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Abstract - A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal 

remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint 

that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth 

information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in 

a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is 

developed in the framework of the cascade-classification approach to exploit the temporal correlation existing 

between images acquired at different times in the considered area; ii) it is based on a partially unsupervised 

methodology capable to accomplish the classification process under the aforementioned critical constraint.  Both a 

parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-

network classification approach are used as basic methods for the development of partially unsupervised cascade 

classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-

likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-

classification methodology. The results yielded by the different classifiers are combined by using standard 

unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised 

classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive 

sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal 

and multisource data set confirm the effectiveness of the proposed system. 
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I. INTRODUCTION 

One of the major problems in geographical information systems (GISs) consists in defining strategies and 

procedures for a regular updating of land-cover maps stored in the system databases. This crucial task can 

be carried out by using remote-sensing images regularly acquired by space-born sensors in the specific 

investigated areas. Such images can be analyzed with automatic classification techniques in order to derive 

updated land-cover maps. The classification process can be performed by considering either the 

information contained in a single image [1] or the information contained in a multitemporal series of images 

of the same area [2] (i.e., by exploiting the temporal correlation between images acquired at different 

times). The latter approach is called “cascade classification” and allows one to increase the categorization 

accuracy. However, at the operating level, both aforementioned approaches are usually based on 

supervised classification algorithms. Consequently, they require the availability of ground truth information 

for the training of the classifiers. Unfortunately, in many real cases, it is not possible to rely on training data 

for all the images necessary to ensure an updating of land-cover maps that is as frequent as required by 

applications. This prevents all the remotely sensed images acquired in the investigated area from being used 

to update land-cover maps. For these reasons, the process of temporal updating of land-cover maps 

results in a complex and challenging problem.  

In previous works [3], [4], the authors have already addressed the aforementioned problem. In particular, 

partially unsupervised classification approaches have been defined and developed. (The term “partially 

unsupervised” is used here to point out that, on the one hand, no ground truth information is assumed to be 

available for the specific image to be classified, but, on the other hand, a training set exists related to an 

image of the same geographical area acquired before the one to be classified). In [3], a partially 

unsupervised classification methodology is proposed that is able to update the parameters of an already 
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trained parametric maximum-likelihood classifier on the basis of the distribution of a new image for which 

training data are not available. In [4], in order to take into account the temporal correlation between series 

of remote-sensing images, the partially unsupervised maximum-likelihood classification approach is 

reformulated in the framework of the Bayesian rule for cascade classification. This allows an increase in the 

robustness of the unsupervised retraining process.  

Although the aforementioned approaches have proved effective on several data sets, they exhibit some 

limitations. Firstly, given the intrinsic complexity of the problem addressed, these approaches result in 

classifiers that are less reliable and less accurate than the corresponding supervised classifiers. Secondly, 

the parametric nature of the proposed classifiers prevents the approaches from being used for the analysis 

of multisensor and multisource remote-sensing images. This can be critical in complex classification 

problems, in which multisource and/or multisensor information may play a fundamental role.  

 In this paper, a novel classification system aimed at obtaining an accurate and robust partially 

unsupervised updating of land-cover maps is proposed. Such a system extends the approaches proposed 

in [3] and [4], defining an effective classification framework based on a multiple cascade-classifier system 

(MCCS), which is able to overcome the main limitations of the aforementioned methods.  The ensemble of 

classifiers used in the MCCS architecture is derived from maximum-likelihood (ML) and radial basis 

function (RBF) neural-network classification approaches. Three important methodological novelties are 

associated with the presented system: i) all the partially unsupervised classifiers of the ensemble are defined 

in the framework of cascade classification; ii) a new non-parametric partially unsupervised cascade 

classifier based on RBF neural networks is proposed; iii) hybrid maximum-likelihood and RBF neural 

classifiers are defined by exploiting the peculiarities of the cascade-classification approach in order to 

generate an effective ensemble of classifiers. It is worth noting that, thanks to the non-parametric nature of 
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the RBF neural-network cascade classifiers, the proposed system is able to analyze multisensor and 

multisource data.  

Experimental results obtained on a multitemporal and multisource data set related to the Island of 

Sardinia, Italy, confirm the effectiveness of the proposed system. 

The paper is organized into seven sections. Section II reports the formulation of the problem and 

describes the general architecture of the proposed system. Section III presents the partially unsupervised 

classification problem in the framework of the cascade-classification approach for both the ML and RBF 

neural-network classification techniques. Section IV addresses the problem of defining suitable ensembles 

of cascade classifiers, and describes the proposed hybrid ML and RBF classifiers. Section V deals with 

the unsupervised strategies used for the combination of the results yielded by the cascade classifiers 

included in the considered ensemble. Experimental results are reported in Section VI. Finally, in Section 

VII, discussion is provided and conclusions are drawn. 

II. PROBLEM FORMULATION AND DESCRIPTION OF THE SYSTEM ARCHITECTURE 

A. Problem Formulation and Simplifying Assumptions 

Let { }11
2

1
11 B,..,x,xx=X  and { } 22

2
2
12 Bx,..,x,x=X  denote two multispectral images composed of B pixels 

and acquired in the area under analysis at the times t1 and t2, respectively. Let 1
jx  and 2

jx  be the d×1  

feature vectors associated with the j-th pixels of the images (where d is the dimensionality of the input 

space), and { }C,...,, ωωωΩ 21=  be the set of C land-cover classes that characterize the geographical area 

considered at both t1 and t2. Let 2
jl  be the classification label of the j-th pixel at the time t2. Finally, let X1 

and X2 be two multivariate random variables representing the pixel values (i.e., the feature vector values) in 

X1 and X2, respectively. 
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In the formulation of the proposed approach, we make the following assumptions: 

1) the same set Ω of C land-cover classes characterize the area considered over time (only the spatial and 

spectral distributions of such classes are supposed to vary); 

2) a reliable training set Y1 for the image X1 acquired at t1 is available; 

3) a training set Y2 for the image X2 acquired at t2 is not available. 

It is worth noting that assumption 1), even if not verified in all possible applications, is reasonable in a 

wide range of real problems.  

