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1. Introduction. The aim of this paper is two-fold. First, employing the edge
finite elements introduced by Nédélec [49], we construct a discrete approximation of
the space of harmonic fields

Hµ(Ω) = {v ∈ (L2(Ω))3 | curl v = 0 , div(µv) = 0 , µv · n = 0 on ∂Ω} ,

where Ω is a bounded three-dimensional domain with a Lipschitz boundary, n is the
outward unit normal vector to ∂Ω, and µ is a symmetric matrix, uniformly posi-
tive definite in Ω and with entries in L∞(Ω) (in physical applications, the magnetic
permeability).

In particular, we give a simple and efficient computational way for constructing
the so-called loop fields, i.e., the irrotational vector fields T0 that cannot be expressed
in Ω as the gradient of any single-valued scalar potential (therefore, there exists a
loop in Ω such that the line integral of T0 on it is different from 0). These fields are
of central importance for numerical electromagnetism in general topological domains
(see, e.g., Kotiuga [40], Kettunen et al. [37]; see Bossavit [13], Gross and Kotiuga [31]).
To make precise one of their most important properties, let us first give a definition:
if the only linear combination of a maximal set of loop fields that equals a gradient is
the trivial one, we say that those loop fields are linearly cohomologically independent.
It is known that a maximal set of linearly cohomologically independent loop fields
gives a basis of the first de Rham cohomology group of Ω, namely, the quotient space
between curl-free vector fields and gradients defined in Ω.

Second, we furnish a finite element numerical solution to the magnetostatic prob-
lem, that reads as follows: given a divergence-free current density J, with vanishing
normal flux on all the connected components of ∂Ω, find a magnetic field H that
satisfies

curl H = J , in Ω

div(µH) = 0 , in Ω

µH · n = 0 , on ∂Ω .

(1.1)
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In particular, the vector fields satisfying curl He = J in Ω are often called source
fields in the electromagnetic literature, and are needed for formulating eddy current
problems in terms of a magnetic scalar potential in the insulating region (see, e.g.,
Bossavit [13], Gross and Kotiuga [31], Alonso Rodŕıguez and Valli [3]), or for solving
the magnetostatic problem.

Let us start by describing in more detail the first problem, namely, the approx-
imation of Hµ(Ω). It is well-known that the dimension of this vector space is equal
to the first Betti number of Ω, that we will denote by g (see, e.g., Bossavit [13],
Hiptmair [35], Gross and Kotiuga [31]). The first Betti number is the rank of the
first homology group of Ω, that is, the number of a maximal set of independent non-
bounding cycles in Ω; it is also the dimension of the first de Rham cohomology group
of Ω.

A theoretical way for determining a basis of Hµ(Ω) is well-known (see, e.g., Foias
and Temam [29], Bossavit [12], Amrouche et al. [5]), and is grounded on the fact that
there exist g connected orientable Lipschitz surfaces Σn, with ∂Σn ⊂ ∂Ω, each one
“cutting” a non-bounding cycle in Ω. The construction procedure reads as follows.
First, we can associate a loop field to any cutting surface Σn: having denoted by [ · ]Σn

the jump across the surface Σn, and taking a function ϕ?n that is piecewise-smooth in
Ω\Σn and satisfies [ϕ?n ]Σn

= 1, we set T?
0,n the (L2(Ω))3-extension of gradϕ?n, where

the (distributional) gradient has been computed in Ω \ Σn. It is clear that T?
0,n has

line integral equal to 1 on the non-bounding cycle that has been cut by the surface
Σn; therefore, it is a loop field. It is worth remarking that the function ϕ?n can be a
discrete function (say, a finite element function); as a consequence, T?

0,n can be a finite
element vector field. Second, we set ρn = T?

0,n + gradψn, where ψn ∈ H1(Ω) is the
solution (uniquely determined up to an additive constant) to the classical Neumann
problem ∫

Ω

µ gradψn · gradφ = −
∫

Ω

µT?
0,n · gradφ , ∀ φ ∈ H1(Ω) , (1.2)

having introduced the Sobolev space H1(Ω) = {φ ∈ L2(Ω) | gradφ ∈ (L2(Ω))3}. The
vector functions ρn, n = 1, 2, . . . , g, are a set of basis functions of Hµ(Ω). Moreover,
if the loop field T?

0,n is a finite element, taking a finite element discretization of
(1.2) we can construct a set of discrete fields ρn,h = T?

0,n + gradψn,h, finite element
approximations of the basis functions ρn.

It is now clear that the crucial point in the construction or in the approximation
of the space of harmonic fields Hµ(Ω) is the knowledge of a maximal set of linearly
cohomologically independent loop fields, and to this aim it is enough to determine the
“cutting” surfaces Σn. There is an extensive literature concerning their construction
(see Kotiuga [40], [41], [42], Harrold and Simkin [32], Leonard et al. [44], Ren [54],
Simkin et al. [59], Dular [27]). However, in general topological situations (for instance,
in the case of domains that are the complement of “knotted” domains) and for real-
sized finite element meshes this construction is not feasible, as it can be quite expensive
from the computational point of view (see Bossavit [13], D lotko et al. [26]).

Therefore, it is interesting to propose, as we do in this paper taking inspiration
from Ghiloni [30], an alternative procedure for the determination of a maximal set
of linearly cohomologically independent discrete loop fields. Our method avoids the
use of “cutting” surfaces and instead is based on the explicit knowledge of a maximal
set of independent non-bounding cycles on ∂Ω; in other words, we only require the
construction of a basis of the first homology group of ∂Ω. We use a spanning tree
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(similar but different techniques, based on the so-called belted tree, have been pro-
posed by several authors, but they do not work for all topological situations: see Ren
and Razek [55], Kettunen et al. [38], Bossavit [13], Rapetti et al. [53], Henrotte and
Hameyer [34], D lotko et al. [26]). Another fundamental tool is the direct algorithm
of Webb and Forghani [62]: however, since it is known to fail in certain topological
situations (see D lotko and Specogna [21]), we modify it in a suitable way, in order to
be able to construct the finite element loop fields for every domain Ω. A basic point
here is the fact that we provide an explicit formula for expressing the discrete loop
fields in terms of linking numbers.

Before concluding this survey, we want to recall that two other recent approaches
have been proposed for computing cohomology generators, one based on algebraic
techniques (D lotko and Specogna [22]) and one more similar to our (D lotko and
Specogna [25]); the first one is proved to work for any topological situation, while
the second one, though not completely general, is shown to be computationally more
efficient than the former.

Going back to the second topic, namely, focusing on problem (1.1), it is readily
seen that it is not well-posed, as uniqueness fails (just add a harmonic field to a
solution H). The complete problem reads: given J ∈ (L2(Ω))3 with div J = 0 in Ω
and

∫
(∂Ω)r

J · n = 0 for r = 0, 1, . . . , p, where (∂Ω)r are the connected components of

∂Ω, find the magnetic field H such that

curl H = J , in Ω

div(µH) = 0 , in Ω

µH · n = 0 , on ∂Ω

∫Ω µH · η = 0 , ∀η ∈ Hµ(Ω) .

(1.3)

This problem has a solution (see, e.g., Saranen [57]), and uniqueness now is straight-
forward.

Let us also note that the complete curl-div problem, with a non-vanishing datum
in the second and in the third equation, can be solved by adding to the solution
H of problem (1.3) the gradient of the solution of a standard Neumann problem.
Therefore, when considering the complete curl-div system, the solution of problem
(1.3) is anyhow the most important step.

Let us devise a suitable variational formulation of problem (1.3). Using the no-
tation H0(curl; Ω) = {z ∈ (L2(Ω))3 | curl z = 0}, it is well-known that any vector
function z ∈ H0(curl; Ω) can be written as

z = gradφ+ η , (1.4)

where φ ∈ H1(Ω), η ∈ Hµ(Ω) and therefore
∫

Ω
µ gradφ · η = 0 (see, e.g., Alonso

Rodŕıguez and Valli [3]). It is readily verified that an equivalent formulation of prob-
lem (1.3) is: find H ∈ (L2(Ω))3 such that

curl H = J , in Ω (1.5a)

∫Ω µH · z = 0 , ∀ z ∈ H0(curl; Ω) . (1.5b)

In fact, taking in (1.5b) the test function z = gradφ, with φ ∈ H1(Ω), and integrating
by parts we have 0 =

∫
Ω
µH ·gradφ = −

∫
Ω

div(µH)φ+
∫
∂Ω
µH ·nφ. When φ|∂Ω = 0
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it follows div(µH) = 0 in Ω; hence we also have
∫
∂Ω
µH ·nφ = 0 for each φ ∈ H1(Ω),

yielding µH · n = 0 on ∂Ω.

Though formulation (1.5) looks quite simple, to our knowledge it has not been
used as the starting point for devising an efficient numerical approximation algorithm
for magnetostatics. This is what we propose in this paper.

With respect to this issue, let us start with a general overview. The finite element
numerical approximation of the magnetostatic problem (1.3) has been considered since
a long time, though very often in simple topological situation, as it is probably the
“most frequently encountered field problem in electrical engineering design” (see Chari
et al. [17]). We cannot present here an exhaustive description of the various methods
employed; however, we want to mention some of the most important, in order to show
the advantage of the finite element method based on (1.5).

