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Abstract - A system for aregular updating of land-cover mapsis proposed that is based on the use of multitemporal
remote-sensing images. Such a system isableto facethe updating problem under therealistic but critical constraint
that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth
information is available. The system is composed of an ensemble of partially unsupervised classifiersintegrated in
a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is
developed in the framework of the cascade-classification approach to exploit the temporal correlation existing
between images acquired at different times in the considered area; ii) it is based on a partially unsupervised

methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a
parametric maximum-likelihood classification approach and a non-parametric radial basisfunction (RBF) neural-
network classification approach are used as basic methods for the development of partially unsupervised cascade
classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-
likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-
classification methodology. The results yielded by the different classifiers are combined by using standard

unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised
classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive
sensors, SAR images, multisensor and multisour ce data). Experimental results obtained on a real multitemporal

and multisour ce data set confirm the effectiveness of the proposed system.



|. INTRODUCTION

One of the mgor problems in geographica information systems (GISs) consdts in defining strategies and
procedures for a regular updating of land-cover maps stored in the system databases. This crucia task can
be carried out by using remote-senang images regularly acquired by space-born sensors in the specific
investigated areas. Such images can be andyzed with automatic classification techniques in order to derive
updated land-cover maps. The classfication process can be performed by considering either the
information contained in asngle image [1] or the information contained in a multitempora series of images
of the same area [2] (i.e, by exploiting the tempora correlation between images acquired a different
times). The latter approach is called “cascade classfication” and allows one to increase the categorization
accuracy. However, at the operating level, both aforementioned approaches are usualy based on
supervised classfication dgorithms. Consequently, they require the avallability of ground truth information
for the training of the classfiers. Unfortunatdly, in many real cases, it is not possble to rely on training data
for dl the images necessary to ensure an updating of land-cover maps that is as frequent as required by
goplications. This prevents al the remotely sensed images acquired in the investigated area from being used
to update land-cover maps. For these reasons, the process of tempora updating of land-cover maps
results in a complex and chalenging problem.

In previousworks [3], [4], the authors have dready addressed the aforementioned problem. In particular,
partidly unsupervised classfication gpproaches have been defined and developed. (The term “partidly
unsupervised” is used here to point out that, on the one hand, no ground truth information is assumed to be
available for the specific image to be classified, but, on the other hand, a training set exists related to an
image of the same geographica area acquired before the one to be classfied). In [3], a patialy

unsupervised classification methodology is proposed that is adle to update the parameters of an dready



trained parametric maximum:-likelihood classifier on the basis of the digtribution of a new image for which
traning data are not available. In [4], in order to take into account the tempora correlation between series
of remote-senang images, the patidly unsupervised maximum-likelihood dassfication agpproach is
reformulated in the framework of the Bayesan rule for cascade classfication. This dlows an increasein the
robustness of the unsupervised retraining process.

Although the aforementioned approaches have proved effective on severd data sets, they exhibit some
limitations. Frgly, given the intringc complexity of the problem addressed, these gpproaches result in
classfiers that are less rdiable and less accurate than the corresponding supervised classfiers. Secondly,
the parametric nature of the proposed classfiers prevents the gpproaches from being used for the anadlysis
of multisensor and multisource remote-sendng images. This can be criticd in complex dassfication
problems, in which multisource and/or multisensor information may play afundamenta role.

In this paper, a novel classfication system amed a obtaning an accurae and robust partidly
unsupervised updating of land-cover maps is proposed. Such a system extends the approaches proposed
in [3] and [4], defining an effective classfication framework based on a multiple cascade-classfier sysem
(MCCS), which is able to overcome the main limitations of the aforementioned methods. The ensemble of
classfiers used in the MCCS architecture is derived from maximum-likdihood (ML) and radid basis
function (RBF) neurd-network classfication approaches. Three important methodologicd noveties are
associated with the presented system: i) dl the partidly unsupervised classfiers of the ensemble are defined
in the framework of cascade classfication; ii) a new non-parametric partially unsupervised cascade
classfier based on RBF neurd networks is proposed; iii) hybrid maximum-likelihood and RBF neurd
classfiers are defined by exploiting the peculiarities of the cascade-classfication approach in order to

generate an effective ensemble of classfiers. It is worth noting thet, thanks to the non-parametric nature of



the RBF neurd-network cascade classifiers, the proposed system is able to andyze multisensor and
multisource data.

Experimentd results obtained on a multitemporal and multisource data set related to the Idand of
Sardinia, Italy, confirm the effectiveness of the proposed system.

The paper is organized into seven sections. Section |1 reports the formulation of the problem and
describes the generd architecture of the proposed system. Section 11 presents the partidly unsupervised
classfication problem in the framework of the cascade-classfication approach for both the ML and RBF
neura-network classfication techniques. Section 1V addresses the problem of defining suitable ensembles
of cascade classfiers, and describes the proposed hybrid ML and RBF classfiers. Section V deds with
the unsupervised drategies used for the combination of the results yidded by the cascade classfiers
included in the consdered ensemble. Experimental results are reported in Section VI. Findly, in Section

VII, discussion is provided and conclusions are drawn.

I1. PROBLEM FORMULATION AND DESCRIPTION OF THE SYSTEM ARCHITECTURE

A. Problem Formulation and Smplifying Assumptions
Let X, :{xllxixé} and X, :{xijxé} denote two multispectral images composed of B pixels
and acquired in the area under andlysis a the times t; and t,, respectively. Let x; and x; bethe 1" d

feature vectors associated with the j-th pixes of the images (where d is the dimensondity of the input

space), and W= {V\(L W, ,...,WC} be the set of C land-cover classesthat characterize the geographicd area
considered at both t; and t,. Let IJ.2 be the classfication labd of the j-th pixd a thetimet,. Findly, let X;

and X, be two multivariate random variables representing the pixel vaues (i.e., the feature vector values) in

X1 and X5, respectively.



