
            

THRESHOLDS FOR MACROPARASITE INFECTIONS

ANDREA PUGLIESE AND LORENZA TONETTO

Abstract. We analyse here the equilibria of an infinite system of partial differ-
ential equations modelling the dynamics of a population infected by macropara-
sites. We find that it is possible to define a reproduction number R0 that satisfies
the intuitive definition, and yields a sharp threshold in the behaviour of the sys-
tem: when R0 < 1, the parasite-free equilibrium (PFE) is asymptotically stable
and there are no endemic equilibria; when R0 > 1, the PFE is unstable and
there exists a unique endemic equilibrium. The results mainly confirm what had
been obtained in simplified models, except for the fact that no backwards bifur-
cation occur in this model. The stability of equilibria is established by extending
an abstract linearization principle and by analysing the spectra of appropriate
operators.

1. Introduction

The fundamental role of parasites in structuring animal communities is now rec-
ognized by most scientists and textbooks [13]. Mathematical models have helped in
the understanding of the interactions among hosts and parasites, especially in find-
ing the conditions for host regulation, and for parasite establishment. In models
for the so-called micro-parasites (bacteria, viruses,. . . ), the latter is often expressed
in terms of the reproductive number R0, the expected number of infected hosts
produced by a single infected host in a completely susceptible host population [8]:
in fact, in most epidemic models, R0 > 1 is a necessary and sufficient condition
for the instability of the disease-free equilibrium, and a sufficient condition for the
persistence of pathogens.

A similar concept (see, for instance, [24]) has been introduced in several models
for the so-called macro-parasites (mainly helminths). However, the basic models
for macro-parasites consist of an infinite system of differential equations for which
stability conditions of parasite-free equilibria have not been rigorously established
so far. On the other hand, the stability conditions have been obtained in low-
dimensional approximate models [1, 22] which may give somewhat different results
according to the approximation [19, 25]; the analysis of an infinite-dimensional
model has been however performed by Kretzschmar [18] as further discussed below.

The starting point for modelling macroparasites is the model first presented by
Kostizin [16], in which the main variables are pi(t), the density of hosts carrying i
parasites.

Parasites in one host may increase from i − 1 to i because of new infections at
rate ϕ(t); may decrease from i+1 to i because of the death of one parasite: it will
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be assumed that each parasite dies (independently of the number of parasites in
the same host) at rate σ.

Hosts may also be born and die: it will always be assumed that newborn hosts are
parasite-free. It may also be assumed that hosts’ fertility is reduced by parasites:
the simplest consistent law is a multiplicative law [9], so that fertility of a host
carrying i parasites is reduced by a factor ξi with 0 < ξ ≤ 1. As for host mortality,
the simplest assumption is that hosts are subject to natural mortality plus an
additional rate α for each parasite harboured.

Under these assumptions, one obtains the following infinite system of differential
equations





d

dt
p0(t) = −(µ + ϕ(t))p0(t) + σp1(t) + b

+∞∑

i=0

pi(t)ξ
i

d

dt
pi(t) = −(µ + ϕ + i(α + σ))pi(t) + σ(i + 1)pi+1(t) + ϕpi−1(t) i ≥ 1.

(1.1)

where it has been assumed that natural birth rate b and death rate µ are indepen-
dent of host density.

Kreztschmar [18] has analysed this system under the assumption

ϕ(t) =
hP (t)

c + N(t)
(1.2)

where N(t) =
∑∞

i=0 pi(t) is the total density of hosts and P (t) =
∑∞

i=0 ipi(t) is the
total density of adult parasites. This form of ϕ can be obtained from a sub-model
that includes infection through free-living larvae [1].

She studied the system for c = 0 (discussed in Section 6) and c > 0. In the
latter case, she found a sufficient condition (necessary and sufficient when ξ = 1)
for the existence of equilibria with parasites. It is not easy to interpret biologi-
cally this condition. Moreover, it cannot be written as a reproduction number at
the parasite-free equilibrium, since no parasite-free equilibria exist; in fact, in that
model, the host population, in absence of parasites, grows (or decreases) exponen-
tially.

In order to have parasite-free equilibria, it is necessary to introduce density-
dependence in hosts’ fertility and/or mortality. For the sake of simplicity, here we
restrict ourselves to assume density-dependence in fertility, and density-independent
mortality. When a generic function for density-dependence is used, the method of
generating function, first used by Hadeler and Dietz [12] and then by Kretzschmar
[17, 18], seems not to be helpful. We therefore chose to use methods based on
perturbation of linear semigroups. Moreover, we found that including hosts’ age
in the model (as in [17]) does not really introduce big complications, and indeed
makes many expressions more transparent.
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Hence, we allow for age-dependent host fertility and mortality, and arrive at the
following system of differential equations:





∂

∂t
pi(a, t) +

∂

∂a
pi(a, t) = −(µ(a) + ϕ(t) + i(α + σ))pi(a, t)

+ σ(i + 1)pi+1(a, t) + ϕ(t)pi−1(a, t) i ≥ 0

p0(0, t) = ψ(N(t))

∫ +∞

0

β(a)
+∞∑

i=0

pi(a, t)ξi da

pi(0, t) = 0 i > 0

pi(a, 0) = hi(a) i ≥ 0

(1.3)

with the convention p−1(a, t) ≡ 0. Here pi(a, t) for i ≥ 0 and a in [0, +∞) denotes
the density of hosts of age a harbouring i parasites at time t.

Here again the infection rate ϕ(t) is given by (1.2), with

N(t) =

∫ +∞

0

+∞∑

i=0

pi(a, t) da and P (t) =

∫ +∞

0

+∞∑

i=1

ipi(a, t) da. (1.4)

As for demographic parameters, µ(a) is the natural death rate of hosts while α
is the additional death rate for each parasite carried. The fertility rate of hosts
carrying i parasites is given by ψ(N(t))β(a)ξi, where ψ is a decreasing function
that shapes the density dependence of fertility.

Under standard conditions (see, for instance, [14]), this system will have a
parasite-free equilibrium (PFE) at the hosts’ carrying capacity. The reproduc-
tion number R0 can be defined as the expected number, when hosts are at the
PFE, of successful infecting larvae produced in its life by a newly established adult
parasite. In this paper, we show that this quantity defines a threshold for this
model: if R0 > 1, there exists an equilibrium with a positive number of parasites,
and the PFE is unstable; if R0 < 1, the parasite-free equilibrium is asymptotically
stable for (1.3) (if it is so for the purely demographic equation), and there are no
positive equilibria.

The organization of the paper is as follows.
In Section 2 we state the exact assumptions on the vital rates. In Section 3

we study the existence of positive equilibria, and show that this is equivalent to
R0 > 1. In Section 4, we set this model in an abstract framework, stating the
well-posedness result obtained in [23]; furthermore, we prove, with the help of a
theorem due to Desch and Schappacher [5], a general linearization principle for
equilibrium stability in this class of equations. In Section 5 we go back to (1.3),
showing that the growth rate ω of the linearized, at the PFE, semigroup is negative
(hence the PFE is exponentially asymptotically stable) if R0 < 1; and is positive
(hence the PFE is unstable) if R0 > 1. Finally, in the last section we discuss the
biological interpretation of the results, their connection with the literature, and
some possible extensions.



