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Abstract

In this paper we present results of simulations in which we use a gen-

eral probabilistic learning model to describe the behavior of heterogeneous

agents in a non-cooperative game where it is rewarding to be in the minor-

ity group. The chosen probabilistic model belongs to a well-known class of

learning models developed in evolutionary game theory and experimental

economics, which have been widely applied to describe human behavior

in experimental games.

We test the aggregate properties of this population of agents (i.e., pres-

ence of emergent cooperation, asymptotic stability, speed of convergence

to equilibrium) as a function of the degree of randomness in the agents'

behavior. In this way we are able to identify what properties of the system

are sensitive to the precise characteristics of the learning rule and what

properties on the contrary can be considered as \generic" features of the

game.

Our results indicate that, when the degree of \inertia" of the learning

rule increases, the market reaches a higher level of allocative and infor-

mational e�ciency, although on a longer time scale.

1 Introduction

In this paper we make a �rst attempt to investigate if and how alternative hy-

potheses about learning may inuence the aggregate long-term properties of a

simple non-cooperative game. The general framework analyzed is a multi-agent

game called the "Minority game", whose structure is intended to capture, al-

though in a highly stylized and abstract way, some basic properties of speculative

market interactions.
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In the \original" version of this game, �rst introduced by [1], a population

of N arti�cial agents (where N is an odd number) must each simultaneously and

independently choose between two sides, say 0 and 1. The side chosen by the

minority of the agents, i.e. the \minority" side is the winner, and agents who

choose it are awarded one point each, while those who choose the majority side

win nothing. Each agent is initially endowed with a �xed number of strategies

(which will be de�ned more in detail later), and updates them throughout the

game according to a deterministic algorithm.

The game intends to reproduce, at least in �rst approximation, the core of

speculation activities in �nancial markets, where agents form beliefs about the

market future outcomes (determined by the behavior of the majority of agents

operating on it) and try to "beat" it by acting in an opposite way. This type

of speculative activity is sometimes referred to in the �nancial literature as

"contrarian investment strategy", meaning the practice of trying to speculate

on perceived investor sentiment [11]. From a game-theoretic point of view, the

game is a multi-agent coordination game with several asymmetric equilibria

in pure strategies, and a unique symmetric mixed-strategy equilibrium. As

the population playing a minority game is supposed to be generally large as

to have no chance to communicate, one can investigate the conditions under

which repeated interaction among players cause some forms of aggregate self-

organization to emerge spontaneously. The major results already obtained in

this vein will be discussed later in the section.

Besides simulation studies, some experimental studies have also been con-

ducted on similar types of coordination games[2] The data coming from experi-

ments suggest that the degree of self-organization generally depends on the char-

acteristics of the game being played in terms of, e.g., payo� function, amount of

information available to players, number of repetitions and size of the popula-

tion. These variables, in fact, not only modify the incentive structure involved

but, more importantly, determine the type of adaptive behavior (or learning)

that players will exhibit throughout the game. This latter point is especially

relevant in the context of a multi-agents game of the "minority" type, where

the kind of adaptive dynamics and, to a lesser extent, the information available

to agents are likely to substantially modify both the long-term outcome and the

\collective" adjustment process itself.

Our scope in this paper is to study the variation of the asymptotic proper-

ties and dynamics of a population playing a minority game when the learning

rule of the agents is modi�ed. In particular,we adopt a probabilistic learning

algorithm for the agents and leave any other parameter of the original game

unmodi�ed. The choice to adopt a probabilistic learning rule is supported by

the available evidence on human learning in games, which suggests that learn-

ing processes in various interactive contexts can be quite accurately described

by simple probabilistic models [6, 4, 5]. We demonstrate that such simple

variation in the agents' learning algorithm produces important modi�cations

to the asymptotic properties of the system, suggesting that some features of

the original game are not generally valid but strongly depend on the particular

behavioral assumptions made.

In particular, such modi�cations all yield improvements in the system asymp-

totic performance; the improvement is highest for certain values of the game pa-

rameters and for higher degrees of "inertia" in the learning algorithm (measured

by a parameter �), although at the expense of a longer adjustment phase.
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The remainder of the section briey illustrates the basic features of the orig-

inal game, and describes the major results of the system asymptotic properties

present in the literature. Section 2 introduces the probabilistic learning rule

adopted for our simulations, and introduces the inertial parameter �.
In section 3 the length of the "training phase" is analyzed. In fact, although

we are mainly concerned with studying the system optimality properties in

the long run, a non secondary aspect concerns the duration of the adjustment

phase, which is generally increased by the introduction of a probabilistic rule.

