UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

SELECTION ON MATRICES CLASSIFYING ROWS
AND COLUMNS

A. A. Bertossi, S. Olariu, M.C. Pinotti and S--Q. Zheng

September 2002

Technical Report # DIT-02-0073

Selection on Matrices Classifying Rows and Columns

A A. Bertossi* S. Olariuf M.C. Pinottit S.-Q. Zheng?

Abstract

The median problem transforms a set of N numbers in such a way that none of the first
% numbers exceeds any of the last % numbers. A comparator network that solves the median
problem on a set of » numbers is commonly called an r-classifier. This paper shows how the
well-known Leighton’s Columnsort algorithm can be modified to solve the median problem of
N = rs numbers, with 1 < s < r, using an r-classifier instead of an r-sorting network. Overall
the r-classifier is used O(s) times, namely the same number of times that Columnsort applies
an 7-sorter. A hardware implementation is proposed that runs in optimal O(s + logr) time and
uses an O(rlogr(s + logr)) work. The implementation shows that when N = rlogr there is
a classifier network solving the median problem on N numbers in the same O(logr) time and
using the same O(rlogr) comparators as an r-classifier, thus saving a logr factor in the number

of comparators over an (rlogr)-classifier.

Keywords: comparator network, selection network, classifier, median problem, hardware al-

gorithm.

1 Introduction

Advances in VLSI technology have made possible to implement algorithm-structured chips as build-
ing blocks for high-performance computing systems. For example, it is widely accepted to endow
general-purpose computer systems with a special-purpose parallel sorting device, invoked whenever
its services are needed. The design of such a sorting chip is based on sorting networks, namely,
networks of comparators that sort their input numbers into order.

A relevant problem closely related to sorting is the median problem, where one asks for clas-

sifying a set of numbers into halves, in such a way that each number in one class is at least as

*Department of Computer Science, Via Mura Anteo Zamboni, 7, University of Bologna, 40127 Bologna, ITALY,
bertossi@cs.unibo.it

tDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA, olariu@cs.odu.edu

fDepartment of Computer Science and Telecommunications, University of Trento, 38050 Povo, Trento, ITALY,
pinotti@science.unitn.it

$Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688, USA,
sizhengQutdallas.edu

large as all of those in the other class [5]. Solving such a problem is a frequent computation, that
occurs in database monitoring to compute order statistics and approximated sorting [10], in parallel
scheduling to schedule the tasks with the minimum or maximum priorities [15], and in breadth-first
searching algorithms, like the M algorithm and the bidirectional algorithm, used in the decoding
of convolutional codes [4]. These applications, along many others, motivate the study of classifier
networks, that is, networks of comparators that solve the median problem, which could also be
implemented as VLSI chips.

There is a wide literature on the design and analysis of sorting networks [1, 3, 7, 8, 12, 13].
Clearly, any r-sorter (i.e. a sorting network that sorts 7 input numbers) is also an r-classifier (i.e.
a classifier network that solves the median on the same 7 input numbers). However, classifiers have
not to do as much as sorters. Therefore, there is a rich literature also on the design and analysis
of classifiers [4, 6, 9, 11, 14], which yields to simpler and more efficient networks than sorters. In
fact, it is well-known that effective r-sorters are still based on Batcher’s networks [3] and require
O(log? r) time, while the existence of r-sorters taking O(logr) time is only of theoretical interest,
due to the enormous constant hidden in the big-oh notation of the AKS network [1]. In contrast,
there exist r-classifiers taking effectively O(logr) time, where the constant hidden in the big-oh
notation is very small [6].

Leighton [8] devised a simple and effective sorting algorithm, called Columnsort, which re-
peatedly applies an r-sorter. The Columnsort algorithm sorts in column-major order a matrix
A[0...7—1,0...5—1], with 7 > 2(s —1)? and r = 0 mod s. It consists of 8 passes: the odd passes
are sorting passes, while the even passes are data movement passes. During passes 1, 3, 5, and
7, each column of A is locally sorted by means of an r-sorter. During pass 2 the numbers of A
are taken in column-major order and put back in A in row-major order, while during pass 4 the
numbers of A are taken in row-major order and put back in column-major order. In passes 6 and 8,
the numbers are shifted forward or backward, respectively, by | %] positions. Overall, the r-sorter
is applied O(s) times. Note that data movement passes are used merely for the purpose of sorting
only the columns, but one could properly group consecutive rows with r numbers per group and
then apply the r-sorter to sort each group of rows.

The original motivation for Leighton’s Columnsort algorithm was indeed that the AKS network
by itself provides a means to sort r items in O(logr) time using O(rlogr) comparators, but this
implies that a total of O(rlog?r) work (i.e., time x comparators) is used, which is inefficient
by a factor of logr. Observed that the AKS network can be pipelined, Columnsort shows how
to optimally sort N = rlogr numbers, arranged into an r x logr matrix, in O(logr) time and
O(rlog? r) work.

Leighton’s solution obtains an optimal work using a sorter of smaller size than that of the

input. Applying a similar reasoning to the median problem, one may use an r-classifier to classify

N > r numbers. In this case, Q(N/r +logr) time is needed, since no more than r numbers can be
processed simultaneously and Q(logr) is a lower bound on the network depth [16], and Q(rlogr)
comparators are required, as proved by Alekseyev [2].

Based on the considerations above, the following natural questions arise: “Does Columnsort
solve the median problem if classifiers replace sorters?”, and if the answer is negative: “How should
one modify Columnsort in order to efficiently solve the median problem using classifiers instead of
sorters?”. This would imply that the median problem can be solved using a simpler and smaller
(in its constant factors) network than the AKS sorting network, and thus raising a new question:
“Given the ability to use an r-classifier for solving the median problem of r numbers in O(logr)
depth using O(rlogr) comparators, is it possible to derive a circuit that can find the median
of N = rlogr numbers using the same asymptotic depth and number of comparators as an r-
classifier?” In the affirmative case, there would be a circuitry for N numbers which has size smaller
by a logr factor than that of an N-classifier network.

In this paper answers to the above questions are given. As a preliminary, let the behavior of
Columnsort be briefly analyzed when used to solve the median problem still applying an r-sorter.
After pass 4 of Columnsort, every number is within (s — 1)? of its correct sorted position [8]. Since
r > 2(s — 1), the numbers of A are already separated, except perhaps either those in the central
column, if s is odd, or those in the lowest half and in the highest half of the two central columns, if
s is even. More formally, in the third sorting pass one only needs either to sort column A[*, 55—1],
if s is odd, or to sort A[5...r —1,5 —1JUA[0... 5 —1, 5], if s is even (hereafter, A[x,j] and A[i, *]
denote column j and row 7 of A, respectively, while A[i...h,j...k] denotes the submatrix of A
given by the specified rows and columns). Thus, overall, 3 sorting passes, instead of 4, are enough
for Columnsort to solve the median problem using an r-sorter.