In the formulation of the proposed approach, we make the following assumptions:

1) the same set Wof C land-cover classes characterize the area consdered over time (only the spatid and
spectra distributions of such classes are supposed to vary);

2) ardidbletraining st Y, for theimage X, acquired at t; isavailable;
3) atraning st Y, for theimage X, acquired at t, isnot avallable.

It is worth noting that assumption 1), even if not verified in dl possble gpplicaions, is reasonable in a
wide range of red problems.

In the aforementioned assumptions, the proposed system aims at performing a robust and accurate
classfication of X, by exploiting the image X1, the training s&t Y;, and the image X, aswell as the tempord

correlation between the classes at t; and t..

B. System Architecture

The proposed system is based on a multiple classifier architecture composed of N different classfication
agorithms (see Fig.1). The choice of this kind of architecture is due to the complexity of the problem
addressed. In particular, the intringc difficulty of the partidly unsupervised classfication problem resultsin
classfiers that are less reliable and less accurate than the corresponding supervised ones, especidly for
complex data sets. Therefore, by taking into account thet, in generd, ensembles of clasdfiers are more
accurate and more robust than the individud classfiers that make them up [5], we expect that a multiple-
classfier gpproach may increase the rdiability and the accuracy of the globd classfication sysem. A further
sep amed a improving the performance of the systlem consigts in implementing eech partidly unsupervised
classfication dgorithm of the ensemble in the framework of a cascade-classifier gpproach, thus exploiting

aso the tempord correlation between the multitempora images in the updating process.



The folloming sections address the individud components of the presented system. In particular, the
proposed partidly unsupervised cascade classfiers, the strategy adopted to define the ensemble of cascade

classfiers, and the combination methods will be described in detail.

Il. PaRTIALLY UNSUPERVISED CLASSIFICATION TECHNIQUES: A CASCADE-CLASSIFIER APPROACH

Let us focus our atention on the choice of each partidly unsupervised classfier to be included in the
multiple-classifier architecture. In order to obtain robust and accurate classifiers, we propose to consider
classfication drategies defined in the context of the cascade-classfier approach [2], [6]. The standard
supervised cascade-classfier gpproach (proposed by Swan [2]) exploits the correation between
multitempora images in order to increase the classfication accuracy in the cases in which training data are
avallable for dl theimages consdered. In our method, we extend the application of the standard supervised
cascade-classfier approach to partialy unsupervised classfication problems. In particular, we explait the
temporal dependence between land-cover classes to increase the rdiability and the accuracy of the
unsupervised estimation of the parameters related to the image X..

The cascade-classfier decison Srategy associates a generic pixe sz of the image X, with aland-cover

class according to the following decision rule [2]:

12=w, T W if and onlyif Play, /x,x2)= max{P(w, /x ,x*)} ()

Wil W
where P(wq/xfxf) is the value of the probability thet the j-th pixel of the image belongsto the class w,
a t,, given the observations X; and X;. Under the conventiona assumption of dlass-conditiond
independence [2], [6], the decision rule (1) can be rewritten as [4]:

I?=w, T W ifand only if
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where p(xij /w) isthe vaue of the conditiond dengty function for the pixe x;,given thedassw, 1T W,

and P(Wn ,w) Is the prior joint probability of the pair of classes (w,,w, ). The latter term takes into

account the tempora correlation between the two images.
We propose to integrate the partialy unsupervised classfication of the image X in the context of the
above-described dassfication rule. As the training set Y, is not available, the dendty functions of the

classes at the time t; (i.e, p(Xllvvn), w, 1 W) arethe only datistical terms of (2) that we can estimate in

a completely supervised way. This means that, in order to accomplish the classfication task, we should

edimate both the dengty functions of the classes a t (p(X2 /wh), w, T W) and the prior joint
probabilities of the classes (P(Wn ,w), w, T W,w, T W) in an unsupervised way. It is worth noting that
usudly the esimation of p(X, /w.) (w,1 W, i=1,2) involves the computation of a parameter vector.

The number and nature of the vector components depend on the specific classifier used. Consequently, the
procedure to be adopted to accomplish the unsupervised estimation process depends on the technique
used to carry out the cascade classfication, in particular, on the vector of parameters required by the
classfier.

The possibility of establishing a rdationship between the classfier parameters and the datisticd terms
involved in (2) is a basc condraint that each classfication technique should satisfy in order to permit the
use of the cascade-classfication decison rule. To meet this requirement, we propose to use two suitable
classfication methods. The fird is a parametric gpproach based on the maximum-likelihood (ML) classifier
[3]; the second consists of a non-parametric technique based on radid basis function (RBF) neurd

networks [ 7], [8]. The specific architectures of the ML and RBF cascade classifiers and the procedures for



the patidly unsupervised esimation of the reated parameters are described in the following two

subsections.

A. Maximum-Likelihood Cascade Classifier

The formulation of the partidly unsupervised classfication problem in the framework of the ML cascade
approach has aready been addressed in [4]. Therefore, here we briefly recall the basic issues described in
that paper.

