UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

A LOAD BALANCING SCHEME FOR CONGESTION
CONTROL IN MPLS NETWORKS

Elio Salvadori and Roberto Battiti

November 2002

Technical Report # DI T-02-0095

Also: this work has been submitted to |EEE |SCC 2003

A Load Balancing Scheme for Congestion Control

in MPLS Networks

Roberto Battiti, Elio Salvadori

Universita di Trento, Dipartimento di Informatica e Telecomunicazioni
via Sommarive 14, 38050 Povo (TN), Italy

{battiti,salvador}@dit.unitn.it

Abstract

In this paper we develop a Load Balancing scheme for networks based
on the MPLS framework. The proposed algorithm (DYLBA - Dynamic
Load Balancing Algorithm) implements a local search technique where
the basic move is the modification of the route for a single Label Switched
Path. Experiments under a dynamic traffic scenario show a reduced re-
jection probability especially with long-lived connection requests, thus
providing a better use of resources when compared to existing constraint-

based routing schemes for traffic engineering in MPLS networks.

Keywords: MPLS, load balancing, local search, adaptive routing, traffic

engineering

1 Introduction

One of the most interesting applications of MPLS in IP-based networks is Traffic
Engineering (TE) [3]. The main objective of TE is to optimize the performance
of a network through an efficient utilization of the network resources. The opti-

mization may include the careful creation of new Label Switched Paths (LSPs)

through an appropriate path selection mechanism, the re-routing of existing
LSPs to decrease the network congestion and the splitting of the traffic between
many parallel LSPs.

The main approach to MPLS Traffic Engineering is the so-called Constraint
Based Routing (CBR). CBR is one key element of MPLS to alleviate resource
contention and to improve overall network utilization. Most of the algorithms
proposed for CBR are an adaptation of the well-known methods of QoS rout-
ing, that is the routing of traffic in an IP network based on connection traffic
parameters and link load information.

In this paper we present a new scheme to reduce the congestion in an MPLS
network by using a load balancing mechanism based on a local search method.
The key idea is to efficiently re-route LSPs from the most congested links in the
network, in order to balance the overall links load and to allow a better use of
the network resources.

The paper is organized as follows. Section 2 provides a brief overview of
Traffic Engineering for congestion control in MPLS networks. Then the con-
text and the motivations for our proposal are highlighted in Section 3, while
the proposed algorithm is explained in Section 4. The results are analyzed in

Section 5.

2 Traffic Engineering for Congestion Control in

MPLS networks

One of the crucial problems a Service Provider has to deal with is how to
minimize congestion in its network. In packet switching networks, congestion
is related to delays and therefore reducing congestion implies better quality of
service guarantees and reduced maximum traffic load on the electronic routers.
In networks based on circuit switching, reducing congestion implies that spare
bandwidth is available on every link to accommodate future connection requests
or to maintain the capability to react to faults in restoration schemes.

The IETF RFC 3272 classifies congestion control schemes according to the

following criteria [2]:

e Response time scale: it refers to the time scale for the congestion
management. It can be characterized as long when it refers to capac-
ity upgrades of the network carried out in weeks-to-months time scale,
medium (minutes, days) when it refers to response schemes relying on a
measurement system monitoring traffic distribution and network resources
utilization that subsequently provides feedback to online or offline traffic
engineering mechanisms (e.g. to set-up or to adjust some LSPs in MPLS
networks to route traffic trunks away from congested resources), short
(picoseconds, seconds) when it refers to packet level processing function
such as passive or active queue management systems (e.g. Random Early

Detection - RED).

e Reactive vs. preventive: reactive congestion management policies re-
act to congestion problems by initiating relevant actions to reduce them,
while preventive policies prevent congestion on the basis of estimates of

future potential problems (e.g. distribution of the traffic in the network).

e Supply side vs. demand side: supply side congestion management
policies increase the capacity available to traffic demand in order to de-
crease congestion (e.g. balancing the traffic all over the network), while
demand side congestion management policies control the traffic to alleviate

congestion problems.