             

4 ANDREA PUGLIESE AND LORENZA TONETTO

2. Preliminary assumptions

In order to perform a qualitative study of system (1.3) (as well as in [23] to prove
existence and uniqueness of solutions), we take the following assumptions (see for
instance [27]):

(H1) µ is a nonnegative, locally integrable function and there exist values µ−, µ+

such that 0 < µ− ≤ µ(a) ≤ µ+ for a.e. a ∈ [0, +∞)
(H2) β ∈ L∞[0, +∞), β(a) ≥ 0.

Concerning the function ψ decribing density-dependence in host fertility, we as-
sume

(H3) ψ ∈ C1([0, +∞)), ψ(0) = 1, ψ′(s) < 0, lim
s→+∞

ψ(s) = 0.

Note that ψ(0) = 1 is simply a normalization, since any constant can be inserted
in the function β.

Another condition is needed to obtain a parasite–free stationary solution of (1.3).
If p = (p0(a), p1(a), ...) is a stationary solution of (1.3) corresponding to ϕ = 0,
then pi(a) ≡ 0 for i > 0 and p0(a) = p0(0)π(a) where

π(a) = e−
∫ a
0 µ(s) ds.

Setting

R =

∫ +∞

0

β(a)π(a) da,

it can be easily seen that there is a stationary solution with ϕ = 0 if and only if
there exists K > 0 such that

ψ(K) =
1

R , (2.5)

that is, because of (H3), if and only if

(H4) R > 1.

If R ≤ 1, it is not difficult to show that the host population will decrease to 0 (see
for instance [14]) as t goes to ∞.

When (H4) holds, the stationary solution of (1.3) is given by
{

p̄0(a) = K∫+∞
0 π(u) du

π(a)

p̄i(a) = 0 i > 0
(2.6)

and will be called the ‘Parasite Free Equilibrium’, shortly PFE.
Note that p̄0(a) is not necessarily stable for the purely demographic equation

(the 0-th equation in (1.3) with pi ≡ 0 for all i 6= 0). Indeed, it is well known
[14, 26] that it will be locally asymptotically stable if and only if

(H5) There are no solutions with Re λ ≥ 0 of

1

R

∫ ∞

0

β(a)π(a)e−λa da +
ψ′(K)KR∫ ∞

0

π(a) da

∫ ∞

0

π(a)e−λa da = 1.
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Some sufficient conditions for (H5) have been found: for instance, (H5) holds
for any function ψ, if π(a) is a convex function [14], which is equivalent to µ′(a) ≤
µ2(a).

3. Existence of positive equilibria

We are interested in the existence of positive (or endemic) equilibria, i.e. equi-
libria with ϕ > 0.

Let (pi(a))i∈N be a stationary solution of (1.3). Then it solves




p′i(a) = −(µ(a) + ϕ + i(α + σ))pi(a) + σ(i + 1)pi+1(a) + ϕpi−1(a) i ≥ 0

p0(0) = L = ψ(N̄)

∫ +∞

0

β(a)
+∞∑

i=0

pi(a)ξi da

pi(0) = 0 i ≥ 1,
(3.7)

where

N̄ =
+∞∑

i=0

∫ +∞

0

pi(s) ds P̄ =
+∞∑

i=1

i

∫ +∞

0

pi(s) ds ϕ =
hP̄

c + N̄
(3.8)

are constant.
Therefore, disregarding the implicit boundary condition involving p0(0), it is

known (see [2] or [15]) that the population has a Poisson’s distribution at each a,

pi(a) = N(a)
(x(a))i

i!
e−x(a)

where N(a) is the total population of age a and x(a) is the mean number of
parasites carried by a host of age a. N(a) and x(a) are given by

x(a) =
ϕ

α + σ
(1− e−(α+σ)a) and N(a) = Lπϕ(a),

where

πϕ(a) = e−
∫ a
0 µ(u) du−α

∫ a
0 x(u) du (3.9)

represents the probability for an individual to survive to age a (note that the
dependence on ϕ is hidden in x(u), and that π0(a) = π(a)).

Hence for N̄ and P̄ we obtain

N̄ =

∫ +∞

0

N(a) da =

∫ +∞

0

Lπϕ(a) da = LG(ϕ),

P̄ = L

∫ +∞

0

x(a)πϕ(a) da =
Lϕ

α + σ
R(ϕ),

having set

G(ϕ) =

∫ +∞

0

πϕ(a) da and R(ϕ) =

∫ +∞

0

(1− e−(σ+α)a)πϕ(a) da. (3.10)
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Substituting these expressions in (3.8) one gets the equation

ϕ =
hLϕR(ϕ)

(α + σ)(c + LG(ϕ))
,

whence

L = L(ϕ) =
c

hR(ϕ)
α+σ

−G(ϕ)

which gives L, the density of newborn, as function of ϕ, for ϕ > 0.
In order to deal with quantities that have biological meaning we require L(ϕ) > 0.

This is true as long as hR(ϕ)
(α+σ)G(ϕ)

> 1. Since, as we will show below, R(ϕ)
G(ϕ)

is a

decreasing function, a necessary condition for the existence of a solution of (3.7)

is
h

α + σ

R(0)

G(0)
> 1, i.e.

h
∫ +∞

0
(1− e−(α+σ)a)π(a) da

(α + σ)
∫ +∞

0
π(a) da

> 1. (3.11)

Under condition (3.11) (below we will ask for a stronger one), hR(ϕ)
(α+σ)G(ϕ)

> 1 in

[0, ϕmax) where ϕmax is such that hR(ϕmax)
(α+σ)G(ϕmax)

= 1, if such a value exists, ϕmax =

+∞ otherwise.
Using the expression obtained for L(ϕ), the boundary condition of (3.7)

p0(0) = L = ψ(N̄)

∫ +∞

0

β(a)
+∞∑

i=0

Lπϕ(a)
(x(a))i

i!
e−x(a)ξi da

becomes, for ϕ ∈ [0, ϕmax),

1 = H(ϕ) (3.12)

where

H(ϕ) := ψ(L(ϕ)G(ϕ))S(ϕ) = ψ
( c

h
σ+α

R(ϕ)
G(ϕ)
− 1

)
S(ϕ) (3.13)

with

S(ϕ) :=

∫ +∞

0

β(a)πϕ(a)e−x(a)(1−ξ) da. (3.14)

We then see that each solution of (3.7) corresponds to a solution ϕ of H(ϕ) = 1
and vice versa.

The main result of this Section is the following.

Theorem 3.1. There exists one and only one positive equilibrium if and only if

R0 :=
hK

c + K

R(0)

(α + σ)G(0)
=

hK

c + K

∫ +∞
0

(1− e−(σ+α)a)π(a) da

(α + σ)
∫ +∞

0
π(a) da

> 1. (3.15)

For its proof we need a lemma.
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Lemma 3.2. If g(a) = a− 1−e−(σ+α)a

σ+α
, h(a) = 1− e−(σ+α)a and πϕ(a) is as in (3.9)

then∫ +∞

0

πϕ(a) da ·
∫ +∞

0

πϕ(a)g(a)h(a) da >

∫ +∞

0

πϕ(a)g(a) da ·
∫ +∞

0

πϕ(a)h(a) da.