In the aforementioned assumptions, the proposed system aims at performing a robust and accurate 

classification of X2 by exploiting the image X1, the training set Y1, and the image X2, as well as the temporal 

correlation between the classes at t1 and t2. 

 

B. System Architecture 

The proposed system is based on a multiple classifier architecture composed of N different classification 

algorithms (see Fig.1). The choice of this kind of architecture is due to the complexity of the problem 

addressed. In particular, the intrinsic difficulty of the partially unsupervised classification problem results in 

classifiers that are less reliable and less accurate than the corresponding supervised ones, especially for 

complex data sets. Therefore, by taking into account that, in general, ensembles of classifiers are more 

accurate and more robust than the individual classifiers that make them up [5], we expect that a multiple-

classifier approach may increase the reliability and the accuracy of the global classification system. A further 

step aimed at improving the performance of the system consists in implementing each partially unsupervised 

classification algorithm of the ensemble in the framework of a cascade-classifier approach, thus exploiting 

also the temporal correlation between the multitemporal images in the updating process.  
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The following sections address the individual components of the presented system. In particular, the 

proposed partially unsupervised cascade classifiers, the strategy adopted to define the ensemble of cascade 

classifiers, and the combination methods will be described in detail. 

 

III. PARTIALLY UNSUPERVISED CLASSIFICATION TECHNIQUES: A CASCADE-CLASSIFIER APPROACH 

Let us focus our attention on the choice of each partially unsupervised classifier to be included in the 

multiple-classifier architecture. In order to obtain robust and accurate classifiers, we propose to consider 

classification strategies defined in the context of the cascade-classifier approach [2], [6]. The standard 

supervised cascade-classifier approach (proposed by Swain [2]) exploits the correlation between 

multitemporal images in order to increase the classification accuracy in the cases in which training data are 

available for all the images considered. In our method, we extend the application of the standard supervised 

cascade-classifier approach to partially unsupervised classification problems. In particular, we exploit the 

temporal dependence between land-cover classes to increase the reliability and the accuracy of the 

unsupervised estimation of the parameters related to the image X2.  

The cascade-classifier decision strategy associates a generic pixel 2
jx  of the image X2 with a land-cover 

class according to the following decision rule [2]: 

 2
jl = mω ∈ Ω   if and only if  ( ) ( ){ }2121 max jjhjjm x,xPx,xP

h

ωω
Ωω ∈

=   (1) 

where ( )21
jjh x,xP ω  is the value of the probability that the j-th pixel of the image belongs to the class hω  

at t2, given the observations   1
jx and 2  jx . Under the conventional assumption of class-conditional 

independence [2], [6], the decision rule (1) can be rewritten as [4]:  

 2
jl = mω ∈ Ω      if and only if 
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        ( ) ( ) ( ) ( ) ( ) ( )






= ∑∑

=∈=

C

n
hnhjnj

C

n
mnmjnj ,P/xp/xp,P/xp/xp

h 1

21

1

21 max ωωωωωωωω
Ωω

      (2) 

where ( )r
i
j /xp ω  is the value of the conditional density function for the pixel i

jx , given the class rω ∈ Ω , 

and ( )hn ,P ωω  is the prior joint probability of the pair of classes ( nω , hω ). The latter term takes into 

account the temporal correlation between the two images.  

We propose to integrate the partially unsupervised classification of the image X2 in the context of the 

above-described classification rule. As the training set Y2 is not available, the density functions of the 

classes at the time t1 (i.e., ( )n/Xp ω1 , Ωω ∈n ) are the only statistical terms of (2) that we can estimate in 

a completely supervised way. This means that, in order to accomplish the classification task, we should 

estimate both the density functions of the classes at t2 ( ( )h/Xp ω2 , Ωω ∈h ) and the prior joint 

probabilities of the classes ( ( )hn ,P ωω , ΩωΩω ∈∈ hn , ) in an unsupervised way. It is worth noting that 

usually the estimation of ( )ri /Xp ω  ( Ωω ∈r , i=1,2) involves the computation of a parameter vector. 

The number and nature of the vector components depend on the specific classifier used. Consequently, the 

procedure to be adopted to accomplish the unsupervised estimation process depends on the technique 

used to carry out the cascade classification, in particular, on the vector of parameters required by the 

classifier.  

The possibility of establishing a relationship between the classifier parameters and the statistical terms 

involved in (2) is a basic constraint that each classification technique should satisfy in order to permit the 

use of the cascade-classification decision rule. To meet this requirement, we propose to use two suitable 

classification methods. The first is a parametric approach based on the maximum-likelihood (ML) classifier 

[3]; the second consists of a non-parametric technique based on radial basis function (RBF) neural 

networks [7], [8]. The specific architectures of the ML and RBF cascade classifiers and the procedures for 
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the partially unsupervised estimation of the related parameters are described in the following two 

subsections.  

A. Maximum-Likelihood Cascade Classifier 

The formulation of the partially unsupervised classification problem in the framework of the ML cascade 

approach has already been addressed in [4]. Therefore, here we briefly recall the basic issues described in 

that paper.  

For simplicity, let us assume that the probability density function of the generic class rω  at the time ti (i.e., 

( )ri /Xp ω , Ωω ∈r , i=1,2) can be described by a Gaussian distribution (i.e., by a mean vector i
rµ  and a 

covariance matrix i
rΣ ). Accordingly, hyper-quadrics decision surfaces can be modeled. Under this 

common assumption (widely adopted for multispectral image classification problems), the mean vectors 

and the covariance matrices that characterize the conditional density functions of the classes at t1 can be 

easily computed by a standard procedure using the training set Y1. Concerning the parameter vector ϑ  of 

the classifier to be estimated in a partially unsupervised way, it consists of the following components:  

 ( ) ( )[ ]CCCC ,P,,,...,,P,, ωωΣµωωΣµϑ 22
11

2
1

2
1=  (3) 

where the superscript “2” denotes the parameters of the conditional density functions of the classes at the 

time t2. To carry out the partially unsupervised estimation process, we propose to adopt a procedure 

based on the observation that, under the assumption of class-conditional independence over time, the joint 

density function of the images X1 and X2 (i.e., p(X1, X2)) can be described as a mixture density with C×C 

components (i.e., as many components as possible pairs of classes): 