In order to answer to the first question, consider now what happens if one tries to solve the
median problem still using Columnsort, but substituting the r-sorter with an r-classifier. In the
following, a counterexample, built on a particular matrix A, is exhibited where Columnsort fails
because the median number remains in its original position in the wrong half. Such a counterex-
ample can be generalized to a matrix A with arbitrary size r X s in such a way that the median
number can be hidden virtually in any position of the wrong half of A. Let r = 54, s = 6 and let
the input numbers be all the integers between 1 and rs = 324. Consider the sequence of the above
numbers sorted from 1 to 324. Remove from the sequence the median number 162 and its successor
163, and place 163 between 53 and 54 and 162 between 217 and 218. Then, store the modified
sequence in A in column-major order, and apply the Columnsort algorithm using the 54-classifier,
instead of the 54-sorter. The 54-classifier merely separates the 27 smallest numbers from the 27
largest numbers, but no particular order within each half can be assumed. In particular, applying

the 54-classifier in each odd pass, each column of A may remain unchanged. If this is the case, it is

easy to see that the set of numbers is transformed in such a way that 162 and 163 remain in their
original positions. Therefore Columnsort does not solve the median problem since the numbers 162
and 163 remain, respectively, in the second half and in the first half of A.

Thus, the answer to the first question, “Does Columnsort work if classifiers replace sorters?”,
is negative. In order to give answers to the other two questions, the rest of this paper is structured
in two parts.

The first part consists of Sections 2 and 3 which provide a high level description of two algorithms
that show how Columnsort can be modified to solve the median problem of N = rs numbers, with
1 < s < r, using as a basic operation the r-classifier invocation. In details, Section 2 describes the
Row- Column-Selection algorithm which takes a logarithmic number of passes to solve the median
problem on a matrix A of size r x s, with r = 2¥ and any s = 2", where 1 < h < k, using an
r-classifier (when h = k such an algorithm works also on a square matrix). Although the number of
passes is O(log s) for Row-Column-Selection and O(1) for Columnsort, both such algorithms apply
their comparator network, namely an r-classifier or an r-sorter, respectively, the same number of
times, that is O(s). Section 3 describes another algorithm, called Three-Pass-Selection, which solves
in 3 passes the median problem on a matrix A of size r x s, with 1 < s < \/g . This algorithm shows
that, replacing the sorter with the classifier in the Columnsort algorithm, the median problem can
be solved still maintaining a constant number of passes as long as s is bounded by O(4/r). Therefore,
both Three-Pass-Selection and Row-Column-Selection provide an answer to the second question,
“How should one efficiently modify Columnsort using classifiers instead of sorters?” Moreover, they
are based on the simpler r-classifier by Jimbo and Maruoka [6], which takes effectively O(logr)
time, whereas, to obtain the same time performance, Columnsort has to employ the ineffective
r-sorter by Ajtai, Komlos, and Szemeredi [1].

The second part of this paper consists of Section 4, which presents a hardware algorithm,
based on both the Three-Pass-Selection and Row-Column-Selection algorithms, which solves the
median problem on N = rs numbers, with 1 < s < r. Such an algorithm achieves an optimal
O(s + logr) time and uses O(rlogr) comparators. Overall, O(rslogr + rlog?r) work is done
which, when s = Q(logr), is better by a factor of logr than the O(N log? N) = O(rslog?r) work
used by an N-classifier. In particular, when the number s of columns of A4 is O(logr), the hardware
algorithm gives an affirmative answer to our third question, showing that it is possible to build
a classifier network that can find the median of O(rlogr) numbers in the same O(logr) time
and using the same O(rlogr) number of comparators as an r-classifier. The hardware algorithm
strictly enforces conflict-free memory accesses and is based on a simple architecture, feasible for

VLSI implementation.

2 Row-Column-Selection Algorithm

The goal of this section is to solve the median problem on a set of N = rs numbers, with 1 < s <7,
stored in a matrix A[0...r—1,0...s—1], using an optimal number of applications of an r-classifier.

For the sake of simplicity, in this section, both r and s are assumed to be powers of two, that
is,r=2% and s = 2", forany 1 < h < k.

The building block of the algorithm is a 4- Partition procedure which receives in input 2r num-
bers, grouped as Cy, C1,Cy, C3, each of size /2 = 2571, and partitions the numbers such that all
the numbers in C} are not larger than those in Cj11, with 0 < 7 < 3.

The Row-Column-Selection algorithm consists of h = log s recursions, that reduce the number
of columuns from s to 2.

At each recursion, Row-Column-Selection halves the number ¢ of columns of the previous re-
cursion and perceives A as composed by 4 submatrices Aj, Ag, As, A4, each of size r/2 x ¢/2, as
depicted in Figure 1. In particular, the i-th recursion works on a matrix A of size r X ¢, where

c=5/2" and 0 < i < logs — 1 (clearly, when i = 0, ¢ = s).

AliAg 112
Az As| w2
g2 o2

Figure 1: The submatrices A, Ao, A3, A4 in which A is decomposed.

Each recursion executes two passes: a row-pass, followed by a column-pass. The row-pass
examines A row-by-row, applying ¢/2 times the 4-Partition procedure to groups of 2r/c rows. The
column-pass examines A column-by-column, applying ¢/2 times the 4-Partition procedure to pairs
of columns. At the end of a recursion, the numbers belonging to A; are followed by all the numbers
in A3 U A4, while those belonging to A4 are preceded by all the numbers in A; U A;. Therefore,
the numbers in A; belong to the r¢/2 smallest numbers of A, while those in A4 belong to the rc/2
largest numbers of A. The algorithm is, then, recursively applied to the halved sub-matrix of A
consisting of A and As.

In order to formally describe the above algorithm, the details of how to perform the 4-Partition
procedure using the r-classifier are given first.

The 4-Partition procedure, shown in Figure 2, invokes 6 times the r-classifier. In each invocation,

r-classifier (C, C') receives r numbers, grouped as C and C’, each of size r/2, and rearranges them

procedure 4-Partition (Cy, C1, Ca, Cs)
begin
0. r-classifier (Cy, C

7

b

. r-classifier (Cy, C3

()
1 ()
2. r-classifier (C1, Cy);
3. r-classifier (Cy, C3);
4 ()
5 ()

Q

. r-classifier (Cy, C;

b

. r-classifier (Cy, C3

7

end

Figure 2: The 4-Partition procedure.

so that every number in C is followed by all the numbers in C’. The 4-Partition procedure executes
a computation similar to an odd-even sort on 4 items, where each comparison is replaced with a
call to the r-classifier. However, the advantage of this procedure versus odd-even sort is that calls
27 and 2¢ + 1, with 0 < 7 < 2, could be performed simultaneously, for a total of 3 parallel phases,

thus saving 1 parallel phase over odd-even sort.

