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Abstract

Since high-level events in images (e.g. “dinner”, “mo-
torcycle stunt”, etc.) may not be directly correlated with
their visual appearance, low-level visual features do not
carry enough semantics to classify such events satisfacto-
rily. This paper explores a fully compositional approach
for event based image retrieval which is able to overcome
this shortcoming. Furthermore, the approach is fully scal-
able in both adding new events and new primitives. Using
the Pascal VOC 2007 dataset, our contributions are the fol-
lowing: (i) We apply the Faceted Analysis-Synthesis The-
ory (FAST) to build a hierarchy of 228 high-level events.
(ii) We show that rule-based classifiers are better suited for
compositional recognition of events than SVMs. In addi-
tion, rule-based classifiers provide semantically meaningful
event descriptions which help bridging the semantic gap.
(iii) We demonstrate that compositionality enables unseen
event recognition: we can use rules learned from non-visual
cues, together with object detectors to get reasonable per-
formance on unseen event categories.

1. Introduction
Our life is a constellation of events which, one after the

other, pace our everyday activities and index our memo-
ries [4]. Events such as a birthday, a summer vacation, or
a school trip are the lens through which we see and mem-
orize our own personal experiences. In turn, global events,
such as world sport championships or global natural disas-
ters (e.g., the 2004 tsunami) or, on a smaller scale, a local
festival or a soccer match, build collective experiences that
allow us to share personal experiences as part of a more so-
cial phenomenon. When describing events, we ground in
our experience, our common and abstract understanding of
the world and the language that we use to describe it. The
generic notion of “beach” is then associated to a specific
time and place, which is frozen in the photo we have taken
back then. The definition of an event is therefore subject to
cultural and personal perspectives.

Given that knowledge is by definition incremental, in
the last centuries, libraries, the keepers of knowledge,
have been developing ways to cope up with the increasing
amount of knowledge in a compositional way. A composi-
tional approach to event recognition is also desirable from a
computer vision perspective as the appearance may not be
directly correlated with meaning: “Soccer” on grass is the
same event as “soccer” on sand, yet the appearance differs.

Hence we argue that high-level semantic concepts are
better recognized by their constituents. The benefits of us-
ing compositionality allow us (i) to use externally trained,
general object detectors, (ii) to learn semantically meaning-
ful rules for event classes based on object occurrences only,
(iii) to learn the layout of events in images, (iv) to match
semantically close images that may not be visually similar,
and (v) to extend the system by attaching new events with-
out changing the detector models. Therefore we are aiming
to bridge the semantic gap by composing semantics.

For defining events, we employ an approach from Li-
brary and Information Science (LIS): the Faceted Analysis-
Synthesis Theory (FAST). FAST leads to a collection of rel-
evant events from the material to be classified. Towards this
goal we have been analyzing and annotating the VOC Pas-
cal 2007 dataset manually, leading to a faceted hierarchy of
228 high-level events. The annotation aims to describe the
what, how and why as it is evident from the images: An im-
age of the event “dinner” connotes with multiple categories
as it might be a social gathering (e.g. barbecue), and/or a
personal event (e.g. watching the game), and/or a festive
event (e.g. Christmas), as shown in Figure 1. Following
LIS, these events are perpetually genuine and are a subset
of some kind of universal knowledge. It can therefore be
transferred and extended to any other data-set.

Our research questions are: (i) Can we use a formal
methodology to define events? (ii) Is it beneficial to use
compositionality? (iii) Can we exploit compositionality to
define unseen events? The paper is organized as follows.
Section 2 gives the state of the art. Section 3 describes
FAST to build the ground truth. In Section 4 the proposed
approach is given, while Section 5 concludes.
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(a) Event classes: Recreational Activity (Zoo
visit)

(b) Event classes: Social Gathering (Barbe-
cue), Get Together, Personal Event (Birthday)

(c) Event classes: Touring and Trip (Elephant
Trip)

Figure 1: Example of Pascal VOC 2007 images and their FAST based high-level event annotation of 228 event classes. Note
that we are aiming to recognize an elephant trip (Figure 1c) without any knowledge of an elephant.

