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Abstract. Ontologies are fundamental tools used with different purposes and 

with different modalities in different areas and communities. To guarantee the 

right level of quality, the most widely used ontologies are man-made. However, 

developing and maintaining them turns out to be extremely time-consuming. 

For this reason, there are approaches aiming at their automatic construction 

where ontologies are incrementally extended by extracting and integrating 

knowledge from existing sources. However, these approaches tend to reach an 

accuracy that, according to the application they need to serve, cannot be always 

considered satisfactory. Therefore, when a higher accuracy is necessary, manual 

or semi-automatic approaches are still preferable. In this paper we present a 

technique and a corresponding tool, that we called SAM (semi-automatic map-

per), for the semi-automatic enrichment of an ontology through the mapping of 

an external source to the target ontology. As proved by our evaluation, the tool 

allows saving around 50% of the time required by purely manual approaches. 

Keywords: Ontologies; mapping; semi-automatic enrichment 

1 Introduction 

Ontologies are used in different communities, for different purposes and with dif-

ferent modalities [2]. Many definitions of ontology have been provided. Studer et al. 

[3], by extending the famous definition by Gruber [4], define it as a formal, explicit 

specification of a shared conceptualization. The notion of conceptualization refers to 

an abstract model of how people theorize (the relevant part of) the world in terms of 

basic cognitive units called concepts. Concepts represent the intention, i.e. the set of 

properties that distinguish the concept from others, and summarize the extension, i.e. 

the set of objects having such properties. Concepts basically denote classes of objects. 

For instance, the medicine domain can be theorized in terms of doctors, patients, body 

parts, diseases, their symptoms and treatments used to cure or prevent them. Explicit 

specification means that the abstract model is made explicit by providing names and 

definitions for the concepts. In other words, the name and the definition of the con-

cept provide a specification of its meaning in relation with other concepts. The speci-

fication is said to be formal when it is written in a language with formal syntax and 

formal semantics, i.e. in a logic-based language such as Description Logic [5]. The 

conceptualization is shared in the sense that it captures knowledge which is common 

to a community of people and therefore represents concretely the level of agreement 

reached in that community. By providing a common formal terminology (i.e. a vo-

cabulary of terms) and understanding of a given domain of interest, ontologies allow 



for automation (logical inference), support learning, reuse and favor interoperability 

across applications and people. When an ontology is populated with the instances of 

the classes, i.e. the individuals, it is called a knowledge base. In literature (see for in-

stance [5]) the terms TBox and ABox are often used to denote what is known about 

the classes and about the individuals, respectively. 

In order to guarantee the right level of quality, the most successful and widely used 

ontologies are man-made. We can mention for instance WordNet [6], Cyc [7], SUMO 

[8], Agrovoc1 and UMLS2. The latter two are domain specific ontologies, in agricul-

ture and medicine, respectively. However, maintaining them is extremely costly. 

Attempts have been made to overcome this limitation by constructing ontologies 

automatically. One of the best examples in this direction is provided by YAGO [9], an 

ontology where the skeleton, constituted by WordNet, is progressively enriched with 

knowledge automatically extracted from Wikipedia3. This is done by mapping Wik-

ipedia categories to WordNet synsets. Wikipedia categories can be seen as folders 

containing articles about individuals. For instance, the category Italian scientists con-

tains an article about Antonio Meucci. WordNet synsets are groups of words which 

are synonyms, i.e. words with the same meaning, and corresponding definition. For 

instance, the synset containing the words scientist and man of science is defined as a 

person with advanced knowledge of one or more sciences. Basically, each category 

can be seen as a class of individuals that is mapped to a concept in the ontology; with 

the mapping, the ontology is enriched with knowledge coming from the external 

source. This mapping has a pretty high claimed accuracy of 90-95%. 

As a matter of fact, computing the mapping between two ontologies is an essential 

step towards their integration [11]. Many projects have dealt with this problem. In the 

context of digital libraries this is a hot problem. We can mention for instance 

CARMEN4, Renardus [13] and OCLC initiatives [14]. One possible approach is to 

exploit mappings from a reference scheme to search and navigate across a set of satel-

lite vocabularies. For instance, Renardus and HILT [15] use the Dewey Decimal 

Classification (DDC). Some others prefer the Library of Congress Subject Headings 

(LCSH) [16, 17]. Both manual and semi-automatic solutions are proposed. Lauser et 

al. [18], with a focus on the agricultural domain, compare the two approaches and 

conclude that automatic procedures can be very effective but tend to fail when domain 

specific background knowledge is needed. Approaches to this problem have been 

proposed (see for instance [12]), but their accuracy still remains pretty low. It is there-

fore clear that automatic approaches typically require some form of manual validation 

[20], but limited work has been done in this direction and current interfaces to this 

purpose hardly scale with the size of the two ontologies [21, 22, 23]. A good survey 

of the state of the art in automatic tools for mapping computation can be found in 

[19], while the OAEI5 initiative annually provides an evaluation of these tools.  

