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ABSTRACT. A probabilistic representation for the solution of the
partial differential equation %u(t,:z:) = —alA?%u(t,z), a € Cy, is
constructed in terms of the expectation with respect to the measure
associated to a complex-valued stochastic process.
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1. INTRODUCTION

The connection between the solution of parabolic equations asso-
ciated to second-order elliptic operators and the theory of stochastic
processes is a largely studied topic [17]. The main instance is the
Feynman-Kac formula, providing a representation of the solution of
the heat equation with potential V € C.(R?) (the continuous func-
tions vanishing at infinity)

Su(t.a) = JAu(ta) = V(@ulta),  teRNaeR )
u(0,z) = up(z)

in terms of an integral with respect to the measure of the Wiener
process, the mathematical model of the Brownian motion [31]:

u(t,z) = /C o= I3 VDS (00(8) 4 2)dIV (). 2)

If the Laplacian in Eq (1) is replaced with an higher order differential
operator, i.e. if we consider a Cauchy problem of the form
Qu(t,x) = (~)NIANu(t,z) — V(z)u(t,z), t€RT zeRY,
u(0, ) = uo(x),
(3)
with N € N, N > 2, then a formula analogous to (2), giving the

solution of (3) in terms of the expectation with respect to the measure
1
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associated to a Markov process, is lacking. In fact, such a formula
cannot be proved for semigroups whose generator does not satisfy the
maximum principle, as in the case of AY with N > 1 [45]. In other
words it is not possible to find a stochastic process X; which plays for
the parabolic equation (3) the same role that the Wiener process plays
for the heat equation.

We would like to point out that the problem of the probabilistic rep-
resentation of the solution of the Cauchy problem (3) presents some
similarities with the problem of the mathematical definition of Feyn-
man path integrals (see [1, 2, 40, 30] for a discussion of this topic).
Indeed in both cases it is not possible to implement an integration
theory of Lebesgue type in terms of a bounded variation measure on
a space of continuous paths [14]. An analogous of the Feynman-Kac
formula for the parabolic equation (3), namely an equation of the form:

u(t,z) = / (0)= e~ o VDt () dP(w), (4)

(where P should be some “measure” on a space of “paths” w: [0,t] —
R) can be obtained only under some restrictions on ug and V' and by
giving up a traditional integration theory in the Lebesgue sense with
respect to a bounded variation measure on a space of (real) continuous
paths.

In the mathematical literature two main approaches have been pro-
posed. The first one [32, 26] realizes formula (4) in terms of the ex-
pectation with respect to a signed measure on a space of paths on the
interval [0,¢]. Indeed V. Yu. Krylov in 1960 [32] and K. Hochberg in
1978 [26] proposed a representation for the solution of the parabolic
equation associated to an even order differential operator

Q= (—1)N 1Ty —00 <1 <00,0<t< 00,
U(O,ZL’) = UO(ZE)

in terms of a signed measure with infinite total variation Py on the
space € of measurable functions w : [0,00) — R, called “paths”. By
a standard technique [39], the measure is defined on cylinder subsets
I, = {w eN: u)(tj) S [aj,bj],j = 1,]{7}, 0<ty <ty <...t, by the
formula:

by, k—1

by
Pon(Iy) = / / [ Gon(tin =ty wjin — 2)djer, (5
a1l a

k=0
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where zy = 0, tg = 0 and Go,(t,x) is the Green function, i.e. the
fundamental solution of equation (5), namely:

1 ~ 2
Gon(t,z) = g /e’“"zge_6 Yige.

The measure P,y satisfies the Markov property, since the Chapman-
Kolmogorov equation

G2N(t+87x>y):/G2N(tax>z)G2N(sz>y)d'z

holds, however P,y is a signed measure as Goy(t,x) is a signed tran-
sition density (actually the analysis of the asymptotic behavior of
Gan(t,x) as  — oo shows that it changes sign an infinite number
of times [26]). P,y is countably additive on the o-algebra generated
by cylinder sets I, however, contrary to the case of the Wiener mea-
sure, P,y cannot be extended to a o-additive bounded measure on the
o-algebra generated by all cylinder sets, as it would have infinite total
variation [32, 26].