For smplicity, let us assume that the probability density function of the generic dass w, e the timet; (i.e,
p(X, /w,),w, 1 W, i=1,2) can be described by a Gaussian distribution (i.e., by amean vector m and a
covariance marix S'). Accordingly, hyper-quadrics decision surfaces can be nodeled. Under this
common assumption (widdly adopted for multispectra image classfication problems), the mean vectors
and the covariance matrices that characterize the conditional density functions of the classes at t; can be
eadly computed by a standard procedure using the training set ;. Concerning the parameter vector J of

the classfier to be estimated in a partialy unsupervised way, it conssts of the following components:

3 =[nf,S?,Pww),.... 18 S, Pl e )] 3
where the superscript “2” denotes the parameters of the conditiona dengty functions of the classes at the
time t,. To carry out the partidly unsupervised estimation process, we propose to adopt a procedure
based on the observation that, under the assumption of class-conditiona independence over time, the joint
dengty function of the images X; and X; (i.e., p(X1, X»)) can be described as a mixture density with C° C

components (i.e., a many components as possible pairs of classes):

p(%,.X,) @ & p(X, /w, )o(X, /w, )P, w, ). (4)

n=1h=1



In this context, the estimation of the above terms becomes a mixture-dengty estimation problem, which
can be solved via the EM dgorithm [9]-[12]. By applying such an dgorithm, we can derive the following
iterative equations to estimate the components of the vector J necessary to accomplish the cascade-

classfication process [4]:

éiéipt(vvn,vvh/x%,xf)gxf
- (5

P( vvh/x], J)g
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A 18P (ww,/ x},xf)g
j=11 n=1
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where the superscripts t and t+1 refer to the vaues of the parameters a the current and next iterations,
respectively, the superscript T refersto the vector transpose operation, and the joint posterior probabilities
of the classes are gpproximated by:

plx; 7w ) (¢ /g )P (g, )

P, W, /%! X2) @

& 4 (et /v o w Jp o, w )

(8)

It is worth noting that al the previous equations implicitly depend on J . Concerning the initidization of the
components of the vector J , theinitid vaues of the parameters of the density functions of classes at t, are
obtained by consdering the corresponding vaues estimated at time t; by supervised learning, whereas dl

the prior joint probabilities of classes are assumed to have the same values. It is possible to prove that, at
each iteration, the estimated parameters evolve from their initial values to the fina ones by maximizing the

following log-likelihood function (the convergence to aloca maximum can be proven) [9]:
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The estimates of the parameters obtained at convergence and those achieved by the classical supervised
procedure & the time t; are then subgtituted into (2) in order to accomplish the ML cascade-classficaion
process. We refer the reader to [4] for greater details on the ML partidly unsupervised cascade classfier

and on dternative initidization conditions on the iterative esimation agorithm.

B. RBF Neural Network Cascade Classifier

The problem of partialy unsupervised cascade classification by usng RBF neura networks is much more
complex than the one associated with the ML parametric cascade classifier. The increased complexity
mainly depends on the non-parametric nature of RBF neura networks. In our case, we have to resolve two
critical issues in order to develop the cascade classfier in the framework of RBF neurd networks. i) we
should define a specific architecture that is able to implement the cascade- dlassfication decison rule; i) we
should devise a partially unsupervised procedure for the training of the proposed architecture.

Firg of dl, let us briefly recdl the standard architecture of an RBF neurd classfier to be used for the
classfication of a generic image X; (see Fig. 2). This architecture is made up of three layers. an input layer
(composed of as many units as input features), a hidden layer (composed of S neurons) and an output layer
(composed of as many units asland-cover classes). The input layer just propagates the input festures to the
hidden layer. Each unit of the hidden layer gpplies a Smple nontlinear transformation to the input data

according to a symmetric radia bass function j . (usudly a Gaussan function characterized by a mean
vaue p, and awidth s ). The connections between the hidden and output units are associated with a
numerical value caled weight (It w, denote the weight that connects the s-th hidden neuron to the r-th
output neuron). The output neurons apply a linear transformation to the weighted outputs of the hidden

10



neurons. It can be proven that, if the classifier has been properly trained [13], the outputs of an RBF neurd
network can be related to the conditiona dengties of the classes, which are expressed as a mixture of the
kernel functions associated with the units of the hidden layer. In addition, the statistica terms computed by

the neural classifier can be related to the global density function p(X; ) of theimage X; asfollows:

p(X, /i JPG )P /i ) (10)

QJ°0
Qo

p(Xi)

i

s=1

wherep(X; /] ,) is the conditional density of the varisble X, giventhekernd function j ., Plw, /j . ) is
the conditional probability of the class w, , giventhekernd j P(j < ) isthe prior probability of the kernd
J ¢, and Sisthe number of kernels consdered. It is worth noting that the Setistical terms in (10) can be
associated with the parameters of the RBF neurd architecture as follows [13]:
i (X )=px 7j.) (11)
w, =P, JPtw /i ) (12)
We refer the reader to [7], [8] for more details on standard RBF neurd classfiers.

In order to define a cascade classfier in the context of the RBF neura-network theory, let us

approximate the joint density function p(X,,X, ) of the two images X; and X, as amixture of Gaussian
kernd functions. To this end, let us consider K kerndl functions j | and Q kernd functions j j associated

with the gaidics of the images X; and X,, respectively. Accordingly, under the assumption of kerned-

conditiona independence in the tempora domain, we can write:

8 8 ol%, /i )olx, 73 2)Ph i 2Pl e /i 1 2) 13)

1 k=1
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where p(X; /j !) isthe value of the conditional density function of the varizble X; , given the kernel j |,

(W W, /j o ) is the joint conditiona probability of the pair of classes (v, ,w,) given the pair of

11



kerndls j qz) and Pfj & j) is the joint prior probability of the kemels (j & j qz) In this context, the
cascade classification decision rule can be rewritten as;