2. State of the Art

Faceted systems are based on the idea that the universe of
knowledge is incremental in nature and that characteristics
are the driving force behind the semantical grouping into
categories. Faceted systems are used for knowledge bases in
information retrieval. They emerged in 1980 in the form of
faceted thesauri to serve as a switching language to support
searching across databases [1]. Faceted systems can be cre-
ated using the classical FAST methodology [26] and were
introduced to computer science for knowledge management
in [11, 12]. Example of faceted systems are DERA [10] and
the Flamenco Search Interface Project1, which uses hier-
archical faceted metadata in a manner that allows users to
both refine and expand the current query while maintaining
a consistent representation of the knowledge [3]. To a cer-
tain degree facet based search engines include Facetedpe-
dia [17], query-dependent faceted interfaces for Wikipedia,
FlexIR [25], a domain-specific information retrieval system
that uses the notion of domain dimensions, HAYSTACK2

and CiteSeer3. This paper brings the faceted system ap-
proach into the realm of computer vision.

The idea that an image can be hierarchically decomposed
in its objects has been studied since the dawn of computer
vision (e.g. [22]). Compositionality is often applied in ob-
ject recognition. Objects are seen as a composition of their
consisting sub-parts [23, 9, 33] leading to part based mod-
els of objects. Complex compositional rules can be ex-
pressed using object detection grammars [9]. By model-
ing the prepositions and adjectives that relate to subjective
nouns, model interactions between objects are expressed in
[13] . Additionally, explicitly defined spatial relationships
can be incorporated in the confidence of detector results to
improve their performance by taking object co-occurrence

1http://flamenco.berkeley.edu/pubs.html
2http://groups.csail.mit.edu/haystack/
3http://citeseerx.ist.psu.edu/

into account [7], but limit the applicability of the approach
to unusual spatial set-ups. Attribute-based classification is
able to transfer knowledge of object attributes across image
datasets [15].

Opposed to these approaches, visual phrases [27] aim to
visually learn more complex compositions of objects and
actions. In certain data-sets, this decreases the size of the
needed training data since the object in interactions showed
to be more discriminative than the single objects. In our
approach composition is driven by semantics as codified in
the high level notion of events.

The most related field to this work is the field of action
recognition in images. This field focuses solely on the pre-
supposed humans in the images and analyze their poses (e.g.
[6, 32]). A limited notion of events in image recognition is
used in [18]. In their work events are defined as being a se-
mantically meaningful human activity, taking place within
selected environments. They learn the appearance of 8 ac-
tivities and their background patterns which are then hier-
archically combined. In all 8 activities a human and his/her
pose are central to the recognition of the event.

In contrast to previous work we use a general notion of
events as given in [2] based on [24]: Our life is a constella-
tion of events which, one after the other, pace our everyday
activities and index our memories [4]. Everything a pic-
ture can tell us may denote an event. Our assumption is
that when we want to retrieve an image, we are most prob-
ably grounding for a representation of a certain event in our
memories.

3. Building a Memorable Ground-truth

In this section we apply the Faceted Analysis-Synthesis
Theory (FAST) model [26] to create a contextual mapping
of events of a domain by dividing them in various facets.
It explicitly defines events as being compositional in nature
which facilitates scalability in terms of both the events and

http://flamenco.berkeley.edu/pubs.html
http://groups.csail.mit.edu/haystack/
http://citeseerx.ist.psu.edu/


Step Instruction
1. Defining the domain Define: What entities are of interest to the intended user group?

What aspects of those entities are of interest?
2. Formulating facets Looking into the materials (encyclopedia, journal articles, photos, etc.) that express the interests of

intended users and are useful for finding the terms related with the domain. Draw a list of candidate
terms from the above sources. Sort these into homogeneous groupings (facets).

3. Structure each facet Place the list of terms/items in a hierarchy
4. Determining the order of facets
(dependent on anticipated use)

Arrange the facets into the categories. Standardize the terms with the help of a controlled vocabu-
lary to control the semantics of the terms used.