It is worthwhile to mention that an analogous of the arc-sine law
26, 28], of the central limit theorem [27] and of Ito formula and Ito
stochastic calculus [26, 41] have been proved for the (finite additive)
signed measure P,y. Moreover, a Feynman-Kac formula has been
proved [32, 26, 28], for the representation of the solution of

ou 0*Nu,

— = (=) — —Vu —o00<x<00,0<t< 00,

ot (=1) ox?N -
where V' is a bounded piecewise continuous function and for an initial
datum uy € C?V. In this case the solution of the Cauchy problem is
given by

u(t, z) = EyeJo V@©dsy (4],

where the expectation is meant as limit of finite dimensional cylindrical
approximations [6]:

U(t, I‘) — khm ) e~ Z?Zl V(wjfl)(tj—tjfl)H?:1G2N(tj _ tj—la T;— xj—l)
—oo Jp

wo(zy)dxy - - - day,,

with zg = .

We also mention the work by D. Levin and T. Lyons [36] on rough
paths, conjecturing that the signed measure P,y could exist on the
quotient space of equivalence classes of paths corresponding to different
parametrization of the same path.
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A different approach is based on the construction of a stochastic
process on a space of complexr paths. In this case the integration is
performed with respect to a well defined positive probability measure
on a complex space. One of the first results was given by T. Funaki [19],
who constructed a complex stochastic process {X;}i>¢ by composing
two independent Brownian motions {B(t)}+>0 and {w(t)}s>0 in the
following way

[ Blw(t) it w(t) >0
Xi = { iB(—w(t))  ifw(t) <0

and proving that, for a suitable class of analytic initial datum wug, the
solution of the Cauchy problem

%:%% —oo<r<o00,0<t<oo, (6)
(0, 2) = uo(a)

is given by the expectation
u(t, z) = Elug(z + X3)]. (7)

In fact the result can be generalized to partial differential equations
of order 2", by multiple iterations of suitable processes [19, 29, 42].
These results are also related to Bochner subordination [9)].

There are also similarities between the Funaki’s process {X;} and
the “iterated Brownian motion” [11], but the latter is not connected to
the probabilistic representation of the solution of a partial differential
equation with regular coefficients. In fact the processes constructed by
iterating copies of independent BMs (or other process) are associated
to higher order PDE of particular form, where the initial datum plays
a particular role and enters also in the differential equation [5].

Complex valued processes, connected to PDE of the form (3) have
been also proposed by other authors by means of different techniques.
In [37, 12, 13] K. Burdzy and A. Madrecki consider the fourth degree
heat-type equation (6) and construct a probabilistic representation for
its solution in terms of a stable probabilistic Borel measure m on the
space 2 = C(][0,t],C>) of continuous mappings on [0,¢] with values
in the set C* of complex valued sequences, endowed with the product
topology. In this setting a Feynman-Kac type formula is proved, for
the fourth order heat equation with linear potential

ou 10 © (iaz 1 b)
— =—-——+ (tax u.
ot 80zt
Another probabilistic approach is presented by P. Sainty in Ref. [43],

where a representation for the solution of Zu(t, ) = Z-u(t, z), is given
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in terms of the expectation with respect to a particular complex val-
ued process X,i(t), t > 0, called ”"Brownian motion of order n”. It is
worthwhile also to mention a completely different approach proposed
by R. Léandre [33], which has some analogies with the mathematical
realization of Feynman path integrals by means of white noise calculus
[25]. Indeed Léandre has recently constructed a ”probabilistic repre-
sentation” of the solution of the Cauchy problem (3) not as an integral
with respect to a measure but as an infinite dimensional distribution
on the Connes space [34, 35]

We eventually mention another probabilistic approach to the equa-
tion A*u = 0 described in [22].