I?=w, T W ifand only if

p(xt 73 L )plxe 15 2)P( 2 2)Plw, v /i 25 2)= (14
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It is worth noting that the tempord correlation between the two imagesiis taken into account by the terms
P(j o j) and P(wn ,vvh/j o j) By anayzing equation (14), we can obsarve that p(le /j kl) and
p(xj2 /] j) can be derived by applying two standard RBF neura-network classifiers o the t; and t;
images, respectively. In particular, we can apply an RBF neurd-network classfier with K hidden units to
the image X; and an RBF neurd-network dassfier with Q hidden units to the image X, (see Fig. 3). If a
proper training agorithm is used, the terms p(le /j }) and p(xj2 /j j) are given by the outputs of the
hidden neurons of the aforementioned neural classfiers. However, in order to implement the cascade
classification decison rule, a non-conventiond architecture should be considered, which involves the joint
datisticd terms P(j i j) and P(Wn W /i i j) in the classification process. To this end, the outputs of
the hidden neurons of the t; and t, networks are given as input to a specific block (let us cal it “cascade

classfication” block) that presents as many outputs as land-cover classes (i.e., C outputs). In particular, the

output u,, which is associated with the land-cover class vy, , isgiven by:

P L 2)Plw,w /i 1 2)i (e )i 2(). (15)
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According to equation (14), each pixd is classfied as belonging to the land-cover class associated with
the maximum output vaue.

The main problem that remains to be solved is the estimation of dl the parameters consdered in the
proposed architecture in a patidly unsupervised way (i.e, by usng only the joint dendty function

p(X,,X,) and the training set Y,). Concerning the parameters of the p(X, /j }) (i.e, the centers p

and the widths s, of the Gaussian kernd functions that process the image X3), they can be estimated in a

supervised way according to the statistical procedure described in [7], [8]. Consequently, the parameter

vector J that remains to be estimated in apartidly unsupervised way is composed of the following terms:
3=lp?stpi s Pl 1) Pl i )P e fi 2 2Pl e i i 2] )
where pj and sj are the centers and the widths characterizing the kernel functions j , that process the

image X,. In order to estimate the components of the parameter vector, we propose to apply the EM
agorithm to (13). Accordingly, it is possible to prove that part of the components of the parameter vector

can be estimated by using the following iterative equeations.

[pZ]t+1: =1l k (17)
B ¥ VA R
81K +
s 2] = 21%21@(, : q/X"XJ)iS"X b1 (18)
q B K
dxa ta Pl j/x},xf)g
j=1l k=1
t+1'1'2_i°B tfy 1 ; 2 1 2
P Gqu)_Bja:lPGqu/Xj’xj) (19)
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where d is the dimensondity of the input space, the superscripts t and t+1 refer to the vaues of the

parameters at the current and next iterations, respectively, and the PtG J g 2 x X ) are gpproximated

by:

o)
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Concerning the initidization of the aforementioned components of the parameter vector J , the initid
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vaues of the parameters of the conditiond dengty functions of kernels at t, can be obtained by applying a
sandard unsupervised clugtering adgorithm to the X, image [7], whereas the initid vaues of prior joint
probabilities of the kernels can be easly computed in the assumption of independence between the kernels
atwodates(ie, Pj i ,)=Pl )Pl )

As we have dready pointed out, the estimation of RBF cascade neurd-network classifier parameters is
sgnificantly more complex than the edtimation of ML cascade-classfier parameters. Despite the

parameters p?, s’ and P(j o j) of the vector J can be estimated in a fully unsupervised way, the
esimation of the joint conditiona probabilities P(Wn ,V\41/j o j) requires other information in addition to

the one contained in the training set Y, (it is worth noting that the terms P(Wn W, /j o j) express the

relationship between kernd functions and land-cover classes). To solve this problem, we propose to

exploit some of the information obtained (at convergence) by the ML cascade classfier described in the

previous subsection. In particular, a set \?2 of pixds, which is composed of the patternsthat are most likely

correctly categorized by the ML cascade classfier, is used for the initidization of the P(Wn ,Wh/j Cd j)

conditiona probahilities. These patterns are selected on the basis of the values of the posterior probabilities

provided by the ML classifier. In greater detall, pixels associated with values of the posterior probabilities

14



above a predefined threshold e are chosen. Let Y, be the set of pairs of pixels (xfxf) suchthat ;T Y,
belongs to the land-cover classw, and szT \?2 is categorized by the ML cascade-classfier as beonging to
the class Wy, Let Y, bethe set of pairs of pixels (x}xf) such that x;1 Y, belongs to the land-cover
dassw, and 21 Y, . Andogoudy, let Y, bethe set of pairs of pixels (xﬁxf) suchthat x; 1Y, and

xJ.ZT \?2 is categorized by the ML cascade-classfier as belonging to the class w,. Theiterative equations to

2
q

be used to estimate the joint conditional probabilities P(w, w;/j ¢ 2) arethefollowing

P i £ )= |

8 Pfrj2ixx
A% ()i vo b )

q

7z
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(4.

~q-

+( a} gé P, /i 0 PG L j/x},xf)w% (21)
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1.2 =
X} X Yovhefl

where the normdizing factor A isequd to:

g ? o} t 1: 2 1 {2 u gé 2 tfy 1 ; 2 1 2\,
A=aé PGqu/xj,x])u+ae PGqu/xj,xj)u+
h=1éx%'X12'Y0h EI n=laxil”ﬂz”(no Q
vEEE & Pzl (22)
a_laelg ko g 1 XX
n—1h=1éxJ X i Ynh g

It is worth noting that this iterative procedure sgnificantly improves the initid estimates based by the
patternsincludedin Y, .