Lemma 1 The 4-Partition procedure partitions the 2r input numbers into 4 groups Cy, C1, Co, Cs,
each of size v/2 = 281 such that all the numbers in C; are not larger than those in Cji1, with
0<y<3.

Proof. Let a and b be the medians of Cyp U C; and Cy U Cs, respectively. After invoking the
r-classifier on Cy U Cy and on Cs U Cs, a and b belong to Cy and Cs, respectively. If a < b, Cj is
followed by all the numbers in C7; UC3 and Cj is preceded by all the numbers in Cy UC5. Therefore,
C1 and Cs need to be separated. Instead, if b < a, Cy is followed by all the numbers in Cy U Cj,
while (' is preceded by all the numbers in Cy U Cs, and thus Cy and C5 need to be separated.
After invoking r-classifier (Cy, C3) and r-classifier (Cy, C3), the median problem on the input set
has been solved, that is all the numbers in Cy U C7 precede those in Cy U C3. Therefore, to obtain
the 4 partition, it is enough to invoke again the r-classifier on Cy U C; and on Cy U Cj. o

At each recursion, the 4-Partition procedure is repeatedly called by the Row-Column-Pass
procedure, as illustrated in Figure 3.
The row-pass consists of ¢/2 iterations: during the i-th iteration, the numbers belonging to r/c

consecutive rows of Aq,..., A4 are rearranged into 4 groups in such a way that the numbers in

procedure Row-Column-Pass (4,r,c)
begin
/* Row-Pass */
fori =0to 5 —1do
4-Partition(A[iZ... (i + 1)~
A% G+ D)L =1L, 5...c— 1 A5 +4Z...(i+ 1)L - 1,5...c—1]);

o

endfor
/* Column-Pass */
fori=0to 5§ —-1do
4-Partition(A[0... 5 —1,4), A[Z...r —1,i], A[0... 5 —1,i+ &), Al ...7r — 1,i + §]);
endfor

end

Figure 3: The Row-Column-Pass procedure.

A[i% ... (1 + 1) —1,0... § — 1] are not larger than those in A[f +4%...(i + 1)L —1,0...§ — 1],
which are followed by A[iZ...(i + 1)Z —1,5...c — 1], which in their turn are not larger than
Alg+iZ... .+ 1)L —-1,5...c—1]).

Similarly, the column-pass consists of ¢/2 iterations: during the i-th iteration, with 0 < i <
¢/2 — 1, the 2r numbers stored in the two columns A[*,i] and A[*,7 + ¢/2] are rearranged in
such a way that all the numbers of A[i%...(i +1)T — 1,0...5 — 1] are not larger than those in
Al +i%...(i+1)% —1,0... 5 — 1], which are followed by those in A[0...5 — 1,7 + 5], which in
their turn are not larger than A[Z...7r — 1,4 + §].

The Row-Column-Pass procedure requires O(c) applications of the r-classifier network, since
there are c iterations and each iteration invokes the 4-Partition procedure. It is worthy to note
that different iterations work on groups of disjoint rows or columns, and therefore, as it will be
discussed in Section 4, all the ¢/2 iterations of the row-pass or column-pass could be performed in
pipeline.

Figure 4 summarizes the Row-Column-Selection algorithm, which works for any s = 2", with
1 < h < logr, and hence even when A is a square r X r matrix. Its correctness comes from the

following lemma.

Lemma 2 At the end of the Row-Column-Pass procedure,
e no number in Ay is larger than any number in A3 U Ay, and

e no number in Ay is smaller than any number in Ay U As.

algorithm Row-Column-Selection (A4, 7, s)
begin
/* let A be perceived as the 4 matrices A, A9, A3, A4 shown in Figure 1 */
if s = 2 then
4-Partition (A1, Ag, Az, Ay)
else
Row-Column-Pass (A, r, s);
Row-Column-Selection (4, U A3, r, §)
endif

end

Figure 4: The Row-Column-Selection algorithm.

Proof. Only the first claim is proved, as the proof of the second one follows from a mirror
argument.

By contradiction, let u € A; be strictly larger than one number v € A3 U A4. Assume u and v
belong, respectively, to columns A[*, 4] and A[x, j], where 0 < i <¢/2—1and ¢/2 < j <c¢—1, and
j#i+c/2.

Since the columns were separated in 4 parts, there are at least %’I‘ + 1 numbers not smaller
than u in columns A[x,%] U A[*,i 4+ ¢/2], and at least r + 1 numbers not larger than v in columns
Al*,7 —¢/2] U A[#,j]. Let U and V denote these sets of numbers, respectively. Observe that all
the numbers that at the end of the row-pass belonged to the pair of columns ¢ and 7 + ¢/2 remain
in the same pair of columns at the end of the column-pass. Moreover, at the end of the row-pass,
for a fixed g € [0,¢/2 — 1], the number stored in A;[p,1] is not larger than all the 2r numbers in

Aa[5 + p, #], Az[p, *], and A4[§ + p, #], where ¢Z < p < (¢ + 1)L — 1. Generalizing to the other
(4-t)
2

submatrices, at the end of the row-pass, the number stored in Ay[p,i] is not larger than the r
numbers in A;1[((¢ — 1) mod 2) §+p, *],..., As[5+p, *], where 1 <t <4dandqf <p < (¢+1)7 -1

Consider now the elements U in the pair of columns ¢ and 7 + ¢/2 of A. By the previous
observations, each element in U implies that there are some elements not smaller than » on columns
j — ¢/2 and j, and therefore forbids some positions for the elements V' in such columns. The
number of forbidden positions for V' is minimized when U contains all the elements in A4[*,i+¢/2],
As[x,71 4+ ¢/2], and As[*,i]. Hence, altogether U forbids at least r positions for the elements V' in

columns j — ¢/2 and j. Since there are 2r positions available, out of which r are forbidden, only r

positions are available for the elements in V.
This shows that u > v is impossible. In conclusion, every element in A; is followed by all the

elements in Az and A4. O

Consider now how many applications C(s) of the r-classifier are required. Since the Row-
Column-Pass procedure requires as many r-classifier applications as the number of columns in A,

which halves at each recursion, the relation holds
s
Cls) = C (5) +0(s),
whose solution is C(s) = O(s).
Although the number of passes is O(logs) for Row-Column-Selection and O(1) for Column-
sort, both such algorithms apply their comparator network, namely an r-classifier or an r-sorter,

respectively, the same number of times, that is O(s).

