore approximated by:

ycs(w, u) ∼ ρ× acs(w,Gu)
access
hour

×
(
24

hour
day
× 365 day

)

To get an estimate of the overall yearly spendings ĉs(w)
of w, we would need to estimate and sum the yearly costs
incurred by w to keep up-to-date with each of the friends
in V (Gw)/{w}, i.e.,

∑
m∈V (Gw) ycs(w,m). In practice, this

means computing estimates for 137 892 ego networks, which
is intractable given the high costs of these simulations.

We therefore choose to use two distinct approximation
models for costs. These are less accurate, but also much less
expensive to compute. Both models can be expressed as the
product of ycs(w, u) by an approximation constant τ(w):

ĉs(w) ∼ ycs(w, u)× τ(w)
The models differ in how we compute τ(w). In the simplest

model, which we call the flat approximation, τ(w) is simply
the average size of the ego networks in our sample, i.e., we
multiply ycs(w) by τ(w) = 197.5, for all w. This applies
a fixed “penalty” to all nodes, regardless of the conditions
of the surrounding ego networks, or their number. In the
second model, called degree approximation, τ(w) is instead
the degree of w in the social network. This assumes that costs
increase linearly w.r.t. node degree. In particular, it makes
the assumption that all friends of w incur the same yearly
costs as w, and that the total cost can be computed as their
sum. Intuitively, these approximations yield similar estimates
for nodes whose degree is close to the average, but differ
significantly for nodes with very low and very high degrees.

Given our fixed computational budget, these cost models
are a necessary tradeoff between obtaining unbiased estimates
for delay (requiring that we cover many uncorrelated ego
networks) and accurate estimates for cost (requiring that we
densely cover neighboring, hence correlated, ego networks).
Since our focus is on delays, we choose to be precise with the
former, while settling for less accurate estimates for the latter.
Network cost. To assess the usage of network resources, we
measure the number of messages a node processes per time
unit, on average, to keep up with updates from its friends.
Similarly to what we did for cloud accesses, let msg(w, e)
represent the number of messages processed (sent/received)
by w during the measurement session of experiment e. The
average hourly rate amsg(w,Gu) at which w processed
messages, therefore, is given by:

amsg(w,Gu) =

∑
e∈S(Gu)

msg(e, w)
∑

e∈S(Gu)
d(e)

message
hour

(3)

Again, this gives us the costs incurred on w while keeping
up-to-date with a single friend. We adopt a similar approxi-
mation as we did with ĉs when computing the total message
processing rate, and multiply amsg by τ(w):

m̂sg(w) ∼ amsg(w,Gu)× τ(w) (4)

We again use both the flat and the degree approximations
when computing τ , observing the same caveats as before.



D. Results

We use the shorthand notation HYBRID/ψ/α to refer to the
variant of HYBRID with parameters ψ and α, with unit given
in minutes. We use a similar notation, PUREPOLL/δ, to refer
to the PUREPOLL variant with target delay bound δ.

We simulate two versions of HYBRID, HYBRID/30/14, and
HYBRID/15/14. These parameter settings, as we later show,
provide good performance in terms of delay and cost, and we
use them for comparison against the baselines. However, as
explained in Section IV, the target delay bound of HYBRID is
randomized, and varies in [ψ, ψ + α] with average ψ + α/2.
Since PUREPOLL is not randomized, we compare each set-
ting of HYBRID to three settings of PUREPOLL: i) “fast”,
PUREPOLL/ψ; ii) “intermediate”, PUREPOLL/(ψ + α/2);
iii) “slow”, PUREPOLL/(ψ + α).

This yields six PUREPOLL variants: three (δ ∈ {30, 37, 44})
to compare against HYBRID/30/14 and three (δ ∈
{15, 22, 29}) to compare against HYBRID/15/14. Since
PUREPOLL/30 and PUREPOLL/29 behave essentially the
same, we do not show the former and use the latter. Finally, to
understand at which point PUREPOLL can overtake HYBRID,
we add a seventh setting for PUREPOLL in which we set δ = 5.
Delay. Figure 8 shows cumulative distribution functions
(CDFs) for receiver and end-to-end delays of HYBRID and
baselines. Since rd is always zero for SERVER, we omit it
from the plot. Complementary statistics are given in Table II.