A formulation in terms of a vector potential A such that curl A = µH is quite
classical, and has been analyzed by Coulomb [18], Barton and Cendes [8], Preis et
al. [52] (see also the new point of view involving mimetic finite differences presented
in Brezzi and Buffa [14], Lipnikov et al. [45]): since the unknown is a vector field, the
computational cost is higher than that needed to solve problem (1.5), that, as we will
see in (2.1)–(2.2), is essentially a scalar problem. The same remark holds for the least
squares approach of Chang and Gunzburger [16] and the even more expensive mixed
methods of Kikuchi [39], Perugia [51], and Alotto and Perugia [4].

The co-volume method proposed by Nicolaides and Wu [50] is based on a system
of two orthogonal grids like the classical Voronoi–Delaunay mesh pair, and for this
reason this approach is not completely general, as some restrictions on the primal
mesh and on the topological properties of the computational domain are needed.

Finally, the methods based on a magnetic scalar “potential” (the so-called reduced
scalar potential) require the preliminary determination of a source field He. Doing
this by means of the Biot–Savart formula is not cheap from the computational point
of view, and sometimes it induces cancellation errors (see Simkin and Trowbridge [60],
Mayergoyz et al. [46], where it was proposed how to avoid this drawback by introducing
an additional scalar potential; a complete analysis of this more complex formulation is
in Bermudez et al. [10]). Let us also recall that a detailed presentation of the reasons
behind these cancellation errors is given in Balac and Caloz [7].

We follow a different point of view. We start noting that a finite element approx-
imation of (1.5) is standard provided that: (i) we know a discrete source field He,h

satisfying curl He,h = Jh, where Jh is a finite element approximation of the current
density J; (ii) a suitable finite dimensional subspace of H0(curl; Ω) is available.

With respect to the latter point (ii), we mimic the decomposition (1.4), and we
consider the discrete functions zh = gradφh +

∑g
n=1 ξnT0,n, where T0,n are suitable

finite element loop fields. Note that in this way we have lost the orthogonality relation∫
Ω
µ gradφ · η = 0, that was true for the decomposition in (1.4), but this is not

essential for our arguments. We prove that the error between the exact and the
discrete solutions is bounded by the approximation error, uniformly with respect to
the mesh size.

We are finally left with point (i), namely, the determination of the discrete source
fields. This problem has been widely considered, mainly for simple topological do-
mains (see, e.g., Webb and Forghani [62], Preis et al. [52], Dular et al. [28], Le
Ménach et al. [43], Rapetti et al. [53], Dular [27], Badics and Cendes [6], D lotko
and Specogna [21]). We show that a discrete source field can be determined by adopt-
ing a similar procedure to that employed for the construction of the finite element
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loop fields: again, the main point is the use of the Webb–Forghani algorithm, followed
by the introduction of a graph for the edges whose degree of freedom has not been
yet determined when the algorithm stops and by a simple algebraic direct solver (for
a similar approach, see also D lotko and Specogna [24]).

Remark 1. Let us note that we could also consider harmonic fields satisfying
different boundary conditions, for instance µH · n = 0 on Γ1 and H × n = 0 on Γ2,
where Γ1 ∪Γ2 = ∂Ω and Γ1 ∩Γ2 = ∅. Similarly, in the magnetostatic problem this set
of boundary conditions could replace µH · n = 0 on ∂Ω. The results we present here
can be easily adapted to these situations.

This paper is organized as follows. In Section 2 we introduce and analyze the finite
element approximation of the magnetostatic problem (1.5). Section 3 is devoted to the
description of some algebraic topology concepts and to the analysis of the fundamental
discrete problem, that is the main tool for the construction of source fields and loop
fields performed in Section 4. An explicit formula for describing the loop fields in terms
of linking numbers is presented in Section 5. Section 6 contains the construction of
the bases of the first homology groups of Ω and R3 \Ω, whose knowledge is needed for
defining the fundamental discrete problem and for obtaining the explicit expression of
the loop fields. Finally, in Section 7 we present some numerical results that illustrate
the performances of the devised algorithms.

2. Finite element approximation. Let Ω be a bounded Lipschitz polyhedral
domain equipped with a tetrahedral triangulation Th = (V,E, F, T ) of Ω. V is the set
of vertices, E the set of edges, F the set of faces and T the set of tetrahedra in Th.

We consider the following spaces of finite elements:
- The space Lh of continuous piecewise linear finite elements. Its dimension is
nv, the number of vertices in Th.

- The space Nh of Nédélec edge elements of degree 1. Its dimension is ne, the
number of edges in Th.

- The space RTh of Raviart–Thomas finite elements of degree 1. Its dimension
is nf , the number of faces in Th.

It is well-known that Lh ⊂ H1(Ω), Nh ⊂ H(curl; Ω) and RTh ⊂ H(div; Ω), where

H(curl; Ω) = {v ∈ (L2(Ω))3 | curl v ∈ (L2(Ω))3} ,
H(div; Ω) = {v ∈ (L2(Ω))3 | div v ∈ L2(Ω)} .

Moreover gradLh ⊂ Nh and curlNh ⊂ RTh (see, e.g., Monk [47]).
For determining suitable basis functions of these spaces, let us fix a total ordering

v1, . . . , vnv
of the elements of V . This induces an orientation on the elements of E

and F . If the end points of the edge e are vi and vj , with 1 ≤ i < j ≤ nv, the oriented
edge denoted by [v−e , v

+
e ] is such that v−e = vi and v+

e = vj . If the vertices of the face
f are vi, vj and vk with 1 ≤ i < j < k ≤ nv, the oriented face denoted by [v′, v′′, v′′′]
is such that v′ = vi, v

′′ = vj and v′′′ = vk. The unit tangent vector of oriented edge
e is given by τ = (v+

e − v−e )/|v+
e − v−e |, and the unit normal vector ν of the oriented

face f is obtained by the right hand rule.
We choose a basis {Φh,1, . . . ,Φh,nv

} of Lh, a basis {wh,1, . . .wh,ne
} of Nh, and a

basis {rh,1, . . . rh,nf
} of RTh, such that Φh,i(vj) = δi,j for 1 ≤ i, j ≤ nv, ∫ej wh,i · τ =

δi,j for 1 ≤ i, j ≤ ne, ∫fj rh,i · ν = δi,j for 1 ≤ i, j ≤ nf .
The finite element approximation of (1.5) reads as follows. Denoting as before

the connected components of ∂Ω by (∂Ω)r, r = 0, 1, . . . , p, and given Jh ∈ RTh, a
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suitable approximation of J, with div Jh = 0 and
∫

(∂Ω)r
Jh ·n = 0, find Hh ∈ Nh such

that

curl Hh = Jh , in Ω

∫Ω µHh · zh = 0 , ∀ zh ∈ Nh ∩H0(curl; Ω) .
(2.1)

Assuming that a function He,h ∈ Nh such that curl He,h = Jh is known, this problem
can be easily rewritten as follows: find Kh ∈ Nh ∩H0(curl; Ω) such that∫

Ω

µKh · zh = −
∫

Ω

µHe,h · zh , ∀ zh ∈ Nh ∩H0(curl; Ω) ,

and define Hh = Kh + He,h.
In the next section we present a general strategy for the computation of a suitable

source field He,h and a basis of Nh ∩H0(curl; Ω). The latter is based on the knowl-
edge of a maximal set of linearly cohomologically independent discrete loop fields:
if they are denoted by T0,j , j = 1, 2, . . . , g, a basis of Nh ∩ H0(curl; Ω) is given by
{grad Φh,1, . . . , grad Φh,nv−1} ∪ {T0,1, . . . ,T0,g} (see Theorem 3). Thus, the solution
of problem (2.1) is then determined by setting

Hh =

nv−1∑
i=1

βi grad Φh,i +

g∑
j=1

ηjT0,j + He,h ,

where from (2.1) the scalars βi ∈ R, i = 1, 2, . . . , nv − 1, and ηj ∈ R, j = 1, 2, . . . , g,
must satisfy:∑nv−1

i=1 βi
∫

Ω
µ grad Φh,i · grad Φh,l +

∑g
j=1 ηj

∫
Ω
µT0,j · grad Φh,l

= −
∫

Ω
µHe,h · grad Φh,l, ∀ l = 1, 2, . . . , nv − 1∑nv−1

i=1 βi
∫

Ω
µ grad Φh,i ·T0,n +

∑g
j=1 ηj

∫
Ω
µT0,j ·T0,n,

= −
∫

Ω
µHe,h ·T0,n ∀n = 1, 2, . . . , g .

(2.2)

The solution of problem (2.2) is quite standard and computationally cheap once the
source field He,h and the loop fields T0,j are available. Therefore in the following
sections we will focus only on these two issues.

From the theoretical point of view, it is straightforward to furnish an error esti-
mate. Let us denote by ΠRTh and ΠNh the interpolation operators defined for smooth
functions and valued in RTh and Nh, respectively.