The \transient length" issue, although primarily a technical one, has important

theoretical implications for our model, in that it highlights a tradeo� between

longer times and better performances, which is common to all probabilistic

search algorithms.

We subsequently analyze the system aggregate performance and in doing

so we de�ne several measures of e�ciency. Section 4 de�nes the notion of

"allocative e�ciency" as in [1, 3], strictly connected to the size of the minority;

in fact, the smaller is the winning minority the more points are "left on the

table" instead of being distributed over the population. The inuence of the

parameter � on the degree of the system allocative e�ciency is analyzed. We

then compare the degree of e�ciency so obtained with the level of e�ciency

theoretically attainable by perfectly rational and perfectly informed players who

"solve" the game analytically.

Section 5 analyzes the e�ect of � on the degree of "informational e�ciency",

connected to the existence of arbitrage opportunities. At the end of this sec-

tion, we analyze the inuence of � on the system's degree of social optimality

(uniformity of earnings ditribution over the population). Finally, Appendix A

analyzes modi�cations to our results when a time discounting factor is added

to the learning algorithm.

The results obtained in the various sections are strongly consistent and show

that the introduction of randomness in the learning rule has a positive e�ect

on all the three types of e�ciency introduced. Besides, such positive e�ect is

greater the greater amount of "inertia" is assumed. Section 6 contains some

�nal remarks and suggestions for future research.

Let us start our analysis by briey recalling the basic features of the \origi-

nal" game.

In this game [1] all players after each round know only which side (0 or 1)

was the winner, without knowing the actual \size" of the minority. The market

signal is represented by the (history)H of the game, that is a time series modeled

as a binary string specifying which side has won at every stage. The degree of

rationality of the agents is determined once for all by the speci�cation of two

parameters homogeneous over all the population.

The �rst parameter is the amount of \memory"of the past that agents are

able to retain, corresponding to the last m bits hm of the game history H . The

second parameter is the number s of strategies assigned to each agent.

A strategy is de�ned as a prescription on the action to take on the next round

of play (i.e. to choose 0 or 1) after a particular history (that is, a particular

sequence of m bits) has been observed up to that point. For example, in the

simple case in which m = 3, a strategy is de�ned as follows:

that is, the \history" columns specify all the possible histories of the game

in the last m periods; the \prediction" columns specify which action to choose

on the next trial in correspondence to each particular history observed. The
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history prediction history prediction

000 1 100 1

001 0 10001 0

010 0 110 1

011 1 111 0

Table 1: Example of strategy with m = 3.

strategies are randomly drawn from a common pool consisting of the 22
m

ways of

assigning all the 2m possible strings of lengthm to an action. Note that even ifm
and s are the same for all the population, heterogeneity follows from the random

initial strategy assignment. Each strategy in play will be characterized by a

value qi(t), which indicates the total number of points accumulated by strategy

i at time t. Indeed, after each period of the game, all the strategies that have

predicted correctly in that period (that is, all strategies prescribing the side ex

post resulting the winning side) are assigned one point each. In other words, all

strategies which, if played, would have been winning on a particular round, are

all updated regardless of whether they were actually played or not. Note that the

procedure of strengthening strategies that were successful in the past certainly

sounds plausible and it is also the core of the so called \reinforcement learning"

algorithms, which are widely used to model agents behavior in low-rationality,

low-information environments. However, unlike the original minority game,

reinforcement learning implies that only strategies that were actually played

get strengthened. The learning rule in the original minority game, hence, di�ers

from reinforcement learning stricto sensu in assuming on the part of the agents

a higher degree of rationality.

Given strategies and updating rules, behavior at each stage is completely

deterministic, in that each agent at each period plays, among the strategies he

possesses, the one with the highest number of accumulated points.

In order to judge the system's degree of self-organization, it is necessary to

introduce a measure of allocative e�ciency. A natural candidate is provided by

the average number of players belonging to the winning party. Such quantity

measures the degree to which the system is in equilibrium. In fact, when the

winning party is equal to N=2 the system �nds itself in equilibrium in the sense

that no player can do better by unilaterally deviating. Besides, the equilibrium

con�guration is also globally e�cient, in that the maximum number of play-

ers win and the highest number of points are distributed over the population.