For what said above, it is clear that when a very high accuracy is necessary purely 

manual or semi-automatic approaches, even if more time-consuming, are still prefera-

                                                           
1 www.fao.org/agrovoc/ 
2 http://www.nlm.nih.gov/research/umls/ 
3 http://en.wikipedia.org/ 
4 http://www.bibliothek.uni-regensburg.de/projects/carmen12 
5 http://oaei.ontologymatching.org/ 



ble. Following this line, in this paper we present a technique for the semi-automatic 

mapping of generic categories to ontology concepts. As part of the proposed solution, 

we developed a tool - that we called SAM - that, as proved by our evaluation, allows 

saving around 50% of the time required by purely manual approaches. 

The rest of this paper is organized as follows. Section 2 provides a motivating ex-

ample showing the mapping process and typical problems that need to be faced. Sec-

tion 3 describes the process of manual mapping. Section 4 presents the semi-

automatic mapping approach and how the steps are supported by the SAM tool. Sec-

tion 5 provides corresponding evaluation. Finally, Section 6 concludes the paper by 

summarizing the work done and outlining future work. 

2 A motivating example 

Consider the example in Fig. 1. It provides a small ontology where classes are rep-

resented with circles and individuals with squares; solid arrows represent relations be-

tween classes; dashed arrows represent relations between individuals or between an 

individual and corresponding class. Classes and relations between them constitute the 

TBox where the backbone is typically represented by is-a relations. Knowledge about 

the individuals forms the ABox where the relation between an individual and corre-

sponding class is typically instance-of. Similarly to WordNet, each class can be asso-

ciated a set of synonyms (here we do not provide definitions).  
 

 

Fig. 1 – A sample target ontology 

Suppose that our task is to extend the ontology by importing knowledge from the 

external source depicted in Fig. 2. As it often happens, the source is only partially 

structured, in the sense that none of its elements is explicitly marked as class, individ-

ual or relation. This makes the process of extracting knowledge approximate due to 

errors that might be made in interpreting them. 

Existing knowledge extraction techniques, for instance those at the basis of 

YAGO, rely on the identification of known terms in the phrases denoting category 

names, i.e. terms that already appear as labels of concepts in the ontology we want to 

extend. This is done by first identifying what in linguistics is known as the head of the 

phrase and by mapping it with a concept in the ontology. For instance, the head of 
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Italian scientists is scientist (in its root form) which is in the ontology. This allows 

mapping them and enriching the ontology with the individuals extracted from the ex-

ternal source, thus importing Antonio Meucci as instance of scientist.  
 

 

Fig. 2 – A sample external source 

However, especially if automated, during this process many mistakes may arise. 

The identification of the head, which in turn is typically based on part of speech 

(POS) tagging, is an approximated process with accuracy that varies according to the 

tool and the dataset used to train it. For instance, POS tagging reaches 97.24% accu-

racy on the Penn Treebank WSJ dataset [1]. However, mistakes are amplified when 

the POS is used to identify the head. Even if the head is correctly identified, there 

might be cases in which the head is not in the ontology and cases in which more than 

one sense for it is available. In the former case, YAGO enriches the ontology by link-

ing the category directly to the root of the ontology. For instance, since artist (the 

head of Spanish artists) is not in the ontology, artist is directly linked to entity (while 

a better choice would be person). In the latter case, YAGO as main heuristic selects 

the sense with higher rank in WordNet. Notice that the head of a phrase is always a 

common noun. The categories in which it is not present (for instance in the category 

Italy that is a proper noun) are simply ignored. The ontology that is obtained after the 

enrichment6 is shown in Fig. 3. 

 

 

Fig. 3 – The enriched ontology 

                                                           
6 Notice that here we imported only the head and the entities while in YAGO also the catego-

ries themselves are imported. 
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3 Manual mapping 

The steps that we follow to manually map categories from an external source to the 

target ontology and consequently enrich it are as follows: 

 Step 1 - Filtering out proper nouns: when the category represents a proper 

noun, it is marked as noise and filtered out. For example the category Crittend-

en County represents the name of a place in Arkansas, USA.  

 Step 2 - Identification of the head of the category: when the category is a 

single word, it is clearly selected as head. When the category is constituted by 

more than one word the head is manually selected. For instance, for the catego-

ry Iraqi Sunni Muslims the word Muslim is selected, while for the category 

racehorses trained in Italy the word racehorse is selected. In some cases a 

multiword has to be selected. For instance, for the category amusement parks 

in New England the multiword amusement park is selected. 