Anaogoudy to the ML cascade classifier, dso in this case the estimated parameters evolve from their
initid vauesto the find ones by maximizing the following log-likelihood function (the convergence to aloca

maximum can be proven):

15
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where Y, isthe st of pairs of pixels (xfxf) suchthat x} 1Y, and x21 Y.

The edimates of the parameters obtained a convergence and the ones achieved by the classcd

supervised procedure are used to accomplish the RBF cascade- classification process.

IV. A STRATEGY FOR GENERATING ENSEMBLES OF PARTIALLY UNSUPERVISED CAscADE CLASSIFIERS. HYBRID ML AND

RBF NEURAL-NETWORK CLASSIFIERS

The sdlection of the pool of classfiers to be integrated into the multiple cascade-classfier architecture is
an important and criticd task. In the literature, severd different strategies for defining a classifier ensemble
have been proposed [5], [14]-[17]. From atheoreticd viewpoint, necessary and sufficient conditions for
an ensemble of classfiers to be more accurate than any of its individud members are tha the classfiers
should be accurate and different [18]. In our case, we can control only the second condition, Snce no
training st is avalable to verify thefird one.

The main issue to be resolved for the definition of the ensemble concerns the capability of different
classfiersto incur uncorrelated errors. In practice, severd Strategies have been proposed to make up pools

of classfiers that incur uncorrelated errors. These dtrategies involve the selection of different classfication

16



dgorithms, the choice of different initid training conditions for a given classfication dgorithm, the use of

different architectures for the same kind of classfier (e.g., neura networks), the manipulation of the training
examples, the manipulaion of the input features, the manipulation of the output targets, the injection of

randomness, etc. [18]. In our system, the choice of both a parametric (ML) and a non-parametric (RBF)
classfier guarantees the use of two classfication agorithms based on sgnificantly different principles. For
this reason, we expect these classfiersto incur sufficiently uncorrelated errors. However, two classfication
dgorithms are not enough to define an effective multiple classfier architecture. To increase the rdiability of
the system, we need to generate apool of N classfiers (N>2). According to the literature, we could define
different RBF neurd-network architectures in order to derive different classfication agorithms for the
ensemble [19]. However, as we are dealing with cascade-classfier techniques, we propose to adopt an
dternative, determinigtic, and smple strategy for making up the ensemble. This drategy is based on the
peculiarities of the cascade-classfication gpproach, in which a set of key parameters, estimated by the
partidly unsupervised process, is composed of the prior joint probabilities of classes P(Wn ,Wh) (they are
associated with the temporal correlation between classes). The different cascade classifiers (i.e., ML and
RBF neura networks) perform different estimations of the aforementioned probabilities, on the basis of the
different classfication and estimation principles. According to this observation, we propose to introduce in
the ensemble hybrid classifiers obtained by exchanging the estimates of the prior joint probabilities of

classes performed by different agorithms. In our case, given an ML cascade classifier and an RBF neurd-
network cascade classfier, this strategy results in an ensemble composed of the two “origind” classfiers
and of two hybrid ML and RBF dgorithms obtained by exchanging the prior joint probabilities esimated in
a patidly unsupervised way by the origind cdassfiers. These hybrid classfiers are described in the

following.
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Let PM(w,w,), p" (X,/w,) and p"(X,/w,) denote the joint probabilities and the conditional
dendties of classes edimated by the ML cascade classfier, respectivey. Andogoudy, let
pReF (vvn,vvh/j " j) PReF (i L j) p™ (X, /w,) and p™®* (X, /w, ) denote thejoint probabilities of
the classes conditioned to the kernels, the joint probabilities of the kernels, and the conditiona densities of
the classes at the times t; and t, estimated by the RBF cascade classfier, respectively.

The firg hybrid classfier (let us cdl it ML-hybrid cascade classfier) is obtained by merging the joint
probabilities estimated by the RBF cascade classfier with the conditiona densties estimated by the ML
cascade classfier. Hence, the corresponding classification ruleis the following:

I?=wp,I Wif and only if

ML(X* /w, )p“"L(xj2 /Wm)PRBF (VV] ,Wm)z (24)

] n

Cc
= maxj a pML(X-/W)p (x W, PRBFW,W)%

where:

P (w w, )= & & P, w /i 1 2P L 2). (25)

k=1 =1
Anaogoudy, the second hybrid cdassfier (let us cdl it RBF-hybrid cascade classfier) is obtained by
merging the joint probabilities estimated by the ML cascade classfier with the conditionad densties
p"eF (xij2 Iw, ,Wh) that can be estimated by using the RBF cascade classifier parameters. Hence, the

corresponding classfication rule is the following:

-~ C
12=w,,] Wifandonlyif & p™F (x,x /w, w, P (w, w, )=

n=1

= maxt & p (x!, ¢ fwy, g )P, ,wh);vj (26)

Wh|W|n -1
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where the conditional densities p™ (x, x? /W, W, ) can be approximated by:

IR

g_éli PRBF(VVn ,Wh/j i’J s)PRBFG ;,J qZ)pRBF (X} /j I:(L)pRBF (XJ2 /j 5)
P bl g ) @ @
aé PRBF (\Nn th/J kl’- S)PRBFﬁ i!] 5)
q=1k=1

The use of these hybrid classfiers dlows one to obtain a multiple classfier architecture composed of four
classfiers. It is worth noting thet it is possble to further increase the number of classfiers by extending the
aforementioned procedure to the case of more RBF neurd network architectures with different numbers of

hidden units.