Proof. Let u(a) = πϕ(a)h(a) and v(a) = πϕ(a). We have to prove that
∫ +∞

0

v(a) da ·
∫ +∞

0

u(a)g(a) da >

∫ +∞

0

v(a)g(a) da ·
∫ +∞

0

u(a) da. (3.16)

By a lemma in [11], (3.16) holds if g and u
v

are increasing. This is obvious from

the definitions of g and h, since u(a)
v(a)

= h(a).

of Theorem 3.1. From (3.13) we have

H ′(ϕ) = S ′(ϕ) ψ
( c

h
σ+α

(R(ϕ)
G(ϕ)
− σ+α

h

)
)
− S(ϕ) ψ′

( c
h

σ+α

(R(ϕ)
G(ϕ)
− σ+α

h

)
)
×

× ch

α + σ

1
(

h
α+σ

R(ϕ)
G(ϕ)
− 1
)2

d

dϕ

(R(ϕ)

G(ϕ)

)
.

(3.17)

We need to compute the derivatives of the functions G, R and S. To this aim,
we will use

∂

∂ϕ
πϕ(a) = −πϕ(a)

α

σ + α
(a− 1− e−(σ+α)a

σ + α
) = − α

σ + α
πϕ(a)g(a), (3.18)

and pass the derivatives inside the integrals because

| ∂

∂ϕ
πϕ(a)| ≤Mae−

∫ a
0 µ(u) du for some M > 0

for all ϕ > 0 and the RHS is a function integrable on (0, +∞). In particular,
substituting (3.18) in (3.10), and using Lemma 3.2, we obtain

R′(ϕ)G(ϕ)−R(ϕ)G′(ϕ) =− α

σ + α

∫ +∞

0

h(a)πϕ(a)g(a) da ·
∫ +∞

0

πϕ(a) da

+
α

σ + α

∫ +∞

0

h(a)πϕ(a) da ·
∫ +∞

0

πϕ(a)g(a) da < 0.

Therefore

d

dϕ

(R(ϕ)

G(ϕ)

)
=

R′(ϕ)G(ϕ)−R(ϕ)G′(ϕ)

G(ϕ)2
< 0.

Moreover

S ′(ϕ) = − α

σ + α

∫ +∞

0

β(a)πϕ(a)g(a)e−x(a)(1−ξ) da

− (1− ξ)

σ + α

∫ +∞

0

β(a)πϕ(a)h(a)e−x(a)(1−ξ) da < 0.
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Substituting these computations in (3.17) and remembering that ψ′(·) < 0 by
assumption (H3), we obtain H ′(·) < 0. This immediately yields uniqueness of the
solutions of (3.12).

As for the existence of solutions, we find lim
ϕ→ϕ−max

H(ϕ) = 0.

In fact, if ϕmax < +∞, then

lim
ϕ→ϕmax

H(ϕ) = lim
x→+∞

ψ(x)S(ϕmax) = 0,

because of assumption (H3). On the other hand, if ϕmax = +∞ we have lim
ϕ→+∞

S(ϕ) =

0 because of Lebesgue’s convergence theorem.
Therefore it follows that there exists one (and only one) ϕ > 0 such that H(ϕ) =

1 if and only if H(0) > 1 [and (3.11) holds].
We have

H(0) = ψ
( c

hR(0)
(α+σ)G(0)

− 1

)∫ +∞

0

β(a)π(a) da = ψ
( c

hR(0)
(α+σ)G(0)

− 1

)
R.

Recalling that ψ is a strictly decreasing function and ψ(K)R = 1, we see that
H(0) > 1 is equivalent to

c
hR(0)

(α+σ)G(0)
− 1

< K

i.e., after some algebra, (3.15).
Note finally that (3.15) implies (3.11), so that we can dispense with the latter.

4. Abstract setting and linearization principle

In order to study the stability of the PFE we follow the abstract approach already
described in [23], and use semigroup theory. To perform this, we transform system
(1.3) into an abstract Cauchy problem

{
p′(t) = A(p(t) + H(p(t))) + F (p(t))
p(0) = p0 (4.19)

on a suitable Banach space X. A natural choice for X is

X :=
{
p = (pi)i∈N : pi ∈ L1(0, +∞) ∀i ≥ 0,

+∞∑

i=1

i

∫ +∞

0

|pi(a)|da <∞
}

endowed with the norm

||p|| :=
∫ +∞

0

|p0(a)| da +
+∞∑

i=1

i

∫ +∞

0

|pi(a)| da.
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As for the operators A, F and H, we let A be the closure of the (closable) linear
operator A on X defined by

D(A) = {p ∈ X : pi ∈ W 1,1(0, +∞), pi(0) = 0 ∀i ≥ 0, and

there exists N ∈ N such that pi ≡ 0 for all i > N}
(Ap)i(a) := −p′i(a)− (µ(a) + i(α + σ))pi(a) + (i + 1)σpi+1(a) for i ≥ 0,

(4.20)

F is the non linear operator given by

(F (p))i =

h
+∞∑

i=1

i

∫ +∞

0

pi(a) da

c +
+∞∑

i=0

∫ +∞

0

pi(a) da

(pi−1 − pi), i ≥ 0 (4.21)

having set p−1 ≡ 0. F is defined on E where

E := {p ∈ X : c +
+∞∑

i=0

∫ +∞

0

pi(s) ds 6= 0}.

Finally H, the ‘multiplicative perturbation’ (see [7] for more details), is:

(Hp)0(a) = −ψ
(∫ +∞

0

+∞∑

i=0

pi(s) ds
)(∫ +∞

0

β(s)
+∞∑

i=0

pi(s)ξ
i ds
)
π(a),

(Hp)i ≡ 0 for i ≥ 1.

(4.22)

In this approach, the boundary condition (the second equation of (1.3) is “moved”
to the RHS of (4.19)). Indeed (p + Hp) ∈ D(A) if and only if the components of
p are in W 1,1(0, +∞) and p satisfies the conditions

p0(0) = ψ
(∫ +∞

0

+∞∑

i=0

pi(s) ds
)(∫ +∞

0

β(s)
+∞∑

i=0

pi(s)ξ
i ds
)

pi(0) = 0 for i ≥ 1

which are exactly the boundary conditions in (1.3).
Global existence and uniqueness of positive solutions of (4.19) have been proved

in [23] following [7]. Furthermore, we have established that the problem gives rise
to a nonlinear semigroup. The assumptions used are:

(H1) A : D(A) ⊂ X → X is the generator of a C0-semigroup etA on a Banach
space X

(H2) H : X → FA and F : X → X are locally Lipschitz continuous, i. e. for all
R > 0 there exist LR, KR > 0 such that

|H(p)−H(q)|FA ≤ LR||p− q||, ||F (p)− F (q)|| ≤ KR||p− q|| (4.23)

for all p, q ∈ X such that ||p||, ||q|| ≤ R
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(more generally, H and F could be defined only on an open set of X).
We have denoted by FA the Favard class of A (see [3] for details), i.e.

FA = {p ∈ X : lim sup
t→0+

1

t
||etAp− p|| < +∞}

which is a Banach space with the norm

|p|FA := ||p||+ lim sup
t→0+

1

t
||etAp− p||.