   ( ) ( ) ( ) ( )∑ ∑
= =

≅
C

n

C

h
hnhn ,P/Xp/XpX,Xp

1 1
2121  ωωωω . (4) 
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In this context, the estimation of the above terms becomes a mixture-density estimation problem, which 

can be solved via the EM algorithm [9]-[12]. By applying such an algorithm, we can derive the following 

iterative equations to estimate the components of the vector ϑ  necessary to accomplish the cascade-

classification process [4]: 

 [ ]
( )

( )∑ ∑

∑ ∑

= =

= =+

















=
B

j

C

n
jjhn

t

B

j
j

C

n
jjhn

t

t
h

x,x/,P

xx,x/,P

1 1

21

1

2

1

21

12

ωω

ωω
µ  (5) 

 [ ]
( ) [ ]( ) [ ]( )

( )∑ ∑

∑ ∑

= =

=

++

=+







−−








=
B

j

C

n
jjhn

t

B

j

t
hj

Tt
hj

C

n
jjhn

t

t

h

x,x/,P

xxx,x/,P

1 1

21

1

122122

1

21

12

ωω

µµωω
Σ  (6) 

 ( ) ( )∑
=

+ =
B

j
jjhn

t
hn

t x,x/,P
B

,P
1

211 1 ωωωω  (7) 

where the superscripts t and t+1 refer to the values of the parameters at the current and next iterations, 

respectively, the superscript T refers to the vector transpose operation, and the joint posterior probabilities 

of the classes are approximated by: 

 ( ) ( ) ( ) ( )
( ) ( ) ( )∑ ∑

= =

≅
C

g

C

f
fg

t
fj

t
gj

hn
t

hj
t

nj
jjhn

t

,P/xp/xp

,P/xp/xp
x,x,P

1 1

21

21
21

ωωωω

ωωωω
ωω . (8) 

It is worth noting that all the previous equations implicitly depend on ϑ . Concerning the initialization of the 

components of the vector ϑ , the initial values of the parameters of the density functions of classes at t2 are 

obtained by considering the corresponding values estimated at time t1 by supervised learning, whereas all 

the prior joint probabilities of classes are assumed to have the same values. It is possible to prove that, at 

each iteration, the estimated parameters evolve from their initial values to the final ones by maximizing the 

following log-likelihood function (the convergence to a local maximum can be proven) [9]: 
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 ( ) ( ) ( ) ( )∑ ∑ ∑
= = = 






=

B

j

C

n

C

h
hnhjnj ,P/xp/xplog,L

1 1 1

21
21 ωωωωϑXX . (9) 

The estimates of the parameters obtained at convergence and those achieved by the classical supervised 

procedure at the time t1 are then substituted into (2) in order to accomplish the ML cascade-classification 

process. We refer the reader to [4] for greater details on the ML partially unsupervised cascade classifier 

and on alternative initialization conditions on the iterative estimation algorithm. 

B.  RBF Neural Network Cascade Classifier 

The problem of partially unsupervised cascade classification by using RBF neural networks is much more 

complex than the one associated with the ML parametric cascade classifier. The increased complexity 

mainly depends on the non-parametric nature of RBF neural networks. In our case, we have to resolve two 

critical issues in order to develop the cascade classifier in the framework of RBF neural networks: i) we 

should define a specific architecture that is able to implement the cascade-classification decision rule; ii) we 

should devise a partially unsupervised procedure for the training of the proposed architecture. 

First of all, let us briefly recall the standard architecture of an RBF neural classifier to be used for the 

classification of a generic image Xi (see Fig. 2). This architecture is made up of three layers: an input layer 

(composed of as many units as input features), a hidden layer (composed of S neurons) and an output layer 

(composed of as many units as land-cover classes). The input layer just propagates the input features to the 

hidden layer. Each unit of the hidden layer applies a simple non-linear transformation to the input data 

according to a symmetric radial basis function sϕ  (usually a Gaussian function characterized by a mean 

value sπ  and a width sσ ). The connections between the hidden and output units are associated with a 

numerical value called weight (let r
sw  denote the weight that connects the s-th hidden neuron to the r-th 

output neuron). The output neurons apply a linear transformation to the weighted outputs of the hidden 
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neurons. It can be proven that, if the classifier has been properly trained [13], the outputs of an RBF neural 

network can be related to the conditional densities of the classes, which are expressed as a mixture of the 

kernel functions associated with the units of the hidden layer. In addition, the statistical terms computed by 

the neural classifier can be related to the global density function ( )iXp  of the image Xi as follows: 

 ( ) ( ) ( ) ( )srs

C

r

S

s
sii PPXpXp ϕωϕϕ∑ ∑

= =
=

1 1

 (10) 

where ( )si /Xp ϕ  is the conditional density of the variable iX  given the kernel function sϕ , ( )srP ϕω  is 

the conditional probability of the class rω , given the kernel sϕ , ( )sP ϕ  is the prior probability of the kernel 

sϕ , and S is the number of kernels considered. It is worth noting that the statistical terms in (10) can be 

associated with the parameters of the RBF neural architecture as follows [13]: 

  ( ) ( )siis /XpX ϕϕ =  (11) 

 ( ) ( )srs
r
s PPw ϕωϕ=  (12) 

We refer the reader to [7], [8] for more details on standard RBF neural classifiers. 