3 Three-Pass-Selection Algorithm

The goal of this section is to show how the Row-Column-Selection algorithm can be modified to
solve the median problem in 3 passes when the number of columns is O(+/r).

Again, consider the median problem on a set of N = rs numbers, stored in a rectangular matrix
A[0...7—1,0...s—1], with r rows and s columns, where it is assumed that 1 < s < /7 and 5 is an
integer. The algorithm presented in this section, called Three-Pass-Selection algorithm , perceives A
composed by 4 submatrices Ay, Ag, Az, A4. With respect to the Row-Column-Selection algorithm,
however, such matrices are arranged in a different way, as depicted in Figure 5. The submatrix
A consists of the uppermost § — s rows of A, A[0,+], A[1,%],...,A[Z —s — 1,%], Ay of the s rows
A[% — s,%],..., A[f — 1,%]|, A3 of the s rows A[L,#],..., A[f + s — 1,%], and finally A4 by the
lowermost § — s rows A[§ + s, %],..., Alr — 1, #].

The Three-Pass-Selection algorithm works in three passes: a row-pass, which examines A
row-by-row, a column-pass, which explores A by columns, and a final pass on As U As.

The row-pass consists of s iterations: during the ¢-th iteration, with 0 < i < s — 1, the r
numbers stored in the submatrix G; = A[i%... (7 +1)% — 1,*] are rearranged into 4 submatrices
Gio,---,Gi3 of 5o —1,1,1, and 5. — 1 rows, respectively, in such a way that all the numbers
in G j are no larger than all the numbers in Gj; 11, with 0 < j < 2. Specifically, as depicted
in Figure 6, G;o consists of the first 5= — 1 rows of Gj, that is G = A[i%...iL + 5= — 2, 4],
Gip = Alis + 5 — 1,%], Gi o = Ali% + 5, #], and finally G; 3 consists of the last 5= — 1 rows of Gj,
namely G;3 = A[iT + - +1...(i +1)% — 1, #]. This partitioning operation is performed invoking
the 4-Skewed-Partition procedure on G;.

Aq | 12-s

A, | s
Az | s
A4 r12-s

Figure 5: The submatrices A, Ao, A3, A4 in which A is decomposed.

Gi 0|r/l2s-1

Gi,3 r/2s-1

Figure 6: The submatrices G;,G; 1,G;2,G; 3 in which G is partitioned.

The column-pass consists also of s iterations: during the ¢-th iteration, the r numbers of column
Al*, 1] are rearranged, again by invoking the procedure 4-Skewed-Partition, into four groups of size
5 —8,8,8, and 5 — s, respectively, in such a way that all the numbers in column i of the submatrix
Aj, that is Aj[*,4], are followed by those in column % of A1, namely A;1[*,4], for 1 < j <3.

The final pass considers the 2s? numbers stored in Ay and A3, which are rearranged, by the
2-Partition procedure, in such a way that all the s? numbers in Ay are followed by the s? numbers
in As.

In conclusion, Figure 7 summarizes the Three-Pass-Selection algorithm (the implementations
of the procedures 4-Skewed-Partition and 2-Partition will be discussed later).

The correctness results from the following lemma.

Lemma 3 At the end of the second pass of the Three-Pass-Selection algorithm ,
e no number in A1 is larger than any number in As U Ay, and

e no number in A4 is smaller than any number in Ay U As.

10

algorithm Three-Pass-Selection (A, 7, s)
begin
/* let A be perceived as the 4 matrices A, A, Ag, A4 shown in Figure 5 */
/* Row-Pass */
fori =0tos—1do
4-Skewed-Partition(G;0, Gi.1, Gi 2, Gi3);
endfor
/* Column-Pass */
fori =0tos—1do
4-Skewed-Partition(A [*, 1], Ao [*, 1], A3[*,7], Aa[*,1]);
endfor
/* Final-Pass */
2-Partition(Asg, A3);

end

Figure 7: The Three-Pass-Selection algorithm .

Proof. The proof is similar to that of Lemma 2. As before, only the first claim is proved.

By contradiction, let w € A; be strictly larger than one number v € A3 U A4. Assume u and
v belong, respectively, to columns A[x,4] and A[x, j], where 0 < 4 # j < s — 1. Since the columns
were separated in 4 parts, there are at least § + s+ 1 numbers not smaller than « in column A[*, 4],
and at least + 1 numbers not larger than v in column A[x,j]. Let U and V' denote these sets of
numbers, respectively. Observed that all the elements that at the end of the row-pass belonged to
column 7 remain in the same column at the end of the column-pass, let denote with Fj ;, where
0<k<s—1and 0 <t <3, the numbers at the end of the row-pass were stored in column 4 of
Gt

Hence, every number e that belongs to Fy o is followed by 5. — 1 rows of G, whose numbers are
not smaller than e at the end of the row-pass, as well as at the end of the column-pass. Similarly,
every number e that belongs to Fy ; is followed by 5. rows of G}, and therefore by one more row
of G}, with respect to Fy 5. Finally, every e belonging to Fj g is followed by 5= + 1 rows of Gy, and
thus by one more row of Gy with respect to Fj ;.

Consider now the set U of numbers in column ¢. By the previous observation, each number in
U forces on the other columns of A, and especially on column j, some numbers not smaller than w,

and therefore it forbids some positions for the numbers V in column j. The amount of forbidden

11

positions for V' is minimized when U contains all the numbers in

U Fyy

0<k<s—1
1<t<3
Altogether U forbids at least 5 positions for the numbers V' in column j. Since there are r positions
available, out of which § are forbidden, only § positions are available for the numbers in V.
This shows that u > v is impossible. In conclusion, every number in A; is followed by all the

numbers in A3 and A4, and therefore A; cannot contain the median of A. O

Note that the Three-Pass-Selection algorithm requires only 3 passes because after executing
the row-pass and the column-pass, only 2s?> < r numbers remain in Ay and A3 and they can be
separated by a single r-classifier application. Note that, if 2s®> < r, it is sufficient to fill the -

2 2 numbers

classifier with any additional § — s numbers taken from A; and any additional § — s
taken from Aj4.

It is worth noting that both the Three-Pass-Selection and Columnsort algorithms uses a constant
number of passes and apply their comparator network (namely, a classifier or a sorter, respectively)
the same number of times, that is O(s).