5. Re-do step 4 If a new perspective on a domain is desired, new categories can be arranged

Table 1: Recipe how to manually build a FAST-based ground-truth hierarchy.

their primitives (i.e. facets). It also collocates all aspects
of a domain by dividing it in fundamental categories. A
change of domain, i.e. transfer learning, is explicitly inte-
grated in the model. A facet can be defined as an “homo-
geneous group or category derived according to the process
and principles of facet analysis”. We may look upon these
facets as groups of terms derived by taking each term and
defining it, per genus et differentiam, with respect to its par-
ent class [31].

The essence is the sorting of terms in a given field of
knowledge into homogeneous, mutually exclusive facets,
each derived from the parent universe by a single charac-
teristic of division. Further, the facets are grouped in cat-
egories often referred as fundamental or elementary cat-
egories. Ranganathan [26] defines the fundamental cate-
gories as personality, matter, energy, space and time, or also
as discipline, entity, property and action. A recipe on how
to generate a hierarchy using FAST is given in Table 1. The
final classification scheme can be defined as “a list of stan-
dard terms to be used in the subjective description of the
documents”.

We applied FAST to the trainval set of the Pascal VOC
2007 dataset [8], the dataset which we use in all experi-
ments. For 3990 images we found at least one event. The
rest of the images were too abstract or vague in nature to
denote any event. The dataset and its full description is
available online4. Images were analyzed to define ideas
and actions such as, “child”, “food”, “yawning”, “the zoo”,
and to synthesize them into an event. If there is an image
containing the ideas such as, “cars” and “display” we syn-
thesize them to articulate the event “car exhibition”. This
technique was applied for all images leading to 236 event
classes. Many images were classified into more than one
event class. To be semantically correct, we standardized the
event types with standard terms to avoid any ambiguity in
the intended meaning of the term (see step 4 in Table 1).
The WordNet5 database was used to find the right candidate
term, e.g. for the event type “walking” the sense “the act of

4dataset available at http://www.feeval.org
5http://wordnet.princeton.edu/

traveling by foot” was chosen. Similarly, other event types
were also standardized by choosing their right terms. These
event classes were not ordered and were not semantically
linked with each other. FAST was applied to sort out the
event types in homogeneous groups. The main character-
istics group the event classes together. A characteristic is
an attribute or attribute-complex which is chosen based on
its semantical relevance and importance. The characteris-
tics provide the main idea or action within the event. The
root-event classes identified can be described as follows.

Personal event: An event particular to given individuals.
Sub-classes include “daily routine”, “eating” or “animal
keeping”.

Social gathering: Events celebrating or commemorating a
cultural, religious, etc. occasion involving collective action
rather than an individual one. Sub-classes include “dinner”,
“party” or “get together”.

Touring and trip: Travel for pleasure. Sub-classes include
“bicycle trip”, “car trip”, “elephant trip” and “waiting for
the train”.

Recreational activity: A leisure activity which refreshes
and recreates. Sub-classes include “bowling” and “zoo
visit”.

Maintenance, repair and overhaul (MRO): The fixing of
any sort of mechanical or electrical device. Sub-classes in-
clude “towing” and “building”.

Natural phenomenon: A non-artificial event, i.e. an event
not produced by humans. Sub-classes include “flooding”,
“snow fall” and “death”.

Sport: Physical activity which aims to maintain or improve
physical fitness and provides entertainment. Sub-classes in-
clude “minigolf”, “rodeo” and “motorcycle racing”.

Performance: Performer(s) behaving in a particular way
for a group of spectators. Sub-classes include “concert”,
“air show” and “motorcycle slack-lining”.

Exhibition: A collection of things for public display. Sub-
classes include “airplane exhibition”, “fair”, “sheep exhibi-
tion”.

http://www.feeval.org
http://wordnet.princeton.edu/


4. Learning the Composition of Events
In this section we examine if the composition of events

should also be reflected in machine learning. We address
this question in three sets of experiments on the Pascal VOC
2007 dataset in terms of its 20 object categories: (i) How
can we learn events using objects as their constituents? (ii)
Can we learn events using object detectors as constituents?
(iii) Can we use object detectors for unseen event recog-
nition? All experimental results are created using 3-fold
cross-validation with ten repetitions on the 118 events that
have at least 3 examples.