Otherwise if this number is near 0 (or N), few players win and less points are

allocated. Instead of averaging the size of the winning party one can choose

to compute an associated quantity, the mean squared deviation from the half

population �. Let N be the number of agents and N0(t) the number of agents
attaining side 0 at time step t, then in a given simulation of length T the mean

squared deviation is computed as

� =
1

T

TX

�=0

(N0(�) �
N

2
)2 : (1)

Note that � is also a measure of the uctuations around the N !=(((N �1)=2)!)2

game Nash equilibria in which exactly (N � 1)=2 players form the winning
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minority.

Before starting to describe the results from the simulations performed in

[1, 3], few remarks are appropriate.

Any simulation depends, other than on the parameters N , m, and s, on
the initial distribution of strategies among agents and on the initial history,

both generated randomly for the system. Therefore, if not stated otherwise,

all the quantities shown in the plots are obtained via an averaging procedure

over 50 independent simulations with randomly generated histories and strat-

egy distributions. This averaging procedure is performed in order to produce

asymptotically stable quantities, i.e. a di�erent resampling with di�erent initial

histories and strategies will produce an equal \asymptotic" state for the system.

Moreover at the beginning of each simulation the system is left evolving for

a \training phase" of length T0 in order to eliminate any eventual transient

e�ect on the subsequent averaging procedure. The quantities so obtained can

be considered \asymptotic" properties of the system as long as T0 and T are

chosen high enough to provide a good approximation of the T ! 1 limit. As

we will see later, a sensible choice for T and T0 is far from trivial in a generalized

setting.

The dependence of the volatility � on N , m and s for the original minority

game has been studied in many works [1, 3] and is summarized in Fig. (1) for

s = 2. As noticed by [3] the parameter z = 2m=N turns out to be, at least in

�rst approximation, the relevant one and the curves for various N collapse if

plotted in this variable. Various explanation of this peculiar feature has been

proposed [1, 3]. Notice that even if the actual number of possible strategies

is 22
m

, their relative strengths are completely de�ned in term of the frequency

P (0jhm) with which, in history, a 0 follows a given m�length string hm and

there are 2m of such variables. So, z can be interpreted as the density of agents

in the strategy space degrees-of-freedom.

Looking at Fig. (1) tree di�erent \regimes" of the system can be identi�ed:

a \random regime" occurs when z is large (the agent are sparse in the strategy

space), and the system can hardly organize. In fact its behavior can be described

as a collection of random agents that choose their side with a coin toss. In

fact suppose the past history be a given hm and suppose there are Nd(hm)
agents whose strategies prescribe di�erently based on that history while there

are N0(hm) and N1(hm) agents whose strategies prescribe the same party (we

restrict ourselves to the s = 2 case), respectively 0 and 1. If the agent in Nd

choose randomly the variance is �(hm) = Nd(hm)=4 + (N0(hm)�N1(hm))
2=4.

The average over the possible hm will then give � = N=4. Notice that there are
two di�erent contributions to �: a uctuation in the choices of agents able to

choose and a uctuation in the initial distribution of strategies.

The second regime is the \ine�cient regime" for z << 1. Here the agents

densely populate the strategy space and they in fact \coordinate" in the sense

that their actions are strongly correlated. This coordination however leads to

a worsening of the overall performance due to a \crowd" e�ect [7]: the agents

in fact are too similar to each other and they tend all to choose the same party

based on the information available.

The third regime for z � 1 is where the coordination produces a better-

than-random performance. Here the agents are enough di�erentiated so as not

to produce \crowd" e�ects but su�ciently distributed over the strategy space

so as not to produce a random-like behavior. The point where � is minimum
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Figure 1: The volatility �(z) for s = 2 and di�erent values for N and m

is referred to in the literature as the \critical point" zc suggesting that a major

change in the system behavior happens when this point is crossed. As we will

see in the following sections, this \criticality" survives and in some sense more

clearly appears when generalizing the learning rule initially proposed.

From now on we will restrict ourselves to the case N = 101 and s = 2 so we

will speak of the \optimal" value for memory length mo referring to the value

of m which minimize �1

while we prefer to drop the word \critical" as it brings to mind special

features of physical systems which are not clearly perceived in our simulations.

2 Learning dynamics

The notion of strategy in the minority game is relatively unusual in standard

or evolutionary game theory, and it requires some interpretation in terms of

the behavioral and cognitive characteristics of the human players it intends to

describe.