V. MuLTiPLE CAascADE CLASSIFIER ARCHITECTURE: UNSUPERVISED COMBINATION STRATEGIES

In the proposed system, the classification results provided by the N members of the considered pool of
cascade classfiers are combined by using classcd multiple-classfier strategies. In particular, we consder
two smple and widdy used combination procedures. Majority Voting and Combination by Bayesian
Average [5]. Both procedures exhibit the common peculiarity of requiring no prior training to carry out the
combination process. This is a mandatory requirement in our gpproach, as we have no ground truth
information (and hence no training set) for the image Xo.

The Majority Voting procedure faces the combination problem by consdering the results of each single
classfier in terms of the class labels assgned to the patterns. A given input pattern receives N dassfication
labels from the MCCS. each labd corresponds to one of the C classes consdered. The combination
method is based on the interpretation of the classfication labd resulting from each classfier asa“vote’ to
one of the C land-cover classes. The data class that receives the largest number of votes is taken as the
class of the input pattern.

The Combination by Bayesian Average strategy is based on the remark that, given the observations
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X; and X, the N classifiers considered provide an estimate of the posterior probability P(vvh/x}xf)
for each dass w, T W. Therefore, a possible strategy for combining these dlassifiers consists in the
computation of the average posterior probabilities, i.e,

B (w7 %, x2) (29)

1

Qoz

Pf"ve(vvh /x},xf)zﬁg

where ﬁ; w / x}xf) is the estimate of the pogterior probability P(Wh/x?,sz) provided by the gth

classfier. The classfication process is then carried out according to the Bayes rule by sdecting the land-

cover class associated with the maximum average probability.

VI. EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed approach, different experiments were carried out on a data
set made up of two multipectral images acquired by the Thematic Mapper (TM) sensor of the Landsat 5
sadlite. The selected test site was a section (412" 382 pixds) of a scene including Lake Mulargias on the
Idand of Sardinig, Italy. The two images used in the experiments were acquired in September 1995 (t;)
and July 1996 (t,). Figure 4 shows channds 2 of both images. Five land-cover classes (i.e., urban area,
forest, pasture, water body, and vineyard), which characterize the test Ste at the above-mentioned dates,
were conddered. The available ground truth was used to derive atraining set and atest set for each image
(see Table 1). To cary out the experiments, we assumed that only the training set associated with the
image acquired in September 1995 was available. We used the training set of the July 1996 image only for

comparisons with completely supervised classfiers.

20



Partidly unsupervised ML and RBF neurd-network cascade classifiers were applied to the September
1995 and July 1996 images. For the ML cascade classfier, the assumption of Gaussian distributions was
made for the dendty functions of the dasses (this is a reasonable assumption as we consdered TM
images). Concerning the RBF neura cascade classfier, in order to exploit its non-parametric nature, five
texture features based on the Gray-Leve Co-occurrence matrix  (i.e, sum variance, sUm average,
corrdation, entropy and difference variance) [20] were computed and given as input to the classfier in
addition to the sx TM channds. These features were obtained by using awindow sze equd to 7x7 and an
interpixe distance equd to 1.

As regards the ML cascade classfier, the parameters of the Gaussan density functions of the classesat t;
were computed in a supervised way by using the available training set for the September 1995 image (i.e,
Y1). These vaues were dso used to initidize the parameters of the conditional dendity functions of the
classes at t,. Concerning the RBF cascade classfier, severd trials were carried out in order to derive an
effective number of neurons to be used in the hidden layer. To this end, experiments were carried out usng
a sandard RBF architecture trained by the avalable st Y; and gpplied to the t; test set. The highest
accuracy was obtained by an architecture composed of 35 hidden units. On the basis of this result, an
architecture composed of 70 hidden units was used for the RBF cascade classfier (i.e, 35 units related to
the t; image and 35 units related to the t, image). It is worth noting that the parameters of the 35 hidden
units associated with X; were fixed according to the vaues achieved in a supervised way in the
aforementioned experiment. The values of the parameters of the 35 hidden units used to process the image
X, wereinitidized by gpplying an unsupervised dugtering to that imege.

The parameters of the vectors J rdated to the ML and RBF cascade classifiers were estimated in an
unsupervised way by using the proposed formulations of the iterative EM dgorithm (see (5)-(8), and (17)-
(22)). Firdly, the ML cascade classfier was trained, and the patterns classified with a posterior probability
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higher than the threshold value e=0.98 were used to generate the set \?2 in order to support the RBF

training process. The EM dgorithms adopted for the ML and RBF patidly unsupervised training
processes converged in 11 and 25 iterations, respectively. At the end of the iterative process, the resulting
estimates were used to perform the classfication of the July 1996 image. In addition, from the considered
ML and RBF cascade classfiers, the two hybrid ML and RBF neura-network cascade classifiers were
derived according to the strategy described in Section 1V. Also these hybrid classifiers were gpplied to the
July 1996 image.

The classification accuracies and the kappa coefficients of accuracy exhibited by the aforementioned four
partidly unsupervised cascade classifiers on the t, test set are given in Table 1. As one can seg, the
performances of dl the classfiers are very good. In particular, the overal accuracies exhibited by both the
RBF and RBF-hybrid dassfiers are very high (i.e, 96.10% and 95.38%, respectively), and dso the
overal accuracies provided by the ML and ML-hybrid classfiers are satisfactory (i.e., 91.48% and
91.79%, respectively). This confirms the effectiveness of the partidly unsupervised training process.
Comparisons between standard and hybrid classfiers (i.e, RBF vs. RBF-hybrid and ML vs. ML-hybrid)
point out that these classifiers provided very smilar overdl accuracies. However, a degper andysis of the
results reveals some important differences between the considered classification techniques. For example,
the accuracy exhibited by the RBF-hybrid cascade classfier on the vineyard classis sgnificantly higher than
the one exhibited by the RBF neura cascade classfier (i.e,, 66.67% vs. 61.54%). If one considers the
confusion matrices resulting from the aforementioned experiments (see Tables 111 (a)-(d)), one can verify
other sgnificant differencesin the behaviors of the classifiers on the different classes. For example, the RBF

classfier misclassifies 30 pasture patterns as belonging to urban areas, whereas the RBF-hybrid dassfier



never incurs such a classfication error. This confirms that the assumption that the four classfiersincur quite
uncorrelated errorsis reasonable.