The two best known mechanisms in the literature to deal with congestion in
MPLS networks are Constraint-Based Routing (CBR) and traffic splitting. The
first refers to the calculation of LSP paths subject to various type of constraints
(e.g. available bandwidth, maximum delay, administrative policies). The sec-
ond mechanism balances the network load through the optimal partitioning of
traffic to parallel LSPs between pairs of ingress and egress nodes. Its main
drawback is that packets from certain traffic flow going through different paths

can experience variable delays thereby leading to packet reordering problems.

Most of the proposed congestion control schemes are preventive: they allo-
cate paths in the network in order to prevent congestion, while only a few are

reactive which means they act only when problems start to appear.

2.1 Preventive schemes

Constraint-based routing schemes in MPLS networks have their roots in the
well-known Quality-of-Service routing problems in IP networks.

One of the most cited schemes, called MIRA (Minimum Interference Rout-
ing Algorithm) [9], is based on an heuristic dynamic online path selection al-
gorithm. The key idea is to exploit the a priori knowledge of ingress-egress
pairs to avoid routing over links that could “interfere” with potential future
paths set-up. These “critical” links are identified by MIRA as links that, if
heavily loaded, would make it impossible to satisfy future demands between
some ingress-egress pairs. The main weaknesses of this scheme are the com-
putation complexity caused by the maximum flow calculation to identify the
“critical” links and the unbalanced network utilization. As Wang et al. demon-
strated in [13] with two counterexample topologies (the “concentrator graph”
and the “distributor graph”), MIRA cannot estimate bottlenecks on links that
are “critical” for clusters of nodes. In addition, it does not take into account
the current traffic load in routing decisions [4]. Let’s consider the case where a
source-destination pair is connected by two or more routes with the same resid-
ual bandwidth. When a new LSP set-up demand arrives, one of these routes
will be chosen to satisfy the request. After this LSP has been set-up, all the
links belonging to the other routes become critical according to the definition
given above. This means that all the subsequent requests between the same
router pair will be routed over the same route while all the other routes remain
free thus causing unbalanced resource utilization. Moreover, when the LSPs are
set-up and torn-down dynamically, this scheme can lead to inefficiently routed
paths and to future blocking conditions over specific routes. This drawback
is common to all CBR schemes proposed in the literature, and is due to their

implicit preventive behavior.

2.2 Reactive schemes

Only a few reactive schemes have been proposed in the literature. Holness et
al. [7] propose a mechanism called Fast Acting Traffic Engineering (FATE) to
control the congestion in an MPLS network. The ingress LER (Label Edge
Router) and the core LSR (Label Switched Router) react on information re-
ceived from the network regarding flows experiencing significant packet losses,
by taking appropriate remedial action, i.e., by dynamically routing traffic away
from a congested LSR to the downstream or upstream underutilised LSRs. The
authors describe in detail the procedure for congestion detection and its impact
on the signalling mechanisms, but do not include any simulation about the real
impact of FATE on the network performance. Jiittner et al. [8] propose an
algorithm for the optimal routing of new LSPs based on the re-routing of an
already established LSP when there is no other way to route the new one. This
scheme is based on the idea that at higher network utilization levels, on-demand
CBR-based LSP setup can experience failures. In order to fit the new LSP de-
mands, instead of a global reoptimization of all LSP paths it is preferable to

proceed with a quick reoptimization of a single LSP.

3 Problem definition and system model

The considered network consists of n routers. A subset of ingress-egress routers
between which connections can be potentially set-up is specified.

Each connection request arrives at an ingress router (or at a Network Man-
agement System in the case of a centralized route computation) which deter-
mines the explicit-route for the LSP according to the current topology and to
the available capacities at the IP layer. To perform the explicit route calculation
and the load balancing algorithm, each router in the network (or the NMS in the
case of a centralized mechanism) needs to know the current network topology
and the residual capacities of each link, to identify the most congested ones.
It is assumed that every router in the MPLS network runs a link state routing

protocol with extensions for link residual bandwidth advertisements.