According to us, each strategy may been seen as a particular \mental model"

or \hypothesis" about the world (the "world" may include values of the fun-

damentals of the market in question, or, as it seems appropriate in this case,

the beliefs and behavior of the other players). Each general hypothesis then

translates into speci�c predictions on which will be the winning action for each

particular history observed so far. In this respect, a strategy in this game re-

sembles the notion of \repeated game strategy" in standard game theory (see,

1Note that the values chosen for m and N conform to what found in [1, 3]; the choice to

set s=2 is justi�ed by the fact that the system exhibits the same qualitative properties for

any s � 2, while reducing to a trivial case for s=1
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e.g.,[13] for an introduction).

Each agent initially has a number of di�erent strategies, that is a number of

di�erent (and competing) hypotheses. After each period, more evidence is col-

lected and all the hypotheses consistent with the evidence are updated through

a process that is very similar in spirit to Bayesian updating.

From a behavioral point of view, both the de�nition of strategy and the

choice of the learning rule to adopt are particularly demanding in terms of the

degree of rationality of the agents. In fact, players not only are supposed to

form several hypotheses about the game, but they also update them consis-

tently, de facto applying sophisticated conterfactual forms of reasoning. On the

other hand, as previously stated, literature on experimental games has shown

that behavior of human subjects in games can often be well approximated by

simple adaptive learning rules which act probabilistically. For example, the re-

inforcement learning model [4, 6], originally developed in psychology, has been

shown to accurately describe medium and long run behavior in a large class of

games in which agents have limited information and feedback. A more recent

probabilistic model developed by Camerer [5], more in line with the algorithm

initially proposed for the minority game, extends the updating mechanism also

to actions that were not played but which would have been successful, according

to what he calls the \law of simulated e�ect".

In the present paper we introduce a simple modi�cation of the standard

learning rule: the updating mechanism is left unaltered (that is, all winning

strategies are updated regardless of whether they were played or not), but the

choice between strategies in each period is probabilistic instead of deterministic.

Remember the de�nition of qi(t) as the total number of points strategy

i would have won if played until time t then each agent chooses among his

strategies based on the following probability distribution:

pi(t) =
e�qi(t)P
j
e�qj(t)

: (2)

where the sum on j is over all the strategies possessed by the player 2. Note

that in general, di�erent players will assign di�erent probabilities to the same

strategy due to a di�erent strategy endowment.

Our model bears similarities with a discrete time replicator dynamics [8].

The parameter � can be considered as a sort of \willingness to choose": when

it is high, the agents are sensitive even to little di�erences in the virtual score

of their strategies and in the � ! 1 limit the usual minority game rule is

recovered. On the contrary for low values of � a great di�erence in strategy

strengths is necessary in order to obtain signi�cant di�erences in probabilities.

The connection of (2) with the replicator dynamics is straightforward if one

looks at the probability updating equation associated with it:

pi(t+ 1) = pi(t)
e� �qi(t)

P
j
pj(t)e� �qj (t)

: (3)

where �qi(t) = qi(t+1)� qi(t) are the points won by strategy i at time t. If one
thinks of a continuous process �qi(t) = _q

i
(t)�t, where _q

i
(t) is the instantaneous

\�tness" of strategy i, then the continuous time replicator dynamics equation

is recovered keeping only the �rst terms in �t expansion.

2For our s = 2 case, the summation will contain two terms
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Figure 2: The mean � as a function of the run length for di�erent m. The points

are averages over a sample of 30 independent runs with N = 101 and s = 2

Let us go back to the problem of de�ning the correct values for T0 and T
in (1). The central question is: How long must the system be left evolving

before it reaches the asymptotically stable dynamics? In the minority game

analyses found in the literature [1, 3], the general answer is \long enough", where

\enough" is typically 10:000 to 100:000 time steps for an agents population

ranging from 100 to 1000 units.

Fig. (2) plots the average � value for the original minority game as a function

of the time length T over which this average is taken with a transient T0 = T . As
it can be seen from the graph, the values used in the literature on the minority

game are generally su�cient to obtain a prediction correct to a few percent.

However, two things are worth noticing:

� For low values of m, in the \ine�cient regime", and for high value of m,

the \random regime",the system reaches a stable dynamic quite fast. On

the contrary, for values of m near the optimal value mo, the system takes

a longer time to self-organize.

� The system approaches the asymptotic value from above, which suggests

the intuitive interpretation that the system \learns" to self-organize with

time.