In order to define a cascade classifier in the context of the RBF neural-network theory, let us 

approximate the joint density function ( )21 X,Xp  of the two images X1 and X2 as a mixture of Gaussian 

kernel functions. To this end, let us consider K kernel functions 1
kϕ  and Q kernel functions 2

qϕ  associated 

with the statistics of the images X1 and X2, respectively. Accordingly, under the assumption of kernel-

conditional independence in the temporal domain, we can write:  

  ( ) ( ) ( ) ( ) ( )∑∑∑∑
= = = =

≅
C

h

C

n

K

k

Q

q
qkhnqkqk PPXpXpXXp

1 1 1 1

21212
2

1
121 ,,,//, ϕϕωωϕϕϕϕ      (13) 

where ( )i
ri /Xp ϕ  is the value of the conditional density function of the variable iX , given the kernel i

rϕ , 

( )21
qkhn ,,P ϕϕωω  is the joint conditional probability of the pair of classes ( nω , hω ) given the pair of 
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kernels ( )21
qk ,ϕϕ , and ( )21

qk ,P ϕϕ  is the joint prior probability of the kernels ( )21
qk ,ϕϕ . In this context, the 

cascade classification decision rule can be rewritten as: 

 2
jl = mω ∈ Ω      if and only if 

        ( ) ( ) ( ) ( ) =∑ ∑ ∑
= = =

C

n

K

k

Q

q
qkmnqkqjkj ,,P,P/xp/xp

1 1 1

21212211 ϕϕωωϕϕϕϕ       (14) 

( ) ( ) ( ) ( )







∑ ∑ ∑

= = =∈

C

n

K

k

Q

q
qkhnqkqjkj ,,P,P/xp/xp

h 1 1 1

21212211max ϕϕωωϕϕϕϕ
Ωω

. 

It is worth noting that the temporal correlation between the two images is taken into account by the terms 

( )21
qk ,P ϕϕ  and ( )21

qkhn ,,P ϕϕωω . By analyzing equation (14), we can observe that ( )11
kj /xp ϕ  and 

( )22
qj /xp ϕ  can be derived by applying two standard RBF neural-network classifiers to the t1 and t2 

images, respectively. In particular, we can apply an RBF neural-network classifier with K hidden units to 

the image X1 and an RBF neural-network classifier with Q hidden units to the image X2 (see Fig. 3). If a 

proper training algorithm is used, the terms ( )11
kj /xp ϕ  and ( )22

qj /xp ϕ  are given by the outputs of the 

hidden neurons of the aforementioned neural classifiers. However, in order to implement the cascade 

classification decision rule, a non-conventional architecture should be considered, which involves the joint 

statistical terms ( )21
qk ,P ϕϕ  and ( )21

qkhn ,,P ϕϕωω  in the classification process. To this end, the outputs of 

the hidden neurons of the t1 and t2 networks are given as input to a specific block (let us call it “cascade 

classification” block) that presents as many outputs as land-cover classes (i.e., C outputs). In particular, the 

output uh, which is associated with the land-cover class hω , is given by: 

 ( ) ( ) ( ) ( ) ( )∑ ∑ ∑
= = =

=
C

n

K

k

Q

q
jqjkqkhnqkjjh xx,,P,Px,xu

1 1 1

2211212121 ϕϕϕϕωωϕϕ . (15) 
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According to equation (14), each pixel is classified as belonging to the land-cover class associated with 

the maximum output value.  

The main problem that remains to be solved is the estimation of all the parameters considered in the 

proposed architecture in a partially unsupervised way (i.e., by using only the joint density function 

( )21 X,Xp  and the training set 1Y ). Concerning the parameters of the ( )1
1 k/Xp ϕ  (i.e., the centers 1

kπ  

and the widths 1
kσ of the Gaussian kernel functions that process the image X1), they can be estimated in a 

supervised way according to the statistical procedure described in [7], [8]. Consequently, the parameter 

vector ϑ  that remains to be estimated in a partially unsupervised way is composed of the following terms:  

 ( ) ( ) ( ) ( )[ ]212
1

1
111

212
1

1
1

222
1

2
1 QKCCQKQQ ,,P,...,,,P,,P,...,,P,,,...,, ϕϕωωϕϕωωϕϕϕϕσπσπϑ =   (16) 

where 2
qπ  and 2

qσ are the centers and the widths characterizing the kernel functions qϕ  that process the 

image X2. In order to estimate the components of the parameter vector, we propose to apply the EM 

algorithm to (13). Accordingly, it is possible to prove that part of the components of the parameter vector 

can be estimated by using the following iterative equations: 

 [ ]
( )

( )∑ ∑

∑ ∑

= =

= =+













=
B

j

K

k
jjqk

t

B

j
j

K

k
jjqk

t

t
q

x,x/,P

xx,x/,P

1 1

2121

1

2

1

2121

12

ϕϕ

ϕϕ
π  (17) 

 [ ]
( ) [ ]

( )∑ ∑

∑ ∑

= =

=

+

=+





⋅

−






=
B

j

K

k
jjqk

t

B

j

t
qj

K

k
jjqk

t

t
q

x,x/,Pd

xx,x/,P

1 1

2121

1

2122

1

2121

12

ϕϕ

πϕϕ
σ   (18) 

 ( ) ( )∑
=

+ =
B

j
jjqk

t
qk

t x,x/,P
B

,P
1

2121211 1 ϕϕϕϕ  (19) 
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where d is the dimensionality of the input space, the superscripts t and t+1 refer to the values of the 

parameters at the current and next iterations, respectively, and the ( )2121
jjqk

t x,x/,P ϕϕ  are approximated 

by: 

 ( ) ( ) ( ) ( )
( ) ( ) ( )∑ ∑

= =

≅
K

z

Q

v
vz

t
vj

t
zj

qk
t

qj
t

kj
jjqk

t

,P/xp/xp

,P/xp/xp
x,x/,P

1 1

212211

212211
2121

ϕϕϕϕ

ϕϕϕϕ
ϕϕ . (20) 

Concerning the initialization of the aforementioned components of the parameter vector ϑ , the initial 

values of the parameters of the conditional density functions of kernels at t2 can be obtained by applying a 

standard unsupervised clustering algorithm to the X2 image [7], whereas the initial values of prior joint 

probabilities of the kernels can be easily computed in the assumption of independence between the kernels 

at two dates (i.e., ( ) ( ) ( )qkqk PP,P ϕϕϕϕ ⋅= ). 