Theorem 1. Assume that J and the solution H of problem (1.5) are smooth.
Then the solution Hh of problem (2.1) with Jh = ΠRThJ satisfies the following error
estimate

‖H−Hh‖0 + ‖curl H− curl Hh‖0 ≤ C‖H−ΠNhH‖0 + ‖J−ΠRThJ‖0 . (2.3)

where ‖ · ‖0 denotes the norm in (L2(Ω))3.
Proof. We notice that

∫
Ω
µ(H−Hh) · zh = 0 for all zh ∈ Nh ∩H0(curl; Ω), hence

‖H−Hh‖20 ≤ C1

∫
Ω

µ(H−Hh) · (H−Hh) = C1

∫
Ω

µ(H−Hh) · (H− vh) ,
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for each vh ∈ Vh(Jh) := {vh ∈ Nh | curl vh = Jh}. Thus we have the optimal error
estimate

‖H−Hh‖0 ≤ C inf
vh∈Vh(Jh)

‖H− vh‖0 .

Since J and H are smooth, the interpolants ΠRThJ and ΠNhH are well defined;
therefore from Jh = ΠRThJ it clearly follows ΠNhH ∈ Vh(Jh), as curl(ΠNhH) =
ΠRTh(curl H). In this case we conclude with (2.3), as curl H = J and curl Hh = Jh =
ΠRThJ.

We recall that the interpolants of J and H are well-defined if, for instance, J and
H belong to (H1/2+δ(Ω))3 with δ > 0.

3. The fundamental discrete problem. In the recent years many works
investigate the use of algebraic topology techniques in computational electromag-
netism, exploiting the geometrical nature of Maxwell equations (see, e.g., Bossavit
[13], Tarhasaari and Kettunen [61], Hiptmair [35], Gross and Kotiuga [31], D lotko
and Specogna [23]).

In the following we introduce some notions of homology theory and graph theory.
We consider a mesh Th = (V,E, F, T ) of Ω, having assigned the orientation to the
edges and faces as explained before. The basic concept is that of chain: a 2-chain is
a formal linear combination of oriented faces, a 1-chain a formal linear combination
of oriented edges and a 0-chain a formal linear combination of vertices, in all cases
taking the coefficients in Z. We denote by Ck(Th,Z) the abelian group of all the
k-chains in Th, k = 0, 1, 2.

Now we can define the boundary operator ∂k : Ck(Th,Z) → Ck−1(Th,Z) for
k = 1, 2. For the oriented face f = [vi, vj , vk] we have ∂2f := [vi, vj ] + [vj , vk] −
[vi, vk], where [vr, vs] denotes the oriented edge from the vertex vr to the vertex vs.
Analogously for the oriented edge e = [vi, vj ] we have ∂1e := vj − vi. We extend the
definition of the boundary operator to chains by linearity.

We also introduce some other notations that will be useful in the description of
our algorithms. The orientation map of (e) = ±1 takes value 1 if the edge e appears
with positive sign in ∂2f , and takes value −1 if the edge e appears with negative sign in
∂2f . The symbol E{f} denotes the set of the oriented edges of the face f ; the symbol
F{e} denotes the set of the oriented faces f such that e ⊂ f ; V {e} denotes the set of
the vertices of the edge e. Having this in mind, we can write ∂2f =

∑
e∈E{f} of (e)e.

A 1-chain c of Th is a 1-cycle if ∂1c = 0, and is a 1-boundary if there exists a
2-chain C such that ∂2C = c. Notice that all 1-boundaries are 1-cycles but, in general,
not all 1-cycles are 1-boundaries.

Let us denote by Z1(Th,Z) the set of 1-cycles, Z1(Th,Z) := Ker(∂1), andB1(Th,Z)
the set of 1-boundaries, B1(Th,Z) := Im(∂2). Two 1-cycles c and c′ are called ho-
mologous in Th if c− c′ is a 1-boundary in Th. If c is homologous to the zero 1-cycle
(namely, it is a 1-boundary), then we say that c bounds in Th.

The first homology group of Th consists of all homology classes of 1-cycles of Th,
that is, it is the quotient group

H1(Th,Z) = Z1(Th,Z)/B1(Th,Z) .

It is well-known that, up to isomorphisms, H1(Th,Z) depends only on Ω and not on
Th. For this reason, we can refer to H1(Th,Z) as the first homology group of Ω, and
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we can write H1(Ω,Z) instead of H1(Th,Z). This group is an abelian group of rank
g, the first Betti number of Ω (see Munkres [48, p. 24]). More precisely, it is a free
abelian group isomorphic to Zg (see Gross and Kotiuga [31, Sect. 3D], and Benedetti
et al. [9, Lemma 5.4]). It is worth remarking that H1(Ω,Z) is also isomorphic to the
(singular) homology group H1(Ω,Z) of Ω (see Munkres [48, Chap. 4] for the definition
of the latter group).

The elements of H1(Th,Z) are integer combinations of the homology classes of
g cycles, denoted with {σn}gn=1, that are representatives of a basis of the homology
group H1(Th,Z). Thus, any cycle η ∈ Z1(Th,Z) can be written as η = β+

∑g
n=1 αnσn

with αn ∈ Z and β ∈ B1(Th,Z).
Given the tetrahedral triangulation Th = (V,E, F, T ) of Ω, let {σn}gn=1 be a set

of 1-cycles that are representatives of a basis of the homology group H1(Ω,Z). Let
us also consider a spanning tree Sh = (V,L) of the (connected) graph (V,E): it is a
maximal subgraph of (V,E) (maximal because it visits all the vertices) without loops
(this means that it is a tree).

We focus now on the main problem of our approach, namely: find Zh ∈ Nh such
that

curl Zh = Jh , in Ω , (3.1a)∮
σn

Zh · ds = κn , ∀n = 1, 2, . . . , g (3.1b)

∫e Zh · τ = 0 , ∀ e ∈ L , (3.1c)

where κ1, . . . , κg are real numbers.
The formulation of this problem uses a tree–cotree decomposition, similar to

what has been previously done by many authors (see, for instance, Albanese and Ru-
binacci [1], Kettunen et al. [38], Bossavit [13], Henrotte and Hameyer [34], Henneron
et al. [33]).

Theorem 2. Assume that Jh ∈ RTh, div Jh = 0 and
∫

(∂Ω)r
Jh · n = 0 for any

connected component (∂Ω)r of ∂Ω, r = 0, 1, . . . , p. Then problem (3.1) has a solution
and this solution is unique.

Proof. If Zh and Z̃h are two different solutions of (3.1), then Zh − Z̃h ∈ Nh,
curl(Zh − Z̃h) = 0 and

∮
σn

(Zh − Z̃h) · ds = 0 for all n = 1, 2, . . . , g. From the de

Rham theorem for Whitney forms (see Hiptmair [35]) there exists ψh ∈ Lh such that
Zh − Z̃h = gradψh. Since the degrees of freedom of gradψh are equal to 0 for each
edge of the spanning tree Sh, we can conclude that ψh is constant: in fact if the edge e
belongs to Sh we have 0 =

∫
e

gradψh · ds = ψh(v+
e )−ψh(v−e ), then ψh(v+

e ) = ψh(v−e ),
and ψh is constant because Sh is a spanning tree.

Concerning the existence of a solution, the assumptions on Jh assure that there
exists H? ∈ (L2(Ω))3 such that curl H? = Jh, div H? = 0 and H? · n = 0 in ∂Ω (see,
e.g., Saranen [57]). Since Ω is a Lipschitz bounded polyhedral domain there exists
sΩ ∈ (1/2, 1) such that H(curl; Ω) ∩ H0(div; Ω) ⊂ (HsΩ(Ω))3 (see, e.g., Alonso and
Valli [2]). Hence H? ∈ (HsΩ(Ω))3 and curl H? = Jh ∈ (Lp(Ω))3 for some p > 2,
thus the Nédélec interpolant of H?, ΠNhH?, is well defined (see Amrouche et al. [5],
Monk [47, Lemma 5.38]).

Now we want to prove the existence of Wh ∈ Nh ∩H0(curl; Ω) such that∮
σn

Wh · ds = κn −
∮
σn

ΠNhH? · ds , ∀n = 1, 2, . . . , g

∫e Wh · τ = −∫e ΠNhH? · τ , ∀ e ∈ L .
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This is a linear system of g + nv − 1 equations. It is well-known that the dimension
of Nh ∩ H0(curl; Ω) is g + nv − 1 (see, e.g., Hiptmair [35]), hence existence follows
from uniqueness, that has been already proved. Finally, setting Zh = Wh + ΠNhH?

we have found a solution to (3.1).

Clearly, a field He,h such that curl He,h = Jh, namely, a discrete source field, can
be computed solving (3.1), having chosen the constants κn in any arbitrary way.

On the other hand, as shown in the following theorem, a maximal set of linearly
cohomologically independent finite element loop fields T0,j , j = 1, 2, . . . , g, can be
determined by solving (3.1) with Jh = 0 and κn = Mn,j , for any choice of a non-
singular matrix M with entries Mn,j . In particular, a basis of Nh ∩H0(curl; Ω) can
be computed starting from {Φh,1, . . . ,Φh,nv

}, a basis of Lh.