A connection request i is defined by the vector (i;,e;,b;), where i; and e;
specify the ingress and egress routers and b; indicates the amount of bandwidth
required. We assume also that requests for LSPs arrives one at a time without
knowledge of future demands. These LSPs will be routed through the network
according to some routing scheme. At each instant, one determines the virtual
load of a link by summing the bandwidth b; of the connections passing through
the link itself. The difference between the link capacity and the virtual load gives
the residual bandwidth. The minimum residual bandwidth on each link of a path
indicates how congested is the path itself. The minimum residual bandwidth
on each link of a network is called the available capacity of the network. This
value identifies the most congested links.

The Load Balancing problem can be defined as following:

LoAD BALANCING — Given a physical network and the traffic re-
quirements between every ingress-egress pair (bandwidth required
per connection), find a routing of the LSPs to maximize the avail-

able capacity in the network.

4 A Load Balancing Algorithm for Traffic Engi-
neering

The main goal of our scheme is to dynamically balance the utilization of network
resources in an MPLS network through a local search algorithm. We consider
algorithms that are based on a sequence of small steps (i.e., on local search
from a given configuration) because global changes of the routing scheme can
be disruptive to the network. A similar approach has been proposed in papers
about logical topology design and routing algorithms in optical networks [10,
12]. The idea is to minimize the congestion of the network by performing local
modifications. For each tentative move, the most congested link is located and
one of its crossing LSPs is rerouted along an alternate path.

Figure 1 gives the pseudo-code of the proposed Dynamic Load Balancing

Algorithm (DYLBA). The scheme is similar to the congestion control mechanism

DYNAMIC LOAD BALANCING ALGORITHM

<congestedLinkSet> <« calculateNetworkLoad (z)
bestCandidate Load < +0o
candidate RerouteSet <+ 0
for each link <cFrom,cTo> € congestedLinkSet
for each LSP; crossing <cFrom,cTo>

removePartialLoad (LSP;)

find an alternate path A_LSP; for LSP;

vl < load on the alternate path A_LSP;

if (vl = bestCandidate Load)

candidate RerouteSet < candidate RerouteSet U <A_LSP;, LSP;>
else if (vl < bestCandidateLoad)
bestCandidateLoad + vl

13. candidate RerouteSet < <A_LSP;, LSP;>
14. restorePartialLoad (LSF;)
15. if (candidate RerouteSet # ()
16. <A_LSP,,LSP,> < pickRandomElement (candidateRerouteSet)
17. reroute traffic from LSP, to A_LSP,

W 0 N O oW N

=
N = O

Figure 1: The Dynamic Load Balancing Algorithm

introduced in [5, 6], that is based on an IP context where connections are routed
through a destination-based routing. The parameter z indicates the threshold
for the residual bandwidth left on some link, and it shows when a link can be
considered congested for the traffic load level into the network. The algorithm
is triggered when the set-up of a new LSP causes the detection of network
congestion (when only % residual bandwidth is left on some link). First, a
set of alternate paths to reroute an LSP crossing one of the congested links is
found. Once the most promising move is selected, the rerouting of the traffic
over the alternate LSP is executed.

Let us define the notations and explain the meaning of the functions and vari-
ables. The most congested links, identified by the minimum available capacity
in the network, are collected in the set congestedLinkSet which is populated
through the function calculateNetworkLoad. The set candidateRerouteSet
contains paths that are candidate to replace those passing through the most
congested network links.

The first part includes the core of the algorithm (lines 4-14). We consider

each congested link in congestedLinkSet, identified by its endpoints (cFrom,

cT0). The internal loop collects the moves (i.e. the alternate LSPs) that lead
to minimize the overall network congestion. For each LSP crossing the link
(¢cFrom, ¢T0), one tries to reroute the path itself on an alternate route, accept-
ing the move even if the new path does not increase the available capacity of
the network. To do this, one temporarily removes the load of the LSP from the
current link, and calculate a new path starting from the LER which originated
the LSP itself, provided that the congested link is avoided. The best alternate
paths in terms of maximum load are collected into the candidate RerouteSet.
In particular the current minimum is stored in bestCandidate Load. If the load
obtained after this LSP reroute is equal to bestCandidate Load, then the alter-
nate LSP is added to the candidate set; if it is smaller, the candidate set is
reinitialized to the current alternate LSP and its load is stored as the new best.
At the end of the alternate path research, the partial load associated to the
original LSP is reallocated in order to allow the search of new alternate paths
for different LSPs.