Consider now the case in which the learning rule is the one described in (2).

For high values of � this learning rule approaches the standard one, and ac-

cordingly, the transient length is similar to the one found in the previous case.
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However, as � decreases, such length generally increases. The increase is most

dramatic for values of m near the optimal value mo, and it progressively dis-

appears for higher values of m, as can be seen in Fig. (3). Such a result is

somewhat intuitive if one considers the meaning of � in terms of the learning

rule. Supposing a non trivial dynamics for m near mo, the parameter � sets the

time scale on which such dynamics is attained.

As a suggestive explanation of the statement above, consider the following

argument:

Let be r(t) = p1(t)=p2(t) the ratio of the probabilities that an agent asso-

ciates to her two strategies, and �q(t) = q1(t) � q2(t) the di�erence in their

respective strengths. From (2) it follows that r(t) = e��q(t). Assuming that the

di�erence in the two strategies performance holds constant over time, assump-

tion which is generally true in the initial transient regime where agents' behavior

is substantially randomic, we obtain �q(t) � t; hence, from the equality above,

a given di�erence in probability is obtained at a time which is inversely propor-

tional to �.
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Figure 3: � as a function of run length T for di�erent �. The points are average
over a 30 runs sample with a transient time T0 = T .

In order to estimate the time scale over which stability is attained, we use

the following procedure: Holding all the parameters and the initial conditions

constant, the system volatility can be expressed as a function of both the \tran-

sient" phase duration, and of the time length over which it is averaged, i.e.

� = �(T; T0).
Starting from a reference time Tr,

3 we compute the mean volatility progres-

3Note that the chosen value for T0 is irrelevant as long as it is small compared to the

typical time scale.
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sively doubling t and t0, and thus obtaining a series of values �n = �(2nTr; 2
nTr).

When the relative variation j�n � �n�1j=�n falls below a �xed threshold �,
we stop and take the last computed value of � as an estimate of its asymptotic

value. The corresponding time length T̂ (�) will be an estimate of the time

implied by the system to reach this asymptotic stability.

As can be seen in Fig. (3) the increase in T̂ when � is lowered is mainly con-

centrated around mo, with shapes that suggest the presence of a discontinuity.
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Figure 4: A rough estimate of the time T̂ needed by the system to reach the

stable asymptotic � value with an error not greater than a few percent. The

plot is made against m for di�erent value of �. see the text for a description of

the method.

4 Allocative e�ciency

In order to analyze the asymptotic properties of �(m) for di�erent �, we use

the same procedure described above regarding the calculation of T̂ , i.e. we leave

the system evolve until stability is reached. The simulation results are plotted

in Fig. (5). As can be seen when � decreases, the system performance level

generally increases. Such increase is larger the lower the value of m, and it

becomes negligible for m � m0. The observed behavior is consistent with the

idea that for high values of m, the system dynamics is completely determined

by the initial distribution of strategies among players, and the players have

no opportunities to attain a higher performance by adjusting their behavior.

Therefore, the particular learning rule used is largely irrelevant. On the contrary,

for low values of m, the original learning rule (� = 1) produces a \crowd

e�ect" [9] (consisting in large groups of agents choosing the same side) that,

due to homogeneity in the initial strategy endowments, prevents the system

from attaining a high degree of e�ciency.

In some sense, one can interpret the crowd e�ect as a collective form of

\overreaction" [10]. Of course, introducing a probabilistic learning rule for the
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strategy choice acts like a brake that dumps the amplitude of such correlated

uctuations. At the individual level, this can be interpreted as the presence

of higher degree of \inertia" as agents update their probabilities more slowly.

In other words, as � decreases each agent behaves as if he was applying a

sort of \�ctitious play" approximation [?]4, indeed assuming stationarity on the

distribution of other agents choices. This assumption is in fact consistent: a

decrease in � makes the behavior of the population as a whole change at a

slower pace.
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Figure 5: The volatility � for s = 2, N = 101 and various m and �. The run

are performed doubling the time length T until the last two value are di�erent

by less then 1%.

The double e�ect of a slower probability updating at the individual level and

the resulting more stable collective behavior implies that � is a non increasing

function of �. In fact, if the system reaches a dynamical stability via an averag-

ing procedure over the past outcomes, increasing the time scale over which the

averaging procedure is taken cannot rule out previously attainable equilibria.