We recall (Theorem 3.4.3 in [3]) that FA is equal to the interpolation space (X, D(A))1,∞;K .
This theorem has been proved in [23]:

Theorem 4.1. Let A, H, F satisfy (H1), (H2). Then

a) for each p0 ∈ X there exists a unique (local) mild solution of (4.19) i.e. a
continuous function t→ p(t) satisfying the integral equation

p(t) = etAp0 + A

∫ t

0

e(t−s)AH(p(s)) ds +

∫ t

0

e(t−s)AF (p(s)) ds; (4.24)

b) if H and F are continuously differentiable and (p0 + H(p0)) ∈ D(A) then
p(t) is a classical solution of (4.19), i.e. p(t) + H(p(t)) ∈ D(A) for each
t ∈ [0, tmax), p(t) is differentiable and satisfies the equation (4.19) for each
0 ≤ t < tmax.

c) The mild solutions depend continuously on the initial datum and give rise to
a nonlinear semigroup T (t).

Moreover, when A, F and H are given by (4.20), (4.21) and (4.22), and (H1)-(H4)
hold, if p0 ≥ 0, the solutions are global, i.e. T (t) is defined for all t ≥ 0.

A crucial property (see [6]) for this proof that we will use in the sequel is the
following: if f ∈ C([0, T ]; FA) then

∫ t

0

e(t−s)Af(s) ds ∈ D(A)

and

||A
∫ t

0

e(t−s)Af(s) ds|| ≤M

∫ t

0

eω(t−s)|f(s)|FA ds (4.25)

for all 0 ≤ t ≤ T , where M ≥ 1 and ω ∈ R are such that ||etA|| ≤Meωt.
We are now interested in analysing the stability of the equilibria of the equation

(4.19). Indeed, since solutions of (4.19) are generally to be intended in the mild
sense (4.24), we give the following definition.

Definition 4.2. A point p∗ ∈ X is an equilibrium of the equation (4.24) if p∗

solves

p∗ = etAp∗ + A

∫ t

0

esAH(p∗) ds +

∫ t

0

esAF (p∗) ds (4.26)

for each t ≥ 0.
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Remark 4.3. Indeed p∗ is an equilibrium in the previous sense if and only if
p∗ + H(p∗) ∈ D(A) and A(p∗ + H(p∗)) + F (p∗) = 0.

In fact, the latter clearly implies the former. Conversely, let p∗ satisfy (4.26).
From

p∗ = etAp∗ + etAH(p∗)−H(p∗) +

∫ t

0

esAF (p∗) ds,

or, equivalently,

(etA − I)(p∗ + H(p∗)) +

∫ t

0

esAF (p∗) ds = 0,

we obtain

etA − I

t
(p∗ + H(p∗)) = −1

t

∫ t

0

eAsF (p∗) ds.

The right-hand side converges to −F (p∗) as t→ 0+ and thus the same is true for
the left hand side. This means that p∗ + H(p∗) ∈ D(A) and that A(p∗ + H(p∗)) +
F (p∗) = 0.

Let now p∗denote an equilibrium of (4.19). We wish to prove a linearization
principle for the asymptotic stability or instability of the equilibrium p∗. This
is well known (see, for instance, [26]) for semilinear equations of the type u′ =
Au + F (u). More generally, in [5] a linearization theorem is proved for nonlinear
semigroups; here, we show that we can apply this theorem to our case, simply
linearizing H and F .

Assume that H : X −→ FA and F : E ⊂ X −→ X are C1 and let H ′(p∗)
and F ′(p∗) be the Fréchet derivatives of H and F at p∗. For p ∈ X such that
p + H ′(p∗)p ∈ D(A) define

Bp∗p := A(I + H ′(p∗))p + F ′(p∗)p. (4.27)

We now show that Bp∗ generates a C0-semigroup which is the Fréchet derivative
of the nonlinear semigroup T (t).

Proposition 4.4. The linear operator Bp∗ defined in (4.27) generates a C0-semi-
group.

Proof. Since H ′(p∗) : X → FA is linear and continuous, the results in [4] about mul-
tiplicative perturbations can be applied and hence A(I + H ′(p∗)) is the generator
of a C0−semigroup. Moreover, since the additive perturbation F ′(p∗) is bounded
and linear, Bp∗ is the generator of a C0−semigroup etBp∗ (see, for instance, [10]
Ch. III).

Proposition 4.5. The operator Bp∗ generates the Fréchet-derivative at p∗ of the
nonlinear semigroup T (t), i.e. etBp∗ is such that

lim
q→p∗

||T (t)q − p∗ − etBp∗ (q − p∗)||
||q − p∗|| = 0,
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and the convergence is uniform for t ∈ [0, T ], T > 0.

Proof. Since p∗ is an equilibrium then p(t, p∗) := T (t)p∗ = p∗ for all t ≥ 0. For
q ∈ X set

w0
q := q − p∗, wq(t) = p(t, q)− p∗, and vq(t) = etBp∗w0

q .

We have to prove that

lim
||w0
q ||→0

||wq(t)− vq(t)||
||w0

q ||
= 0,

uniformly for t ∈ [0, T ], T > 0.
Using (4.26) one sees that

||wq(t)− vq(t)|| = ||A
∫ t

0

e(t−s)A[H(p∗ + wq(s))−H(p∗)−H ′(p∗)wq(s)] ds

+ A

∫ t

0

e(t−s)AH ′(p∗)(wq(s)− vq(s)) ds

+

∫ t

0

e(t−s)A[F (p∗ + wq(s))− F (p∗)− F ′(p∗)wq(s)] ds

+

∫ t

0

e(t−s)AF ′(p∗)(wq(s)− vq(s)) ds||

and hence by (4.25)

||wq(t)− vq(t)|| ≤M
(∫ t

0

eω(t−s)|H(p∗ + wq(s))−H(p∗)−H ′(p∗)wq(s)|FA ds

+

∫ t

0

eω(t−s)|H ′(p∗))|L(X,FA)||wq(s)− vq(s)|| ds

+

∫ t

0

eω(t−s)||F (p∗ + wq(s))− F (p∗)− F ′(p∗)wq(s)|| ds

+

∫ t

0

eω(t−s)||F ′(p∗))||L(X)||wq(s)− vq(s)|| ds
)
.

Now, for arbitrary η > 0

|H(p∗ + wq(s))−H(p∗)−H ′(p∗)wq(s)|FA ≤ η||wq(s)||
provided that ||wq(s)|| ≤ ε(η). Since the solutions of (4.19) depend continuously
on the initial datum, it is clear that ||wq(s)|| ≤ ε(η) for 0 ≤ s ≤ T , T > 0, if ||w0

q ||
is small enough.

By the same argument

||F (p∗ + wq(s))− F (p∗)− F ′(p∗)wq(s)|| ≤ η||wq(s)||
for 0 ≤ s ≤ T if ||wq(s)|| ≤ δ(η).