In the second part of the algorithm (lines 15-17), if the resulting set candidate RerouteSet
is not empty then one random element is selected from it, and the rerouting is
effectively executed in the network.

Figure 2 shows an example of the rerouting process of our algorithm. Each
link of the depicted network has a capacity equal to 1. The bandwidth demand
for each LSP is a fraction of the link capacity. In (a), the link (cFrom, cTo) is
detected as congested, so the algorithm triggers the local search over the LSPs
that cross the link itself. The LSP whose alternate path guarantees the maxi-
mum available capacity in the network (i.e. the minimum network congestion)
is LSP;, so the ingress router I-LER reroute the related traffic over this new
path (see Figure 2 (b)).

This algorithm can be implemented in a centralized or distributed fashion. In
the centralized version an on-line dynamic scheme working on a short/medium
time-based scale (see Section 2) is executed by a Network Management System
that collects all the information about the network elements throughout the

network and acts as soon as the network congestion reaches “dangerous” levels

(@) ‘ 1)

Figure 2: The rerouting mechanism of the DYLBA algorithm: (a) when link

congestion is detected, (b) after the rerouting of the LSP;

(i-e. the residual bandwidth on the most congested link is only 5% of the link
capacity).

The distributed version of the algorithm is more effective for an MPLS net-
work but more complex than the previous one. In this case, each ingress router
LER calculates the LSP’s explicit route by using the dynamic information it can
derive from current link-state IGP routing protocols. By using this information,
one or more LERs could detect congestion conditions. These routers will need
to coordinate themselves with the help of some specific signalling protocol (like
RSVP-TE or CR-LDP) in order to decide who will run the algorithm to reroute
one of its LSPs away from the most congested links. Because these two opera-
tions are not considered in the current IETF drafts for MPLS, extensions have

to be evaluated for a distributed implementation.

Hle Views Analysis test-constraint-vouting.nam |

& J B J = J L | » ‘ 0282000 "_5"’" 2

11

e

g:r|n T
| 1 | | | | | 1
Autolayout: Ca 075 Cr [035 iterations [10 W Recale re-tagout | reset

Figure 3: The simulation model.

5 Simulation results

The performance of the proposed algorithm has been evaluated through two
different set of experiments. In both of them only a centralized version of the
proposed algorithm has been considered for simplicity. The first is focused on
the feasibility of DYLBA in a simulated MPLS network context by using an
extension of the network simulator (ns-2) called MNS [1, 11]. This simulator
has the advantage to reproduce all the signalling mechanisms needed to set-
up or tear-down LSPs in an MPLS network. The second set of experiments is
based on a simulation program implemented in C++ and used to verify the path
set-up rejection ratio of the proposed DYLBA algorithm compared with both
Minimum-Hop routing Algorithm (MHA) and Minimum Interference Routing
Algorithm (MIRA).

5.1 Feasibility of DYLBA in MPLS networks

Figure 3 represents the simulation topology, which has nodes 0, 1 and 2 as traffic
source hosts, nodes 10, 11 and 12 as traffic sink hosts and nodes 3-9 as LSR

nodes. The topology is a special case of the concentrator topology cited in [13]

10

where the MIRA scheme fails: in fact, all the links have capacity equal to 1
Mbps apart from the link between the LSR nodes 3 and 9, with capacity equal
to 2 Mbps. To further highlight the limitations of MIRA, the delay associated
to all links between nodes 4 and 8 is set to 20 msec, while for the other links it
is set to 10 msec.

The objective of these simulations is to prove the feasibility of the proposed
algorithm in MPLS networks and its advantages over the MIRA algorithm in

term of better usage of the network resources.