However, ote that if one performs the simulations with a �xed time length,

when � becomes small the system behavior resembles the behavior of a random

system. This �nding is due to both the increase in the transient length and the

purely randomic starting dynamics which occur when � is decreased. Here we

are facing a double limiting problem: we are interested in the value of volatility

in both � ! 0 and T ! 1 limit and therefore it is necessary to specify which

limit is taken �rst. The results of the �xed time simulations are plotted in

Fig. (6) and are in line with [14].

4Note that �ctitious play implies that a player always best responds to the observed fre-
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Figure 6: The volatility � for s = 2, N = 101 and various m and �. The runs
are performed with a �xed time length T = T0 = 10000. When � ! 0 the

system approaches a collection of randomly choosing agents.

The performance attainable in the minority game via a dynamical organiza-

tion of agents with limited information and ability to choose is actually surpris-

ingly high, compared to the e�ciency attainable with more informed and more

rational agents who are endowed with a greater exibility in choice.

Consider for instance a collection of agents characterized, in line with the

original minority game, as follows: each agent is assigned S = 2 strategies, and

a vector of length 2m containing the probability p(hm) of playing according to

the �rst strategy after the appearance of hm. Moreover, for each hm, each agent
knows the values of N0(hm), N1(hm) and Nd(hm) indicating respectively the

number of agents for which their strategies prescribe both to play 0, both to

play 1 or to play di�erently.

Assuming that the game structure and the amount of information available

to agents is common knowledge and assuming the agents are perfectly rational

the problem completely factorizes and for each hm every agent in Nd(hm) will
solve the game analytically choosing p(hm) in order to minimize

(N1(hm)�N0(hm))

2
� p(hm)Nd(hm) (4)

i.e. to make the average value of people choosing a given side nearer to N=2
as possible. This choice will produce a volatility � � Nd=4 = N=85 which is

roughly similar to what obtained in simulation Fig. (5) in low m low � region.

quency of opponent's play
5We are assuming �N = N1(hm) � N0(hm) < N

d
(hm). Notice that for random agents
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runs. As � becomes small the point m � m0 maintains a signi�cantly larger

variance.

A �nal remark concerns the variance of the distribution of � as a function �
for various m plotted in Fig. (7). The graph shows that when � decreases the

variance of � decreases for any m, however it remains three times greater for

m = mo suggesting a stronger dependence of the asymptotic performance on

the initial strategy assignment which the system is not able to rule out.

5 Informational e�ciency

In this section we analyze the informational content of H , the binary string of

successive winning sides. Relatedly, with informational e�ciency we mean here

the extent to which the future system outcome is unpredictable, i.e. the absence

of any arbitrage opportunity.

Let p(0jhl) be the probability that a 0 follows a given string hl of all the
possible 2l strings of length l.

The analysis performed in [3], for the original game leads to the identi�cation

of two regimes: a \partially e�cient" regime for m < mo in which p(0jhl) = :5;
as long as l � m; thus no informational content is left for strategies with memory

less or equal to the one used by the agents. For m > mo an \ine�cient" regime

is entered in which the distribution of p(0jhl) is not at, even for l � m, meaning

there are \good" strategies that could eventually exploit the market signal to

�N �
p
(N) and N

d
� N and we can neglect �N=N

d
terms in the solution of (4)when N is

large.
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obtain higher pro�ts. For l > m both the regions show a non trivial distribution

p(0jhl) with an increasing degree of \roughness" as l increases.
The e�ect of introducing \randomness" through the parameter � leads to

the obvious e�ect of reducing the \roughness" of p(0jhl) (see Fig (8)).

In order to study the behavior of the system as � changes we introduce two

related quantities which can be used to characterize the informational content

of the time series. The �rst is the conditional entropy H(l) de�ned as:

H(l) = �

X

hl

p(hl)
X

i2f0;1g

p(ijhl) log p(ijhl) (5)

where the summation is intended over all the possible string of length l and
p(hl) is the frequency of a given string in the system history H . The maximum

value H(l) = 1 is reached for a at distribution p(0jhl) = :5; and is interpreted

as impossibility of forecasting (in probability) the next outcome starting from

the previous l outcomes. The idea that the information content can be used to

\make money" leads us to the de�nition of a second quantity A(l):

A(l) =
X

hl

p(hl)max fp(0jhl); p(1jhl)g (6)

which is the average fraction of point won by the best strategy of memory l.
This is a measure of the reward obtained by the best arbitrageur with memory

l ( where if no arbitrage opportunities are present A(l) is equal to :5.)
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Figure 9: The conditional entropy S(l) (left) and arbitrage opportunity A(l)
(right) as a function of time depth l for m = 3 < mo.

