UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

HAPLOTYPING POPULATIONS: COMPLEXITY AND
APPROXIMATIONS

Giuseppe Lancia, Cristina Pinotti and Romeo Rizzi

October 2002

Technical Report # DI T-02-0080

Haplotyping Populations: Complexity and Approximations

Giuseppe Lancia! Cristina M. Pinotti? Romeo Rizzi?

1. Dipartimento di Ingegneria dell’Informazione, Universita di Padova
lancia@dei.unipd.it
2. Dipartimento di Informatica e Telecomunicazioni, Universita di Trento
{romeo,pinotti}@science.unitn.it

Abstract

We study the computational complexity of the following haplotyping problem. Given
a set of genotypes G, find a minimum cardinality set of haplotypes which explains G.
Here, a genotype g is an n-ary string over the alphabet {4, B,—} and an haplotype h
is an n-ary string over the alphabet {4, B}. A set of haplotypes H is said to explain G
if for every g € G there are hy, ho € H such that h; + hy = g. The position-wise sum
hy + hs indicates the genotype which has a — in the positions where h; and h, disagree,
and the same value as h; and hy where they agree. We show the APX-hardness of the
problem even in the case the number of — symbols is at most 3 for every g € G. We give a
\/@ -approximation algorithm for the general case, and a 2¥~!-approximation algorithm
when the number of — symbols is at most k for every g € G.

Keywords: computational biology, SNPs, haplotyping, approximation algorithms.

1 Problem Description

With the completion of the sequencing of the human genome has come the confirmation that
all humans are almost identical at DNA level (99% and greater identity). Hence, small regions
of differences must be responsible for the observed diversities at phenotype level. The smallest
possible variation is at a single nucleotide, and is called Single Nucleotide Polymorphism,
or SNP (pronounced “snip”). Broadly speaking, a polymorphism is a trait, common to
everybody, whose value can be different but drawn in a limited range of possibilities, called
alleles. A SNP is a specific nucleotide, placed in the middle of a DNA region which is
otherwise identical for all of us, whose value varies within a population. In particular, each
SNP shows a variability of only two alleles. These alleles can be different for different SNPs.

Recent studies have shown that SNPs are the predominant form of human variation [3]
occurring, on average, every thousand bases. Their importance cannot be overestimated for
therapeutic, diagnostic and forensic applications.

Since DNA of diploid organisms is organized in pairs of chromosomes, for each SNP
one can either be homozygous (same allele on both chromosomes) or heterozygous (different
alleles). The values of a set of SNPs on a particular chromosome copy define a haplotype.
Haplotyping an individual consists in determining a pair of haplotypes, one for each copy

of a given chromosome. The pair provides full information of the SNP fingerprint for that
individual at the specific chromosome.

With the larger availability in SNP genomic data, the recent years have also seen the birth
of a set of new combinatorial and optimization problems related to SNPs [8, 12, 13, 6, 7.
In particular, since it is infeasible (or, at least, astronomically expensive) to perform the
complete sequencing of an individual’s genome as a routine experiment, most combinatorial
problems are related to haplotyping individuals without sequencing their genomes. Further-
more, even in the case of a fully sequenced genome, unavoidable errors in the data lead to the
definition of mathematical haplotyping problems such as the Single Individual Haplotyping
Problem, studied by Lancia et al. [8], Lippert et al. [9] and Rizzi et al. [12].

In this paper we consider the problem of haplotyping a population (i.e., a set of individuals)
from ambiguous genotype data. Genotype data provides, for an individual, only information
about the multiplicity of each allele at each SNP: I.e., we only know, for each SNP, if the
person is homo- or hetero- zygous. The ambiguity comes from heterozygous sites, since we
have to decide how to distribute the two allele values on the two chromosome copies, to
retrieve the haplotypes. For its importance (as we said, haplotyping from genotype data is
nowadays the only viable way) the Population Haplotyping Problem has been and is being
extensively studied, under many objective functions [4, 5, 6, 7].

Resolving (or ezplaining) a genotype g requires to determine two haplotypes such that,
if they are assumed to be the ones on the two chromosome copies, then, computing the
multiplicity of each SNP allele we obtain exactly the genotype g. The Population Haplotyping
Problem (PHP) is then the following: given a set G of genotypes, determine a set H of
haplotypes such that each genotype g € G is explained by two haplotypes h', h” € H.