In order to implement the 4-Skewed-Partition procedure, observe that an r-classifier alone can
only partition 7 numbers into two halves, each of size §, such that all the numbers of the first
half are not larger than those of the second half. Therefore, to accomplish the final goal of the
procedure, one needs to extract the s largest numbers of the first half, and the s smallest numbers
of the second half. This can be achieved using a classifier device a bit more complex than a simple
r-classifier, as it will be shown in the next section, which however has the same asymptotic depth
and size as the simple r-classifier.

As regard to the time complexity, note that different iterations of the row-pass and column-pass
work on groups of disjoint rows and columns, respectively. Therefore all the s iterations of the same
pass can be performed in pipeline. In the next section, a hardware algorithm, for 1 < s < r, will be
devised that combines the advantages of both the Three-Pass-Selection and Row-Column-Selection

algorithms and achieves an optimal O(logr + s) time using an O (rlogr(logr + s)) work.

4 Hardware Implementations

In this section, a hardware algorithm is presented for solving the median problem on N = rs
numbers, where 1 < s < r (for the sake of simplicity, it is assumed that r, logr and s are
powers of two). Such an algorithm combines the paradigms of both the Three-Pass-Selection and

Row-Column-Selection algorithms. Specifically, the hardware algorithm, called Combine-Selection,

12

algorithm Combine-Selection (4, 7, s)
begin
if s = logr then
Three-Pass-Selection (A, r, s)
else
Row-Column-Pass (A4, r, s);
Combine-Selection (A, U Az, T,
endif

end

No|»
~—

Figure 8: The high level description of the hardware algorithm.

behaves recursively as Row-Column-Selection while the number of columns remains larger than
logr, but it acts as Three-Pass-Selection as soon as the number of columns becomes logr, as
illustrated in Figure 8.

First, an architectural framework is exhibited which consists of » memory modules and a slightly
modified r-classifier network, which includes also some simple networks for performing maximum
and minimum computations. Then, pipeline schemes are presented for all the proposed algorithms,
which read/write a row or a column of A from/to the memory modules in constant time and achieve

optimal time performance.

4.1 Architecture

Figure 9 depicts the architecture for 7 = 8. The basic architectural features of the design include:

(i) A data memory organized into r independent memory modules My, M1, ..., M, ;. Each mem-
ory module M; is randomly addressed by an address register AR;, associated with an adder.
All the registers AR;’s can be loaded simultaneously by addresses broadcast from the control
unit. When all such addresses are the same, the r locations addressed simultaneously are

referred to as a memory line.

(ii) A set of data registers, R;, 0 < i < r — 1, each capable of containing a number, whose purpose
is to interface the extended r-classifier device with the memory modules. In constant time,
the r elements in the data registers can be loaded in parallel into the addressed registers, or

can be stored in parallel into the r modules addressed by address registers.

13

Extended Classifier Device E

I N e
AT T e T
A A A A 2 A]
Memory
Modues |Mo| [M1| [Mz| Mgl [My Mgl [Mg Mg

%%%%%E
r [oang | oany | oam, | oans | s |

Dé‘
>
)
S
Dé‘

Figure 9: The proposed architecture with r = 8.

(iii) An extended classifier device consisting of:

an r-classifier network of I/0O size r and depth O(logr) ;

log r mazimum networks maxy, ..., matiog,—1; for 0 <4 <logr — 1, each maz; has O(r)
comparators and O(logr) depth, is capable of performing a maximum computation, and
is equipped with a register M R;, which can store log r numbers;

log r minimum networks ming, ..., mingg,—1; for 0 <4 < logr — 1, each min; has O(r)
comparators and O(logr) depth, is capable of performing a minimum computation, and

is equipped with a register mR;, which can store log r numbers;

a demultiplezer to route the outcome of the r-classifier either to a suitable maz; /min; or

to the memory;

an (r — 2logr)-classifier network of I/0 size r — 2logr and depth O(logr).

The structure of the extended classifier device is illustrated in Figure 10 for r = 16 and

logr = 4.

(iv) A control unit (CU, for short), consisting of a control processor capable of performing simple

arithmetic and logic operations and of a control memory used to store the control program

as well as the control data. The CU generates control signals for the demultiplexer, for the r-

and (r — 2log r)-classifiers, for the registers and for memory accesses. The CU can broadcast

an address to all memory modules and to the data registers, and can read an element from

any data registers. These operations are assumed to take constant time.

14

to the memory

T first/second half

\ 8-Classifier }

A A] A A]] 1 fill with dummies

extract minima/maxima
MR, MR, MR, MRy mR, mR mR, MR,

maxz |ming| [ming| |miny |ming
\

ﬁ ﬁ ﬁ ? ﬁ ﬁ ﬁ \ { \ iteration index
:(Demultiplexer ‘ TPSRCS

16-Classifier

{x from the control unit
\

from the memory

Figure 10: The structure of the extended classifier for r = 16 and logr = 4.

To achieve high performance for the hardware implementation, the r-classifier must be filled
at each instant with a new set of 7 numbers. This can be accomplished only if conflict-free access
is guaranteed to the memory modules storing the rows and the columns of A, namely only when
all the r elements of the same row or column can be simultaneously read from or written to the r
memory modules in constant time. Hereafter it is assumed that A is stored in such a way that each
column of A forms a memory line, namely, it is kept in 7 memory locations having the same address
in all the modules. Precisely, the generic element A[i, j] of column j is stored in position j of module
M;. However, in this way, each row is stored in the same memory module. Therefore the elements
of the same row cannot be retrieved conflict-free, but must be accessed one by one, requiring a
time linear in the row length. To overcome this drawback, the hardware implementations of the
proposed algorithms replace access to rows with access to diagonals. This does not hurt Lemmas 2
and 3 whose proofs are based on a counting argument consisting of how many numbers of a row
intersect a column. Since such a quantity remains the same when replacing rows with diagonals,

the correctness of the hardware implementation of the row-passes is guaranteed.

15

4.2 Implementation of Three-Pass-Selection

In this subsection, a detailed description of the hardware implementation of the Three-Pass-
Selection algorithm is given, only in the case of interest for Combine-Selection, that is when the
number of columns is exactly logr.

The building block of the Three-Pass-Selection algorithm is the 4-Skewed-Partition procedure,

r
logr

which works on 7 numbers, corresponding either to a subset of consecutive rows or to a single

column of A, depending whether a row-pass or a column-pass is performed.

r
logr

G = Alir— ... (i +1)= — 1, %] in order to separate them into the 4 submatrices G;,...,G;3 of

rows of

During the ¢-th iteration of the row-pass, the r-classifier is filled up with the

logr log r
21;? —1,1,1, and ﬁ — 1 rows, respectively. Since as said before the hardware implementation
accesses conflict-free diagonals instead of rows, the generic element A[i; Og ~+h, k], belonging to the

submatrix G;, is retrieved from and stored back by the CU in position k of the memory module

Mp1og r+ (k+i) mod 1ogr, Where 0 < h < IO;T —1and 0 <k <logr — 1. Then, in this way, during the
i-th iteration of the row-pass, each classifier call can access r locations conflict-free, one for each
memory module.