As we have already pointed out, the estimation of RBF cascade neural-network classifier parameters is 

significantly more complex than the estimation of ML cascade-classifier parameters.  Despite the 

parameters 2
qπ , 2

qσ   and ( )21
qk ,P ϕϕ of the vector ϑ  can be estimated in a fully unsupervised way, the 

estimation of the joint conditional probabilities ( )21
qkhn ,,P ϕϕωω  requires other information in addition to 

the one contained in the training set 1Y  (it is worth noting that the terms ( )21
qkhn ,,P ϕϕωω  express the 

relationship between kernel functions and land-cover classes). To solve this problem, we propose to 

exploit some of the information obtained (at convergence) by the ML cascade classifier described in the 

previous subsection. In particular, a set 2Ŷ  of pixels, which is composed of the patterns that are most likely 

correctly categorized by the ML cascade classifier, is used for the initialization of the ( )21
qkhn ,,P ϕϕωω  

conditional probabilities. These patterns are selected on the basis of the values of the posterior probabilities 

provided by the ML classifier. In greater detail, pixels associated with values of the posterior probabilities 
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above a predefined threshold ε are chosen. Let m,nY be the set of pairs of pixels ( )21
jj x,x  such that 1

jx ∈ 1Y  

belongs to the land-cover class ωn and 2
jx ∈ 2Ŷ is categorized by the ML cascade-classifier as belonging to 

the class ωm. Let 0,nY  be the set of pairs of pixels ( )21
jj x,x  such that 1

jx ∈ 1Y  belongs to the land-cover 

class ωn and 2
jx ∉ 2Ŷ . Analogously, let m,0Y  be the set of pairs of pixels ( )21

jj x,x  such that 1
jx ∉ 1Y  and 

2
jx ∈ 2Ŷ is categorized by the ML cascade-classifier as belonging to the class ωm. The iterative equations to 

be used to estimate the joint conditional probabilities ( )21
qkhn ,,P ϕϕωω  are the following: 
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where the normalizing factor A is equal to:  
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It is worth noting that this iterative procedure significantly improves the initial estimates biased by the 

patterns included in 2Ŷ . 

Analogously to the ML cascade classifier, also in this case the estimated parameters evolve from their 

initial values to the final ones by maximizing the following log-likelihood function (the convergence to a local 

maximum can be proven): 
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 (23) 

where 00,Y  is the set of pairs of pixels ( )21
jj x,x  such that 1

jx ∉ 1Y  and 2
jx ∉ 2Ŷ . 

The estimates of the parameters obtained at convergence and the ones achieved by the classical 

supervised procedure are used to accomplish the RBF cascade-classification process. 

IV. A STRATEGY FOR GENERATING ENSEMBLES OF PARTIALLY UNSUPERVISED CASCADE CLASSIFIERS: HYBRID ML AND 

RBF NEURAL-NETWORK CLASSIFIERS 

The selection of the pool of classifiers to be integrated into the multiple cascade-classifier architecture is 

an important and critical task. In the literature, several different strategies for defining a classifier ensemble 

have been proposed [5], [14]-[17]. From a theoretical viewpoint, necessary and sufficient conditions for 

an ensemble of classifiers to be more accurate than any of its individual members are that the classifiers 

should be accurate and different [18]. In our case, we can control only the second condition, since no 

training set is available to verify the first one.  

The main issue to be resolved for the definition of the ensemble concerns the capability of different 

classifiers to incur uncorrelated errors. In practice, several strategies have been proposed to make up pools 

of classifiers that incur uncorrelated errors. These strategies involve the selection of different classification 
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algorithms, the choice of different initial training conditions for a given classification algorithm, the use of 

different architectures for the same kind of classifier (e.g., neural networks), the manipulation of the training 

examples, the manipulation of the input features, the manipulation of the output targets, the injection of 

randomness, etc. [18]. In our system, the choice of both a parametric (ML) and a non-parametric (RBF) 

classifier guarantees the use of two classification algorithms based on significantly different principles. For 

this reason, we expect these classifiers to incur sufficiently uncorrelated errors. However, two classification 

algorithms are not enough to define an effective multiple classifier architecture. To increase the reliability of 

the system, we need to generate a pool of N classifiers (N>2). According to the literature, we could define 

different RBF neural-network architectures in order to derive different classification algorithms for the 

ensemble [19]. However, as we are dealing with cascade-classifier techniques, we propose to adopt an 

alternative, deterministic, and simple strategy for making up the ensemble. This strategy is based on the 

peculiarities of the cascade-classification approach, in which a set of key parameters, estimated by the 

partially unsupervised process, is composed of the prior joint probabilities of classes ( )hn ,P ωω  (they are 

associated with the temporal correlation between classes). The different cascade classifiers (i.e., ML and 

RBF neural networks) perform different estimations of the aforementioned probabilities, on the basis of the 

different classification and estimation principles. According to this observation, we propose to introduce in 

the ensemble hybrid classifiers obtained by exchanging the estimates of the prior joint probabilities of 

classes performed by different algorithms. In our case, given an ML cascade classifier and an RBF neural-

network cascade classifier, this strategy results in an ensemble composed of the two “original” classifiers 

and of two hybrid ML and RBF algorithms obtained by exchanging the prior joint probabilities estimated in 

a partially unsupervised way by the original classifiers. These hybrid classifiers are described in the 

following. 
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Let ( )hn
ML ,P ωω , ( )n

ML Xp ω1  and ( )h
ML Xp ω2  denote the joint probabilities and the conditional 

densities of classes estimated by the ML cascade classifier, respectively. Analogously, let 

( )21
qkhn

RBF ,,P ϕϕωω , ( )21
qk

RBF ,P ϕϕ , ( )n
RBF Xp ω1  and ( )h

RBF Xp ω2  denote the joint probabilities of 

the classes conditioned to the kernels, the joint probabilities of the kernels, and the conditional densities of 

the classes at the times t1 and t2 estimated by the RBF cascade classifier, respectively.  

The first hybrid classifier (let us call it ML-hybrid cascade classifier) is obtained by merging the joint 

probabilities estimated by the RBF cascade classifier with the conditional densities estimated by the ML 

cascade classifier. Hence, the corresponding classification rule is the following: 

 2
jl = mω ∈ Ω  if and only if  
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Analogously, the second hybrid classifier (let us call it RBF-hybrid cascade classifier) is obtained by 

merging the joint probabilities estimated by the ML cascade classifier with the conditional densities 

( )hnjj
RBF ,/x,xp ωω21  that can be estimated by using the RBF cascade classifier parameters. Hence, the 

corresponding classification rule is the following: 

 2
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where the conditional densities ( )hnjj
RBF xxp ωω ,, 21  can be approximated by: 

( )
( ) ( ) ( ) ( )
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The use of these hybrid classifiers allows one to obtain a multiple classifier architecture composed of four 

classifiers. It is worth noting that it is possible to further increase the number of classifiers by extending the 

aforementioned procedure to the case of more RBF neural network architectures with different numbers of 

hidden units. 