4.1. Compositional and Visual Features

We use three types of features: (i) Ground truth ob-
ject labels, yielding an upper bound on recognition through
compositionality using the 20 Pascal VOC object categories
only. Using the manual annotation, we are assuming perfect
object detection. We use it for layout feature tuning and to
show that using these constituents, which are in many cases
semantically unrelated to the events, we are able to outper-
form the state-of-the-art in visual recognition. (ii) State-of-
the-art Bag-of-Words visual features, achieving top scores
in the last 3 years’ Pascal challenges. This provides a base-
line. (iii) Flexible object detection scores which enable fully
automated recognition through the composition of object
categories. Terms in italics denote their short names which
they are referred to further on.

Ground Truth Features are extracted by using the
ground truth (GT) object annotations of the dataset to con-
struct the following features (compare Figure 2): (i) The
presence or absence of each object. In this setup, the image
feature vector is of a size of 20 bits only. (ii) The fraction
of the image which all instances of each object category oc-
cupy (RelSize, feature vector length: 20). (ii) The fraction
of the image which the objects occupy, using a Spatial Pyra-
mid division. From all evaluated constellations (2,3,4 spa-
tial pyramid, 9 and 10 quadrants in the golden ratio, etc.)
3 equal horizontal regions perform best. Every constella-
tion of fractions dividing the image vertically decreases the
performance, therefore we argue that the semantic layout of
images is horizontally flip invariant. The best performing
feature of three horizontal regions is referred to as RelSize3h
providing a length of the feature vector of 60, less than half
of a single SIFT vector.

Bag-of-Words Features (BoW) are used for comparison
with state-of-the-art visual image retrieval. The implemen-
tation employs [28] using the following settings: We use
pixel-wise sampling; we sample patches of 16 by 16 pix-
els at every possible location within the image. From these
patches we extract 3 types of SIFT descriptors: SIFT, RGB-
SIFT, and Opponent Color SIFT [19, 30]. We use a Random
Forest as visual vocabulary [21], where we perform first
PCA on the SIFT descriptors to de-correlate the dimensions
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tvmonitor

bird
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Figure 2: Graph of occurrences of objects in Pascal
VOC 2007, strength of edges indicate the number of co-
occurence. size of nodes indicates the number of occur-
rences.

and improve the discrimination of the vocabulary [28]. We
use a Spatial Pyramid [16] of 1x1 and 1x3, as vertical divi-
sions were found to reduce performance for general image
classification. Finally, classification is done using a SVM
with Histogram Intersection kernel using the efficient ap-
proximation of the classification function of [20].

Great advances in exact object localization have been
made recently (e.g. [9]). Unfortunately, many images do not
show the whole objects. Additionally, typical environments
of objects make the object itself more likely to be present
in the image. For example, a horse barn and meadow make
an image horsey, even if there is no horse present. We pick
up an exciting new idea from [29] to perform a relaxed ob-
ject localization using the Most Telling Window Features
(MTW). It provides that window within the image which
is most discriminative for the object class. This can be a
complete object, but also an object part, or a collection of
objects. By focusing on the most discriminative part in-
stead of the exact object boundaries, scores for classifica-
tion, determining if the object is present in the image or not,
are higher than for exact object localization. Moreover, by
using localised features we avoid confusion which may be
caused by the background as well as double counting the
background when more object categories are taken into ac-
count.

The Most Telling Window uses the same Bag-of-Words
features, vocabulary, and classifier as described earlier.
During testing, instead of using the whole image, we eval-
uate multiple windows and select the one with the highest
classification score. We use a Spatial Pyramid of 2x2 for
each window. For training, for each object category we use
its ground truth bounding boxes as positive learning exam-



ples. Ground truth bounding boxes for objects of a different
class serve as negative learning examples. We mine difficult
negative images by selecting the highest scoring window of
each negative image of the training set and retrain the clas-
sifier. We repeat this two times after which performance
stabilizes. The output of the MTW yields a single score
for each Pascal VOC object category, resulting in a feature
vector of length 20.