At this point, the four classfiers were combined by using both the Mgority-Voting and the Combination
by Bayesian Average srategies (concerning the Mgority-Voting strategy, in the case where more than one
class recaived the same number of votes, the class with the maximum posterior probability was chosen).
The accuracies obtained on the July 1996 test st are given in Table IV. Both combination drategies
provided very high accuracies on dl the land-cover classes, with the exception of the vineyard class, which
is a minority one. By comparing Tables Il and IV, one can conclude that the classfication accuracies
obtained combining the results of the partidly unsupervised cascade classfiers by the two combination
drategies consdered are sgnificantly higher than the accuracy exhibited by the worst sngle classfier (i.e,
96.56% and 94.77% vs. 91.48%). In particular, the classification accuracy obtained by applying the
mgority rule srategy is dso higher than those exhibited by dl the sngle dassfiers making up the ensemble.

As gated in the methodologicd part of the paper, the objective of the multiple-classfier gpproach is not
only to improve the overd| cassfication accuracy of the system but dso to increase its robustness. In
order to investigate this aspect, an experiment was carried out in which the falure of the training process of
the RBF neurd cascade classfier was smulated. In particular, in order to smulate this Stuation, the
partialy unsupervised training of the parameters of the RBF architecture was carried out by replacing the
image X, with the image X;. It isworth noting that the resulting incorrect estimation of the RBF parameters
ds dfects the hybrid clasdfiers. Table V presents the clasdfication accuracies obtained by this
experiment. As can be seen, even though the overdl accuracies exhibited by both the RBF and the RBF-
hybrid cascade classfiers are very poor (i.e, 67.68% and 72.75%, respectively), both combination
drategies (i.e., the Combination by Bayesan Average strategy and the mgority rule) dlow the presented

system to achieve classfication accuracies (i.e., 92.46% and 95.90%) higher than the ones yidlded by dl
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the angle classfiers. This confirms that the proposed architecture based on multiple cascade classfiers
permits one to increase the robustness of the system versus possible fallures of the partidly unsupervised
training process of sngle cascade-classfication techniques.

Findly, in order to completely assess the effectiveness of the proposed methodology, two additiona
experiments were carried out using a fully supervised sandard RBF classfier. In the first experiment, the
RBF classfier was trained on the September 1995 training set and tested on the July 1996 image. The
obtained results are given in Table VI. As one can see, the standard supervised RBF neurd-network
classfier trained on the “old” training set was unable to classfy the “new” image with an acceptable
accuracy, thus confirming that the use of a more complex classification methodology based on a partidly
unsupervised training process is mandatory. In the second experiment, the RBF classfier was trained on
the July 1996 training set and gpplied to the test set related to the same image (it is worth noting thet this
training set was not consdered in the previous experiments as we assumed that it was not available). Table
VII givesthe obtained results. A comparison of these results with the ones provided in Table IV points out
that the proposed system outperforms the sandard supervised RBF classfier. This surprisng result, which
mainly depends on the ability of the proposed gpproach to exploit the tempord corrdation between the

two images consdered, confirms the effectiveness of the presented methodology.

VI1I. DiscussioN AND CONCLUSIONS

In this paper, a novd MCCS for a partialy unsupervised updating of land-cover maps has been

proposed. This system dlows one to update the exigting land-cover maps of a given area by exploiting a
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new remote-sensing image acquired on the investigated Site, without requiring the reated ground truth. The
main features of the proposed system are the following:
a) capability to exploit the tempord corrdation between multitempora images in the process of
partidly unsupervised updating of land-cover maps;
b) capability to explait, in a synergicd way, the information provided by different classfiers;
C) robustness to the partidly unsupervised training process, thanks to the use of different partidly
unsupervised classfiers,
d) capability to condder multisensor and multisource data in the process of updating of land-cover
maps (thanks to the availability of nonparametric classfication agorithmsin the ensemble).

Concerning the methodologica novdties of this work, besdes the definition of the globd architecture of
the system, some specific agpects should be pointed out: the use of cascade classfiers to solve the partidly
unsupervised classfication problem; the origind RBF neurd-network architecture capable to exploit the
tempord corrdation between pairs of multitempora remote-sensing images, the specific formulation of the
EM dgorithm within the framework of the cascade-classfication decision rule for the training of the RBF
cascade-classifier; the proposed ML and RBF hybrid cascade classfiers.

Dueto the partidly unsupervised nature of the proposed cascade classfiers consdered in the ensemble, it
is not possible to guarantee in adl cases the convergence of the estimation process to accurate vaues of the
classfier parameters. The accuracy obtained a convergence depends both on the rdiability of the
initidization conditions of the partidly unsupervised estimation procedures and on the specific classfication
agorithm consdered. However, the use of the multiple cascade-classfier architecture reduces the overdl
probability that the system may not succeed, thus increasing the robustness of the architecture to the

probability of falure of the partidly unsupervised training of each sngle classfier.
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In the experiments carried out on different remote-sensing data sets, the proposed system proved
effective, providing both high classfication accuracy and high roboustness. Consequently, it seems a very
promigng tool to be integrated into a GIS system for a regular updating of land-cover maps. It is worth
noting thet, in the case where an “old” ground truth is not avalable, the land-cover map itsdf can be
congdered as the training st Y, required for the partially unsupervised training process of the proposed
system (however, in this Stuation, the possible errors present in the origina land-cover map may affect the
accuracy of the system).