Moreover, it was shown in the proof of Theorem 2.2 in [23] that there exists
L > 0 such that

||wq(s)|| ≤MeLT ||w0
q || for 0 ≤ s ≤ T.
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Thus, if ||w0
q || is small enough, we have

||wq(t)−vq(t)|| ≤Mη

∫ t

0

eω(t−s)||wq(s)|| ds + M |H ′(p∗)|
∫ t

0

eω(t−s)||wq(s)− vq(s)|| ds

+ Mη

∫ t

0

eω(t−s)||wq(s)|| ds + M ||F ′(p∗)||
∫ t

0

eω(t−s)||wq(s)− vq(s)|| ds

≤ 2M2η

|ω| ||w
0
q |||eωT − 1|eLT

+ M(|H ′(p∗)|+ ||F ′(p∗)||)e|ω|T
∫ t

0

||wq(s)− vq(s)|| ds.

Finally, by Gronwall Lemma it follows

||wq(t)− vq(t)|| ≤
2M2η

|ω| ||w
0
q ||eLT |eωT − 1|eMe|ω|TT (|H′(p∗)|+||F ′(p∗)||).

Since η can be taken arbitrary, the thesis is proved.

Applying the results in [5] (slightly modified for the instability clause), we then
obtain the following

Corollary 4.6. If ω0(Bp∗) < 0, then p∗ is exponentially asymptotically stable for
(4.19). If ω0(Bp∗) > 0, X = X1 ⊕ X2 with X1 finite dimensional, Xi invariant
with respect to etBp∗ for i = 1, 2, and

min{Re λ : λ ∈ σ(Bp∗ |X1)} > max {ω0(Bp∗ |X2), 0}
then p∗ is unstable for (4.19).

5. Stability conditions

In this Section we will apply the results of the linearization principle proved in
the previous Section to the case where A, F and H are given by (4.20), (4.21) and
(4.22), and the equilibrium p∗ is the PFE. In order to compute ω0(Bp∗), we will
use repeatedly the following general theorem. In essence it says that for a block
triangular operator, one needs to compute only the growth rates of the diagonal
blocks. This would be trivial without the multiplicative perturbation; in this case
we have to add assumption (5.28).

Theorem 5.1. Let A0 and B1 be the generators of C0-semigroups on the Banach
spaces Y0 and Y1 respectively. Let Hi ∈ L(Yi, FA0) for i = 0, 1 and B10 ∈ L(Y1, Y0).
Then

(i) the operator B defined by

B

(
q0

q1

)
=

(
A0(q0 + H0q0 + H1q1) + B10q1

B1q1

)

is the generator of a C0-semigroup on Y = Y0 ⊕ Y1;
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(ii) if, letting I0 be the identity in Y0,

(I0 + H0)
−1 ∈ L(FA0 , FA0(I0+H0)) (5.28)

then

ω0(B1) < 0 and ω0(A0(I0 + H0)) < 0 ⇐⇒ ω0(B) < 0.

Before proving the theorem we need a lemma.

Lemma 5.2. Let A be the generator of a C0-semigroup on the Banach space X
and suppose that H ∈ L(X, FA), (I + H)−1 ∈ L(FA, FA(I+H)), f ∈ C([0, T ], FA),
g ∈ C([0, T ], X). Then the solution of

v(t) = etAv0 + A

∫ t

0

e(t−s)AH(v(s)) ds + A

∫ t

0

e(t−s)Af(s) ds +

∫ t

0

e(t−s)Ag(s) ds

(5.29)

is given by

v(t) = etA(I+H)v0 + A(I + H)

∫ t

0

e(t−s)A(I+H)(I + H)−1f(s) ds

+

∫ t

0

e(t−s)A(I+H)g(s) ds.

(5.30)

Proof. Since, by Theorem 4.1, (5.29) has a unique solution, we have only to show
that v(t) defined in (5.30) solves (5.29). To begin, let f ∈ C1([0, T ], FA). Using in
(5.30) the definition [6] of etA(I+H) we get

v(t) = etAv0 + A

∫ t

0

e(t−s)AHesA(I+H)v0 ds

+ A(I + H)

∫ t

0

e(t−s)A(I+H)(I + H)−1f(s) ds +

∫ t

0

e(t−s)A(I+H)g(s) ds.

and then, substituting esA(I+H)v0 with v(s) minus the rest of the RHS of (5.30),
we get

v(t) = etAv0 + A

∫ t

0

e(t−s)AH
[
v(s)− A(I + H)

∫ s

0

e(s−u)A(I+H)(I + H)−1f(u) du

−
∫ s

0

e(s−u)A(I+H)g(u) du
]
ds

+ A(I + H)

∫ t

0

e(t−s)A(I+H)(I + H)−1f(s) ds +

∫ t

0

e(t−s)A(I+H)g(s) ds

=v1(t) + v2(t)
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where, performing also some integration by parts,

v1(t) = etAv0 + A

∫ t

0

e(t−s)AH(v(s)) ds− A

∫ t

0

e(t−s)AH
[
esA(I+H)(I + H)−1f(0)

− (I + H)−1f(s) +

∫ s

0

e(s−u)A(I+H)(I + H)−1f ′(u) du
]
ds

v2(t) = etA(I+H)(I + H)−1f(0)− (I + H)−1f(t) +

∫ t

0

e(t−s)A(I+H)(I + H)−1f ′(s) ds

− A

∫ t

0

e(t−s)AH

∫ s

0

e(s−u)A(I+H)g(u) du ds +

∫ t

0

e(t−s)A(I+H)g(s) ds.

Now, using the definition of etA(I+H) in v2(t), we get

v2(t) =etA(I + H)−1f(0) + A

∫ t

0

e(t−s)AHesA(I+H)(I + H)−1f(0) ds

− (I + H)−1f(t) +

∫ t

0

e(t−s)A(I + H)−1f ′(s) ds

+

∫ t

0

A

∫ t−s

0

e(t−s−u)AHeuA(I+H) du (I + H)−1f ′(s) ds

− A

∫ t

0

e(t−s)AH

∫ s

0

e(s−u)A(I+H)g(u) du ds +

∫ t

0

e(t−s)Ag(s) ds

+

∫ t

0

A

∫ t−s

0

e(t−s−u)AHeuA(I+H)g(s) du ds.

Cancelling the terms in v1(t) and v2(t) with opposite signs, we get

v(t) = etAv0 + A

∫ t

0

e(t−s)AH(v(s)) ds + etA(I + H)−1f(0)− (I + H)−1f(t)

+

∫ t

0

e(t−s)A(I + H)−1f ′(s) ds

+ A

∫ t

0

e(t−s)AH(I + H)−1f(s) ds +

∫ t

0

e(t−s)Ag(s) ds

which becomes, via an integration by parts,

v(t) = etAv0 + A

∫ t

0

e(t−s)AH(v(s)) ds + A

∫ t

0

e(t−s)A(I + H)−1f(s) ds

+ A

∫ t

0

e(t−s)AH(I + H)−1f(s) ds +

∫ t

0

e(t−s)Ag(s) ds

= etAv0 + A

∫ t

0

e(t−s)AH(v(s)) ds + A

∫ t

0

e(t−s)Af(s) ds +

∫ t

0

e(t−s)Ag(s) ds

which is the thesis.
Using a density argument, the same can be proved when f ∈ C([0, T ], FA).
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of Theorem 5.1. Consider the operator

B̃ =

(
A0 0
0 B1

)
.