4.2. Finding Conditions for Event-identity

We want to find conditions for determining the identity
of an event in terms of its constituents, which are the 20
Pascal object categories in this paper. The event-identity
is based on the non-duplication principle [2]. There are
two main theories: Davidson [5] defines it based on the
sameness of causes and effects, Quine [24] aims for the
unique spatio-temporal location. The common objective is
to discover sufficient conditions for event-identity, i.e. find
a function R for which it is true and not trivial that for any
event e1 and for any e2,

R(e1, e2) → e1 = e2. (1)

The problem is to discover values of R that make this
true but not trivial. No two events can be related by R(x, y)
having the very same causes and effects, and are not the
same events. Therefore, in the classification of events, we
face the problem of individuation of events, i.e. finding a
solvable and satisfying R, keeping in mind that we do not
know the complete where, how and when a given image is
taken. In the following, we describe how we aim to find the
rule-set R, the sufficient conditions for event-identity. We
perform this using first Support Vector Machines and then
building a decision tree.

We use Support Vector Machines (SVM) as a baseline
for learning R. Note that this leads to semantically not in-
terpretative rules for R. We use the well-known libsvm6

library. Experiments are carried out using RBF, Histogram
Intersection, and χ2-kernel. In the compositionality experi-
ments, the χ2-kernel outperformed other kernels. Therefore
we only report the scores of the χ2-kernel in the experimen-
tal section.

We aim to find sufficient conditions for R using rule-
based classification to determine the identity of an event in
the image. Our goal is a formal system based on the occur-
rences of the primitives of the training set. Let every of the
m images belonging to one event be described by the con-
junction of the existence of the primitives p1..n. Having a
sufficiently large training set of j instances, we then assume
that any event e is modeled by

6http://www.csie.ntu.edu.tw/$\sim$cjlin/libsvm/

e |=
m∨

j=1

n∧
i=1

pi,j . (2)

This leads to one expression in full disjunctive normal
form (DNF) per event describing the training set. The
canonical DNF is derived in linear time using a linear hash
map to remove equal and dual terms. Since this is done in-
dependently per event, a new event can be added to the for-
mal system by simply adding the new expression to the prior
set. Note that annotated objects are not necessary. Training
can also take place based on unsupervised detector results.

By learning a pruned decision tree of all e, we derive a
minimalR, which is possibly overlapping with other events,
with the best trade-off between description length and clas-
sification accuracy by cross-fold validation. Some events
are indistinguishable using the primitives in the Pascal VOC
set. For these events their probability is defined by their rel-
ative occurrence in the training set.

4.3. Learning Events through Objects

In this section we investigate how we can best learn
events using the objects contained within the image. We
feed the proposed features into a SVM with χ2 kernel. Re-
sults are presented in Table 2. As it can be seen, using the
presence of objects based on the ground truth gives a MAP
of 0.178, which is significantly higher than the random re-
sult of 0.022 MAP. Using the relative size of the objects in
the image we achieve a MAP of 0.245. Using the best per-
forming layout with three horizontal divisions, MAP rises
to 0.258 MAP.

However, as events are compositional in nature we hy-
pothesize that an SVM may not be the best learning method
at this stage and instead a knowledge or language based sys-
tem could perform better. Figure 3 gives an example. It pro-
vides the rules for three events in minimal product-of-sums
form (PoS) [14] to make the expressions e easier to grasp.
The events are of similar constituents: Motorbike exhibi-
tion, motorbike racing and motorbike stunts. All 3 event
classes provide predominantly persons on motorbikes. For
a human observer it is straightforward to determine the dif-
ferences: Motorcycle exhibitions take normally place in a
convention center, where people are admiring highly pol-
ished motorbikes. Motorcycle racing events are predomi-
nantly determined by common vest numbers of the drivers
and race track lanes. Motorcycle stunt images are typically
showing pictures of people doing crazy things on their mo-
torcycle. Since we only have a person and a motorcycle
detector we are not able to find a perfect R. However, some
insights can be derived. The data-set provides some beach
rally pictures, which means that sometimes, there is a boat
seen in the event. This does not apply to the other events,
as visualized in Figure 3. In contrast, exhibition pictures do

http://www.csie.ntu.edu.tw/$\sim $cjlin/libsvm/


(a) exhibition |= common ∧ ¬ boat ∧ (¬ car ∨
person)