Before analyzing the behavior of these quantities when � is varied, let us

start by analyzing the properties of a population characterized by the two op-

posite models of \perfectly-informed, perfectly rational agents" and of \random

agents" discussed before.

Under the former characterization the problem factorizes for each past his-

tory and the dependence on m disappears. The history produced by such a

system is a random series of 0 and 1. Indeed the number of agents choosing one

side is distributed according to a binomial around N=2 with di�erent widths for

di�erent hm. This in particular means that in this limit the \memory" loses

any predicting power and no arbitrage opportunity is left for agents with longer

memory, i.e. no residual information is left in the time series and the behav-

ior of agents makes the market perfectly informationally e�cient. Under this

assumption we expect S � 1 and A � :5.

Under the opposite characterization of \random agents", due to the unbal-

ance in the initial strategies endowment we expect a non trivial structure to

appear for every l; thus S < 1 and A > :5.
In Fig. (9) we plot S(l) and A(l) for histories generated with a value of

m > m0, in the \partially e�cient" regime. The e�ect of decreasing � shows

up when l > m but the information content for high l is never completely

eliminated. The market becomes less e�cient the larger is the time scale l at
which it is observed. In fact it can be shown under very general assumptions that

certain strings in the history are more abundant than others [3] and the long-

range correlation that was responsible for the \crowd e�ect" at high � survives

as a non trivial structure in p(0jhl) for high l. To an agent with memory l � m
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Figure 10: The conditional entropy S(l) (left) and arbitrage opportunity A(l)
(right) as a function of time depth l for m = 6 > mo.

the market appears perfectly e�cient regardless of the � value.

For values of m in the \ine�cient phase" the e�ect is in some sense reversed.

As can be seen in Fig. (10) the e�ect of decreasing � is again negligible for

l � m but in the limit � ! 0 the curve becomes at for l > m. This last

result deserves some comments: the atness in l � m means that no gain is

achieved from inspecting the time series with a very long memory l >> m
because no more arbitrage opportunities are open for a smarter (i.e. with a

longer memory) agent than the best possible agent of memory m. The market

can be called again \partially e�cient" in the sense that it generates an upper

bound on the maximal attainable arbitrage capability which does not depend

on the arbitrageur memory.

The particular form of the conditional entropy in Fig. (10) suggests that in

the limit � ! 0 the system can be described as a Markov chain of memory

m. Notice that following its very de�nition, the system is conceived as one in

which the past is not discounted (however, see Appendix A for an analysis of

the system properties when a time discount factor is introduced), in the sense

that agents weigh their strategies on the basis of all the game outcomes starting

from the beginning of the simulation. The present result can be explained by

noticing that when � is small only great di�erences in the past performances

of strategies are relevant and in the limit � ! 0 only in�nite di�erences stay

relevant. Stated otherwise, the frequency of victories of the various strategies

becomes constant implying the formation of a static hierarchical structure in

the strategy space which at the end is responsible of the Markov character of

the resulting history.
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Figure 11: For each player we plot the scoring rate of its best strategy toward

its own winning rate. The population is made of 30 independent runs of 101

players. The value of � is :04.

The appearance of \best strategies" in m > mo region is supported by

plotting the average points scored by the best strategy versus the average point

scored by the player (see Fig. (11)).

A correlation appears between the performance of a player and the perfor-

mance of its best strategy for m � mo. In the m � mo region a sub popula-

tion showing the same kind of high correlation coexists with a population that

presents no correlation, constituted of agents possessing two equally performing

strategies.

We can say that the low m region is the one possessing the characteristics

of \social optimality" where no strategies are preferred to others and no player

is bound to lose due only to his initial strategy endowment.

Notice however that perfect equivalence between strategies does not neces-

sarily imply equivalence in agent performances. As a further analysis we have

plotted the variances and the supports of the points distribution for di�erent

value of beta and m in Fig. (12). It appears that only for low m and low �
does equivalence in strategy performance imply a more uniform distribution of

points over the population. We can then identity this region with the \socially

optimal" one.
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Figure 12: Variance (rectangle) and support (straight line) for the scored points

distribution on a population of 30 independent runs with N = 101 and s = 2.

Notice that while in the high � simulations the distributions are similar in width

for anym, when � in reduced the lowm region emerges are the \social optimal".