 

V. MULTIPLE CASCADE CLASSIFIER ARCHITECTURE: UNSUPERVISED COMBINATION STRATEGIES 

In the proposed system, the classification results provided by the N members of the considered pool of 

cascade classifiers are combined by using classical multiple-classifier strategies. In particular, we consider 

two simple and widely used combination procedures: Majority Voting and Combination by Bayesian 

Average [5]. Both procedures exhibit the common peculiarity of requiring no prior training to carry out the 

combination process. This is a mandatory requirement in our approach, as we have no ground truth 

information (and hence no training set) for the image X2.  

The Majority Voting procedure faces the combination problem by considering the results of each single 

classifier in terms of the class labels assigned to the patterns. A given input pattern receives N classification 

labels from the MCCS: each label corresponds to one of the C classes considered. The combination 

method is based on the interpretation of the classification label resulting from each classifier as a “vote” to 

one of the C land-cover classes. The data class that receives the largest number of votes is taken as the 

class of the input pattern.  

The Combination by Bayesian Average strategy is based on the remark that, given the observations 
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  1
jx and 2  jx , the N classifiers considered provide an estimate of the posterior probability ( )21

jjh x,xP ω  

for each class Ωω ∈h . Therefore, a possible strategy for combining these classifiers consists in the 

computation of the average posterior probabilities, i.e., 

 ( ) ( )21

1

21 1
jjh

N

jjh
ave x,x/P̂

N
x,x/P ωω

γ
γ∑

=
=  (28) 

where ( )21
jjh x,x/P̂ ωγ  is the estimate of the posterior probability ( )21

jjh x,xP ω  provided by the γ-th 

classifier. The classification process is then carried out according to the Bayes rule by selecting the land-

cover class associated with the maximum average probability. 

 

VI. EXPERIMENTAL RESULTS 

To assess the effectiveness of the proposed approach, different experiments were carried out on a data 

set made up of two multispectral images acquired by the Thematic Mapper (TM) sensor of the Landsat 5 

satellite. The selected test site was a section (412×382 pixels) of a scene including Lake Mulargias on the 

Island of Sardinia, Italy. The two images used in the experiments were acquired in September 1995 (t1) 

and July 1996 (t2). Figure 4 shows channels 2 of both images. Five land-cover classes (i.e., urban area, 

forest, pasture, water body, and vineyard), which characterize the test site at the above-mentioned dates, 

were considered. The available ground truth was used to derive a training set and a test set for each image 

(see Table I).  To carry out the experiments, we assumed that only the training set associated with the 

image acquired in September 1995 was available. We used the training set of the July 1996 image only for 

comparisons with completely supervised classifiers. 
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Partially unsupervised ML and RBF neural-network cascade classifiers were applied to the September 

1995 and July 1996 images. For the ML cascade classifier, the assumption of Gaussian distributions was 

made for the density functions of the classes (this is a reasonable assumption as we considered TM 

images). Concerning the RBF neural cascade classifier, in order to exploit its non-parametric nature, five 

texture features based on the Gray-Level Co-occurrence matrix  (i.e., sum variance, sum average, 

correlation, entropy and difference variance) [20] were computed and given as input to the classifier in 

addition to the six TM channels. These features were obtained by using a window size equal to 7x7 and an 

interpixel distance equal to 1.  

As regards the ML cascade classifier, the parameters of the Gaussian density functions of the classes at t1 

were computed in a supervised way by using the available training set for the September 1995 image (i.e., 

Y1). These values were also used to initialize the parameters of the conditional density functions of the 

classes at t2. Concerning the RBF cascade classifier, several trials were carried out in order to derive an 

effective number of neurons to be used in the hidden layer. To this end, experiments were carried out using 

a standard RBF architecture trained by the available set Y1 and applied to the t1 test set. The highest 

accuracy was obtained by an architecture composed of 35 hidden units. On the basis of this result, an 

architecture composed of 70 hidden units was used for the RBF cascade classifier (i.e., 35 units related to 

the t1 image and 35 units related to the t2 image). It is worth noting that the parameters of the 35 hidden 

units associated with X1 were fixed according to the values achieved in a supervised way in the 

aforementioned experiment. The values of the parameters of the 35 hidden units used to process the image 

X2 were initialized by applying an unsupervised clustering to that image. 

The parameters of the vectors ϑ  related to the ML and RBF cascade classifiers were estimated in an 

unsupervised way by using the proposed formulations of the iterative EM algorithm (see (5)-(8), and (17)-

(22)). Firstly, the ML cascade classifier was trained, and the patterns classified with a posterior probability 
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higher than the threshold value ε=0.98 were used to generate the set 2Ŷ  in order to support the RBF 

training process. The EM algorithms adopted for the ML and RBF partially unsupervised training 

processes converged in 11 and 25 iterations, respectively. At the end of the iterative process, the resulting 

estimates were used to perform the classification of the July 1996 image. In addition, from the considered 

ML and RBF cascade classifiers, the two hybrid ML and RBF neural-network cascade classifiers were 

derived according to the strategy described in Section IV. Also these hybrid classifiers were applied to the 

July 1996 image.  

The classification accuracies and the kappa coefficients of accuracy exhibited by the aforementioned four 

partially unsupervised cascade classifiers on the t2 test set are given in Table II. As one can see, the 

performances of all the classifiers are very good. In particular, the overall accuracies exhibited by both the 

RBF and RBF-hybrid classifiers are very high (i.e., 96.10% and 95.38%, respectively), and also the 

overall accuracies provided by the ML and ML-hybrid classifiers are satisfactory (i.e., 91.48% and 

91.79%, respectively). This confirms the effectiveness of the partially unsupervised training process. 