The data confirms that PUREP2P suffers from significant
performance issues, with the ard distribution having a long
tail, reaching values as high as 2.9 hours, and remaining
nevertheless above 1.4h at the 99th percentile. We repeat the
observation of [2] that this small 1% can translate into a bad
experience for millions in a system of the scale of Facebook.

Further, the data shows that our cloud-based alternatives—
HYBRID and PUREPOLL—effectively solve the problem of
the long delay tail by putting a bound on rd, which can be
seen from the much smaller maximum and 99th percentile and
maximum values in comparison.

Finally, we see that HYBRID outperforms its associated
PUREPOLL variants (including the fast one), while providing
a better experience for a significant fraction of the users across
all parameter settings, even as we compare HYBRID/30/14 to
PUREPOLL/5. By combining both approaches, HYBRID effec-
tively reconciles the best of both worlds: the fast performance
of PUREP2P for the regions of the network that exhibit low
delay—which can be seen in Figure V-D as the nearly vertical
shape of the CDF up until the 60th percentile—with the ability
of mitigating the long delay tails of PUREPOLL.

Table II shows that HYBRID has maximum and 99th per-
centile ard values which are comparable to those of their
fast PUREPOLL counterparts (i.e., HYBRID/ψ/α achieves
performance similar to that of PUREPOLL/ψ), with HYBRID
being nevertheless faster. Indeed, HYBRID/30/14 and HY-
BRID/15/14 perform around 837% and 685% percent faster, on
average, than PUREPOLL/29 and PUREPOLL/15, respectively.

Figure 8b shows that HYBRID significantly improves end-

Fig. 8. CDFs for aed and ard for all source/destination pairs.

Fig. 9. Yearly monetary cost estimates for HYBRID.

to-end delays as well, particularly at lower percentiles. Again,
these reductions are for nodes connected by low-delay paths
in the overlay. The polling period, never smaller than δ,
represents a barrier to PUREPOLL that does not exist for
HYBRID. Finally, HYBRID is much closer to SERVER than
PUREP2P.

The higher percentiles, instead, are dominated by the be-
havior of low availability nodes—i.e., nodes that stay offline
for extended periods of time—causing aed distributions to
converge, as evidenced by the diminishing distances of curves
in Figure 8a at higher percentiles. Since values are similar
for all protocols, we omit them from Table II. The maximum
aed is, in any case, around 2 days, with the 99th percentile
at about 3 hours, for all approaches—including SERVER.

Monetary cost. Yearly cost figures are shown in Figure 9. We
use the current Amazon S3 pricing [6], as per the model of
Section II. Additional statistics are provided in Table III.

ard

avg. 99th max.
PUREP2P 5.76m 1.5h 2.9h
HYBRID/30/14 48s 9.8m 15.2m
HYBRID/15/14 35s 7.2m 13.5m
PUREPOLL/44 9.94m 22.9m 27.1m
PUREPOLL/37 8.9m 21.6m 26.4m
PUREPOLL/29 6.7m 14.5m 16.6m
PUREPOLL/22 5.2m 11.9m 14.3m
PUREPOLL/15 4m 10.7m 12.3m
PUREPOLL/5 1.2m 2.8m 4.5m
SERVER 0 0 0

TABLE II
DISSEMINATION DELAY (m = MINUTE, s = SECOND, d = DAY).