The future developments of thiswork will be oriented in two different directions:

1) deveoping a procedure that, given the two images X; and X, and the training set Y,, may identify the
probability of afailure of the partidly unsupervised training of each cascade classifier and consequently
prevent such aStuation;

2) extending the partidly unsupervised cascade-classfication gpproach to other kinds of classfication

techniques to be integrated into the classifier ensemble.
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FIGURE CAPTIONS

Fig. 1. Generd architecture of the proposed system.

FHg. 2. Standard architecture of a supervised RBF neurd-network classfier.

Fig. 3. Architecture of the proposed partialy unsupervised RBF neurd cascade classfier (solide ling). The

architecture of the standard RBF neura network used for the supervised etimation of the t; datidticad

parametersis dso shown (dashed line).

Fig. 4. Bands 5 of the Landsat-5 TM images utilized for the experiments:. (a) image acquired in September

1995; (b) image acquired in July 1996.
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TABLE CAPTIONS

Table I. Number of patterns in the training and test sets for both the September 1995 and July 1996

images.

Table I1. Classfication accuracies obtained by the four partidly unsupervised cascade classfiersincluded in

the proposed multiple classfier architecture (July 1996 test set).

Table 1. Confuson matrices that resulted from the classfication of the July 1996 test set by using the
proposed partidly unsupervised techniques. a) ML cascade classfier; b) RBF neurd cascade classfier; ©)

ML-hybrid cascade classfier; d) RBF-hybrid neura cascade classfier.

TableIV. Overdl classfication accuracies exhibited by the proposed multiple cascade classifier system.

Table V. Overdl| classfication accuracies exhibited by the four partialy unsupervised cascade-classfiers
included in the proposed multiple classifier architecture (July 1996 test set). The results are related to the
ca= in which afalure in the partialy unsupervised training of the RBF cascade-classifier was smulated.

The overall accuracy obtained after combining the proposed classfiersis aso given.

Table VI. Classfication accuracies exhibited by a standard supervised RBF neurd classfier trained on the

September 1995 image and tested on the July 1996 image.

Table VII. Classfication accuracies exhibited by a standard supervised RBF classifier trained and tested on

the July 1996 image.



Cascade Classifier [
N "1
Multispectral image
acquired at t1
—>»|  Combination R
—p|  Strategy
Updated land-cover
map
Multispectral image ~
acquired at to » Cascade Classifier ||
S "N
A
> Partially Unsupervised o
| Edtimation of the [ Training set Y

Parameters of Classifiers

Fig. 1






Fig. 3

Cascade
Classification Block

e x?)

L Uc(x.x()




Fig. 4



TABLEI

Land-cover class

Number of patterns

Training set Test set
Pasture 554 589
Forest 304 274
Urban area 408 418
Water body 804 551
Vineyard 179 117
Overal 2249 1949




TABLEII

Land-cover class

Classification accuracy (%)

ML RBF ML-hybrid RBF-hybrid
Pasture 8353 94.91 85.23 94.40
Forest 97.45 100.00 97.45 98.91
Urban area 95.69 99.76 94.98 96.41
Water body 100.00 100.00 100.00 100.00
Vineyard 62.39 61.54 61.54 66.67
Overall 91.48 96.10 91.79 95.38
Kappa coefficient 0.88 094 0.89 0.93




TABLEIII

Pasture Forest Urban area Water body Vineyard
Pasture 492 12 85 0 0
Forest 2 267 2 0 3
Urban area 5 5 400 0 8
Water body 0 0 0 551 0
Vineyard 23 11 10 0 73
(@
Pasture Forest Urban area Water body Vineyard
Pasture 559 0 30 0 0
Forest 0 274 0 0 0
Urban area 0 0 417 1 0
Water body 0 0 0 551 0
Vineyard 31 11 3 0 72
(b)
Pasture Forest Urban area Water body Vineyard
Pasture 502 15 72 0 0
Forest 2 267 2 0 3
Urban area 5 7 397 0 9
Water body 0 0 0 551 0
Vineyard 21 11 13 0 72
(©)
Pasture Forest Urban area Water body Vineyard
Pasture 556 23 0 10 0
Forest 0 271 0 2 1
Urban area 15 0 403 0 0
Water body 0 0 0 551 0
Vineyard 21 0 3 15 78
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TABLE IV

Land-cover class

Classification accuracy (%)

Bayesian Average Magority rule
Pasture 9151 94.06
Forest 99.27 99.64
Urban area 98.09 99.28
Water body 100.0 100.0
Vineyard 64.10 76.06
Overal 94.77 96.56
Kappa coefficient 0.93 0.95
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TABLEV

Overadl classification accuracy (%)
ML RBF  RBE-hybid ML-hybid ~ ooyesan  Maorty
average rule

91.48 67.68 72.75 91.74 92.46 95.90




TABLE VI

Land-cover class Classification accuracy (%)

Pasture 47.70
Forest 94.16
Urban area 66.27
Water body 100.00
Vineyard 45.30
Overdl 72.85

K appa coefficient 0.65
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TABLE VII

Land cover class Classification accuracy

(%)
Pasture 89.64
Forest 90.27
Urban area 88.28
Water body 100.00
Vineyard 67.52
Overdl 92.30

Kappa coefficient 0.89
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