5.1.1 Network using MIRA scheme only

Example 1.

Let’s consider first the set-up of three LSPs with the same bandwidth in the
network depicted in Figure 3, where each LSR applies the MIRA algorithm to
obtain the constraint-based route. The resulting explicit route for each LSP

set-up in the specified order is:

Set-up order | bandwidth | from | to | Explicit route

LSP; 1 Mbps 2 12 4-3-9-8
LSP;, 1 Mbps 1 11 3-9
LSP; 1 Mbps 0 10 blocked

As shown in [13], according to the MIRA algorithm, the link between the nodes
3 and 9 is not a critical link for any individual ingress egress pair, while it when
all ingress-egress pairs are considered. This explains why the LSP; is routed

through the path 4-3-9-8 thus blocking the request LS Ps.

Example 2.
Another example showing the inefficiencies of MIRA is the following. The three
LSPs have now different values of bandwidth demand. The resulting explicit

route for each LSP set-up in the specified order is:

11

Set-up order | bandwidth | from | to | Explicit route | Average delay
LSP 0.6 Mbps 2 12 4-3-9-8 0.0667 sec
LSP;, 0.6 Mbps 1 11 3-9 0.03384 sec
LSP; 1 Mbps 0 10 | 3-4-5-6-7-8 0.13058 sec

This second example shows that MIRA could lead to bad optimized paths
throughout the network because, if LSP; is torn-down just after the set-up
of the LSP;, LSP; gets routed over an inefficient path, causing an unjustified
high end-to-end delay to the carried traffic (130.58 msec). This delay could
dangerously affect the overall QoS of the network, e.g. by imposing long routes

to LSP that could carry delay-sensitive traffic.

5.1.2 Network using DYLBA algorithm

To overcome the limitations highlighted in the previous section, we run the same
simulations on MNS where the proposed algorithm (DYLBA) is implemented
to properly balance the load throughout the MPLS network.

Example 1.
In the first example, the MIRA scheme failed to route the third LSP. By using
DYLBA, the set-up of the three LSPs produces these results:

Set-up order | bandwidth | from | to | Explicit route Notes
LSP, 1 Mbps 2 12 4-3-9-8
LSP, 1 Mbps 1 11 3-9 link 3-9 congested!
LSP, 1 Mbps 2 12 4-5-6-7-8 LSP rerouted
LSP; 1 Mbps 0 10 3-9

In fact, as soon as the link between nodes 3 and 9 gets congested, the al-
gorithm is executed, and an alternate path for LSP; is found. Once LSP; is
rerouted away from the link 3-9, LSP; can found its route over the shortest
path.

Figure 4 shows the throughput of the traffic collected by the destination
nodes 10, 11 and 12, corresponding to LS Py, LS P, and LS P3 respectively. The

12

1.2

0.8

0.6

Bandwidth (Mbps)

0.2

0.4

0.6

0.8 1

Simulation time (sec)

12

14

1.6

Figure 4: Example 1: the throughput for each LSP.

jitter suffered by the traffic carried by LSP; due to the path rerouting is lower

than 50 msec, while the end-to-end delay for each LSP is listed in the following

table:

Set-up order | bandwidth | from | to | min. delay | max. delay | average delay
LSP, 1 Mbps 2 12 | 0.06630 sec | 0.09812 sec | 0.09084 sec
LSP; 1 Mbps 1 11 | 0.03384 sec | 0.03448 sec 0.03447 sec
LSPs 1 Mbps 0 10 | 0.03389 sec | 0.03572 sec 0.03529 sec

Example 2.