During the i-th iteration of the column-pass, the four groups accessed by the 4-Skewed-Partition
procedure correspond to a single column, which is stored in memory line ¢, whose elements can be
retrieved and stored back by the CU without memory conflicts.

The logr iterations of the row-pass or column-pass are performed in pipeline, starting the i-th
iteration at time instant 7. Since the r-classifier network works in C'logr time, where C =~ 2 [6],
the r-classifier ends to handle the i-th iteration at time i + C'logr, with 0 <17 <logr — 1.

During the generic i-th iteration of the row-pass or column-pass, the smallest /2 numbers,
output by the r-classifier, are given in input to the maz; network, while the largest r/2 numbers
are given to the min; network. In conclusion, the pair of networks maz; and min; is devoted to the
single i-th iteration. Then, for logr times, maz; (resp., min;) extracts in pipeline the maximum
(resp., minimum), stores it in its associated M R; (resp., mR;) register, and replaces the extracted
value with a dummy —oo (resp., +o0c) value. In particular, maz; (resp., min;) extracts the first
maximum (resp., minimum) at time 7+ C logr + logr, and it extracts the logr-th maximum (resp.,
minimum) of the same iteration at time 7 + C'logr + 2logr — 1. Subsequently, the CU fills the
(r — 2logr)-classifier twice with the content of the minimum/maximum network, in order to clean
the significant § — logr values from the logr dummy values. At instant i + C'logr + 2logr, the
CU fills the (r — 2logr)-classifier network with the § numbers still stored in maz; along with
additional § — 2logr dummy —oo values. At the next instant, the CU fills the classifier with
the other numbers stored in min; along with additional § — 2logr dummy +oo values. Hence,
every 2 instant of time the (r — 2logr)-classifier network is filled with the content of a different

pair of maximum and minimum comparator networks, which correspond to different iterations of

16

to the memory

| |
R0 RrIZ-Iog r-1 : Rr/2—|ogr Ry Ry R/2+10g r»ll Rr/2+|ogr R

|

- Jee-ne - ne g
ri2-logr significant logr values logr values r/2-logr significant
values from max; from MR from mR; values from min;

Figure 11: The loading of the data registers at the end of the i-th iteration of a row-pass or

column-pass.

the same row-pass or column-pass. Once the (r — 2logr)-classifier has separated the content of
maz;, the CU moves the § — log r largest numbers (i.e., the significant values of maz;) to the data
registers Ry, ... ,R%_logT_l. At the next instant the content of min; has been separated, and the
CU moves the § —logr smallest numbers (i.e., the significant values of min;) to Rz jtogrs -5 Br—1.
Moreover, the CU also moves the log r numbers already stored in M R; to R%_logr, ... ,R%_l, and
those stored in mR; to R%, .- aR§+logr—1- The loading of the data registers is shown in Figure 11.
Hence, the i-th iteration is concluded storing back conflict-free the content of the data registers
into the memory.

Observe that the (r — 2logr)-classifier works in pipeline on all the logr iterations of the same
row-pass or column-pass producing the output of the same iteration in two subsequent instants.
Therefore, since the (r — 2log r)-classifier works in O(logr) time, overall O(logr) time is taken to
accomplish an entire row-pass or column-pass.

The final pass of the Three-Pass-Selection algorithm is implemented filling in O(logr) time
the r-classifier network with the 2log? r numbers of Ay U A3 along with any additional 5 — log? r
numbers taken from A; and any additional § — log? r numbers taken from A4. A single application
of the r-classifier accomplishes the separation required by the final pass. Thus, the final pass takes
time O(logr).

Note that to compute the actual median number of the entire matrix A, it is enough to extract
the maximum from the smallest § elements output by the final pass. This can be accomplished in
O(logr) time by using any maximum comparator network maz;.

Overall, the hardware implementation of the Three-Pass-Selection algorithm takes O(logr)
time, to solve the problem on N = rlogr numbers, which is optimal due to the lower bound given

in [16]. In order to evaluate the work, observe that each of the 2logr maximum and minimum

17

O-th recursion 1-st recursion 2-nd recursion
T T T T

0 ! 0 0 0 |
A A Ak A aa
0 0 |
A Kok A h s A
! | \ | ‘H_,j
i o s
& £

Figure 12: In place partitioning of A at the j-th recursion, with j = 0,1, 2.

networks is implemented by a tree of O(r) comparators, for a total of O(r log r) comparators. Since
both the r-classifier and the (r — 2logr)-classifier employ O(rlogr) comparators, a total work
of O(rlog?r) is used. Note that the above hardware implementation gives an affirmative answer
to our third question, showing that it is possible to build a classifier network that can find the
median of 7 log r numbers in the same O(logr) time and using the same O(r logr) comparators as

an r-classifier.

4.3 Implementation of Combine-Selection

This subsection describes the hardware implementation of the Combine-Selection algorithm which
behaves as Row-Column-Selection to reduce the number of columns from s to log r, and then invokes
Three-Pass-Selection.

At first, it is shown how the recursion on the submatrix As U A3 in Figure 8 is realized. The
algorithm proceeds partitioning the numbers of A as depicted in Figure 12.

The first call within the main program to Combine-Selection is an anomalous recursion, denoted
hereafter as 0-th recursion. The 0-th recursion partitions A into A§°) , Ago), A§,°> and AS{” as described
in Section 2. In the subsequent recursions, the hardware implementation works in place on the
submatrices Ao and As obtained from the previous recursion, partitioning them in a convenient

way. Let j be the recursion, with j > 0, and let ¢{¥) be the number of columns of each matrix

18

group | element module position

Co | AL + h, K] h3 + (k + i) mod & k

Cr | AL +i% +h,k] "4 hi+ (k+i)mod$ | k

Cy | A5 +h, 5 + k| hs + (k +14) mod § Sk
[

Cy |Al5+il+hS+kl | 5+hi+(k+i)mods | S+k

Table 1: Memory access to a generic element of a group during the i-th iteration of the
0-th recursion, where 0 <i < 5, 0<k<J—-1land 0 <h <L -1

Agj), Agj), Agj), Agj). Clearly, ¢ = 57- When j > 1, the j-th recursion separates Agj_l) and Agj_l),
respectively, in Agj) , Ag‘?) and Agj), Ay), and invokes the (j+1)-th recursion on Agj) UA%7), as shown
in Figure 12 for j = 1,2. Moreover, defined

O =l
AU 4 %C(J—l) j>2

—

the j-th recursion fills the % columns AW, ... AUTD _1 of Agﬂ) with numbers that belong to the

set of the smallest 5> numbers. Similarly, the j-th recursion fills the % columns § + %, s
9 —1 of Ago) with numbers that belong to the set of the largest 7 numbers.