The present paper presents the construction of an alternative complex-
valued stochastic process generalizing Funaki’s result [19] and a corre-
sponding probabilistic representation for the solution of the Cauchy
problem

{ 9u (g, t) = —%6—4u(x,t) +V(t,x)u(t,z) —oo<z<oo, 0<t< o0,

ot Ozt

u(z,0) = uo(x),

(8)
with a € C, and for V) u, satisfying a set a conditions.

The paper is organized as follows. Section 2 presents the construction
of a complex random variable z;* and the representation of the solution
of equation (8) with V' = 0 in terms of the expectation with respect
to the probability measure associated with z{*. Section 3 presents the
proof of a Feynman-Kac type formula for the solution of equation (8)
in the cases where V is linear in the space variables and presents an
explicit time dependence.

2. A COMPLEX VALUED RANDOM VARIABLE ASSOCIATED TO THE
4-ORDER HEAT-TYPE EQUATION

In the present section we construct a probabilistic representation for
the solution of equation (8) in the case where V' = 0, namely

ou , a 0*u

gt @ = "5 g
An equation of this form, as mentioned in the introduction, has been
studied by several authors by means of different techniques [19, 32, 26,
43]. In this section we show that the results in [19, 32, 26] can be
seen as particular cases of a general theory presented in [10, 21, 23,
24], connecting the solution of parabolic problems with the solution of
related hyperbolic problems.

(z,1) —oco<x<oo, 0<t< oo,
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Given a Banach space X and a strongly continuous group of opera-
tors {T4(t) }+er on X with generator A, it is possible to construct the
2

holomorphic semigroup etT with generator A?/2 in terms of a Gauss-
ian expectation of the group 7T'(¢):

égszMWﬂU@ﬂ=%%ﬂ4m/m6#p7@ﬁﬁx,fGX-@)

More generally, given a polynomial P(A) in A with complex coeffi-
cients, whose leading term has the form cy,,, A*™, with (—1)™*! Re(cop,) >
0, then P(A) generates an holomorphic semigroup on X. Its action on
a vector f € X belonging to the domain of A?™ is given by

e”szjm@@ﬂm®Ma fex (10)

with §;(s) = = [ e ®¢etP ¢ (see [23]).
2m o0

Theorem 1. Let us consider the Cauchy problem

Bu(r,t) = —204(w,t)  —oo<w<oo, 0<t< o0, (11)
u(z,0) = ug(x),

with an initial datum vy € L*(R) satisfying the following properties:

(1) ug can be extended to an entire function on the complex plane
C, denoted again with ug,
(2) for any h € RY, e M=’ |ug(2)| is a bounded function on C.

Then the solution is given by

)

(t,z
0 6—82/2t €_£ . .
:/ (uo(z+a/*e™Ay) +ug(v+at*e™ ™ y) ) dyds
0

V2t Jr V2ms
(12)

Proof: Let us consider equation (10) in the case where X is the Hilbert
space L?(R), A = i$ and P(z) = 2?/2. One gets the following repre-
sentation

)
ta2 - is2 € o/
e 8 = e 2

. V2mt

giving the semigroup e~s2% in terms of a Gaussian expectation, with
v e S A
respect to the time variable s € R, of the Schrodinger group e*=.

ds, (13)

A2



HIGHER ORDER DIFFERENTIAL EQUATIONS 7

Given an initial datum vy € L*(R) satisfying the hypothesis of the
theorem one can write the following chain of equalities

o 0 —52/2t )
€_§A UO(.TZJ‘) = \/ﬁ 2 U,O(,’L’)ds
00 —52/2t

b m“s uo(x) + e Fug(z))ds

o5 2/2t g— €_Zg
= T+Y) + ——ug(x + )
/ V2t / 27ms v) \/ —2ms of v)

es 2/2t e~ T

= (uo(z + e”“y) + ug(x + e‘”“y))dyds,

V2t Jr V27s

where the latter hne is the result of a rotation of the integration path
in the complex y-plane. By an analogous reasoning, the formula in the
case where « is a complex constant is:

e‘aéAQUO(x)