Note that without specifying an objective to optimize, or a set of constraints on #, the
problem is trivial. A natural objective for (PHP) is to require that H has the minimum
possible cardinality. We are lead to this objective by a famous principle, the Mazimum
Parsimony, that has been adopted on innumerable occasions in computational biology. The
principle, known also as Occam’s razor, states that under many explanations of an observed
phenomenon, we should choose the one that requires the fewest assumptions. Here, we are
trying to determine what is the minimum number of different elements (haplotypes) that,
recombined in pairs among them during time, have given rise to a set of observed diversities
(genotypes). To our surprise (and to the best of our knowledge), this optimization problem
has never been studied before in the form stated.

The most closely related problem has been studied by Gusfield in [5, 6]. In this version
of the problem, the solution # is required to be obtained via successive applications of a rule
known as Clark’s rule. In 1990, the biologist A. Clark suggested a greedy rule [4] to resolve
genotypes. This rule starts from a minimal “bootstrap” set of haplotypes and uses them
to explain as many genotypes as possible, while greedily introducing new haplotypes when
needed. Hence, one can heuristically expect the final set H to have a “small” cardinality,
although it is easy to find examples for which this is not true. Gusfield studied the problem
of how to apply Clark’s rule in an optimal way, showing this problem to be APX-hard and
suggesting an Integer Programming formulation for its solution.

Finally, another version of (PHP) has been proposed for which it is required that H admits
a perfect phylogeny. The problem was shown to be polynomial [7].

1.1 Our results

In this paper we study the following version of (PHP): find a set H of haplotypes of smallest
cardinality to explain a given set G of m genotypes. The binary nature of SNPs leads to a
nice combinatorial problem. As described in the sequel, this problem is defined over a matrix
with elements in {0,1, —}.

We first address the complexity of the problem, showing, via a reduction from NODE-
COVER that the problem is APX-hard.

In light of this result, we then try to determine a good approximation algorithm. After
showing that it is easy to obtain a \/m-approximation, we obtain better approximation
algorithms, whose ratio depends on the number of “—” in the input. In particular, by using
a randomized algorithm, we show the following:

Las Vegas. Let k& be the maximum number of “-” characters in a genotype. We give a
randomized algorithm, which, assuming that OPT < m®, will return a feasible solution
M good With |H goeq| < 26421 1og 2m. The running time of the algorithm is a random variable
pretty much concentrated and with expected value bounded by a polynomial in the size of
the input instance.

Monte Carlo. We give a randomized algorithm, which will return almost surely (i.e. with
probability at least mT’l) a feasible solution Hgooq With |Hgooa| < 2542 Jog 2m OPT. The
running time of the algorithm is bounded by a polynomial in the size of the input instance.

Moreover, by using a linear programming formulation, we could more recently show the
following;:

LP formulation. Let k£ be the maximum number of “-” characters in a genotype. We give
a deterministic 2¢~!-approximation algorithm, which is based on Linear Programming.

We arrived at the third algorithmic solution listed here above only recently, and we
are at present trying to derive a combinatorial primal-dual algorithm. Concerning the two
randomized algorithms, in deriving the second algorithm from the first (in which we guess the
optimum value), we use an observation (Observation 16) that allows us to assume nothing
about the optimum. Basically, we do binary search of its value, while showing that this search
is still polynomially bounded. We wonder if this way of proceeding is somehow novel.

2 Preliminaries: SNPs, haplotypes and genotypes

A Single Nucleotide Polymorphism, or SNP, is a position in the genome at which some of
us have a certain base while the others have a different one. The two base values are called
alleles. Due to the binary nature of SNPs, we can encode, for each SNP, the two alleles with
the bits 0 and 1. Diploid genomes (such as the human genome) are organized into pairs of
chromosomes (a paternal and a maternal copy) which have nearly identical content and carry
(paternal and maternal) copies of the same genes. For each SNP, an individual is homozygous
if the SNP has the same allele on both chromosome copies, and otherwise the individual is
heterozygous. The values of a set of SNPs on a particular chromosome copy define a haplotype.
Here we give a simplistic example of a chromosome with three SNP sites.

Chrom. ¢, paternal: ataggtccCtatttccaggcgcCgtatacttcgacggghctata
Chrom. ¢, maternal: ataggtccGtatttccaggecgeCgtatacttcgacgggTctata

Haplotype 1 — C C A
Haplotype 2 — G C T

The individual is heterozygous at SNPs 1 and 3 and homozygous at SNP 2. The haplo-
types are CCA and GCT. Under a given encoding of the alleles, these two haplotypes could be
represented, e.g., as the binary strings 010 and 111. In this encoding, a “0” at SNP 1 stands
for C and a “1” at SNP 1 stands for G.