In the following, the details of the conflict-free access memorization of the Row-Column-Pass
procedure are given. The building block of such a procedure is the 4-Partition procedure of Figure 2,
which works on 4 groups Cj, C1,C5,C3. Such groups correspond to subsets of rows or columns,
depending whether a row-pass or a column-pass is performed. During the 0-th recursion, in the ¢-th
iteration of the row-pass, the Row-Column-Pass procedure accesses 47 rows. Since the hardware
implementation accesses diagonals instead of rows, the generic element A[i% + h, k], belonging to
group Cj, is retrieved from and stored back in position k of the memory module Mh%+(k+i) mod £
where 0 < h < % —1and 0 < k < § — 1. Similarly, the element A[§ + i% + h, k], belonging to
group C1, is accessed in position k of the module M%+h%+(k+i) mod £> where 0 < h < £ —1 and
0 <k < § — 1. The memory access for a generic element of each group is summarized in Table 1.
Observing the table above, one realizes that each classifier call, which works on a pair of groups as
specified in Figure 2, accesses r locations, one for each memory module.

During the 0-th recursion, in the i-th iteration of the column-pass, the four groups accessed by

s

5, and therefore

the Row-Column-Pass procedure correspond to the two memory lines ¢ and ¢ +

can be retrieved and stored back without memory conflicts.

19

group | element module position
Co |Al5+ily+h A0+ | 5+h2 + (k+i) mod & | AD + &
| Al m+h,2+k] he? + (k + i) mod &5 S+k
Co | Al +ily +h AUTD 4 k] | 24 he2 + (k+i) mod & | AGHD 4k
Cs A[s +h, 5+ C(]) + k| hc(J) + (k + %) mod C(]) 5+ c(j) +k

Table 2: Memory access to a generic element of a group during the i-th iteration of the
j—threcursion,whereogig%, 1§j§logs,0§k§c;—])—landoghgc%—l.

In the next recursions, the computation proceeds in place on submatrices Ag)) and Ago). During
the j-th recursion, with 7 > 1, in the i-th iteration of the row-pass, the Row-Column-Pass procedure
accesses 40(% rows. According to the diagonal implementation, the generic element A[%—I—ic(%+h, k],
belonging to group Cj, is retrieved from and stored back in position AY) 4k of the memory module
C(J)

MT+h°(])+(k+) od C(J), where 0 < h < W —land 0 < k < 5 — 1. The access to the generic

elements of the groups is illustrated in Table 2. Again, from the above table, it is easy to see that

each classifier call accesses r locations, one for each memory module.

Finally, during the j-th recursion, with j > 1, in the ¢-th iteration of the column-pass, the
Row-Column-Pass procedure accesses the columns A + i and AU 4 C(]) + 4 of Ago), and the
columns § + ¢ and § + # + 1 of Ag). Note that each column is stored as a memory line, and
therefore can be retrieved and stored back without memory conflicts.

Although a careful conflict-free access for the matrix A has been adopted, a simple pipeline
implementation of the 4-Partition procedure allows to start performing at two consecutive instants
just classifier calls 2¢ and 27 + 1, with 0 < 7 < 2, since the input for classifier calls 2 and 4 is
supplied only after the output of the previous calls 1 and 3 is obtained. With this local perspective,
the 4-Partition procedure requires O(logr) time and the j-th recursion of the Combine-Selection
algorithm, which calls Row-Column-Pass, requires c¢\/) iterations of 4-Partition for an overall time
of O(c¥) logr).

For the classifier network to operate at full capacity, and therefore to have the j-th recursion of
Combine-Selection taking O(c(j)) time, a global overview of the computation must be taken into
account. In fact, an efficient implementation of the Row-Column-Pass procedure can be provided
which exploits, by means of an interleaved pipelining, the parallelism inherent in its ¢{) iterations.

In order to describe the behaviour of the interleaved pipelining, consider again the generic
j-th recursion of Combine-Selection, with j > 0, and focus on the row-pass. The % calls to
the 4-Partition procedure are performed as follows. The computation starts with classifier call 0
performed in simple pipeline fashion on all the data given by Row-Column-Pass for the iterations

0,1,---,c9) /2. Clearly, this is possible because the classifier call 0 is applied every time to a different

20

set of data. Then, in a perfectly similar fashion, simple pipeline is used to carry out every classifier
call 1 of 4-Partition on all the data given by Row-Column-Pass for the iterations 0,1, -- -, () /2.
The same approach is followed for the remaining classifier calls of 4-Partition. Moreover, the same
interleaved pipelining strategy is used with the 6 classifier calls of 4-Partition within the column-
pass. Note that two classifier calls on the same input data are at least %) /2 iterations apart.
Therefore, as long as) /2 is not smaller than the depth of the classifier network, the interleaved
pipelining can proceed without interruptions.

The (j + 1)-th recursion of the Combine-Selection algorithm operates on a number of columns
i+ = () /2 and hence also the number of iterations of Row-Column-Pass halves. The r-classifier
works in C'logr time, where C = 2 [6]. Therefore, as soon as the number of iterations becomes
log r, the interleaved pipelining cannot be applied anymore without slowing the computation. The
computation then proceeds as in the Three-Pass-Selection implementation described in the previous
subsection where the number of columns is logr.

To evaluate the time complexity of the above pipeline implementation of the Combine-Selection
algorithm, observe that in the j-th recursion of Combine-Selection, Row-Column-Pass invokes ¢\ =
5/27 times 4-Partition, which in turn calls 6 times the classifier. During all the recursions of
Combine-Selection performed according to the interleaved pipelining, including the 0-th recursion,
a new classifier call starts executing at each subsequent instant. Therefore, the overall time required

by the interleaved pipeline is
0

> bs + Clogr = O(s),
Jj=0 2J

S
logr*

where £ = log

In addition, the final computation performed according to the Three-Pass-Selection implemen-
tation requires O(logr) time. Therefore, Combine-Selection takes an optimal O(s + logr) time, to
solve the problem on N = rs numbers, with s < r. Since an extended classifier network of depth

O(logr) and O(rlogr) comparators is employed, a total work of O(rslogr + rlog?r) is used.