In this example, the MIRA scheme proved to be not efficient because it badly

routed the LSP demands. With our DYLBA algorithm, the set-up of the three

LSPs produces

these results:

Set-up order | bandwidth | from | to | Explicit route Notes
LSP 0.6 Mbps 2 12 4-3-9-8
LSP; 0.6 Mbps 1 11 3-9 link 3-9 congested!
LSP 0.6 Mbps 2 12 4-5-6-7-8 LSP rerouted
LSP; 1 Mbps 0 10 3-9

13

The most interesting result of this example can be highlighted by considering

the end-to-end delay for each one of the LSP:

Set-up order | bandwidth | from | to | min. delay | max. delay | average delay

LSP, 0.6 Mbps 2 12 | 0.06630 sec | 0.09812 sec 0.09093 sec
LSP, 0.6 Mbps 1 11 | 0.03384 sec | 0.03544 sec 0.03499 sec
LSP; 1 Mbps 0 10 | 0.03384 sec | 0.03495 sec 0.03399 sec

By comparing the average delays for LSP; and LSP; when DYLBA algo-
rithm is applied with the same delays when only the MIRA scheme is working, it
can be noticed that the traffic flowing through LS P, increases its delay by 24.23
msec due to the rerouting of the path itself, while the traffic flowing through
LS P; decreases dramatically its delay by 96.59 msec. This is due to the capac-
ity left free by DYLBA so that, at the set-up time, LS P3 can cross its shortest

path through the network.

5.2 Path set-up rejection ratio

This section describes the set of experiments used to compare the performance
of DYLBA in term of path set-up rejection ratio with MHA and MIRA. These
experiments are carried out by using network topology of [9], see Figure 5. The
links are all bidirectional with a capacity of 120 units (thin lines) and 480 units
(thick lines). These values are taken to model the capacity ratio of OC-12 and
0OC-48 links. Path requests are limited only to the ingress and egress router
pairs (S1,D1), (S2,D2), (Ss5,D3) and (S3,D3).

All the experiments are carried out by considering the dynamic behavior of
our algorithm (DYLBA) compared with both MHA and MIRA routing schemes.
A critical parameter in our algorithm is the threshold used to detect congested
links (see the parameter x in Section 4 corresponding to the residual bandwidth
left on a link). LSPs arrive between each ingress-egress pair according to a
Poisson process with an average rate A, and the holding times are exponentially
distributed with mean 1/u. Ingress and egress router pairs for each LSP set-up

request are chosen randomly. The network is loaded with 10000 LSP set-up

14

Figure 5: The network topology used in the simulations.

requests.

Bandwidth A/p Min-Hop MIRA DYLBA (1%) DYLBA (5%)

1-19 100 917.2(55.2) 633 (56.7) 875 (46.6) 783.6 (43.3)
10—19 100 3173.4 (19.7) 3085.6 (23.7) 3146.4 (46.4) 3012 (27.4)
10-19 50 462.4(39.7) 98.6 (17.5) 415.2 (31.5) 283.2 (24)
10-19 300 7346.6 (17.8) 7314.2 (59.6) 7274 (92.8) 7144 (36.4)

Table 1: Number of blocked requests

Table 1 shows the behavior of our algorithm with two different values of
threshold z: 1% and 5%, and compares it with both Minimum-Hop routing
Algorithm (MHA) and Minimum Interference Routing Algorithm (MIRA). Each
element of the table reports the average number of rejected LSP over 5 run trials
and its relative standard deviation (within brackets).

The first set of experiments are carried out by considering that bandwidth de-
mands for LSPs are uniformly distributed between 1 and 19 units, and (A/u)=100.
In this case MIRA algorithm performs better than DYLBA for both threshold

values considered.

15

A second set of experiments considers bandwidth demands uniformly dis-
tributed between 10 and 19 units. In this case our algorithm performs better
than before, and by using a threshold of 5% rejects a fewer number of requests
compared to MIRA. This can be explained by considering that using LSPs with
bigger bandwidth requests, the rerouting of a single path from a congested link
rapidly decreases the overall network congestion. Furthermore, being the com-
putational complexity of our algorithm proportional to the number of LSPs
per congested link, the local search for the better LSP to reroute will last few
iteration cycles.

The last two sets of experiments have been carried out by considering two
different values of (A/p): 50 and 300. The smaller value means that an LSP
will stay for a shortest time in the network on average, and viceversa while
considering the larger value. From these two experiments it can be assumed
that MIRA algorithm performs better than DYLBA when the LSPs have short
life in the network on average, while our algorithm can improve the rejection

probability when the LSPs lives for long time in the network.