Theorem 3. Let T0,j, j = 1, 2, . . . , g, be the solutions to problem (3.1) with
Jh = 0 and κn = Mn,j, where the matrix M = (Mn,j) is non-singular. Then they
are linearly cohomogically independent and the set

{grad Φh,1, . . . , grad Φh,nv−1} ∪ {T0,1, . . . ,T0,g}

is a basis of Nh ∩H0(curl; Ω).
Proof. Since the dimension of Nh∩H0(curl; Ω) is equal to g+nv−1, it is enough

to prove linear independence. If we have
∑nv−1
i=1 pi grad Φh,i +

∑g
j=1 qjT0,j = 0, it

follows for all n = 1, 2, . . . , g

0 =

nv−1∑
i=1

pi

∮
σn

grad Φh,i · ds +

g∑
j=1

qj

∮
σn

T0,j · ds =

g∑
j=1

qjMn,j ,

hence, since M is non-singular, qj = 0 for each j = 1, 2, . . . , g. We thus have∑nv−1
i=1 pi grad Φh,i = 0, so that

∑nv−1
i=1 piΦh,i = const; the conclusion follows from

the fact that Φh,i(vnv ) = 0 for each i = 1, 2, . . . , nv − 1.
The proof that the loop fields T0,j are linearly cohomologically independent fol-

lows the same argument.

4. The construction of source fields and loop fields. In this section we
introduce an algorithm for solving problem (3.1). Since we are looking for a solution
Zh ∈ Nh of (3.1), we need to compute its degrees of freedom

q(e) =

∫
e

Zh · τ , ∀e ∈ E.

The first step is very simple: we just assign the value 0 to the degrees of freedom
associated to any edge e ∈ L (namely, belonging to the spanning tree), solving in this
way (3.1c).

After that, the standard technique for taking into account (3.1b), namely, the
homological equations, is based on the use of a belted tree instead of a spanning tree.
Before continuing, we warn the reader that we do not follow this approach in this
paper, since we prefer to follow a cheaper procedure that avoids the construction of a
belted tree; however, for the sake of completeness, we present here the main features
of this technique.

The notion of belted tree has been proposed by Ren and Razek [55] (see also
Kettunen et al. [38], Bossavit [13], Rapetti et al. [53], D lotko et al. [26]). A belted
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tree Bh = (V,L ∪ E?) is a graph consisting in a spanning tree Sh = (V,L) with g
additional edges E? = {e?1, e?2, . . . , e?g}. (Note that, since any graph obtained from a
spanning tree adding an edge contains a 1-cycle, the belted tree is no longer a tree.)
These additional edges should have the following property: each one closes a non-
bounding 1-cycle σn, and the set {σn}gn=1 represents a basis of H1(Ω,Z). It is clear
that, using these 1-cycles σn in (3.1b), this problem takes a simple form, as the degree
of freedom corresponding to the edge e?n is equal to κn, being ∫e?n Zh ·τ =

∮
σn

Zh · ds.
Let us note, however, that in three-dimensions the construction of a belted

tree is not straightforward (see Rapetti et al. [53], D lotko et al. [26], D lotko and
Specogna [21]).

Even if a belted tree inside Ω is not used, the homological equations (3.1b) can be
simplified. In fact, in Section 6 we construct a spanning tree S∂h = (V ′, L′) and then a
belted tree B∂h = (V ′, L′∪{ε?1, . . . , ε?2g}) of the mesh induced on ∂Ω (since this is a two-
dimensional problem, this construction is much easier than the analogous construction
inside a three-dimensional domain). Let us denote by {γl}2gl=1 the 1-cycles in B∂h; they
represent a basis of H1(∂Ω,Z). Then we extend S∂h to a spanning tree of the whole

mesh. The 1-cycles σn can be expressed in terms of γl as σn =
∑2g
j=1An,lγl, where

An,l ∈ Z. Hence, taking into account (3.1c),

∮
σn

Zh · ds =

2g∑
l=1

An,l

∮
γl

Zh · ds =

2g∑
l=1

An,l

∫
ε?l

Zh · τ =

2g∑
l=1

An,lq(ε
?
l ) ,

and thus (3.1b) is reduced to this system of g equations with 2g unknowns:

2g∑
l=1

An,lq(ε
?
l ) = κn , ∀n = 1, 2, . . . , g . (4.1)

Let us come now to equations (3.1a). Since the degrees of freedom of a function
vh ∈ RTh are the face fluxes

∫
f

vh · ν for f ∈ F , relations (3.1a) are in fact a linear

system with nf (number of faces in Th) equations and ne (number of edges in Th)
unknowns. For each face f ∈ F we have∫

f

Jh · ν =

∫
f

curl Zh · ν =

∮
∂2f

Zh · ds =
∑

e∈E{f}

of (e)q(e) .

Thus, each row in the linear system (3.1a) has exactly three non-zero entries.
System (3.1) can be finally rewritten as∑

e∈E{f} of (e)q(e) = ∫f Jh · ν , ∀ f ∈ F , (4.2a)∑2g
l=1An,lq(ε

?
l ) = κn , ∀n = 1, 2, . . . , g (4.2b)

q(e) = 0 , ∀ e ∈ L . (4.2c)

Webb and Forghani [62] have proposed a simple algorithm to solve this system.
Here we rewrite their algorithm splitting it in two parts, initialization and advancing.
In the initialization step we construct the sets Fk, k = 0, 1, 2, 3, given by the faces
having exactly k edges in K (the set of edges whose degree of freedom has been
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computed using (3.1c) and, possibly, (3.1b)). On the other hand, advancing is quite
natural. At any step, let us denote by D the set of edges whose value has been already
computed; if there are faces with two edges in D, one computes from (4.2a) the degree
of freedom corresponding to the third edge of such a face.

We can describe the inizialization step in the following way (|E{f} ∩A| denotes
the number of edges belonging to the face f and to a certain set A).

Procedure WebbForghaniInit

1 F0 ← ∅; F1 ← ∅; F2 ← ∅; F3 ← ∅; D ← K;
2 forall the f ∈ F do k ← |E{f} ∩K|; Fk ← Fk ∪ {f};

Concerning the advancing step, we first need the description of the procedure
that assigns to the edge e the computed degree of freedom v, and that updates the
sets Fk and D.

Procedure WebbForghaniSetEdge(e, v)

1 forall the f ∈ F{e} do k ← |E{f} ∩D|; Fk ← Fk \ {f}; Fk+1 ← Fk+1 ∪ {f};
2 q(e)← v; D ← D ∪ {e}; // assign value v to the edge e

Using this procedure, the advancing step reads

Procedure WebbForghaniAdvance

1 while F2 6= ∅ do
2 Let f ∈ F2 and t← ∫f Jh · ν;
3 forall the e ∈ E{f} ∩D do t← t− of (e)q(e);
4 e← E{f} \D; // the unassigned edge

5 WebbForghaniSetEdge(e, of (e)t);

6 end while

In conclusion, the algorithm proposed by Webb and Forghani [62] is a simple call
of WebbForghaniInit followed by WebbForghaniAdvance.

Algorithm 1: Advancing procedure of Webb–Forghani

1 WebbForghaniInit;
2 WebbForghaniAdvance;

In the original algorithm of Webb and Forghani [62] the initialization step uses
K = L, the set of edges of Sh, namely, it takes information only from (3.1c). If a
belted tree is available, it is possible to start with K = L∪E?, thus using both (3.1c)
and (3.1b).

The algorithm stops when F2 = ∅ and it is successful if D = E (or, equivalently,
F0 = F1 = ∅, besides F2 = ∅). Two questions are in order. Does the algorithm start?
Does the algorithm terminate with D = E?

If the spanning tree Sh is constructed in a suitable way, for instance a breadth-
first spanning tree, there exist faces in F with exactly two sides in L: therefore, in
these cases, since L ⊂ K, the algorithm does start.

A careful analysis of the termination properties of this algorithm can be found in
D lotko and Specogna [21], where it is referred to as GSTT (generalized spanning tree
technique) if the initialization set is K = L ∪ E?, or STT (spanning tree technique),
if the initialization set is K = L. Clearly, if the domain Ω has a simple topological
shape (namely, g = 0) the two algorithms coincide.
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In [21] it is shown that the termination properties of GSTT and STT are strongly
dependent on the choice of the spanning tree; for instance, with a depth-first spanning
tree these algorithms can fail even if the domain Ω has a simple topological shape, and
no choice of the spanning tree is known that allows the termination of the algorithms
if the domain Ω is the complement of a trefoil knot.

Therefore, in a general topological situation it is not possible to say that these
algorithms are able to determine all the degrees of freedom, and it is necessary to
provide a strategy for the computation of the remaining unknowns.

To this aim, in the case of a domain of simple topological shape D lotko and
Specogna [24] proposed ESTT (extended spanning tree technique), based on symbolic
computations.

The algorithm that we propose is valid for any topological situation and reads
as follows: first, we assign the value 0 on all the edges of the spanning tree; then,
without introducing a belted tree, we apply Algorithm 1 with the initial set K = L
(namely, STT). This procedure can stop without having determined all the degrees of
freedom: in this case, we check if the homological equations (3.1b) permit to compute
one or more unknowns, and we recall the Procedure WebbForghaniAdvance. When
the homological equations are no longer able to give additional information, we adopt
a residual graph approach, that has some similarities with ESTT and indeed shows
to be very efficient.