It clearly generates a C0-semigroup on Y = Y0 ⊕ Y1 while

H

(
q0

q1

)
=

(
H0q0 + H1q1

0

)

defines an operator H ∈ L(X, FB̃). Now a straightforward application of the
perturbation theorem by Desch and Schappacher [4] and then the classical result
about bounded perturbations prove the first statement.

About (ii), if ω0(B1) ≥ 0 or ω0(A0(I0 + H0)) ≥ 0 it is clear that ω0(B) ≥ 0: it
suffices to apply etB to (0, q1)

T or (q0, 0)T .
Suppose now that ω0(B1) < 0 and ω0(A0(I0 + H0)) < 0. There exist constants

M, η > 0 such that

||etB1 || ≤Me−ηt, ||etA0(I0+H0)|| ≤Me−ηt.

Set
(

q0(t)
q1(t)

)
= etB

(
q0

0

q0
1

)
.

We have q1(t) = etB1q0
1 while q0(t) solves

q0(t) =etA0q0
0 + A0

∫ t

0

e(t−s)A0H0(q0(s) ds

+ A0

∫ t

0

e(t−s)A0H1(q1(s)) ds +

∫ t

0

e(t−s)A0B10q1(s) ds.

Apply the previous lemma with f(t) = H1q1(t) and g(t) = B10q1(t). Hence

q0(t) = etA0(I0+H0)q0 +

∫ t

0

e(t−s)A0(I0+H0)B10(q1(s)) ds

+ A0(I0 + H0)

∫ t

0

e(t−s)A0(I0+H0)(I0 + H0)
−1H1(q1(s)) ds.

From ||q1(t)|| ≤Me−ηt||q0
1|| it follows that

||q0(t)|| ≤ Me−ηt||q0
0||+ M2

∫ t

0

e−η(t−s)||B10||L(X1,X0)e
−ηs||q1

1|| ds

+ M2

∫ t

0

e−η(t−s)||(I0 + H0)
−1||L(FA0

,FA0(I0+H0))||H1||L(X1,FA0
)e
−ηs||q0

1|| ds

≤ e−ηt
(
M ||q0

0||+ M2(||(I0 + H0)
−1|| ||H1||+ ||B10||)t||q1

1||
)
.

Thus the second statement is proved.
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We are now going to show that Theorem 5.1 can be applied to B = Bp̄. If now
A, F, H are the operators defined in (4.20), (4.21), (4.22) and p∗ = p̄, that is the
PFE, we have, recalling (2.5) and (2.6),

[H ′(p̄)u]0(a) = −
( ψ′(K)KR∫ +∞

0
π(s) ds

+∞∑

i=0

∫ +∞

0

ui(s) ds +
1

R

∫ +∞

0

β(s)
+∞∑

i=0

ui(s)ξ
i ds
)
π(a)

[H ′(p̄)u]i(a) = 0 if i > 0

[F ′(p̄)u]0(a) = −[F ′(p̄)u]1(a) = − hK

c + K

π(a)∫ +∞
0

π(s) ds

+∞∑

i=0

i

∫ +∞

0

ui(s) ds

[F ′(p̄)u]i(a) = 0 if i > 1.

Set

X = X0 ⊕X1, X1 = X1 ⊕X2

where

X0 = X1 = L1(0, +∞),

X2 =
{

q̄2 = (qi)i≥2 : qi ∈ L1(0, +∞),
+∞∑

i=2

∫ +∞

0

i|qi(a)| da <∞
}

and therefore X1 =
{
q̄1 = (qi)i≥1 : qi ∈ L1(0, +∞),

∑+∞
i=1

∫ +∞
0

i|qi(a)| da <∞
}
.

The operator B can be represented as follows:

B

(
q0

q̄1

)
=

(
A0(q0 + H0q0 + H1q̄1) + B10q̄1

B1q̄1

)
(5.31)

where

A0 : D(A0) =
{
q0 ∈ X0 : q0(0) = 0

}
−→ X0

(A0q0)(a) = −q′0(a)− µ(a)q0(a),

H0 : X0 −→ FA0 , H1 : X1 −→ FA0

(H0q0)(a) = −
( ψ′(K)KR∫ +∞

0
π(s) ds

∫ +∞

0

q0(s) ds +
1

R

∫ +∞

0

β(s)q0(s) ds
)
π(a),

(H1q̄1)(a) = −
( ψ′(K)KR∫ +∞

0
π(s) ds

+∞∑

i=1

∫ +∞

0

qi(s) ds +
1

R

∫ +∞

0

β(s)
+∞∑

i=1

qi(s)ξ
i ds
)
π(a),

B10 : X1 −→ X0

(B10q̄1)(a) = −h
∑+∞

i=1

∫ +∞
0

qi(s) ds

c + K
p̄0(a) + σq1(a),

B1 is the closure of

B1 : D(B1) −→ X1
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(B1q̄1)1(a) = −q′1(a)− (µ(a) + σ + α)q1(a)

+
h

c + K

( +∞∑

i=1

∫ +∞

0

iqi(s) ds
)
p̄0(a) + 2σq2(a)

(B1q̄1)i(a) = −q′i(a)− (µ(a) + σ + α)qi(a) + (i + 1)σqi+1(a) for i > 1

with

D(B1) =
{

q̄1 ∈ X1 : qi ∈ W 1,1(0, +∞), qi(0) = 0 ∀i ≥ 1, and

there exists N ∈ N such that qi ≡ 0 for all i > N
}

.
(5.32)

One can immediately verify that H0 and H1 take values in FA0 and that B10 is a
bounded operator.

We also note that B1 can be written as

B1

(
q1

q̄2

)
=

(
B11q1 + B21q̄2

B2q̄2

)

where

(B11q1)(a) := −q′1(a)− (µ(a) + σ + α)q1(a) +
h

c + K
p̄0(a)

∫ +∞

0

q1(s) ds (5.33)

with domain

D(B11) = {q1 ∈ W 1,1(0, +∞) : q1(0) = 0},

(B2q̄2)i(a) = −q′i(a)− (µ(a) + i(α + σ))qi(a) + σ(i + 1)qi+1(a), (5.34)

with domain

D(B2) =
{
q̄2 = (qi)i≥2 : qi ∈ W 1,1(0, +∞), qi(0) = 0 for each i ≥ 2

and there exists N such that qi ≡ 0 for all i > N
}
,

and

(B21q̄2)(a) =

h
+∞∑

i=2

i

∫ +∞

0

qi(s) ds

c + K
p̄0(a) + 2σq2(a).

Proposition 5.3. The closure of B1 generates a C0-semigroup on X1.

Proof. The closure of the operator B11 ⊕ B2 generates a C0-semigroup on X1 (as
for B2, see the proof given for the operator A in [23]). Since B21 gives rise clearly
to a bounded perturbation, the classical result on bounded perturbations can be
applied and the proof is achieved.