Comparisons between standard and hybrid classifiers (i.e., RBF vs. RBF-hybrid and ML vs. ML-hybrid) 

point out that these classifiers provided very similar overall accuracies. However, a deeper analysis of the 

results reveals some important differences between the considered classification techniques. For example, 

the accuracy exhibited by the RBF-hybrid cascade classifier on the vineyard class is significantly higher than 

the one exhibited by the RBF neural cascade classifier (i.e., 66.67% vs. 61.54%). If one considers the 

confusion matrices resulting from the aforementioned experiments (see Tables III (a)-(d)), one can verify 

other significant differences in the behaviors of the classifiers on the different classes. For example, the RBF 

classifier misclassifies 30 pasture patterns as belonging to urban areas, whereas the RBF-hybrid classifier 
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never incurs such a classification error. This confirms that the assumption that the four classifiers incur quite 

uncorrelated errors is reasonable.  

At this point, the four classifiers were combined by using both the Majority-Voting and the Combination 

by Bayesian Average strategies (concerning the Majority-Voting strategy, in the case where more than one 

class received the same number of votes, the class with the maximum posterior probability was chosen). 

The accuracies obtained on the July 1996 test set are given in Table IV. Both combination strategies 

provided very high accuracies on all the land-cover classes, with the exception of the vineyard class, which 

is a minority one. By comparing Tables II and IV, one can conclude that the classification accuracies 

obtained combining the results of the partially unsupervised cascade classifiers by the two combination 

strategies considered are significantly higher than the accuracy exhibited by the worst single classifier (i.e., 

96.56% and 94.77% vs. 91.48%). In particular, the classification accuracy obtained by applying the 

majority rule strategy is also higher than those exhibited by all the single classifiers making up the ensemble.  

As stated in the methodological part of the paper, the objective of the multiple-classifier approach is not 

only to improve the overall classification accuracy of the system but also to increase its robustness.  In 

order to investigate this aspect, an experiment was carried out in which the failure of the training process of 

the RBF neural cascade classifier was simulated. In particular, in order to simulate this situation, the 

partially unsupervised training of the parameters of the RBF architecture was carried out by replacing the 

image X2 with the image X1. It is worth noting that the resulting incorrect estimation of the RBF parameters 

also affects the hybrid classifiers. Table V presents the classification accuracies obtained by this 

experiment. As can be seen, even though the overall accuracies exhibited by both the RBF and the RBF-

hybrid cascade classifiers are very poor (i.e, 67.68% and 72.75%, respectively), both combination 

strategies (i.e., the Combination by Bayesian Average strategy and the majority rule) allow the presented 

system to achieve classification accuracies (i.e., 92.46% and 95.90%) higher than the ones yielded by all 
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the single classifiers. This confirms that the proposed architecture based on multiple cascade classifiers 

permits one to increase the robustness of the system versus possible failures of the partially unsupervised 

training process of single cascade-classification techniques. 

Finally, in order to completely assess the effectiveness of the proposed methodology, two additional 

experiments were carried out using a fully supervised standard RBF classifier. In the first experiment, the 

RBF classifier was trained on the September 1995 training set and tested on the July 1996 image. The 

obtained results are given in Table VI. As one can see, the standard supervised RBF neural-network 

classifier trained on the “old” training set was unable to classify the “new” image with an acceptable 

accuracy, thus confirming that the use of a more complex classification methodology based on a partially 

unsupervised training process is mandatory. In the second experiment, the RBF classifier was trained on 

the July 1996 training set and applied to the test set related to the same image (it is worth noting that this 

training set was not considered in the previous experiments as we assumed that it was not available). Table 

VII gives the obtained results. A comparison of these results with the ones provided in Table IV points out 

that the proposed system outperforms the standard supervised RBF classifier. This surprising result, which 

mainly depends on the ability of the proposed approach to exploit the temporal correlation between the 

two images considered, confirms the effectiveness of the presented methodology. 

 

VII. DISCUSSION AND CONCLUSIONS 

In this paper, a novel MCCS for a partially unsupervised updating of land-cover maps has been 

proposed. This system allows one to update the existing land-cover maps of a given area by exploiting a 
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new remote-sensing image acquired on the investigated site, without requiring the related ground truth. The 

main features of the proposed system are the following: 

a) capability to exploit the temporal correlation between multitemporal images in the process of 

partially unsupervised updating of land-cover maps; 

b) capability to exploit, in a synergical way, the information provided by different classifiers; 

c) robustness to the partially unsupervised training process, thanks to the use of different partially 

unsupervised classifiers; 

d) capability to consider multisensor and multisource data in the process of updating of land-cover 

maps (thanks to the availability of  non-parametric classification algorithms in the ensemble). 

Concerning the methodological novelties of this work, besides the definition of the global architecture of 

the system, some specific aspects should be pointed out: the use of cascade classifiers to solve the partially 

unsupervised classification problem; the original RBF neural-network architecture capable to exploit the 

temporal correlation between pairs of multitemporal remote-sensing images; the specific formulation of the 

EM algorithm within the framework of the cascade-classification decision rule for the training of the RBF 

cascade-classifier; the proposed ML and RBF hybrid cascade classifiers.  

Due to the partially unsupervised nature of the proposed cascade classifiers considered in the ensemble, it 

is not possible to guarantee in all cases the convergence of the estimation process to accurate values of the 

classifier parameters. The accuracy obtained at convergence depends both on the reliability of the 

initialization conditions of the partially unsupervised estimation procedures and on the specific classification 

algorithm considered. However, the use of the multiple cascade-classifier architecture reduces the overall 

probability that the system may not succeed, thus increasing the robustness of the architecture to the 

probability of failure of the partially unsupervised training of each single classifier.  
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In the experiments carried out on different remote-sensing data sets, the proposed system proved 

effective, providing both high classification accuracy and high roboustness. Consequently, it seems a very 

promising tool to be integrated into a GIS system for a regular updating of land-cover maps. It is worth 

noting that, in the case where an “old” ground truth is not available, the land-cover map itself can be 

considered as the training set Y1 required for the partially unsupervised training process of the proposed 

system (however, in this situation, the possible errors present in the original land-cover map may affect the 

accuracy of the system). 