(b) racing |= common ∧ (¬ boat ∨ ¬ bus) ∧
(¬ boat ∨ ¬ car) ∧ (¬ boat ∨ person) ∧ (¬
bus ∨ ¬ car) ∧ (¬ bus ∨ person) ∧ (¬ car ∨
person)

(c) stunt |= common ∧ ¬ boat ∧ person

Figure 3: Visual examples and minimal PoS form of motorcycle events: (a), (b) and (c) share a common term of occurrence
of motorbikes and the absence of most other primitives. They differ only in their composition of boat, bus, car and person

baseline SVM GT & SVM GT & tree GT, size & tree GT, layout & tree SIFT & SVM MTW & SVM MTW & tree

Selected events Random Presence Presence RelSize RelSize3h BoW MTW Unseen
Air show 0.015 0.293 0.286 0.488 0.447 0.654 0.497 0.281
Car trip 0.015 0.069 0.097 0.091 0.142 0.076 0.086 0.065
Cat Play 0.016 0.347 0.452 0.148 0.178 0.097 0.083 0.448
Dinner 0.020 0.342 0.478 0.498 0.536 0.274 0.312 0.093
Exhibition 0.048 0.176 0.221 0.235 0.278 0.391 0.256 0.136
Festival 0.023 0.072 0.102 0.066 0.079 0.284 0.086 0.024
Motorcycle Stunt 0.004 0.160 0.107 0.148 0.442 0.034 0.042 0.226
Rodeo 0.014 0.667 0.825 0.838 0.839 0.311 0.287 0.008
Walking the dog 0.011 0.184 0.327 0.418 0.342 0.118 0.080 0.044
MAP all events 0.022 0.178 0.242 0.245 0.258 0.199 0.177 0.120

Table 2: Overview results of event based image retrieval in the VOC Pascal 2007 (118 eventclasses found in 5011 images.
10124 event annotations in total)

not necessary need a person in the picture. And sometimes,
even a car appears. There is no legit stunt without riding the
bike, therefore there is always a person in the motorcycle
stunt events. This confirms that there is more information
in the presence information of the 20 object categories than
the results of the SVM imply.

We therefore turn to classification using logical decision
rules. An effective and common prediction tool dealing
with such rules is a decision tree. Thus we use a decision
tree as classifier on the presence of the 20 object categories
(still using the ground truth). To make each split in the deci-
sion tree, we consider each object separately and choose the
one whose presence results in the largest information gain
defined in terms of Shannon Entropy over the event cate-
gories. The results are shown in Figure 2. As can be seen,
for the decision tree the MAP is 0.242, far higher than the
results of the SVM (0.178) and on par with layout features.
This suggests that a logical or tree based based represen-
tation may be better for a classification of events based on
their constituents, the objects present in the image.

Another major advantage of using a decision tree based
on objects is that we can now give logical rules defining how
to define an event. For example, Figure 4 shows a decision
tree learned of one of the folds. The decision tree yields
a natural ordering of which objects are significant for the
events. In terms of the FAST analysis it gives an idea of
the characteristic of the events. We see that the presence or
absence of a person is the most important, which is intuitive
as our events arise from our human-centered view of the
world.

Cars are the second important as it is the second most
occurring object in this dataset, which may be a bias of the
dataset but also reflects its importance in the western world
(there are just many photos of cars on the internet in gen-
eral). Note that by its dominance a car is a powerful in-
door/outdoor indicator.