To apply Theorem 5.1 to our case we have to prove that the operators defined
above satisfy the assumption (5.28). Indeed, we have:

Proposition 5.4. I0 + H0 is invertible in X0 and (I0 + H0)
−1 belongs to L(X0)

and L(FA0 , FA0(I0+H0)).
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Proof. H0 can be rewritten as

(H0u0)(a) = −
(
ψ′(K)

RK∫ +∞
0

π(a) da

∫ +∞

0

u0(s) ds +
1

R

∫ +∞

0

β(s)u0(s) ds
)
π(a)

= C(u0)π(a)

where

C(u0) := −
(
ψ′(K)

RK∫ +∞
0

π(a) da

∫ +∞

0

u0(s) ds +
1

R

∫ +∞

0

β(s)u0(s) ds
)
.

Let v ∈ X0. If q0 + H0q0 = v then

q0(a) = v(a)− C(q0)π(a). (5.35)

Setting S := C(q0), S must then satisfy S = C(v − Sπ). Hence

S = −
(
ψ′(K)

RK∫ +∞
0

π(a) da

∫ +∞

0

(v(a)− Sπ(a)) da +
1

R

∫ +∞

0

β(a)(v(a)− Sπ(a) da
)

i.e.

S =

∫ +∞
0

v(a) da∫ +∞
0

π(a) da
+

∫ +∞
0

β(a)v(a) da

R2ψ′(K)K
.

Substituting this expression in (5.35) we obtain a unique expression for q0. It is
also easy to verify, retracing back the steps, that such a q0 satisfies q0 + H0q0 = v,
i.e. q0 = (I0 + H0)

−1v. We also easily obtain

||q0||X0 ≤
(

2 +
||β||∞

∫∞
0

π(a) da

R2|ψ′(K)|K

)
||v||X0 .

We also have (I0+H0)
−1 ∈ L(D(A0), D(A0(I0+H0))), where D(A0) and D(A0(I0+

H0)) are Banach spaces with the graph norm. Indeed,

x ∈ D(A0)⇐⇒ (I0 + H0)
−1x ∈ D(A0(I0 + H0))

and for x ∈ D(A0)

||(I0 + H0)
−1x||D(A0(I0+H0)) = ||(I0 + H0)

−1x||X0 + ||A0(I0 + H0)(I0 + H0)
−1x||X0

≤ ||(I0 + H0)
−1||L(X0)||x||X0 + ||A0x||X0

≤ max{||(I0 + H0)
−1||L(X0), 1}(||x||X0 + ||A0x||X0)

= max{||(I0 + H0)
−1||L(X0), 1}||x||D(A0).

This proves that (I0+H0)
−1 is continuous as an operator from D(A0) to D(A0(I0+

H0)).
Hence, we can apply Theorem 3.2.23 of [3] and obtain that (I0 + H0)

−1 is con-
tinuous from (X0, D(A0))1,∞;K to (X0, D(A0(I0 + H0)))1,∞;K which are exactly the
Favard classes stated in the thesis.

Now, the main result on the growth rate of B is an easy consequence of the previous
theorems and propositions.
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Proposition 5.5. For the operator B = Bp̄ it holds:

ω0(B) < 0⇐⇒ ω0(B11) < 0.

Proof. Theorem 5.1 can be applied to the operator B taking Y0 = X0 and Y1 = X1.
Moreover, we have ω0(A0(I0 +H0)) < 0. To prove this, we recall some facts (see

[26] for details). If A is a generator of a C0-semigroup T (t) and

ω1(A) := lim
t→+∞

t−1 log(α[T (t)]), (5.36)

where α is the measure of noncompactness, then

ω0(A) = max{ω1(A), sup
λ∈σ(A)

Re(λ)}.

Now, A0(I0 +H0) is a linear operator of age-dependent population, widely studied
in [26]. Since the required hypotheses on the fertility and death rates are satisfied
(assumption (H1) corresponds to (4.68) of [26]), Theorem 4.6 of [26] can be applied
to the operator A0(I0 + H0) ensuring that ω1(A0(I0 + H0) ≤ −µ−. Hence,

ω0(A0(I0 + H0)) < 0⇐⇒ sup
λ∈σ(A0(I0+H0))

Re(λ) < 0

where the latter is indeed a maximum.
If λ ∈ σ(A0(I0 + H0)),Reλ > −µ− then, by Theorems 4.7 and 4.6 of [26],

λ ∈ σP (A0(I0 + H0)), that is λ is an eigenvalue and, because of (H5), Reλ < 0
(in fact, the equation appearing in (H5) is precisely the characteristic equation of
A0(I0 + H0)).

From Theorem 5.1 it follows that ω0(B) < 0 if and only if ω0(B1) < 0. Further-
more, we can apply the same theorem to B1, setting H0 = 0, H1 = 0, A0 = B11,
B10 = B21 and B1 = B2. Now, it is easy to show, repeating exactly the proof given
for A in [23], that ω0(B2) < 0. In this way, we obtain that

ω0(B1) < 0⇐⇒ ω0(B11) < 0

and we have the thesis.

Proposition 5.6. It holds:

ω0(B11) < 0⇐⇒ R0 :=
hK

c + K

∫ +∞
0

e−(σ+α)u
∫ +∞

0
π(s + u) ds du∫ +∞

0
π(s) ds

< 1

Proof. Note that we can write

B11 = S + T,

where

(Sq)(a) := −q′(a)− (µ(a) + σ + α)q(a)

with D(S) = D(B11), and

(Tq)(a) =
h

c + K
p̄0(a)

∫ +∞

0

q(s) ds.
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T is a compact operator in X1, while S is again an operator of age-dependent
population. From Theorem 4.6 of [26] we have ω1(S) ≤ −(µ−+ α + σ). Moreover,
since T is compact, we have (Proposition 4.14 of [26])

ω1(S + T ) = ω1(S).

Summing up, we have obtained

ω0(B11) < 0⇐⇒ sup
λ∈σ(B11)

Re(λ) < 0. (5.37)

First of all, let us look for eigenvalues of B11. Let λ ∈ C and look for q ∈ D(B11),
q 6= 0, such that

(B11 − λ)q = 0.

Solving this explicitly we obtain

G(λ) = 1

where

G(λ) :=
h

c + K

∫ +∞

0

∫ a

0

p̄0(s)e
−
∫ a
s µ(τ) dτe−(α+σ+λ)(a−s) ds da

If G(λ) 6= 1, Re(λ) > −(µ−+α+σ), and p ∈ X1, we can obtain q = (B11−λ)−1(p)
as

q(a) =

∫ a

0

[
hM

c + K
p̄0(s)− p(s)

]
π(a)

π(s)
e−(σ+α+λ)(a−s) ds (5.38)

with

M = −
∫ +∞

0

∫ a
0

p(s)π(a)
π(s)

e−(α+σ+λ)(a−s) ds da

1−G(λ)
.

Hence, the spectrum of B11 in {Re(λ) > −(µ− + α + σ)} reduces to the solutions
of

G(λ) = 1. (5.39)

Since G(λ) is the Laplace transform of a nonnegative function, the following facts
can be easily obtained using the arguments in the proof of Theorem 1.5.1 of [14]:

- there exists at most one real root λ0 > −(µ− + α + σ) of (5.39);
- if λ0 exists, all the other roots λ satisfy Re λ < λ0; if there is no real root,

there are no complex roots in {Re λ > −(α + σ + µ−)};
- in any strip {a ≤ Re λ ≤ b} there is at most a finite number of roots;
- if R0 = G(0) > [=]1, then λ0 exists and λ0 > [=]0; on the other hand, if

R0 < 1, if there is a real root λ0, it satisfies λ0 < 0.