2
—82/2t —g—

V2t Jr V2ms

(uo(z+a*e™*y) +ug(z+a' e/ y) ) dyds

m
The Funaki formula (7) for the solution of (11) in the case where
a = —1 can be written in the following form
o0 e‘% 6_% )
u(t,z) = (uo(x + 2) +up(x +i2))dzdy  (14)

0o V2t Jr V2TY

and can be obtained as a special case of equation (12).
Equation (12) can be written in terms of the expectation w.r.t. the
measure associated to a complex random variable z':

e~ 5 ug(x) = Elug(z + 2], (15)
where z{* has the following distribution
2
€ 2s
V2t Jr V2ms
(16)
A being a Borel subset of the complex plane and y 4 being its charac-
teristic function. Clearly the measure is concentrated on two rays of
the complex plane a'/*¢'™/*R and o!/*e~""/*R.

One can easily verify that random variable z{* has the following prop-
erties:

—82/2t

Pz e A) =

(XA(a1/46i7r/4y)+XA(a1/4€—i7r/4y))dyds’
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o 2~ /40
o E[(z)" =0, k=123,
o E[(zf)"] = -3¢,
_s2
o E[|2[?] = 2|at[V? [ <L sds < +oo

° E[ei)\z?] _ 6_50)\4.
Moreover formula (15) can be written in Funaki’s notation (see Equa-

tions (6) and (7)). Indeed let us consider two independent Brownian
motions {B(t) }+>0 and {w(t)}+>0, and define the process { X[ }i>o as:

N et A B(w(t)) if w(t) >0
X = { e—mHAAB(—w(t)) i w(t) < 0 (17)
Then equation (12) can then be written in the following form:
e 5% ug(2) = Efug(x + X7)). (18)

Remark 1. Analogous results can be obtained also in the case where A?
is replaced with higher powers of the Laplacian, namely A*, A3, ..., A",
It is sufficient to iterate n— times formula (9). One obtains a formula
with multiple Gaussian integrations, similar to the one proposed for
instance in [29]. As in the Funaki approach, the probability measure
of the complex random wvariable can also been obtained by composing
three independent Brownian motions in a suitable way. In fact any
even power of the Laplacian can be handled by means of the general
formula (10), but a probabilistic interpretation in terms of the compo-
sition of several independent Brownian motions is not always possible.
For instance, in the case where one considers A%, equation (10) gives
the following result:

F ) = [ gl unlds

with
L[~
anls) = o /_ ) e e g,

We shall not further develop these formulae here, but we shall only
focus on the case of A2.

3. FEYNMAN-KAC TYPE FORMULAE

The process { X{*}+>0 appearing in (18) provides a probabilistic rep-
resentation for the solution of equation (11) (under suitable analyticity
assumptions on the initial datum f). On the other hand it has not
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independent increments, so it does not naturally give rise to general-
izations of formula (18) to the case where equation (11) contains also
a potential V', i.e. to a Feynman-Kac formula of the form:

ult,) = Elug(w + X{7)e™ o VX,
Indeed, by applying formally the Trotter product formula, one gets:

2 2
e ye(z) = lim <6_%%6_%V> ug()

n—oo

n k a
= lim Efe™ S VO Oy (o 4 3 20(t/n))]
j=1
where z$(t/n), j = 1,..n, is a family on n ii.d random variables,
distributed as zf), (see equation (16)). In the latter line one would
be tempted to interpret the r.v 2 (¢/n) as the independent increments
of a complex valued stochastic process, different from {X;}i>0, ie.
to interpret the limit as the cylindrical approximations of an integral
with respect to the measure associated to a complex valued stochastic
process with independent increments.

In fact such a process cannot exist, as its construction would be pos-
sible provided the weak convergence of the sequence of complex random
variables >, 2¥(t/n) as n — oo. By using the scaling properties of
the random variable z®(t), this is equivalent to the weak convergence
of the sequence n~"/*37" | 28(1). As 2§ are independent identically
distributed complex random variables with finite covariance, then the
sequence n~ /23" =175 (1) has a Gaussian limit. Consequently, the se-
quence n~ /43" j—1 77 (1) cannot converge weakly, as erroneously stated
in [43].