The future developments of this work will be oriented in two different directions: 

1) developing a procedure that, given the two images X1 and X2 and the training set Y2, may identify the 

probability of a failure of the partially unsupervised training of each cascade classifier and consequently 

prevent such a situation; 

2) extending the partially unsupervised cascade-classification approach to other kinds of classification 

techniques to be integrated into the classifier ensemble. 
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FIGURE CAPTIONS 
 
 
 
Fig. 1. General architecture of the proposed system. 

 

Fig. 2. Standard architecture of a supervised RBF neural-network classifier. 

 

Fig. 3. Architecture of the proposed partially unsupervised RBF neural cascade classifier (solide line). The 

architecture of the standard RBF neural network used for the supervised estimation of the t1  statistical 

parameters is also shown (dashed line). 

 

Fig. 4. Bands 5 of the Landsat-5 TM images utilized for the experiments: (a) image acquired in September 

1995; (b) image acquired in July 1996. 
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TABLE CAPTIONS 

 

Table I. Number of patterns in the training and test sets for both the September 1995 and July 1996 

images. 

 

Table II. Classification accuracies obtained by the four partially unsupervised cascade classifiers included in 

the proposed multiple classifier architecture (July 1996 test set). 

 

Table III. Confusion matrices that resulted from the classification of the July 1996 test set by using the 

proposed partially unsupervised techniques:  a) ML cascade classifier; b) RBF neural cascade classifier; c) 

ML-hybrid cascade classifier; d) RBF-hybrid neural cascade classifier. 

 

Table IV. Overall classification accuracies exhibited by the proposed multiple cascade classifier system. 

 

Table V. Overall classification accuracies exhibited by the four partially unsupervised cascade-classifiers 

included in the proposed multiple classifier architecture (July 1996 test set). The results are related to the 

case in which a failure in the partially unsupervised training of the RBF cascade-classifier was simulated. 

The overall accuracy obtained after combining the proposed classifiers is also given. 

 

Table VI. Classification accuracies exhibited by a standard supervised RBF neural classifier trained on the 

September 1995 image and tested on the July 1996 image. 

 

Table VII. Classification accuracies exhibited by a standard supervised RBF classifier trained and tested on 

the July 1996 image. 



 31

 
 
 
 
 
 
 
 
 
 
 
 

 

Multispectral image 
acquired at t2 

Multispectral image 
acquired at t1 

Training set Y1 
 

Partially Unsupervised 
Estimation of the  

Parameters of Classifiers  

......... 

Cascade Classifier 
"1" 

Cascade Classifier 
"N" 

Combination 
Strategy 

Updated land-cover 
map 

...... 

 
Fig. 1 

 
 
 

 



 32

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1ϕ

2ϕ

Zϕ
( )i

jC xu

 ( )i
jxu1  

( ) ( )∑
=

=
S

s
is

r
sir XwXu

1
ϕ

 
i
jx  

 

  
 

Fig. 2  



 33

 
 
 
 
 
 
 

 
 

 1
1ϕ

1
2ϕ

1
Kϕ

2
1ϕ

2
2ϕ

2
Qϕ

( )21
1 , jj xxu

 Cascade 
Classification Block

( )21
jjC x,xu

 

1
jx  

 

2
jx  

 

  
Fig. 3  



 34

 
 
 
 
 
 
 
 
 
 
 
 

              
 
 

 (a) (b) 
 
 

 
Fig. 4 



 35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I  
 
 

Number of patterns Land-cover class 
Training set Test set 

Pasture 554 589 
Forest 304 274 

Urban area 408 418 
Water body 804 551 
Vineyard 179 117 
Overall 2249 1949 
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TABLE II  

 

Classification accuracy (%) Land-cover class 
ML RBF ML-hybrid RBF-hybrid 

Pasture 83.53 94.91 85.23 94.40 
Forest 97.45 100.00 97.45 98.91 

Urban area 95.69 99.76 94.98 96.41 
Water body 100.00 100.00 100.00 100.00 
Vineyard 62.39 61.54 61.54 66.67 
Overall 91.48 96.10 91.79 95.38 

Kappa coefficient 0.88 0.94 0.89 0.93 
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TABLE III  
 
 
 

 Pasture Forest Urban area Water body Vineyard 
Pasture 492 12 85 0 0 
Forest 2 267 2 0 3 

Urban area 5 5 400 0 8 
Water body 0 0 0 551 0 
Vineyard 23 11 10 0 73 

 
(a) 

 
 

 
 Pasture Forest Urban area Water body Vineyard 

Pasture 559 0 30 0 0 
Forest 0 274 0 0 0 

Urban area 0 0 417 1 0 
Water body 0 0 0 551 0 
Vineyard 31 11 3 0 72 

 

(b) 

 
 

 Pasture Forest Urban area Water body Vineyard 
Pasture 502 15 72 0 0 
Forest 2 267 2 0 3 

Urban area 5 7 397 0 9 
Water body 0 0 0 551 0 
Vineyard 21 11 13 0 72 

 
(c) 

 
 

 
 Pasture Forest Urban area Water body Vineyard 

Pasture 556 23 0 10 0 
Forest 0 271 0 2 1 

Urban area 15 0 403 0 0 
Water body 0 0 0 551 0 
Vineyard 21 0 3 15 78 
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(d) 
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TABLE IV  

 

Classification accuracy (%) 
Land-cover class 

Bayesian Average  Majority rule 
Pasture 91.51 94.06 
Forest 99.27 99.64 

Urban area 98.09 99.28 
Water body 100.0 100.0 
Vineyard 64.10 76.06 
Overall 94.77 96.56 

Kappa coeffic ient 0.93 0.95 
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TABLE V  

 

Overall classification accuracy (%) 

ML RBF RBF-hybrid ML-hybrid 
Bayesian   
average 

Majority 
rule 

91.48 67.68 72.75 91.74     92.46    95.90 
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TABLE VI  

 

Land-cover class Classification accuracy (%) 
Pasture 47.70 
Forest 94.16 

Urban area 66.27 
Water body 100.00 

Vineyard 45.30 
Overall 72.85 

Kappa coefficient 0.65 
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TABLE VII  

 
Land cover class Classification accuracy 

(%) 
Pasture 89.64 
Forest 99.27 

Urban area 88.28 
Water body 100.00 
Vineyard 67.52 
Overall 92.30 

Kappa coefficient 0.89 
 

 

 
 