Again, the costs for HYBRID are generally lower than their
associated PUREPOLL variants. Costs are extremely attractive
under the flat model, with HYBRID/15/14 presenting a very
good cost/latency tradeoff. The other side of the coin is given
by the degree model, which reaches high maximum values.
To understand what is going on, however, we need to take
a closer look. Figure 10 presents scatter plots of estimated
yearly costs versus node degrees for both HYBRID variants.
We can see that high values all originate from a small set of
extremely connected nodes, the most connected having 33 313
friends. For nodes with less than 1 000 friends, however, costs
for HYBRID/30/7 and HYBRID/15/7 are no larger than $15
and $21 a year, respectively, which are still significantly below
the $127 price tag of low-cost hosting solutions [15], or the
minimum of $105 required to keep an Amazon EC2 micro
instance (the cheapest available) running for a year [5].

Even if some users do get a large number of friends, we still
do not expect to see these high costs in a real-world setting.
Users with huge ego networks are likely to trim friends they
do not want to keep in touch so often, bringing down costs
considerably. And that is precisely the strong point of our
solution: the user can decide whether and how much to pay,
as well as which latency bounds to keep with which friends.

Network cost. The last metrics we present regard the usage
of P2P network resources. We analyse the average number
of messages processed per second at each node, using the
same flat and degree approximations as before to produce the
overall estimates. We focus on QUENCH messages, since our
main interest is on the base cost of the protocol. Indeed, the
cost incurred by updates depends on user posting frequency
and habits, variables out of our control. Yet, we argue that
evaluating only QUENCH overhead is reasonable, since the
bandwidth available for updates is ultimately given by what is
available, minus the overhead of our protocol measured here.

Statistics for message costs are presented in Table IV. The

flat (USD) degree (USD)
avg. 99th max. avg. 99th max.

HYBRID/30/14 1 2.9 3.4 1.25 9 230
HYBRID/15/14 1.42 3.9 4.66 1.72 12.4 304
PUREPOLL/44 1.84 2.38 2.9 2.5 17.4 282
PUREPOLL/37 2.13 2.8 3.47 2.9 20.3 324
PUREPOLL/29 2.63 3.59 3.81 3.57 25 390
PUREPOLL/22 3.32 4.72 4.88 4.51 31.6 483
PUREPOLL/15 5 9.5 20 9.5 48 737
PUREPOLL/5 13 27 64 17 128 1909

TABLE III
YEARLY COSTS, IN US DOLLARS.

avg. 90th 95th 99th max.
node degree 197.5 409 658 2 897 33 313
HYBRID/30/14 (degree) 25.98 43.17 77.9 298.16 9 498
HYBRID/15/14 (degree) 26.02 43.17 77.6 294.73 9 472
HYBRID/30/14 (flat) 11.64 32.60 46 73.2 178
HYBRID/15/14 (flat) 11.8 33 56 74.8 168

TABLE IV
NETWORK COST, IN QUENCH MESSAGES PER SECOND.

two protocols present very similar performance. This reflects
the fact that the QUENCH mechanism causes the underlying
push protocol to work continuously in both cases. The network
overhead, therefore, is similar for both variants, and should
remain so for any variant with smaller values of ψ and α.

If assume the size of a QUENCH message to be around
48B (a 40B TCP/IP header plus 64 bits for identifier and
timestamp), the overhead of running HYBRID is reasonable for
a significant percentage of the nodes. Indeed, even under the
pessimistic degree approximation, 90% of the nodes have to
process less than 40 msg/s, which translates into running costs
of around 2kB/s, without any optimizations (e.g., aggregation
of ids and timestamps under a single message). For the flat
model, these costs are even lower, with 99% of the nodes
having to process less than 70 msg/s, or around 3kB/s.

Maximum values are still reasonable under the flat approxi-
mation, reaching at most 178 msg/s, or around 8.5kB/s. Under
the degree approximation, on the other hand, these clearly
become unreasonably large. The high numbers are again
mostly due to nodes with high connectivity. This phenomenon
can be observed both in Table IV, where we take the degree
of the node at the nth percentile for both protocols, average
them, and display them on the top row; and in the scatter
plots of Figure 11, where we see that very few nodes with
degree less than 1 000 would have to process more than 100
msg/s (the equivalent of 4.8kB/s by our previous estimates).
Indeed, under the flat approximation, only 0.02% of the nodes
go above 100 msg/s, and 3% under the degree approximation.