The present section is devoted to the proof, for a suitable class of
continuous functions V' and initial datum ug, of a Feynman-Kac formula
representing the solution of the Cauchy problem (8) as the limit of a
sequence of finite dimensional approximations:

u(t,x) = lim Efe”= F i Vi 2 /)y x—i-z (t/n)]  (19)
7=1

where 2£(t/n), j = 1,..n, is a family on n ii.d random variables,
distributed as zf}n

The implementation of formula (19) presents some technical prob-
lems, which do not appear in the proof of the classical Feynman-Kac
formula (for the heat equation with potential). The first one is the
definition of the integrals involved. In fact, since the random variables

2%(t/n) are complex valued, the function V' must be extended to an
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entire function of the complex plane. We cannot require that it is
bounded on C, otherwise we could consider only the trivial case. Con-
sequently we shall integrate unbounded function and in principle the
convergence of the integrals has to be checked. In fact, for a large class
of potentials, the integrals are not absolutely convergent and have to
be defined in a suitable way.

The second problem concerns the proof that the integral (19) repre-
sents the solution of the Cauchy problem (8). Even if the second line of
(19) recalls Trotter’s product, this formula cannot be directly applied
since it holds in L?(R), while formula (12) holds for an initial datum f
belonging to a different class of vectors (i.e. those satisfying analyticity
and slow growing conditions).

The problem of the proof of a Feynman-Kac type formula for equa-
tions of the form (8) has been analyzed in [37], where the case with
linear V' is handled, and in [20], but a detailed proof for a sufficiently
large class of potentials V' is still lacking. We generalized this results to
the case where V is linear in the space variable and presents an explicit
time dependence.

Theorem 2. Let ug be of the form uo(z) = [ e™Vdu(y), where g is
a complex bounded variation measure on R such that for any A € R the
following holds:

/R Al (y) < 0. (20)

Let a : R — C be a continuous function. Then the solution of the
Cauchy problem:

% (x,t) = —%%u(m,t) —ida(t)zu(t,r) —oo<z<oo, 0<t< oo,
U(ZE,O) ZUO(:E )

(21)
is given by formula (19).

Proof: Under the stated assumptions, the finite dimensional integrals
appearing in formula (19) assume the following form:

i fot a(t—s)dsE[e—i% S a(t—%) ;?:1 2§ (t/n) / ei:cyeiy PR (t/n)duo(y)]’
R

where 2§(t/n), j = 1,..n, is a family on n iid. random variables,
distributed as Zm Now by applying the Fubini theorem, which holds
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because of condition (20), the latter is equal to

e—ix fg a(s)ds / 6ixyE[e—i iy 25 (/) (—y-‘rt/n k=g a(t—%)) ]d,UO(y)
R

4
_ 6—imfga(s)ds/eimye—%% ?:1(—y+t/n22:j a(t—%)) ]duo(y)
R

By dominated convergence theorem, the limit as n — oo of the last
line is equal to

4
e_iwfga(s)ds/6mye—%f§(—y+f§a(t—“)d“) Bldpuo(y),
R

which is the solution of Cauchy problem (21), as one can easily verify
by direct calculation. O

4. CONCLUSIONS

In this paper we have proposed the construction of a particular prob-
abilistic representation for the solution of the equation @ = —aA?u+V
in terms of a Feynman-Kac type formula. The class of potentials V/
which can be handled by requiring that the probabilistic integrals are
defined in Lebesgue sense, i.e. as absolutely convergent integrals, is
rather restricted because of the complex nature of the process. A gen-
eralization of these results to more general potentials requires the im-
plementation of an integration technique, in infinite dimensions, of a
different type, by relaxing the absolute convergence of the integrals,
as in the cases handled for instance in [40] concerning the functional
integral representation for the solution of Schrodinger equations. This
problem will be handled in a forthcoming paper.
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