Let us describe the procedure: we are left with some faces where only one degree
of freedom has been determined (say, 1-faces in the set F1), and some faces where no
degree of freedom has been determined (say, 0-faces in the set F0). We construct a
graph based on the fact that a 1-face naturally connects its two non-assigned edges:
in other words, in this graph the nodes are the non-assigned edges and the arcs are
the 1-faces.

In general, this residual graph, that will be denoted by GR, is not connected. We
construct a spanning tree on each connected component GRs , s = 1, 2, . . . , S, namely, a
spanning forest, and we choose a root for each spanning tree. This process is resumed
in Algorithm 2.

Algorithm 2: Build a spanning forest of the residual graph

1 Set s← 0 and build the graph GR = (E \D,F1) whose “vertices” are the unassigned
edges and “edges” are the 1-faces which connect two unassigned edges;

2 forall the f ∈ F0 do
3 forall the e ∈ E{f} not reachable for all T R

k with k = 1, 2, . . . , s do
4 Set s← s+ 1 and build T R

s = (Es, Fs), the spanning tree in GRs with root e;
5 end forall

6 end forall

Each degree of freedom of a fixed connected component can be expressed in an
affine way with respect to the degree of freedom of the corresponding root, i.e., if
q(e) is the degree of freedom of the edge e, then q(e) = aeq(er) + be, where er is
the root of the spanning tree of that connected component. The computation of the
affine coefficients ae and be is very fast and is described in function propagateValue(e).
There, we use the functions predNode(e) and predEdge(e), which for each node on
the tree return the corresponding parent node and the corresponding parent edge,
respectively (remember that a node of the residual graph corresponds to an edge of
the mesh, while an edge of the residual graph corresponds to a face of the mesh).
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Function propagateValue(e)

1 Let T R
s = (Es, Fs) the tree such that e ∈ Es; a← 1; b← 0;

2 while e is not the root of T R
s do

3 e′ ← predNode(e); f ′ ← predEdge(e); e′′ ← E{f ′} ∩D;
4 a← −of ′(e) of ′(e′) a; b← of ′(e)(∫f ′ Jh · ν − of ′(e′′)q(e′′)− of ′(e′)b);
5 e← e′;

6 end while
7 return [a, b, s];

The equations associated to the 0-faces are affine equations in terms of no more
than three roots, and read as follows

∫
f

Jh · ν =
∑

e∈E{f}

of (e)q(e) =
∑

e∈E{f}

of (e)(aeq(er) + be) .

The construction of the linear system associated to the 0-faces is quite easy us-
ing propagateValue(e) and is described in Algorithm 3.

Algorithm 3: Construction of the linear system associated to the 0-faces

1 Q← 0; c← 0; i← 0;
2 forall the f ∈ F0 do
3 i← i+ 1; ci ← ∫f Jh · ν;
4 forall the e ∈ E{f} do
5 [a, b, s]←propagateValue(e); ci ← ci − b of (e); Qis ← a of (e);
6 end forall

7 end forall

Clearly, also the homological equations (4.2b) can be expressed in terms of the
unknowns corresponding to the roots. Doing this, the linear system associated to the
homological equations (4.2b) is built as described in Algorithm 4.

Algorithm 4: Construction of the final linear system

1 Build the linear system with Algorithm 3;
2 i← |F0|; // the number of equations already inserted

3 for n = 1, 2, . . . , g do
4 i← i+ 1; ci ← κn;
5 for j = 1, 2, . . . , 2g do
6 [a, b, s]←propagateValue(ε?j ); ci ← ci − bAn,j ; Qis ← aAn,j ;
7 end for

8 end for

In conclusion, we have thus reduced the problem to the solution of a small and
sparse linear system with as many unknowns as the number of connected components
of the residual graph (and as many equations as the number of 0-faces plus g).

The solution algorithm is described in Algorithm 5.



14 A. Alonso Rodŕıguez, E. Bertolazzi, R. Ghiloni, A. Valli

Algorithm 5: Extended Webb–Forghani

1 WebbForghaniInit;
2 WebbForghaniAdvance;
3 while D 6= E and q(e) for some e 6∈ D can be deduced using (4.2b) do
4 WebbForghaniSetEdge(e, q(e));
5 WebbForghaniAdvance;

6 end while
7 if D 6= E then
8 Build the residual graph and the spanning forest with Algorithm 2, build

the reduced linear system with Algorithms 3 and 4, solve the reduced
linear system using a direct method;

9 end if

Note that, in the numerical experiments reported in Section 7, if the domain Ω
is the complement of a non-knotted domain Algorithm 5 terminates at line 6. In the
remaining examples, the number of the unknowns of the reduced system is extremely
small (see Table 7.2).

Lines 3–6 in Algorithm 5 are an optimization strategy that is convenient to employ
because in many cases avoids the construction of the residual graph.

Remark 2. Let us add a comment about the way of verifying if one can compute
a degree of freedom q(e) from (4.2b) as requested at line 3 in the algorithm above.

The simplest strategy is to check if (4.2b) (that eventually has been reduced by
the elimination of some degrees of freedom due to the advancing of Webb–Forghani
algorithm) has a row with only one unknown left.

Another possibility is to verify this situation after having applied Gauss–Jordan
elimination. However, this depends on the choice of the pivoting. In order to be sure
that a degree of freedom can be computed, one should check all the possible row and
column permutations, but, since this procedure is too costly, our recipe is simply to
use a single shoot of Gauss–Jordan elimination.

5. An explicit formula for the loop fields. When one is interested in the
computation of the loop fields, namely, Jh = 0 in (3.1a), a different procedure can be
employed. In fact, when Jh = 0 each degree of freedom of the solution to (3.1) can
be expressed by an explicit formula in terms of linking numbers.

The computation of a linking number can be done efficiently by means of an exact
and explicit formula written in terms of simple double integrals (see Bertolazzi and
Ghiloni [11]); however, for a fine mesh the number of edges is quite large, hence this
formula turns out to be too expensive if used for all the edges in E \L. The recipe we
adopt is the following: in Algorithm 5 replace line 8 by the computation of the value
of one single unknown using this explicit formula (see Algorithm 6). In the numerical
experiments presented in Section 7 we show that the use of the explicit formula is
necessary very few times.

We recall that the linking number is an integer that, given two closed and disjoint
curves in the three-dimensional space, represents the number of times that each curve
winds around the other (see, e.g., Rolfsen [56, pp. 132–136]). We use this concept
in a slightly different case, that is natural in the homological framework (see Seifert
and Threlfall [58, Sects. 70, 73, 77]). We consider a 1-cycle γ in R3 of the form
γ =

∑ne

i=1 αi[v
−
ei , v

+
ei ], where αi ∈ Z, [v−ei , v

+
ei ] is the oriented edge ei, and the boundary

∂1γ =
∑ne

i=1 αi(v
+
ei−v

−
ei) is null. The support of γ is the union of the segments joining
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v−ei and v+
ei for which αi 6= 0. For a continuous vector field U we set

∮
γ

U · ds =

ne∑
i=1

αi

∫
[v−ei ,v

+
ei

]

U · τ ,
∮
γ

U× ds =

ne∑
i=1

αi

∫
[v−ei ,v

+
ei

]

U× τ ,

where, as before, τ is the unit tangent vector of [v−ei , v
+
ei ]. The linking number is a

double line integral.

Definition 1. Given γ =
∑ne

i=1 αi[v
−
ei , v

+
ei ] and γ′ =

∑ne

j=1 βj [v
−
ej , v

+
ej ], two 1-

cycles in R3 with disjoint supports, we define their linking number by

κ̀(γ, γ′) := 1
4π

∮
γ

∮
γ′

x−y
|x−y|3 · ds(x)× ds(y)

= 1
4π

∮
γ

(∮
γ′

y−x
|y−x|3 × ds(y)

)
· ds(x) .

(5.1)

Let us observe that κ̀(γ, γ′) = 1
4π

∑ne

i,j=1 αiβjLij , where

Lij =

∫
[v−ei ,v

+
ei

]

(∫
[v−ej ,v

+
ej

]

y − x

|y − x|3
× τ (y)

)
· τ (x) .

Therefore, in order to compute the integer κ̀(γ, γ′), it suffices to have an efficient way
for evaluating the double integrals Lij .

We also need the following definitions. For each 1-cycle σ of ∂Ω, we denote by
[σ]+ its homology class in Ω and by [σ]− its homology class in R3 \Ω. It is clear that
[σ]+ and [σ]− depend only on [σ], and not on its representative σ in ∂Ω.

Now we describe how a basis of loop fields can be explicitly computed by choosing
in (3.1) the constants κn equal to suitable linking numbers. Recall that Sh = (V,L) is
a spanning tree of the graph (V,E), with Th = (V,E, F, T ); we can also think that v1

is its root. Given vj ∈ V , let Cvj be the unique 1-chain in Sh from v1 to vj (namely,
the coefficients in Cvj are 0, 1, −1 and ∂1Cvj = vj−v1). If e ∈ E is the edge with end
points v−e and v+

e , we denote by De the 1-cycle of Th given by De := Cv−e + e− Cv+
e

(note that, if e ∈ L, Cv+
e

= Cv−e + e, hence De = 0).