6 Conclusions

In this paper a new online algorithm to dynamically balance the load in an
MPLS network has been presented. The feasibility of the proposed algorithm
has been shown through an implementation in an MPLS network simulator [1].
Simulation results show that our algorithm can perform better than MIRA in
specific condition of network traffic, by reducing the LSP rejection probability
and the average end-to-end delays.

Further work is in progress to study the impact of the threshold over the al-
gorithm behavior. One possible direction is to dynamically modify the threshold
z according to the traffic load level into the network.

An interesting direction to extend our work is to consider the use of our
algorithm in the context of G-MPLS optical networks, where one can integrate

resource information at both the IP and the optical layers. Here the path rerout-

16

ing can be executed at the optical layer or at IP layer only. In fact, due to the
coarse and fixed wavelength granularity, rerouting at the WDM level only can-
not be an adequate tool for IP traffic load balancing. Moreover, the modification
of an entire lightpath route can dramatically impact the transported IP traffic

because a single lightpath could carries tens of LSPs.

Acknowledgments

We would like to thank Mikalai Sabel for the implementation of the C++ soft-
ware needed for the experimental tests of the algorithm and the comparisons

with both Min-Hop routing algorithm and MIRA.

References

[1] G. Ahn and W. Chun. Design and Implementation of MPLS Networks
Simulator (MNS). http://flower.ce.cnu.ac.kr/ fogl /mns/.

[2] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and
Principles of Internet Traffic Engineering. IETF RFC 3272, May 2002.

[3] D. O. Awduche and B. Jabbari. Internet Traffic Engineering using Multi-
Protocol Label Switching (MPLS). Computer Networks, (40):111-129,
September 2002.

[4] R. Boutaba, W. Szeto, and Y. Iraqi. DORA: Efficient Routing for MPLS
Traffic Engineering. Journal of Network and Systems Management, Special
Issue on Internet Traffic Engineering and Management, 10(3):309 —325,
September 2002.

[5] M. Brunato, R. Battiti, and E. Salvadori. Load Balancing in WDM Net-
works through Adaptive Routing Table Changes. In Networking, number
2345 in Lecture Notes in Computer Science, pages 289-301, Pisa - Italy,
May 2002. Springer Verlag.

17

[6]

[8]

[10]

[11]

[12]

[13]

M. Brunato, R. Battiti, and E. Salvadori. Dynamic Load Balancing in
WDM Networks. Optical Networks Magazine, 2003. In press.

F.Holness and C.Phillips. Dynamic Congestion Control Mechanism for
MPLS Networks. In SPIE’s International Symposium on Voice, Video and
Data Communications. Internet, Performance and Control Network Sys-

tems, pages 1001-1005, Boston - MA, November 2000.

A. Jiittner, B. Szviatovszki, A. Szentesi, D. Orincsay, and J. Harmatos.
On-demand Optimization of Label Switched Paths in MPLS Networks. In
Proceedings of IEEFE International Conference on Computer Communica-

tions and Networks, pages 107-113, Las Vegas - Nevada, October 2000.

K. Kar, M. Kodialam, and T.V. Lakshman. Minimum Interference Routing
of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Appli-
cations. IEEE Journal on Selected Areas in Communications, 18(12):2566
—2579, December 2000.

A. Narula-Tam and E. Modiano. Load balancing algorithms for WDM-
based IP networks. In Proceedings of INFOCOM 2000, pages 1010-1019,
Tel-Aviv, Israel, March 2000.

VINT Project. Network Simulator - V.2.1b9.
http://www.isi.edu/nsnam/ns/.

J. Skorin-Kapov and J. Labourdette. On minimum congestion routing in
rearrangeable multihop lightwave networks. Journal of Heuristics, 1:129—

145, 1995.

B. Wang, X. Su, and C.P. Chen. A New Bandwidth Guaranteed Routing
Algorithm for MPLS Traffic Engineering. In Proceedings of ICC, volume 2,
pages 1001-1005, New York - USA, 2002.

18