Haplotype data is particularly sought after in the study of complex diseases (those affected
by more than a single gene), since it can give complete information about which set of
gene alleles are inherited together. However, polymorphism screens are conducted on large
populations where it is not feasible to examine the two copies of each chromosome separately,
and genotype data rather than haplotype data is usually obtained. A genotype describes
the multiplicity of each SNP allele for the chromosome of interest. At each SNP, three
possibilities arise: either one is homozygous for the allele 0, or homozygous for the allele 1,
or heterozygous (a situation that we shall denote with the symbol -). Hence a genotype is a
string over the alphabet {0, 1, —}, where each position of the letter - is called an ambiguous
position. We say that a genotype g is resolved (or ezplained) by the pair of haplotypes {h, ¢}
if, for each SNP j, g[j] = 0 implies h[j] = ¢[j] = 0, g[j] = 1 implies h[j] = ¢[j] = 1, and
glj] = — implies h[j] # q[j]. A genotype g is said compatible with (or good for) a haplotype
h if h agrees with g at all unambiguous (i.e., non “—") positions.

The Population Haplotyping Problem (in its Mazimum Parsimony version) is the follow-
ing: given a set G of m genotypes over n SNPs, find a set H of haplotypes such that each
genotype is resolved by one pair of haplotypes in H, and the cardinality of H is minimum.

3 Terminology

A genotype is a finite string over the alphabet ¥3 = {0,1, —}. An haplotype is a finite string
over the alphabet o = {0,1}. In the sequel, we assume all given strings to have the same
length n.

When h; and hy are haplotypes, then their sum g = hy + ho is a genotype and is defined

as follows: o . _
g[z] _ { hl[’l] lf hl[’l] = hg[’L] (’L _ 1’ .

otherwise n)

We are given as input a population, that is, a family G of genotypes. We will consider
that G is encoded by means of an m X n matrix M with entries in X3 = {0,1,—}, where m
denotes |G|.

We say that a set H of haplotypes explains G if for every g € G there exist hi,ho € H
such that g = h1 + he. We consider the problem where, given G, we want to find an H which
explains G and with minimum possible size.

Problem 1 (HAPLOTYPING POPULATION). Given a family G of genotypes, find a
manimum size family H which explains G.

In the following, ¢ denotes the minimum size of an H which explains G.

Fact 2 (first upper bound: ¢ < 2m). Given any input family G, there always exists an H
which explains G with |H| < 2|G|.

Proof: Where g is a genotype, let hy be the haplotype which is 0 whenever g is 0 and 1
in all other positions. Let hy be the haplotype which is 1 whenever g is 1 and 0 in all other
positions. Then g = hg + h;. O

Fact 3 (first lower bound: m < @) Assume that H ezplains G. Then |G| < (|72'L|),
that is, |G| < %

In other words, ¢ > v/2m.
Corollary 4. Combining Facts 2 and 3 we get a /m-approzimation algorithm.

Proof: The proof of Fact 2 is constructive. |

In fact, any poly-time algorithm which yields a feasible solution H can be turned into a
v/m-approximation algorithm (without worsening the quality of H) by the following obser-
vation. (Where a family # is said to be a minimal family which explains G if H explains G
and there exists no H' C H that explains G).

Observation 5. Let H be a minimal family which explains G. Then |H| < 2|G|.

4 NP-completeness proof

An haplotype h is said to be good for a genotype g when there exists an haplotype h such
that g = h + h. In other words, h is good for g when h[j] = g[j] whenever g[j] € {0, 1}.

In this section, we give a simple APX-hardness proof which holds already when we have
at most three “-” symbols per row.

The reduction is from NODE COVER, where we are given as input an undirected graph
G = (V,E) and we are asked to find a node cover X C V of smallest possible cardinality.
NODE COVER is known [11, 1, 2] to be APX-hard already for A(G) < 3, that is, even when
the input instances are restricted to be graphs of degree at most three. Our arguments also
involve a classical theorem on node covers by Nemhauser and Trotter [10].