We then obtain sup
λ∈σ(B11)

Re(λ) < 0 if and only if R0 < 1, which, thanks to (5.37),

is the thesis.

Theorem 5.7. If R0 < 1, the Parasite Free Equilibrium is exponentially asymp-
totically stable.
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Proof. It follows straightforwardly from Propositions 5.5 and 5.6 and Corollary
4.6.

The final result is:

Theorem 5.8. If R0 > 1, the Parasite Free Equilibrium is unstable.

Proof. Again, it is sufficient to apply Corollary 4.6. Indeed, let X = Z1 ⊕ Z2 be
the spectral decomposition (see, for instance, Proposition 4.8 in [26]) relative to

σ(B) = {λ0} ∪ {λ0}C . Note that, since G′(λ0) < 0, one can immediately see from
(5.38) that λ0 is a first-order pole of (B − λI)−1, hence Z1 is one-dimensional.
Moreover, ω0(B|Z2) < λ0, as required and we can apply Corollary 4.6.

6. Discussion

We have found in the previous sections that R0 > 1 is the threshold condition for
this model: when R0 > 1 the parasite–free equilibrium is unstable and there exists
a (unique) positive equlibrium. When R0 < 1 there are no positive equilibria and,
if the parasite–free equilibrium is asymptotically stable for the purely demographic
equation (assumption (H5)), then it is stable also for the complete system.

It is then worth trying to give a biological interpretation to the condition. We
found in (3.15)

R0 =
hK

c + K

∫ +∞
0

(1− e−(σ+α)a)π(a) da

(α + σ)
∫ +∞

0
π(a) da

.

Using the identity 1−e−(α+σ)a

α+σ
=
∫ a

0
e−(α+σ)u du and then interchanging the order of

integration, we can write

R0 =
hK

c + K

∫ +∞

0

(
π(a)∫ +∞

0
π(u) du

·
∫ +∞

0

e−(σ+α)sπ(s + a)

π(a)
ds

)
da.

The factor in the inner integral represents the probability that a parasite that has
infected a host of age a will be alive s time afterwards (when the host has age
a + s). Hence, the inner integral is the expected life of a parasite that has just
infected a host of age a.

On the other hand, the factor in the outer integral represents the probability
density that a randomly chosen host (at the PFE) is of age a; averaging, with this
weight, over all ages a, the whole integral gives the average life-time of a parasite in
a randomly chosen host. Finally, because of the expression of the infection rate ϕ,
hK
c+K

gives the rate at which one parasite produces new infections when introduced
in a host population at its parasite-free equilibrium.

Therefore the fact that the PFE is unstable when R0 > 1 means that the para-
sites can establish into the host population if a single parasite produces more than
one infected host during its life.
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If µ(a) ≡ µ (constant), (3.15) becomes

hK

c + K
· 1

µ + α + σ
> 1 (6.40)

which is particularly easy to interpret. Indeed, this is exactly the condition found
for parasite establishment in the simplest low-dimensional approximations [1, 19,
22].

Note that different patterns were found in low-dimensional systems according to
the kind of approximation used [19, 25]. When approximating the parasite distri-
bution with a negative binomial of fixed aggregation parameter κ, the threshold
condition was always (6.40), independently of the value of κ. On the other hand,
when using a negative binomial with variable aggregation, the threshold condi-
tion is (6.40) only when infections occur only with a single parasite (as considered
here), a case that gives rise to very little aggregation. If one assumes “clumped
infections” (a host gets infected with a “parcel” of larvae in the same time), it was
found [22] that the value of R0 decreases when aggregation increases.

It would therefore be interesting to study the stability of the parasite–free equi-
librium in this model under the assumption of “clumped infections”. The lineariza-
tion theorem could be applied as well, but the technical difficulty in studying the
spectrum of the linearized operator would be much higher, however, since the op-
erator F ′(p̄) would have all components different from 0, and one could not exploit
the block triangular structure of (5.31). It seems however possible that one can
arrive at a threshold condition of the type R0 > 1 where R0 represents the average
number of infecting ‘parcels’ produced by one ‘parcel’ as was used in [20].

We proved here that for R0 > 1 there exists a positive equilibrium but we did
not state anything about its stability. From numerical simulations [25] it appears
that, when ξ = 1, the positive equilibrium is globally attracting for all values of
R0 > 1, while for 0 < ξ < 1 it is possible to find attracting periodic solutions.
This has been indeed proved for the low-dimensional approximations [1, 22], but
we seem to be very far from a conclusion for the system considered here. Local
asymptotic stability of the positive equilibrium could be again studied through
the linearization principle, but locating the roots of the resulting characteristic
equation seems hopeless. On the other hand, using abstract bifurcation theorems,
it can probably be proved that the positive equilibrium inherits the stability of the
parasite-free equilibrium: namely that, if (H5) is satisfied and R0 > 1 but small,
the positive equilibrium is stable.

One may ask what happens when (H5) is not satisfied. Then, In that case, the
purely demographic equation would generally have an attracting periodic solution
[14], although more complex behaviours cannot be excluded. One can probably
extend the techniques used here to cover the stability of periodic solutions (see
[5]) and write the condition for the stability of the parasite–free periodic solution
in terms of the average (over the cycle) number of infecting larvae produced by
an adult parasite being less than 1. It seems however unlikely that one arrives at
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an explicit condition, since there are no known explicit expressions for the purely
demographic cycles.

The functions used in (1.3) to describe age- and density-dependence have been
chosen merely for illustrative purposes; one may have more complex expressions
for the fertility rates:

β(a, S1(t), S2(t), . . . , Sn(t))

and analogously for µ, where Sk(t) are suitably weighted integrals of p(a, t) (see
[14]); the techniques would remain the same, although it is possible that, if µ
depends on population size, the computations of Section 3 about positive equilibria
would yield somewhat different results.

In this regard, it must be remarked that the results of Section 3 are rather unex-
pected. Indeed, Kretzschmar [18] found that, when there is no density-dependence,
the bifurcation structure is different when ξ = 1 and when ξ < 1. Assuming c = 0
in (1.2), she studied the bifurcations from the parasite–free exponential solutions
of (1.1):

p0(t) = ke(β−µ)t; pi(t) = 0 for i ≥ 1;

for ξ = 1 (no effect of parasites on host fertility), the branching of an exponen-
tial solution with parasites from the parasite–free exponential solution is always
supercritical, while for ξ < 1 the bifurcation may be (the exact condition is given
in that paper) subcritical. In the latter case, positive exponential solutions would
exist also below the threshold and would not be always unique, in contrast to
the results of this paper about equilibria. She also found that a similar pattern
(but with a different condition) holds for a two-dimensional approximation of that
model. The result was also confirmed for a three-dimensional (with variable aggre-
gation) approximation [22]. Moreover, it was found that it held also for equilibria
when density-dependence is assumed in the same two-dimensional approximation
[21]. Therefore we were surprised of the result of Section 3 that, independently of
the value of ξ, a positive equilibrium exists only if R0 > 1 and is always unique;
we do not understand fully the reasons for the difference between this result and
the previous ones.
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