Theorem 4. Let γ̂ be a 1-cycle of R3 \ Ω and let ηh,γ̂ ∈ Nh be given by

ηh,γ̂ =

ne∑
k=1

q(ek)wh,k , (5.2)

where q(ek) = κ̀(Dek , γ̂) and wh,k are the basis function of Nh. The following asser-
tions hold:

(i)
∮
γ
ηh,γ̂ · ds = κ̀(γ, γ̂) for each 1-cycle γ of Th ,

(ii) curlηh,γ̂ = 0 .

Proof. Let γ =
∑ne

j=1 αjej be a 1-cycle of Th, with αj ∈ Z; being a 1-cycle, it
boundary is null, hence

0 = ∂1γ =

ne∑
j=1

αj(v
+
ej − v

−
ej ) .



16 A. Alonso Rodŕıguez, E. Bertolazzi, R. Ghiloni, A. Valli

Since Cv−ej
and Cv+

ej
depend only on v−ej and v+

ej , respectively, we also obtain

ne∑
j=1

αjDej =

ne∑
j=1

αj(Cv−ej
+ ej − Cv+

ej
) = γ −

ne∑
j=1

αj(Cv+
ej
− Cv−ej ) = γ . (5.3)

Now we can compute∮
γ

ηh,γ̂ · ds =

ne∑
j=1

αj

∫
ej

ηh,γ̂ · τ =

ne∑
j=1

ne∑
k=1

αjq(ek)

∫
ej

wh,k · τ .

Using that
∫
ej

wh,k · τ = δk,j and equation (5.3) one has

∮
γ

ηh,γ̂ · ds =

ne∑
j=1

αjq(ej) =

ne∑
j=1

αj κ̀(Dej , γ̂) = κ̀

( ne∑
j=1

αjDej , γ̂

)
= κ̀(γ, γ̂) ,

and we have proved (i). Concerning (ii), for each f ∈ F we have∫
f

curlηh,γ̂ · n =

∮
∂2f

ηh,γ̂ · ds = κ̀(∂2f, γ̂) = 0 .

Since curlηh,γ̂ belongs to the space of Raviart–Thomas finite elements of degree 1,
this means that all its degrees of freedom are vanishing, so it is equal to 0.

Let us now assume that we know a set of 1-cycles {σn}gn=1 ∪ {σ̂n}
g
n=1 of ∂Ω such

that: they are representatives of a basis of the homology group of ∂Ω; {σn}gn=1 (re-
spectively, {σ̂n}gn=1) represent a basis of the homology group H1(Ω,Z) (respectively,
of the homology group H1(R3 \Ω,Z)). The construction of these two sets of 1-cycles
is faced in the next section.

We recall that we have denoted by [σj ]
+ the homology class of σj in Ω and by

[σ̂j ]
− the homology class of σ̂j in R3 \ Ω. Here below we also introduce the 1-cycle

R+σj , a representative of [σj ]
+ whose support is completely contained in Ω, and

the 1-cycle R−σ̂j , a representative of [σ̂j ]
− whose support is completely contained

in R3 \ Ω. R+σj can be obtained by slightly “retracting” σj inside Ω, and similarly
R−σ̂j by slightly “retracting” σ̂j inside R3 \ Ω.

Theorem 5. The vector fields

T0,j := ηh,R−σ̂j
, j = 1, 2, . . . , g ,

are a set of linearly cohomologically independent finite element loop fields, hence they
represent a finite element basis of the first de Rham cohomology group of Ω.

Proof. The vector fields T0,j are the solutions of problem (3.1) with Jh = 0 and
κn = κ̀(σn, R

−σ̂j). Since the matrix M with entries Mi,j = κ̀(σn, R
−σ̂j) is non-

singular by the Alexander duality theorem (see Munkres [48, Sect. 71] and Seifert and
Threlfall [58, point 47, p. 337]), they are linearly cohomologically independent (see
Theorem 3).

Remark 3. The vector fields T0,j = ηh,R−σ̂j
just defined depend only on the

homology class [σ̂j ]
− of σ̂j in R3 \Ω and not on the chosen representative R−σ̂j with

support in R3 \ Ω. In fact, if σ̂′j is another representative of [σ̂j ]
− with support in
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R
3\Ω, then R−σ̂j and σ̂′j are homologous not only in R3\Ω but also in R3\Ω. This is

a consequence of the fact that ∂Ω is a locally flat surface of R3, hence it has a bicollar
in R3. Now, if γ is a 1-cycle in R3 with support in Ω, then κ̀(γ,R−σ̂j) = κ̀(γ, σ̂′j)
(see Seifert and Threlfall [58, p. 289], Rolfsen [56, p. 133]).

We also observe that κ̀(γ,R−σ̂j) = κ̀(γ′, σ̂j), if γ′ is any 1-cycle of R3 with sup-
port in Ω and homologous to γ in Ω. In particular, if the support of γ is contained in
∂Ω, we can write κ̀(γ,R−σ̂j) = κ̀(R+γ, σ̂j). This can be useful for implementation,
as in this way one avoids to go outside the computational domain Ω.

Remark 4. A physical interpretation of the explicit formula (5.2) is the following.
The Biot–Savart law gives the magnetic field generated by a unitary density current
concentrated along the cycle R−σ̂j by means of the formula:

Ĥ(x) =
1

4π

∮
R−σ̂j

y − x

|y − x|3
× ds(y), x 6∈ R−σ̂j .

Since the cycle R−σ̂j is external to Ω, one has curl Ĥ = 0 in Ω. Moreover, on each

cycle γ ⊂ Ω that is linking the current passing in R−σ̂j one finds
∮
γ

Ĥ · ds 6= 0, hence

Ĥ is a loop field. (There are cycles γ with the required property: for instance, at least
one of the generators σn of the first homology group of Ω.)

Clearly, the Nédélec interpolant ΠNhĤ is a finite element loop field. For each
e ∈ E, its degrees of freedom are given by

q̂e =
1

4π

∫
e

(∮
R−σ̂j

y − x

|y − x|3
× ds(y)

)
· τ (x) (5.4)

(and this visibly resembles the formula for computing the linking number between R−σ̂j
and another disjoint cycle).

Introduce now the spanning tree L, with its root v1, and define the scalar function
φh ∈ Lh in all the vertices of Th as φh(v1) = 0 and

φh(v+
e′)− φh(v−e′) = q̂e′ , ∀ e′ ∈ L .

The Nédélec finite element Zh = ΠNhĤ − gradφh is a loop field, and its degrees of
freedom are equal to 0 for all the edges of the spanning tree L.

Finally consider the 1-cycle De = Cv−e + e − Cv+
e

defined before and its support
Ye. We already know that De′ = 0 if e′ ∈ L, while when e ∈ E \ L the 1-cycle De

is constituted by edges all belonging to the spanning tree (except e). For e 6∈ L and
e′ ∈ Ye \ {e} define o(e′) = ±1, where the sign is positive if the orientation of e′ is
the same of the path De and negative otherwise. By using (5.4) it is straightforward
to verify that

1
4π

∮
De

(∮
R−σ̂j

y−x
|y−x|3 × ds(y)

)
· ds(x) = q̂e +

∑
e′∈Ye\{e} o(e

′)q̂e′

= q̂e +
∑
e′∈Ye\{e} o(e

′)
(
φh(v+

e′)− φh(v−e′)
)

= q̂e + φh(v−e )− φh(v+
e ) =

∫
e

ΠNhĤ · τ −
∫
e

gradφh · τ
=
∫
e
Zh · τ ,

(5.5)

and thus the degrees of freedom of Zh are given by κ̀(De, R
−σ̂j).
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As we already noted, formula (5.2) can be too expensive if used for all the edges
of the mesh Th. We use it as an alternative to the construction and solution of the
reduced system in Algorithm 5, as illustrated in the following algorithm.

Algorithm 6: Alternative extended Webb–Forghani for the loop fields T0,j

1 WebbForghaniInit;
2 WebbForghaniAdvance;
3 while D 6= E and q(e) for some e ∈ E \D can be deduced using (4.2b) do
4 WebbForghaniSetEdge(e, q(e));
5 WebbForghaniAdvance;

6 end while
7 while D 6= E do
8 Let e ∈ E \D, compute q(e) = κ̀(De, R

−σ̂j);
9 WebbForghaniSetEdge(e, q(e));

10 WebbForghaniAdvance;

11 end while

As we noticed at the end of the previous section, in the numerical experiments
reported in Section 7 this algorithm terminates at line 6 if the domain Ω is the
complement of a non-knotted domain. In the remaining examples the number of
linking numbers that have to be computed for concluding the procedure is very small
(say, between one and four).

6. The construction of the homology bases. The aim of this section is
to present an algorithm for computing simultaneously a basis of H1(Ω,Z) and a
basis of H1(R3 \Ω,Z). We will mainly follow the construction proposed in Hiptmair
and Ostrowski [36], with some modifications in order to assure that the obtained 1-
cycles have integer coefficients and to cover the case in which the boundary ∂Ω is not
connected.