4.1 NODE COVER: the theorem of Nemhauser and Trotter

Let G = (V, E) be an undirected simple graph on 7 nodes and m edges. A node cover is a
vertex-set X C V such that every edge in E has at least one endpoint in X. Denote by Ag
the maximum degree of a node and by og the minimum size of a node cover in G.

As usual, when S C V, then G[S] denotes the subgraph of G induced by S, i.e. G[S] =
(S,{uv € E : u,v € S}). Moreover, when X is a node cover of G, then we say that X covers
G. Here follows a classical theorem on node covers by Nemhauser and Trotter [10].

Theorem 6 (Nemhauser and Trotter [10]). Given a graph G = (V, E), introduce a new
node v' for every node v € V. Let V! = {v' :v €V} and F = {wv’ : uv € E}. Consider the
bipartite graph H = (V,V'; F) on 270 node and 27 edges. Let X be a minimum node cover
of H. LetY ={v :ve X AN vV eEX}and Z={v :ve€ XV v € X}. Then the following
properties hold:

(1) if a set D C Z covers G[Z] then DUY covers G;

(ii) there ezists an optimum cover of G which contains Y;

(iii) og(z > |21/2

Since a minimum node cover on a bipartite graph can be found in polynomial time, then
in virtue of the above theorem we can always assume that og > 7/2. (Indeed, if Y # (), then
we can reduce the given instance by (ii). When eventually Y = (), then Z = V or again we
can reduce the given instance by (i). When eventually Y = () and Z =V, then o > 7/2 by
(iii).) This inequality will be crucial in the derivation of our bounds.

4.2 APX-hardness proofs based on NODE COVER

Given a graph G = (V, E), we construct a matrix M with m + 7 rows (genotypes) and 7
columns. The rows will be indexed by the elements in V' U E and the columns will be indexed
by the elements in V' U {s}, where s is a special symbol. The entries are defined by the
following equations.

Mlu,u] =0 for every u € V
Mlu,v] =1 for every u,v € V with u £ v
Mlu,s] =0 foreveryu eV

Mle,v] = — for every v € V and e € d(v)
Mle,v] =1 for every v € V and e € E not incident at v
Mle,s] = — foreveryec E

Lemma 7. Let X be a node cover of G. Then there exists an Hx explaining M with
|Hx| =N+ |X|

Proof: For every v € V, denote by h, the haplotype which is everywhere 1 except in
column v, where hy[v] = 0. Let X be a node cover of G. Consider the family Hx which
contains as haplotypes the 7. genotypes (rows) of M indexed by elements in V' and all the
|X| haplotypes of the form h,, v € X. Note that H x explains M. O

Lemma 8. Let H be an optimal haplotype family explaining M and such that the number of
0’s in haplotypes in H is minimum possible. Then G admits a node cover Xy with |Xy| =
|H| — 7.

Proof: For every v € V, denote by h, the haplotype which is everywhere 1 except in
column v, where h,[v] = 0. Let H be an optimal haplotype family explaining M. Then H
contains as haplotypes all the 7 genotypes (rows) of M indexed by elements in V', since these

“_»

do not contain any symbol. At this point we can observe that any single genotype in M
is either indexed by V (and hence is already explained), or is indexed by E (and hence can
be explained by introducing a single haplotype of the form h,, where v € E. Therefore, the
lemma, follows once we have proven the following claim.

Claim. Let h be an haplotype in A which is good for more than one genotype in M
indexed by E. Then h is of the form h, for some v € V.

Proof: Clearly, h contains at most three 0’s, otherwise A would not be good for any
genotype in M. Actually, h contains at most two 0’s, since otherwise h would be good for at
most one single genotype in M indexed by E (we can clearly assume that G is simple). The
same argument actually shows that if h has precisely two 0’s, than one 0 is in the column
indexed by s, and assume that the other 0 is in the column indexed by node v. But then all
genotypes in M indexed by E and compatible with A would all correspond to edges incident at
v and would hence be all explained by h, plus the genotypes indexed by V which are anyhow
in H. Hence, H \ {h} U {h,} would also explain M and would contradict the minimality
assumptions for #.

Assume h has no component set to 0, that is, h = 1. Note however that haplotype
1 would combine only with haplotypes A’ which have precisely three 0’s, two of which in
correspondence of the endnodes of some edge e in E. Moreover, as mentioned above, h'
could not explain any genotype other than the one indexed by e. We can then remove h from
H if we also replace each such A’ in H with an haplotype h,, with v endpoint of ey. This
contradicts the optimality of H.