6 Conclusions and Outlook

Our results show that introducing some degree of randomness in the behavior

of the low-rational agents who play the minority game has a positive e�ect

on performances both in term of allocative and informational e�ciency. The

system indeed attains better resources exploitation and creates smaller, even if

not negligible, arbitrage opportunities. Moreover the \social optimality" of the

system, expressed as the inverse of the variance or analogously of the support,

of the earnings distribution over the population increases with the \inertia" in

the players behavior.

The major e�ect of randomness is that of acting like a brake on the system

dynamics, thus preventing groups of players who densely populate the strategy

space from acting in a strongly correlated way and from producing a \crowd"

e�ect which worsens the system performance. The introduction of randomness

in individual behavior is only one of possible ways to introduce heterogeneity

in players' behavior. For instance, the same e�ect has been obtained in [15]

substituting the \global" evaluation of strategies on the system history H with

a \personal" evaluation in which each agent uses the binary string made up

of its own record of victories. A \diversi�cation" mechanism is again at work

breaking the correlation among agents.

On the same line it is interesting to analyze the e�ect on the game of in-

troducing a reinforcement learning model which, due to the \update only what
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you play" prescription, will introduce a personal history for each player which

presumably will unlock the crowd formation. The adoption of a reinforcement

learning model, moreover, would be justi�ed by it being the "zero-level" model

in terms of degrees of rationality and information required, which renders it par-

ticularly well suited to model a wide array of real interactive situations. In fact,

while more sophisticated models may be more easily violated by human players

(and a growing literature indeed demonstrates that they often are), the "law

of e�ect" underlying reinforcement models is almost never violated by human

subjects. Results obtained by adopting this learning rule should therefore be

considered quite robust. This analysis will be conducted in a forthcoming pub-

lication, together with the exploration of a \linear" model for the assignment of

probability to strategies.

The reason to analyze the system aggregate properties under di�erent \learn-

ing rules" is testing the \robustness" of the model: in fact, the characteristics of

the system that are independent or weakly dependent on the particular behavior

of the individual agents can be considered as general features of a multi-agent

system like the minority game. In particular, our modi�cation of the original

model has been in the direction indicated by the experimental literature on

learning in games [4]. From a more theoretical point of view such a study can

be seen as an e�ort to decouple the peculiar features of a social self-organizing

system from the exact rules governing the individual choices, in the spirit of

trying to identify, at least in �rst approximation, the variables that determine

its universality class.

7 Appendix A

Many authors especially in the experimental literature [4] introduce one more

parameter in the description of learning, connected to the idea that agent weigh

more the information they received in the recent past that the one coming from

the far past. This parameter takes typically the form of a discount factor. If

�i(t) are the points scored by strategy i at time t and 0 < � � 1 the information

discount factor the updating rule for the total strength becomes

qi(t+ 1) = �qi(t) + �i(t) (7)

and the associated updating rule for the probabilities:

pi(t+ 1) = p�
i
(t)

e�qi(t)P
j
p�
j
(t)e�qj(t)

: (8)

The e�ect of introducing such a memory leakage is twofold: on one hand it

puts an upper limit to the maximal strength any strategy could reach, namely

1=(1��), and on the other hand in presence of no information ux the equiprob-

ability between strategies is steadily restored. This e�ect will implies that if one

takes the � ! 0 limit keeping constant the value of �, the system will converge

to a collection of random agents. This can be interpreted saying that agents

have to collect a large amount of information before they start behaving as an

organized collection. The e�ect of introducing \forgetting" in the learning rule is

easily understood: if the agents forget more rapidly than they learn they are al-

ways bounded to a suboptimal behavior. Indeed ,as can be seen from Fig. (13),
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if the value of � is decreased the optimality of the system is proportionally

reduced.

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=1

α=.99999

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=1

α=.99999
α=.9999

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=1

α=.99999
α=.9999
α=.999

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=1

α=.99999
α=.9999
α=.999
α=.99

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=1

α=.99999
α=.9999
α=.999
α=.99
α=.9

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.1
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.1
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.1
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.1
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.1

2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.01
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.01
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.01
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.01
2

3

4

5

6

10 100 1000 10000 100000

σ

log(T)

β=.01

Figure 13: � as a function of run length T for di�erent values of � and �.
The simulations are performed with m = 6 where a greater sensitivity of the

transient time length toward \learning" parameter � and � is expected, see

Sec. (3).
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