We further note that the degree approximation is pessimistic
under another important aspect, namely, it assumes a worst-
case scenario in which a node w is concurrently participating
in the dissemination of QUENCH messages for all of its friends,
i.e., all the profile pages pp(u), u ∈ V (Gw). Using the
availability theorem of [22], however, we can predict that this

Fig. 10. Degree vs. monetary cost scatter plots for HYBRID.

Fig. 11. Degree vs. network cost scatter plots for HYBRID.



is a rare situation in practice. Under the availability settings
generated by the model of Section II for our experiments, the
theorem predicts that, on average, only around 39% of the
nodes would be online at any given point in time, meaning
that these values should be much lower.

In any case, network costs have great margins of optimiza-
tion, due to our choice of a pure push approach [1], known to
tradeoff latency for overhead. An alternative would be to use
this approach in a push-pull, anti-entropy protocol [13]. We
believe this would significantly reduce network costs, while
maintaining the good performance w.r.t. the other metrics.

VI. RELATED WORK

P2P Decentralized OSNs. A number of proposals appeared in
the past few years [9], [10], [18]. Although these are based on
overlays different from the one we propose here, these systems
also require the ability to asynchronously multicast profile
updates to friends. The standard technique, in these cases, is to
have nodes contact their friends and push messages either di-
rectly (which invariably leads to performance problems) or by
storing them in a DHT. In the latter case, messages are stored
at a random location known to the receiver. Our technique
could offer added performance and reliability guarantees for
such asynchronous message transfers, while improving privacy
by the use of a known, authorized third-party to store updates,
as opposed to randomly assigned DHT nodes.
Social overlays. There has been a growing interest in the use
of social networks as communication networks, and social
overlays have made their way into a number of system
proposals over the past few years [1], [12], [16], [21]. Com-
monly cited reasons for using social overlays include desirable
security properties, anonymity, censorship-resistance, among
others. Given that these networks are inherently susceptible to
partitioning under churn, the work we present here represents
an important step in rendering such systems practical.
Cloud-assisted P2P and OSNs. The idea of using a cloud
infrastructure to boost performance of P2P is not new. Cloud
helpers are proposed in [17] to increase availability in a friend-
to-friend (F2F) backup system. This is similar to our work
in that F2F systems are also based on social overlays, and
that data is also confined to ego networks. The problems are
different, however, in that backup is concerned with providing
high availability to the user backing up her data, and only
to herself. Data gets updated, but time requirements are less
stringent. Finally, backup data is generally larger than our
objects, shifting concerns to throughput instead of latency.

Confidant [11] directly targets OSNs by relying on cloud
aliases. Data is kept only at the P2P layer, replicated only
among friends, while aliases act as coordinators tracking
replicas and membership (i.e., who replicates what, and who
is online). In this setting, churn becomes a challenge to the
availability of data, instead of its dissemination. Our approach
makes opposite choices w.r.t. the placement of data and
control, therefore exploring a different set of design tradeoffs.

VII. CONCLUSIONS AND FUTURE WORK

Social overlays are an interesting option for building decen-
tralized OSNs, but their susceptibility to transient partitioning
under churn renders key functionality such as fast dissemi-
nation of profile updates difficult to implement efficiently. In
this paper, we have presented a solution to these inefficiencies,
by introducing a protocol that leverages on a highly available
cloud infrastructure to adaptively support the overlay when and
where needed, without sacrificing the fundamental property of
allowing communication only among friends.

Our results show that dissemination delays can be dramat-
ically improved and monetary costs limited for users with
less than one thousand friends. However, network costs, albeit
acceptable, can be optimized further. We intend to address
this issue in future work by investigating a combination of the
current push approach with an anti-entropy mechanism.
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