Finally, assume that h has precisely one component set to 0. But then this component
is not s, since otherwise this haplotype would combine only with haplotypes h’ which have
precisely two 0’s in correspondence of the endnodes of some edge ejs in E. Moreover h’ could
not explain any genotype other than the one indexed by e. We can then remove h from
H if we also replace each such A’ in H with an haplotype h,,, with v endpoint of ey. This
contradicts the optimality of . O

Lemma 9. Assume to have a (1 + €)-approzimation algorithm for HAPLOTYPING which
holds on the restricted kind of instances involved in the reduction above proposed. Then one
can develop a (1 4 3¢)-approzimation algorithm for NODE COVER.

Proof: Assuming the minimum node cover has size OPT, then there exists an Hp; ex-
plaining M with [Hp¢| = 7 + OPT. By running the (1 + €)-approximation algorithm for
HAPLOTYPING we are hence guaranteed to find a solution H' with || < (2+OPT)(1+¢).
And out from this H' we have shown how one can find (in polynomial time) a node cover X
of G of size at most

|X| < (A4+OPT)(1+¢)—# < ea+OPT +¢ OPT < 2¢€OPT+OPT+¢ OPT = (1+3¢) OPT.

5 2Fl.Approximation algorithms from an LP formulation

Denote by ﬂg, or more compactly by ﬁ, the set of those haplotypes which are compatible
with some genotype in G. We associate a binary 0/1 variable z, to every h € H. The intended

meaning of z; =1 is that h is taken into the solution, whereas if z; = 0 then A is not taken
into the solution Fix any total order on # and denote by P the set of those pairs (h;, hy) with
hi,ho € ’}:[, hi < hs. Introduce a binary 0/1 variable yp, p, for every (hi,hs) € P. Moreover,
for every g € G, let Py := {(h1,h2) € P |h1 + hy = g}.

Consider the following IPL formulation of the HAPLOTYPING problem.

opt(G) := min});, oy
E(hl,hz)ePg Yhi,he > 1 for every g in G
Thy = Yhy,hy for every (hy,ho) € P (1)
 Thy > Yhy,hy for every (hy,ha) € P
z € {0,1}*, y € {0,1}7

Let us report the dual of the fractional relaxation of the above LPI 1.

opt' := max} ;A

Z(hl,hg)e’P:he{hl,hg}(ahl,hz + Bha,ny) <1 for every h in H (2)
Ag = Qhy by — Bhihe < 0 for every (hi, ho) € P,
Ao, 820

Which can be more conveniently rewritten as follows.

opt' == max > o9c6 N9
Dk ha)ePihe{hn,ha} Thihe < 1 for every hin H 3)
Ag = Yhihy <0 for every (hi, hy) € Py
Av>0
Assume that every genotype g € G contains at most £ “-” symbols. Then the number of

variables and equations in the above ILP is polynomial in the size of the input instance and
we can solve the LP relaxation to optimality in polynomial time. Assume now to perform
the following two actions in their sequential order:

1. scale up the value of every variable by a factor of 281,

2. if the value of a variable is at least 1, then round it to 1, otherwise set the value of that
variable to 0.

It is easy to check that operation 1. will not destroy feasibility of the solution at hand.
Moreover, the value of the objective function will scale up by precisely a factor of 25=1. Tt
is easy to check that operation 2. will not destroy feasibility of the solution at hand. This
is becouse, after operation 1., the left terms of the first kind of constraints will be at least
25=1and the number of variables contributing to each of such terms is at most 2¥~!, hence
at least one such variable per term will have value at least 1. Moreover, the validity of the
second and third kind of constraints can clearly not be affected during operation 2. Finally,
operation 2. can only decrease the objective function.

6 A randomized algorithm for haplotyping a population

The main results of this section are the following (remember that m = |G| and ¢ denotes the
optimal solution value):

[

Result 10 (Las Vegas). Let k be the mazimum number o characters into a same row.
We give a randomized algorithm, which, assuming that ¢ < m®, will return a feasible solution
Hgood With |Hgeod| < 2k+t2mlog 2m. The running time of the algorithm is a concentrated
random variable with expected value bounded by a polynomial in the size of the input instance.

Result 11 (Monte Carlo). We give a randomized algorithm, which will return almost surely
(i.e. with probability at least T”T_l) a feasible solution Hgooa Wwith |Hgeod| < 2¥72¢log2m. The
running time of the algorithm is bounded by a polynomial in the size of the input instance.