First we recall two theoretical results. The Alexander duality theorem, applied
to Ω, asserts that the abelian groups H1(Ω,Z) and H1(R3 \ Ω,Z) are isomorphic.
Indeed, they are both isomorphic to Zg.

Consider a 1-cycle σ of ∂Ω (clearly, it is also a 1-cycle in Ω and in R3 \ Ω). We
can define the following homomorphism ϕ : H1(∂Ω,Z) → H1(Ω,Z) ⊕H1(R3 \ Ω,Z)
by setting

ϕ([σ]) := ([σ]+, [σ]−). (6.1)

The Mayer–Vietoris exact sequence associated with the splitting R3 = Ω ∪ (R3 \ Ω)
ensures that ϕ is an isomorphism. It follows that H1(∂Ω,Z) is isomorphic to Z2g.
We refer the reader to Cantarella et al. [15, Sect. 6] for a friendly description of the
isomorphism ϕ. This isomorphism is important because it permits to build the basis
cycles {σn}gn=1 of the group H1(Ω,Z) working only on ∂Ω and not in the whole Ω.

Recalling that Ω is equipped with a tetrahedral triangulation Th = (V,E, F, T ),
the algorithm reads as follows.

Let us assume for a while that ∂Ω is connected. Let (V ′, E′, F ′) be the triangula-
tion of ∂Ω induced by Th, let (V ′, L′) be a spanning tree of the graph (V ′, E′) and let
v′ be a vertex in V ′. For every v ∈ V ′ and for every ε = [v, w] ∈ E′, we denote by C ′v
the unique 1-chain in (V ′, L′) from v′ to v and by D′ε the 1-cycle C ′v + ε−C ′w of ∂Ω.
In [36, Sect. 3], Hiptmair and Ostrowski describe how to find 2g edges ε?1, . . . , ε

?
2g in
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E′ \ L′ in such a way that the 1-cycles D′ε?1 , . . . , D
′
ε?2g

represent a basis of H1(∂Ω,Z).

For simplicity, define γl := D′ε?l
for every l = 1, 2, . . . , 2g.

Thanks to the connectedness of ∂Ω, it is possible to prove that, given any 1-cycle
σ of ∂Ω, one has [σ]− = [0], that is, σ bounds in R3 \Ω, if and only if κ̀(σ,R+γk) = 0
for all k = 1, 2, . . . , 2g (see Hiptmair and Ostrowski [36, Corol. 4.4]). Similarly, we
have that [σ]+ = [0], that is, σ bounds in Ω, if and only if κ̀(σ,R−γk) = 0 for all
k = 1, 2, . . . , 2g.

Since {γl}2gl=1 represents a basis of H1(∂Ω,Z), there exist, and are unique, 2g

integers c1, . . . , c2g such that [σ] =
∑2g
l=1 cl[γl] in H1(∂Ω,Z) (namely, σ and

∑2g
l=1 clγl

are homologous in ∂Ω).
Denote by G = (Gl,k) ∈ Z2g×2g the matrix with entries Gl,k := κ̀(γl, R

+γk)

and by c the vector (c1, . . . , c2g). Since κ̀(σ,R+γk) =
∑2g
l=1 cl κ̀(γl, R

+γk) for all
k = 1, 2, . . . , 2g, it follows that [σ]− = [0] if and only if GT c = 0, namely, c ∈ KerGT .

Similarly, [σ]+ = [0] if and only if
∑2g
l=1 cl κ̀(γl, R

−γk) = 0 for all k = 1, 2, . . . , 2g.
Bearing in mind Remark 3 and that the linking number is symmetric with respect to
its components (see Rolfsen [56, p. 135]), we have that κ̀(γl, R

−γk) = κ̀(R+γl, γk) =

κ̀(γk, R
+γl) and hence [σ]+ = [0] if and only if Gc = 0, namely, c ∈ KerG.

The existence of the isomorphism ϕ, defined in equation (6.1), ensures that
KerGT and KerG are isomorphic to H1(Ω,Z) and to H1(R3 \ Ω,Z), respectively.
In particular, the rank of G (and hence of GT ) is equal to g (see also Hiptmair and
Ostrowski [36, Theorem 4.5]).

Let us perform the reduction of G to Smith normal form (see Munkres [48, Sect.
11]). We obtain two matrices L,R ∈ Z2g×2g, non-singular over Z2g×2g, namely,
|detL| = |detR| = 1, and non-zero integers s1, . . . , sg such that sj divides sj+1 for all
j = 1, 2, . . . , g − 1 and

LGR =


s1 0 0

. . .
...

0 sg 0

0 · · · 0 0

 .

Evidently, the last g columns of R form a basis of KerG, while the last g columns of
LT form a basis of KerGT . Denote by A = (An,l) and B = (Bn,l) the matrices in
Z
g×2g formed by the last g rows of L and by the last g rows of RT , respectively.

Define the 1-cycles {σn}gn=1 ∪ {σ̂n}
g
n=1 of ∂Ω by setting

σn =

2g∑
l=1

An,lγl and σ̂n =

2g∑
l=1

Bn,lγl

for all n = 1, 2, . . . , g. By construction, {σn}gn=1 are representatives of a basis of
H1(Ω,Z) and {σ̂n}gn=1 of a basis of H1(R3\Ω,Z). Moreover, we have that [σn]− = [0]
and [σ̂n]+ = [0] for all n = 1, 2, . . . , g.

It is worth noting that, by using the isomorphism ϕ again, one sees immediately
that the 1-cycles {σn}gn=1 ∪ {σ̂n}

g
n=1 represent a basis of H1(∂Ω,Z). In this way,

the determinant of the (2g × 2g)-matrix P =
[
AT |BT

]
is ±1. In fact, P is the

matrix associated with the change of basis of H1(∂Ω,Z), from the one represented by
{σn}gn=1 ∪ {σ̂n}

g
n=1 to the one represented by {γl}2gl=1.
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Let us pass now to the case in which ∂Ω is not connected, as frequently occurs
in applications. As usual, we denote by {(∂Ω)r}pr=0 the connected components of
∂Ω, with (∂Ω)0 the external one. Thanks to the Jordan separation theorem (see
Munkres [48, Corol. 74.2]), for each r = 0, 1, . . . , p the set R3 \ (∂Ω)r has exactly two
connected components, both having (∂Ω)r as boundary. Denote by Dr the bounded
connected component of R3 \ (∂Ω)r and by gr the first Betti number of Dr. Clearly,
it holds: Ω = D0 \

⋃p
r=1Dr and R3 \ Ω = (R3 \ D0) ∪ (∪pr=1Dr). Moreover, being

H1(∂Ω,Z) isomorphic to
⊕p

r=0H1((∂Ω)r,Z), we have that
∑p
r=0 2gr = 2g, namely∑p

r=0 gr = g.
Let us apply to each (∂Ω)r the algorithm described above. For each r = 0, 1, . . . , p

we obtain a set of 1-cycles {σr,s}grs=1 ∪ {σ̂r,s}
gr
s=1 of (∂Ω)r representing a basis of

H1((∂Ω)r,Z). Furthermore, we have that

σr,s bounds in R3 \Dr and σ̂r,s bounds in Dr for all s = 1, 2, . . . , gr. (6.2)

The next theorem completes the algorithm, giving a basis of H1(Ω,Z) and a basis
of H1(R3 \Ω,Z). To prove such a result, we essentially follow the arguments used in
the proof of Theorem 3.2.2.1 of Dey and Guha [19].

Theorem 6. The following assertions hold:
(i) The set of 1-cycles {σ0,s}g0

s=1 ∪{σ̂1,s}g1

s=1 ∪ . . .∪{σ̂p,s}
gp
s=1 of ∂Ω are represen-

tatives of a basis of H1(Ω,Z).
(ii) The set of 1-cycles {σ̂0,s}g0

s=1 ∪{σ1,s}g1

s=1 ∪ . . .∪{σp,s}
gp
s=1 of ∂Ω are represen-

tatives of a basis of H1(R3 \ Ω,Z).
Proof. Since R3\D0, D1, . . . , Dp are the connected components of R3\Ω, we have

that H1(R3 \ Ω,Z) is isomorphic to H1(R3 \D0,Z)⊕H1(D1,Z)⊕ . . .⊕H1(Dp,Z).
Point (ii) follows immediately from this fact. Let us prove (i). Define the g-uples S1

and S2 of 1-cycles of ∂Ω by setting

S1 := (σ0,1, . . . , σ0,g0 , σ̂1,1, . . . , σ̂1,g1 , . . . , σ̂p,1, . . . , σ̂p,gp),

S2 := (σ̂0,1, . . . , σ̂0,g0 , σ1,1, . . . , σ1,g1 , . . . , σp,1, . . . , σp,gp).