4.4 TImplementation of Row-Column-Selection

For the sake of completeness, this subsection sketches how the Row-Column-Selection algorithm
of Figure 4 can be implemented in hardware. Such an algorithm does not use the 4-Skewed-
Partition as a subroutine, and therefore it can be implemented just using an r-classifier instead
of the extended classifier device employed by the Combine-Selection algorithm. In this way, the
hardware requirement is kept as simple as possible, but the time performance is optimal only when
the number of columns is Q(logrloglogr).

The hardware implementation of Row-Column-Selection differs from that of Combine-Selection

only when the number of iterations becomes less than or equal to logr. At that point, Row-Column-

21

Selection continues to recursively half the number of columns invoking the Row-Column-Pass pro-
cedure, but the interleaved pipelining cannot be applied anymore to implement Row-Column-Pass.
The computation, then, proceeds by means of a semi-interleaved pipeline, which is similar to the in-
terleaved pipeline described above except that the executions of the classifier calls 27 of all iterations

start only after the output of the previous classifier calls are obtained, with 0 < ¢ < 2. In particular,

s
logr

when log +1 < j <log 3, the j-th recursion of Row-Column-Selection performed according to
the semi-interleaved pipelining requires time O(c\) 4-logr) = O(logr). Since there are O(loglogr)
recursions performed in the semi-interleaved pipeline fashion, O(log r loglogr) time is required to
complete the Row-Column-Selection computation. In conclusion the hardware implementation of
Row-Column-Selection takes O(s+logrloglogr) time, which is optimal when s = Q(logr loglogr),

and uses O(rlogr(s + logrloglogr)) work.

5 Conclusions

This paper has shown how the well-known Leighton’s Columnsort algorithm can be modified so as
to solve the median problem using classifier networks instead of sorting networks. In particular, two
median algorithms have been presented. Both algorithms apply the classifier no more time than
Columnsort applies the sorter, but use a simpler and more effective network, and can be efficiently
implemented in hardware.

The first algorithm takes a logarithmic number of passes and can be implemented using just
an r-classifier. The second algorithm takes 3 passes and uses a slightly modified r-classifier, which
however has the same depth and the same number of comparators (in order of magnitude) as the
simple r-classifier. In particular, such an algorithm shows that it is possible to build a classifier
network that can solve the median problem of O(r logr) numbers using optimal O(logr) time and
O(rlogr) comparators as an r-classifier. Finally, such two algorithms can be combined together
leading to a hardware algorithm which solves the median problem of N = rs numbers, for1 < s <,
in optimal O(logr + s) time and using O (rlogr(logr + s)) work.

It is worthy to note that the extended classifier network has replaced a simple r-classifier
only to implement the 4-Skewed-Partition procedure. However, given an (n,m)-classifier which
classifies its n input numbers into the m smallest numbers and the n — m largest ones, such a
procedure could be easily implemented by connecting in cascade the output of an r-classifier with an
(r/2,r/2—logr)-classifier and an (r/2,log r)-classifier. The extended classifier has been introduced
in the architecture because logr and r/2 — log r are not Q(r). Indeed, according to [6], an (n,m)-
classifier can be obtained maintaining the same time and work performances as an n-classifier only

when m = Q(n),

22

However, several questions still remain open. The Q(N log N) lower bound on the number of
comparators given in [2] holds only for networks with I/O size N. On the other side, Q(N) is a
lower bound on the work for any algorithm using comparisons [5]. Hence, any hardware algorithm
that uses an r-classifier has a trivial Q(N +7log r) lower bound on the work. Therefore, a challenge
for the future is either to design a hardware algorithm that matches such a trivial lower bound or
to prove a higher lower bound on the work. Moreover, one could generalize the methods presented
here for solving the K-Selection problem for an arbitrary K, where it is asked to classify a set of

N numbers so as to separate the K smallest numbers and the N — K largest ones.

References

[

[

M. Ajtai, J. Komlés, and E. Szemerédi, Sorting in clogn Parallel Steps, Combinatorica, 3, (1983), 1-19.

2] V.E. Alekseyev, Sorting Algorithms with Minimum Memory, Kibernetica, 5, (1969), 99-103.

= S

[
[

K.E. Batcher, Sorting Networks and Their Applications, Proc. of AFIPS Conference, (1968), 307-314.

=~

]
]
]
] J. Belzile, Y. Savaria, D. Haccoun, and M. Chalifoux, Bounds on the Performance of Partial Selection Networks,

IEEE Trans. on Communications, 43, (1995), 1800-1809.

[6] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, Time Bounds for Selection, Journal of Computer
and System Sciences, 7, (1973), 448-461.

[6] S. Jimbo and A. Maruoka, A Method of Constructing Selection Networks with O(log n) Depth, SIAM Journal
of Computing, 25, (1996), 709-739.

[7] M. Kutylowski, K. Lorys, B. Oesterdiekhoff, and R. Wanka, Periodification Scheme: Constructing Sorting
Networks with Constant Period, Journal of ACM, 47, (2000), 944-967.

[8] F.T. Leighton, Tight Bounds on the Complexity of Parallel Sorting, IEEE Transactions on Computers, C-34,
(1985), 344-354.

[9] F.T. Leighton, Y. Ma, and T. Suel, On Probabilistic Networks for Selection, Merging and Sorting, Theory of
Computing Systems, (1997), 559-582.

[10] G.S. Manku, S. Rajagopalan, and B.G. Lindsay, Approximate Medians and Other Quantiles in One Pass and
with Limited Memory, ACM Sigmod Int’l Conf. on Data Management, (1998).

[11] S. Olariu, M.C. Pinotti, and S.Q. Zheng, An Optimal Hardware-Algorithm for Selection Using a Fixed-Size
Parallel Classifier Device, 6th Int’l Conference on High Performance Computing, Calcutta, India, (1999), 284—
288.

[12] S. Olariu, M.C. Pinotti, and S.Q. Zheng, How to Sort N Items Using a Network of Fixed I/O, IEEE Trans. on
Parallel and Distributed Systems, 10, (1999), 487-499.

[13] S. Olariu, M.C. Pinotti, and S.Q. Zheng, An Optimal Hardware-Algorithm for Sorting Using a Fixed-Size Parallel
Sorting Device, IEEE Transactions on Computers, 49, (2000), 1310-1324.

[14] N. Pippenger, Selection Networks, SIAM Journal of Computing, 20, (1991), 878-887.

[15] B.W. Wah and K.L. Chen, A Partitioning Approach to the Design of Selection Networks, IEEE Transactions
on Computers, 33, (1984), 261-268.

[16] A.C. Yao, Bounds on Selection Networks, SIAM Journal on Computing, 9, (1980), 566-582.

23