6.1 The Las Vegas algorithm which knows about «
Consider the following algorithm (Algorithm 6.1).

Algorithm 1 HAPLOTYPE (G)

Hgood <~ (D; gl <~ g;
while G’ # (0 do
repeat
Temp + 0;
for 4m®log m times do
choose (uniformly) at random a g € G';
put all haplotypes compatible with g into T'emp;
until T'emp explains at least % of the genotypes in G';
Hgood <~ Hgood U Temp;
remove from G’ the genotypes already explained by Hgo0a;
return Hgo04-

©ooNSO WO

—_
e

In this lemma we settle the correctness and approximation guarantee issues.

Lemma 12. When Algorithm 6.1 terminates, then it returns an haplotype family H go0q which
explains G and such that |[Hgoea| < 2k+2ma log 2m.

Proof: When Algorithm 6.1 terminates, then by the condition of the while-loop 1-9 at
step 1. we have that G’ = (), and hence #4504 explains all genotypes in G. Furthermore,
by the condition of the repeat-loop 2-7 at step 7., we have that |G'| at least halves at every
loop, hence the number of loops is bounded by log m. Since at every loop we choose at most
4m*logm different genotypes in G, then |Temp| < 2¥4m®logm = 28+2m®logm whenever
the repeat-loop 2-7 is exit. But then, at termination, [Hgooq| < 2k+2ma log 2m. O

We remain with the analysis of the running time, which will take the remainder of this
subsection.

By Fact 3, a > % We can also assume that a < 1, since otherwise we can exploit Fact 2 to
achieve a 2-approximation. Denote by H,,; an optimal solution to the haplotyping problem
under consideration. Hence, ¢ = |Hqp:|. Denote by 7:[g the set of those haplotypes which are
compatible with some genotype in G.

Even if not necessary in the analysis to follow, we like to think of a graph on node set ’}:[g
and having an edge hiho labeled g whenever g = hi + ho. (This graph is simple and the set
of edges labeled with a same genotype is a matching). This motivates denoting by d(h) the
number of genotypes in G compatible with h. Clearly, H,,: C ’}-A[g. We define a node in H
to be good when d(h) > 52 and bad otherwise.

2me
Observation 13. When h is good, then the fraction of genotypes in G compatible with h is
at least 5.
2me

Proof: By definition, m := |G|. The ratio is therefore

d(h) _ g 1

G| = m 2m®

O

As a consequence, when at step 5. we choose a random g € G, then the probability that
a good haplotype h will be put in T'emp at the following step 6. is at least 27”% Since within
loop 4-6 this experiment is repeated 4m® logm times, then it is almost sure that all good
haplotypes end up into T'emp during any full execution of loop 4-6. This is more formally
stated into the following lemma.

Lemma 14. Let h be a good haplotype. Consider the random experiment of running the
4m®logm iterations of loop 4—6. Then, when we get to the test in step 7., we have that
P[h ¢ Temp] < (%)2 Furthermore, the probability that any good haplotype in Hop; is not in
Temp is at most % In other words, with high probability all good haplotypes are in Temp.

Proof: Since h is good, and where we assume that the random choices are independent,
then
P[h ¢ Temp]

IN

T8 (1=) = (1) 7 =

me 2logm log m.
= (a-2)™) e = ()2

To bound the probability that any good haplotype does not make it into Temp, we employ
the most simple fact that the probability of an union of events is at most the sum of the
probabilities of the events themselves, no matter what are the dependencies between these
events.

Hence, where HI0o0d

opt 18 the set of good haplotypes in Hgpt, then

ood 2 ood 2
P[3h € HI)"\ Temp] < Zheﬁggﬁdp[h ¢ Temp] < zheﬂgggd () =1HE ()" <

IA

me (F)2= (27" < &

m

3=

10

Corollary 15. Fach time we get to the test at step 7., the probability to pass the test and
erit the repeat-loop is at least %

Proof: By Lemma, 14, we know that when the test at step 7. is faced, then the probability
that any good haplotype into H,,; has not made it into T'emp is at most % This means that
with probability at least mT_l all genotypes which are not explained by T'emp have at least
one endnode into bad haplotypes of Hp. Since |Hope| < m® and since d(h) < 5 holds for

every bad node, this implies that the genotypes in G which are not explained by Temp are
at most

m m
[Haptld(h) < m? 5" = 2

O

Now, where T is the time for the whole algorithm (a random variable), T}, is the time (a
deterministic value) needed for a single attempt (loop 4-6), and if p < % is the probability
that the attempt goes wrong, then the expected running time is E[T] = 72, p"T" which
is O(T). Moreover, the distribution of the random variable T is pretty much concentrated.
(L.e. the probability that in a random experiment the actual value of T' at least doubles on
T' < E[T] is at most p = =, and actually even less).