The 2g-uple (S1, S2) represents a (ordered) basis B of H1(∂Ω,Z) and, by (ii), S2

represents a basis B2 of H1(R3 \ Ω,Z). Let C1 be a fixed basis of H1(Ω,Z) and let
Φ be the matrix associated with the isomorphism ϕ defined in (6.1), with respect to
the bases B of H1(∂Ω,Z) and (C1, B2) of H1(Ω,Z) ⊕H1(R3 \ Ω,Z). Clearly, it has
the following form:

Φ =

[
X Y

Z Ig

]
,

where X,Y ,Z ∈ Zg×g and Ig is the (g × g)-identity matrix. Thanks to (6.2), we
infer at once that Z = 0. Since ϕ is an isomorphism, we know that |det Φ| = 1. It
follows that |detX| = 1 as well, and hence S1 represents a basis of H1(Ω,Z). This
proves (i).

7. Numerical results. In this section we present some numerical experiments
with the aim of illustrating the efficiency of the proposed methods. The algorithms
have been developed using the LEMON library [20], which provides an efficient im-
plementation of data structures and algorithms for graphs and networks.
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We will consider six different test problems. The domain Ω is the complement
in a box of: a 2-torus (Test A); the Borromean rings (Test B); a link constituted by
two skeletons of a cube (topologically, two 5-tori) (Test C); a trefoil knot (Test D);
the knot listed as 41 in Rolfsen [56, pp. 391]) (Test E); a link constructed with two
knotted 41-knots (Test F) (see Figure 7.1).

In all computations, except when explicitly stated, we use a spanning tree con-
structed via breadth-first search.

(a) Test A (b) Test B

(c) Test C (d) Test D

(e) Test E (f) Test F

Fig. 7.1. The domain Ω (the complement in the box of the blue set). One homological 1-cycle
σ̂j (yellow color) is also reported.

A preliminary step for computing loop and source fields is the construction of
the bases of the homology groups H1(Ω,Z) and H1(R3 \ Ω,Z). Table 7.1 shows the
CPU time required for the computation of all the homological cycles σn and σ̂n for
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three different meshes, following the construction described in Section 6. Here we
recall that a different mesh is only furnishing a different basis of the homology group
(as well as of the cohomology group), but we are interested in the construction of a
basis of Nh ∩H0(curl; Ω) and in the computation of the source fields, whose accuracy
clearly depends on the mesh size.

Table 7.1
CPU time for computing all the homological 1-cycles.

Mesh 1 Mesh 2 Mesh 3
ne ms ne ms ne ms

Test A 42200 138 325904 868 2560416 6770
Test B 35380 93 273348 586 2147096 4397
Test C 25768 293 195256 1318 1517328 7434
Test D 15349 79 116170 294 902388 2016
Test E 34372 144 264548 749 2073688 4760
Test F 80504 310 624352 2671 4913792 12723

Table 7.2 shows how the number of edge unknowns decreases along the solution
procedure in Algorithm 5: ne is the number of the edges of the mesh, #L the number

of the edges of the spanning tree, n
(1)
e the number of unknowns left after line 2, n

(2)
e

the number of unknowns left after line 6. Finally, #cc is the number of the connected
components of the residual graph.

Table 7.2
Reduction of the number of unknowns.

ne ne −#L n
(1)
e n

(2)
e #cc

Test A 2560416 2185729 58987 0 -
Test B 2147096 1832896 110245 0 -
Test C 1517328 1292168 124239 0 -
Test D 902388 768384 54273 34506 30
Test E 2073688 1769408 150694 98603 107
Test F 4913792 4196608 275832 212088 145

In Table 7.3 we report the dimension of the linear system curl Zh = Jh at the
different steps of Algorithm 5, for cases D, E and F. The first column refers to the
original system, the second one to the system remaining after line 2, the third one
to the system remaining after line 6, the last one to the reduced system constructed

at line 8. We denote by nf , n
(1)
f , n

(2)
f the number of the faces in the different situa-

tions, and by |F0| the number of the faces for which no degree of freedom has been
determined (the so-called 0-faces); the homological constraints are not counted.

Table 7.3
Dimension of the linear system at each step.

nf × ne n
(1)
f × n

(1)
e n

(2)
f × n

(2)
e |F0| ×#cc

Test D 1518464× 902388 134087× 54273 86186× 34506 1175× 30
Test E 3509696× 2073688 372839× 150694 246924× 98603 3372× 107
Test F 8337664× 4913792 686896× 275832 531280× 212088 7416× 145
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We have seen that Algorithm 5 terminates at line 6 in cases A, B, C, namely, when
the domain is the complement of a non-knotted set. However, this behavior is strongly
dependent on the choice of the spanning tree. Table 7.4 illustrates the influence of
this choice, showing the number of remaining unknowns after line 6, when adopting
a breadth-first search or a depth-first search spanning tree.

Table 7.4
Dependence of the reduction on the choice of the spanning tree.

ne n
(2)
e breadth-first n

(2)
e depth-first

Test A 42200 0 27912
Test B 35380 0 23595
Test C 25768 0 15707
Test D 15349 2092 9554
Test E 34372 6002 22776
Test F 80504 12916 53488

For the loop fields, we can adopt either Algorithm 5 or Algorithm 6. In the latter
case, for Test D and Test E the computation of one linking number is enough, while
for Test F the procedure has been repeated four times. For the source fields, the
reduced system is solved by a direct method. In Table 7.5 we report the CPU time
for obtaining all the loop fields by means of Algorithm 6 and one source field by means
of Algorithm 5.

Table 7.5
CPU time (ms) for computing all the loop fields (their number is indicated in parenthesis) and

one source field.

ne loop fields source field
Test A 2560416 (2) 9659 9937
Test B 2147096 (3) 9447 8822
Test C 1517328 (10) 28187 6322
Test D 902388 (1) 3759 3814
Test E 2073688 (1) 8705 8907
Test F 4913792 (2) 37338 22210

Finally, Figure 7.2 shows the support of a loop field for each test case. It is worth
noting that these supports are relatively concentrated.

To conclude we present some numerical tests that illustrate the convergence of
the finite element approximation of problem (1.5). Let H and Hh be the solution of
problem (1.5) and problem (2.1), respectively. In order to compute the relative error

e(h) = ‖H−Hh‖0
‖H‖0 , we need to know an explicit expression for the exact solution H.

Having chosen x0 ∈ Ω and r0 > 0, let us define

p(x) =

{
q
(
|x1−x0,1|

r0

)
q
(
|x2−x0,2|

r0

)
q
(
|x3−x0,3|

r0

)
if maxi=1,2,3 |xi − x0,i| ≤ r0

0 if maxi=1,2,3 |xi − x0,i| > r0 ,

where q is a regular function with q(0) = 1, q(1) = 0 and q′(0) = q′(1) = 0 (we used the
function q(t) = 1

2 + 1
16 [9 cos(πt)−cos(3πt)]). Let as set W(x) = (0, 0, p(x)). It is easy

to verify that, if the cube centered in x0 with side length 2r0 is completely contained
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(a) Test A (b) Test B

(c) Test C (d) Test D

(e) Test E (f) Test F

Fig. 7.2. Support of the loop field T0,j , associated to the yellow cycle σ̂j in Figure 7.1.

in Ω and if µ is constant, then H = curl W is the solution of problem (2.1) with
J = curl curl W. In fact, since the support of the function p is completely contained
in Ω, it follows that W× n = 0 on ∂Ω, hence H · n = curl W · n = divτ (W× n) = 0
on ∂Ω and

∫
Ω

H · η =
∫

Ω
curl W · η =

∫
Ω

W · curlη −
∫
∂Ω

(W × n) · η = 0 for all
η ∈ Hµ(Ω).

We consider three different geometric configurations. In the first one the domain
Ω is the complement of the torus [(−1.5, 1.5)× (−1.5, 1.5)× (−0.25, 0.25)] \ [(−1, 1)×
(−1, 1) × (−0.25, 0.25)] in the box (−2, 2) × (−2, 2) × (−1, 1). The support of the
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source is centered in the origin and r0 = 1. In the second one the domain Ω is the
complement of a 5-torus in the cube centered in the origin with side length equal to
10. The 5-torus, centered with respect to the origin, is similar to that in Test C: the
length of the cube side is equal to 6 and the width of each edge is equal to 1. Also
in this case the support of the source is centered in the origin with r0 = 1. Finally,
in the third example Ω is the complement of a 41-knot as in Test E; the source is
centered in (−3.25,−3.25,−3.25) and r0 = 2.5.

In Table 7.6 we report the number of vertices and the relative errors for the
three geometric configurations and for five meshes obtained by a repeated uniform
refinement. Figure 7.3 shows the plots in a log–log scale of the relative error versus
the mesh sizes h, h/2, h/4, h/8 and h/16. Linear convergence can be observed.

Table 7.6
Relative errors for five different meshes.

Torus 5-torus 41-knot
nv e(h) nv e(h) nv e(h)

Mesh 1 141 0.733783 307 0.896280 648 0.755626
Mesh 2 865 0.485331 2071 0.690457 4548 0.513166
Mesh 3 5892 0.279500 14796 0.436918 33453 0.296665
Mesh 4 43030 0.148187 110858 0.242721 255063 0.157373
Mesh 5 327786 0.075957 856022 0.126696 – –

10−1 100

10−1

100

mesh size

re
la

ti
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r

Torus
5-torus
41-knot

Fig. 7.3. Relative errors versus mesh size h.
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