 Step 3 - Mapping the head to a concept: a suitable concept corresponding to 

the head is searched in the target ontology. Possible candidates are evaluated 

and one of them is selected trying to understand the most suitable one. If a 

good one is found the process is completed. 

 Step 4 - Creation of a new concept: if no suitable concept is found for the 

head of the category, an additional external vocabulary is used to determine a 

definition for it. A good definition should provide genus et differentia, i.e. it 

should provide information about the kind (the genus) and how it differs from 

the kind (the differentia). For example, pathologist can be defined as a scientist 

who studies parasites and their biology and pathology where scientist is the 

genus and the rest represents the differentia. 

 Step 5 - Identification of the parent: similarly to Step 3, the genus in the def-

inition is used to identify a suitable parent concept, if any, in the target ontolo-

gy. For example, scientist is a suitable parent for pathologist.  

 Step 6 – Enriching the target ontology: by using the mapping between the 

categories and the concepts in the ontology (either as direct mapping or 

through a parent) the ontology is enriched with new concepts and correspond-

ing individuals extracted from the external source. 

To evaluate the potential of this method, we took WordNet as target ontology and 

YAGO as external source. In fact, even if YAGO is already the result of a mapping 

between Wikipedia and WordNet, we found out that 15,480 Wikipedia categories 

were directly mapped to the root concept entity of WordNet. We applied the steps 

above to 2,000 of these categories randomly selected. The results are provided in Ta-

ble 1 and show that: 

 

 18% of the mapped categories are actually proper nouns 

 56% of the categories can be mapped to a more specific concept in WordNet 

 26% of the categories can be better mapped if a new concept is created and 

mapped to an existing parent concept in WordNet 

 



Categories 

analyzed 

Proper 

Nouns 

Concepts 

found 

Concepts 

created 

2000 358 1120 522 

Table 1. Results of the manual mapping 

4 Semi-automatic Mapping  

By applying the manual steps we can clearly achieve a very accurate mapping and 

enrichment, however at the price of a higher cost in terms of human resources and 

time needed. To overcome this limitation, we developed the SAM tool (implemented 

in Java) to assist the user (typically an ontology expert) and partially automate the 

necessary steps. The steps remain pretty much the same but the process is preceded by 

a preprocessing phase during which the system is trained in order to automatically 

recognize a category as proper noun or in alternative to identify its head. For each of 

the categories, the steps are as follows: 

 Step 1 - Filtering out proper nouns: if the system recognizes the category as 

a proper noun no head is computed. The user is free to accept the suggestion or 

proceed to the next step. 

 Step 2 - Identification of the head of the category: the system computes a 

head for the category. The user is free to accept the suggestion or provide an 

alternative one. 

 Step 3 - Mapping the head to a concept: since the system keeps track of pre-

vious choices made by the user, if the head of the category corresponds to a 

word which has been already processed in the past then the system suggests 

previously assigned concepts. To help the user deciding, it shows them in a list 

with corresponding categories. For instance, in processing the category Mexi-

can Americans and by automatically identifying American as head, it pops up 

the information that this head appeared in the previously processed category 

Jamaican Americans in the Unites States Military such that the same concept 

can be selected. If no similar cases are found or none of them is considered rel-

evant by the user, the system looks up in the target ontology to identify the 

concepts corresponding to the head. They are given in a list as shown in Fig. 4. 

The user can pick one of them or, if none is found or none of them is consid-

ered correct, move to the next step. 

 Step 4 - Creation of a new concept: the system queries an external vocabu-

lary to identify useful information that the user can utilize to determine a suita-

ble definition for the head. 

 Step 5 - Identification of the parent: similarly to Step 3, the genus of the def-

inition provided by the user is used to look into the target ontology for candi-

date concepts for the parent. The user is free to select one of the suggestions or 

reject them. If none of them is considered appropriate, the system asks for an 

alternative definition by coming back to step 4. A new concept is otherwise 

generated by the system and linked to the corresponding parent in the target 

ontology. 



 Step 6 – Enriching the target ontology: At the end of the process, the entities 

associated to the category are automatically used to populate the ontology.  

 

 

Fig. 4 – A snapshot of the SAM interface 

5 Evaluation 

To evaluate SAM we used Entitypedia [10] as target ontology and the 15,480 cate-

gories of YAGO that were directly mapped to entity as external resource. Wikipedia 

was used as external vocabulary at Step 4. Developed at the University of Trento in 

Italy, Entitypedia is a knowledge base with a precise split between individuals (the 

ABox), classes, attributes and relations (the TBox) and their lexicalization as proper 

nouns and common nouns, respectively. Entitypedia is progressively extended by col-

lecting knowledge from several sources, including WordNet. 