5.2 The Monte Carlo algorithm which knows nothing

The Monte Carlo algorithm is simply a binary search on « within the interval [3,1). We
know that when « is not guessed by defect, then it is almost sure that the attempt loop in
the Las Vegas algorithm in the previous section goes good. We hence need only to show that,
even assuming that all attempts are good, the number of steps in the binary search required
to essentially get to the correct value of « is not too big. One could object that a real a can
be approximated arbitrarily close, so that infinite steps are needed. However, consider the
following observation.

Observation 16. Let € = % Then m®t¢ < 2m® as soon as t > log, m.

Proof: Clearly, m®t¢ < 2m® if and only if mé = me < 2. And clearly, mi < 2 if and
only if % <log,,2 = @. This holds when t > log, m. O

Observation 16 amount perhaps to observing that the smallest o such that ¢ < m®
occurs is a rational. We hence can obtain a Monte Carlo algorithm which does not assume
the knowledge of o by just doubling the constant in the approximation ratio and by running
the whole Algorithm 6.1 at most logm times. It is possible (omitted for space reasons) to
shave a logm factor from the approximation ratio. We believe that with a deeper analysis,
it is possible to shave also the remaining logm and achieve linear approximation.

References

[1] P. Alimonti, V. Kann, Hardness of approximating problems on cubic graphs. Proc. 3rd Italian Conf. on
Algorithms and Complexity, Lecture Notes in Comput. Sci. 1203, Springer-Verlag (1997) 288-298.

[2] P. Berman, M. Karpinski, On some tighter inapproximability results. ECCC Report TR98-029, June 1998.
http://www.eccc.uni-trier.de/eccc/index.html

11

(3]
[4]

[9]

A. Chakravarti, It’s raining SNP, hallelujah?, Nature Genetics 19 (1998), 216-217.

A. Clark, Inference of haplotypes from PCR—amplified samples of diploid populations, Molecular Biology
Ewvolution 7 (1990) 111-122.

D. Gustield, Inference of haplotypes from PCR-amplified samples of diploid populations: Complexity and
algorithms, Tech. Rep. cse—99-6, U.C.S.D. (1999).

D. Gusfield, A Practical Algorithm for Optimal Inference of Haplotypes from Diploid Populations, Proc.
8th Internat. Conf. on Intelligent Systems for Molec. Biol., AAAI Press (2000) 183-189.

D. Gusfield, Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions, Proc. 6th
ACM Internat. Conf. on Computational Biology (RECOMB), ACM Press (2002) 166-175.

G. Lancia, V. Bafna, S. Istrail, R. Lippert and R. Schwartz, SNPs Problems, Complexity and Algorithms,
Proc. 9th European Symposium on Algorithms (ESA), Lecture Notes in Comput. Sci., 2161, Springer-
Verlag (2001) 182-193.

R. Lippert, R. Schwartz, G. Lancia and S. Istrail, Algorithmic Strategies for the SNPs Haplotype Assembly
Problem, Briefings in Bioinformatics 3 (2002) 23-31.

[10] G.L. Nemhauser, L.E., Jr. Trotter, Vertex packings: structural properties and algorithms. Math. Pro-

gramming 8 (1975), 232-248.

[11] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes. J. Comput.

System Sci. 43 (1991), 425-440.

[12] R. Rizzi, V. Bafna, S. Istrail, and G. Lancia, Practical Algorithms and Fixed-Parameter Tractability of

the Single Individual SNPs Haplotyping Problem, Proc. 2nd Workshop on Algorithms in Bioinformatics
(WABI), Lecture Notes in Comput. Sci., Springer-Verlag (2002).

[13] R. Schwartz, A. Clark and S. Istrail, Methods for Inferring Block-wise Ancestral History from Haploid

Sequences: The Haplotyping Coloring Problem, Proc. 2nd Workshop on Algorithms in Bioinformatics
(WABI), Lecture Notes in Comput. Sci., Springer-Verlag (2002).

12

