AN INEQUALITY OF ERDÖS REVISITED

LUCA GOLDONI

Abstract. In this short note we prove by analytic way an ele-
mentary geometric inequality of Erdös .

1. Introduction

In [1] it is reported an elementary geometric inequality due to Erdös and then proved by others as well. As far as I know, all the different proof are either synthetic or trigonometric. In this short paper an analytical proof is given.

2. The inequality

Le be $A B$ a chord in a circle of center O which is not a diameter and let be $O F$ the perpendicular radius which meets it at M. Let be P any point of the major arc $A B$ different form G

Figure 1
then
(1)

$$
F R>Q M
$$

Date: July 11, 2013.
2000 Mathematics Subject Classification. 51M04.
Key words and phrases. Inequalities, Elementary proof.
Dipartimento di Matematica. Università di Trento.

Let we choose a Cartesian coordinate system and we will prove that if $M R F C$ is a parallelogram then $Q C$ is perpendicular to $Q M$. After that, the inequality 1 follows immediately, since $M C \cong F R$ is the hypothenuse of the triangle $M Q C$.

Figure 2

We have that
(1) $x^{2}+y^{2}=r^{2}$ is the equation of the circle;
(2) $M=(0,-h)$;
(3) $F=(0,-r)$;
(4) $y=m x-h$ is the equation of the line through P and Q.

By hypothesis on P we can assume that $m>0$. Let us find the coordinates of P and Q. We must solve the system

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=r^{2} \\
y=m x-h
\end{array}\right.
$$

After some easy calculations, we find

$$
\left\{\begin{array}{l}
x_{P}=\frac{h m+\lambda}{1+m^{2}} \\
y_{P}=-h+\frac{h m^{2}}{1+m^{2}}+\frac{m \lambda}{1+m^{2}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x_{Q}=\frac{h m-\lambda}{1+m^{2}} \\
y_{Q}=-h+\frac{h m^{2}}{1+m^{2}}-\frac{m \lambda}{1+m^{2}}
\end{array}\right.
$$

where

$$
\lambda=\sqrt{-h^{2}+r^{2}+m^{2} r^{2}}
$$

If we call with m_{1} the slope coefficient of the line through P and F, we have that

$$
m_{1}=\frac{y_{P}-y_{F}}{x_{P}-x_{F}}=\frac{-h+r+m^{2} r+m \lambda}{m(h+\lambda)} .
$$

Hence the equation of the line through C and M is

$$
y=m_{1} x-h .
$$

The coordinates of the point C are given by the solution of the linear system

$$
\left\{\begin{array}{l}
y=m_{1} x-h \\
y=-r
\end{array}\right.
$$

which is

$$
\left\{\begin{array}{l}
x_{C}=-\frac{(h-r)(h m+\lambda)}{h-r-m^{2} r-m \lambda} \\
y_{C}=-r
\end{array}\right.
$$

Then

$$
m_{Q C}=\frac{y_{Q}-y_{C}}{x_{Q}-x_{C}}
$$

and after some calculations we find

$$
m_{Q C}=-\frac{1}{m}
$$

This means that $Q C \perp Q M$ as we want to prove.

References

[1] R. Honsberger "Mathematical Morsels" The Dolciani Mathematical Expositions n ${ }^{\circ} 31978$ pag 96-98.

Università di Trento, Dipartimento di Matematica, v. Sommarive 14, 56100 Trento, Italy

E-mail address: goldoni@science.unitn.it