With the pre-processing, the 15,480 categories of YAGO were POS tagged by us-

ing the Stanford NLP POS tagger [1]. After the tagging, a set of patterns were identi-

fied in order to automatically recognize the head. This was done by looking at com-

mon noun plural tags (/NNS). 8,998 categories were found to have exactly one such 

tag; 292 of them with more than one; 6,190 of them do not have any. In the first case 

the corresponding word was selected as head; in the second and third case 7 and 33 

different patterns were identified respectively and for each of them a different choice 

was made also taking into account the mistakes made by the POS tagger. Patterns are 

also used to identify proper nouns. An example of pattern is: 

 

{JJ}+ {NNP}* {NNPS}+ 

 

where {JJ}+ indicates one or more adjectives, {NNP}* zero or more proper nouns 

and {NNPS}+ one or more common nouns in plural form. An example of category 

matching this pattern is Indian Zen Buddhists with Buddhist its head. By evaluating a 

sample of 500 categories we found that this approach leads to an accuracy of 98.4% 

(only 8 mistakes). 



The evaluation process comprises of 2 parts. During the first part, a trained user 

was given 200 YAGO categories randomly selected to be mapped manually. During 

the second part, the user was asked to use SAM to map 200 new YAGO categories 

different from the previous ones. By trained user we mean a user who was familiar 

with the manual mapping process as he was involved in the analysis phase described 

in Section 3 but not at all familiar with SAM. In other words, the user neither partici-

pated to the design nor to the implementation of the tool. The user was given precise 

evaluation guidelines including clear steps about the tasks to be done and was moni-

tored during the whole experiment. Table 2 provides some examples of mapped cate-

gories. In the table, the head of each category is given in bold followed by either the 

concept found in the target ontology or the definition of the new concept otherwise. 

 
Category: Futurologists 

Concept found: - 

Concept created: futurologist (scientist and social scientist whose 

speciality is to attempt to systematically predict the future, wheth-

er that of human society in particular or of life on earth in gen-

eral) 

 

Category: Rare diseases 

Concept found: disease (an impairment of health or a condition of ab-

normal functioning) 

Concept created: - 

 

Category: Landforms of Turkey 

Concept found: - 

Concept created: landform (is largely defined by its surface form and 

location in the landscape) 

 

Category: Germans of Polish descent 

Concept found: german (a person of German nationality) 

Concept created: - 

 

Category: Pharaohs of the Twenty-sixth dynasty of Egypt 

Concept found: pharaoh (the title of the ancient Egyptian kings) 

Concept created: - 

 

Category: Roman Catholic dioceses in the Holy Roman Empire 

Concept found: diocese (the territorial jurisdiction of a bishop) 

Concept created: - 

 

Category: Recipients of the Distinguished Service Cross (United 

States) 

Concept found: recipient (a person who receives something) 

Concept created: - 

 

Category: Sexually transmitted diseases and infections 

Concept found: disease (an impairment of health or a condition of ab-

normal functioning) 

Concept created: - 

 

Table 2. Examples of mapped categories 



With the evaluation, we took note of the number of proper nouns, concepts found 

and new concepts created as well as of the time taken. Figures for both the first and 

second part of the experiment are reported in Table 3. 

 
Mapping Manual Mapping  Semi-automatic  

Mapping 

Proper Nouns 11 12 

Concepts found  122 111 

Concepts created 67 77 

Amount of Time (minutes) 169.22 89.98 

Table 3. Manual and semi-automatic mapping compared 

As it can be noticed from the table, the distribution of the different cases is slightly 

different. For instance, during the semi-automatic mapping more concepts had to be 

created. As it can be noted from the description of the steps, these cases are those re-

quiring more time. Nevertheless, with the help of the tool the user was able to com-

plete the process in around half of the time. 

6 Conclusions 

In this paper we have shown that the process of manually enriching ontologies with 

knowledge coming from external sources can be significantly speed up, still guaran-

teeing a high level of accuracy, by using tools that interactively support the user dur-

ing the mapping phase. In fact, our experiments show that by using the SAM tool it is 

possible to save around 50% of the time needed by purely manual approaches. 

As future work we plan to conduct accurate usability studies on the user interface 

of SAM to identify critical parts that can be improved to facilitate or further speed up 

the process. The patterns used to identify proper nouns and the head of the categories 

will be tested against a broader set of categories to verify how the accuracy varies on 

unseen data and to eventually extend the number of patterns. SAM has been custom-

ized to work on YAGO (input) and Entitypedia (output), while a future extension may 

allow generalizing the input/output. 
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