To appreciate how good such MAP scores are in a re-
trieval task, consider the following. Giving one example in
a fold (there are few examples per event category), a score
of 0.20 MAP means that the target image occupies on av-



Example short path:
(person & car & bus & bike)
- Performance
- Personal Event
- Touring and Trip
- Bicycle stunt
- Bus trip
- Daily routine
- Traffic
- Trip photoshoot
- Bus waiting

personcar car
bird bus chair bus

cat cow train bicycle horse
dog

Example longest path:
(person & sheep)
- Exhibition
- Personal event
- Touring and trip
- Animal keeping
- Fair
- Feeding
- Sheep exhibition
- Trip photoshoot
- Petting
- Shearing
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Figure 4: Decision tree which visualizes the learned boolean expressions for event recognition. Each left branch denotes
absence, each right branch presence of a primitive. Most significant primitives are labeled on top of the tree, the least
significant one is labeled at the bottom. For one short and for the longest path, the possible events are shown in order of their
occurrence probability within the node.

erage the fifth position of the ranking. This is a promising
result for difficult retrieval tasks, especially since the false
positives are not visually similar, but are semantically close
(compare ambiguities in Figure 4).

4.4. Learning Events through Object Detectors

In this experiment we use the Most Telling Window clas-
sification method to yield a score for each of the 20 objects.
We use these scores as input for a Support Vector Machine
in the same manner as in the previous section. Using the
20 object detection scores, we are able to get a MAP of
0.177. This is quite impressive considering that the upper
bound using only these 20 categories is 0.178 (without us-
ing layout information). The use of the 20 object detectors
already outperforms global Bag-of-Words for some event
categories such as Personal event, Aeroplane exhibition, Bi-
cycle trip, Boating, Bus trip, Couching, Dinner, Motorcycle
exhibition, Road trip, Train exhibition, Train trip, Trip pho-
toshoot, Voyage, Wedding, etc. All these events convey a
higher level semantics.

To summarize, our results show that it makes sense to
recognize events by their constituents. For many event cat-
egories of a higher semantic level our use of only 20 object
categories already enables us to outperform state-of-the-art
Bag-of-Words. Note that this 20 dimensional object rep-
resentation feature vector is negligibly small compared to
today’s Bag-of-Words representations.

4.5. Unseen Event Recognition

In the final experiment we test if we can do unseen event
recognition. The basic idea is that one can learn from any
domain what are the constituents of an event. We now use
the presence/absence within the images. However, text or
handcrafted knowledge can also be used. In this experi-

ment, we learn a binary decision tree using the presence of
the 20 objects within one fold of the dataset. Hence, this de-
cision tree is learned without using any image features: We
use only the MTW detector results to determine which ob-
jects are present within the image. This is done by binariz-
ing the output: a negative distance to the decision boundary
means that an object is absent. A positive distance means
that the object is present. In this sense, we can categorize
images into event classes using visual information without
having learned these event classes from visual information.
The results are shown in Table 2.

The performance of 0.120 MAP is about half of using the
ground truth presence. In terms of search results, it means
that if there is one true positive example, we retrieve it on
average in the top ten results. This proves first of all that
our object detectors are good enough for constituent based
event recognition. Secondly, for learning we use only the
high-level terms of events and externally trained detectors.
In this sense, no visual features are used to directly learn
the appearance of events. Instead we get a compositional
event recognition approach, which enables reuse of indi-
vidual visual object classifiers and which facilitates the ad-
dition of extra event categories without (re-)training visual
classifiers.

5. Conclusion
Our solution towards bridging the semantic gap is to use

humans to provide semantics. In terms of an event hierar-
chy, built according to the FAST methodology, events pro-
vide the semantic glue which allows to compose the results
of prior visual analysis. The main idea is that these events
are not task or domain specific, but are settled once and for
all, similar to what library scientists do. A library system
never becomes wrong when new knowledge is being added.



This paper shows that logical representations often used
in knowledge based representations have a large potential:
(i) They allow to recognize events based on the presence
of the objects, a logical decision tree yielded 0.242 MAP,
where an SVM yields a score of 0.178 MAP. (ii) A deci-
sion tree yields human interpretative rules, which helps in
breaching the semantic gap. Since we generate semanti-
cally meaningful rules, there is no reason why these rules
cannot be generated from text or even be handcrafted by
the user. In the latter case, this means that our system will
be able to perform reasonably well when an event is ei-
ther queried and/or learned as textual description. (iii) Rep-
resenting events through their constituents yields a highly
flexible framework for event-based image retrieval. In par-
ticular we showed that we can do unseen event recognition
by using only 20 object detectors with a reasonable retrieval
rate for 118 event classes of 0.120 MAP.
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