H=E UNIVERSITY

Department of M OF TRENTO - Italy

Information Engineering L
and Computer Science]

DISI - Via Sommarive 14 - 38123 Povo - Trento (ltaly)
http://www.disi.unitn.it

TREE-BASED SEARCH FOR
STOCHASTIC SIMULATION
ALGORITHM

Vo Hong Thanh, Roberto Zunino

November 2011

Technical Report # DISI-11-478

Tree-Based Search for Stochastic Simulation
Algorithm

Vo Hong Thanh
University of Trento, Italy
vo@disi.unitn.it

Roberto Zunino
University of Trento, Italy and COSBI
zunino@disi.unitn.it

Abstract

In systems biology, the cell behavior is governed by a series of bidchém
reactions. The stochastic simulation algorithm (SSA), which was introdiged
Gillespie, is a standard method to properly realize the dynamic and stochastic
ture of such systems. In general, SSA follows a two-step approadfingitthe
next reaction firing, and updating the system accordingly. In this papepply
the Huffman tree, an optimal tree for data compression, so to improveetireh
for the next reaction firing.

Keywords: Systems biology, SSA, Tree search SSA, Huffman tree SSA.

1 Introduction

In recent years, the modeling and simulation of biologigatesms has become an
emergent research field in computational systems biologylieE approaches use de-
terministic models such as ordinary differential equati@DE) to analyze the behav-
ior of systems. Recent research has shown the importancectiddtion and noise in
e.g. gene expression and biochemical networks [18]. Henstead of considering de-
terministic changes of the concentration of each reaclamtstochastic approach tries
to realize the dynamics in the population of each specidsdrsystem.

The stochastic simulation algorithm (SSA) [7, 8] is an exsintulation method
for simulating and reproducing the intrinsic noise of cheshreactions. The evolu-
tion of the system is computed by firing one reaction at eagh. SESA uses a Monte
Carlo simulation technique to sample the system state,entherfirings of each reac-
tion define a Poisson process with propensity (or raje)There are two well-known
implementations of the SSA method, namely the First Readdethod (FRM) and
the Direct Method (DM). DM and FRM are mathematically eqléve procedures but

differ in how to compute the next reaction firing. In FRM, thetgtive times of all
reactions are generated, after which the smallest one &ealto fire. By contrast, DM
generates the next firing time, and then a search is condtefed! the fired reaction.
The system is updated accordingly after that, and the atgomproceeds with the next
simulation step.

Many improvements have been introduced to both FRM and DM. Nbxt Re-
action Method (NRM) [5] improves FRM by representing the elggencies among
reactions using a graph, and employing a special indexedtate to store putative
times. Hence, less time is spent for choosing a reaction pddting the system state.
The Optimized Direct Method (ODM) [22] and Sorting Direct ed (SDM) [17]
improve DM based on the observation that the search will Seefavhen reactions are
indexed according to their frequencies. The Logarithmie&ti Method (LDM) [15]
speeds up the simulation by applying binary search instesequential search in DM.

Variants of SSA by dividing reactions into groups have bempgpsed in [16, 19].
In [16] it is proposed a 2D search for finding the next reactgiaring the propensities
in a matrix. The next firing reaction is found by two linear stees: one finds the row
using partial sums, and the other finds the reaction withérr¢iv. The method in [19]
combines the sequential search in a first stage and rejettinod in a second stage
for choosing the reaction.

Recently, the computational power of parallel and distedienvironment has been
exploited to improve the performance of SSA. There are twanrges of parallel
techniques for simulating the dynamic behavior of the agthulation parallelism and
functional parallelism. The former will execute the sammaidation multiple times on
each logical process to generate many samples of the sy$&mir the latter instead
the simulation algorithm is divided into functional compmits and a number of logical
processes will simulate for corresponding componentdJy, 2

Beyond exact methods, various approximated methods haregresented to re-
duce the simulation time, such as [9]. For exampletheaping method (more details
in[2,6,10]) assumes that the propensity of some reactiguighly constant for a small
amount of time, so that the simulation clock can be advancethfit amount in one
step. Approximated methods greatly speed up the simulaliovever, the accuracy
of the results sometimes is uncertain, and care must be talemid abnormal results
(e.g., negative populations).

Improving the exact method, therefore, is still useful. Histwork, we describe in
detail a tree-based data structure and its implementagidmproving the original SSA
method. Tree-based structures allow binary search, wkicti course more efficient
than the linear search used in many variants of SSA. Howasarg a complete binary
tree may not lead to an optimal performance, i.e. it mightleatl to a minimum
number of comparisons performed during search. Indeedhisnitork we study how
to use the Huffman tree for this purpose, and discuss sonmeriexgntal findings.

The paper is organized as follows: in the next section (@e@) we review the
main stochastic simulation methods. In section 3, we desdhie tree-based approach
for reducing the computation cost for finding the next reacfiring. Section 4 gives
some experimental results for our approach. The conclugimgrks discuss, and some
possible future research directions are provided in se&io

2 SSA

We consider a well-stirred chemical system witBpecies denoted &,S,,, which
interact throughn reactionsR, ... R,,,. Each reaction has the following general form:

k
R;: Uljsl + ...+ ’U”an = Uijsl + ...+ ’U,:Lan ()

wherev;; andvy; are thestoichiometric coefficientand k; is therate constantof
reactionR;. In the case the system contains reversible reactionsctrepe modelled
as two irreversible reactions.

The dynamical state of the system is represented by a vE¢iOr= (X (t), ..., X,,(t))
whereX;(t) denotes the population of specigsat timet. If the next reactiorR; fires
attimet + dt, then the system state changes by the amount denoted by veutbere
ith element equals ta; — v;;, which describes the change in the population of species
S;. Therefore, the state transition of the system can be fataedlas:

X(t+dt) = X(t) + v, @)

Let P(z,t) be the probability of system being in stateat timet¢. The follow-
ing differential equation expresses the time evolutio®¢f, t) given the initial state
X(to) = xp at timeto.

3P (x, t|zo, to) -
T = ;aj(x—vj)P(I—Uj,ﬂxoytO)
7Zaj(x)P(x7t‘I0,t0) (3)
Jj=1

wherea; is the propensity functiondefined so that;(x)dt is the probability that
reactionR; is fired in the time interval¢, t + dt).

Equation 3 is generally called chemical master equation ECMhe CME com-
pletely determines the time evolution of the system. Anyi@asolution of this equa-
tion is hard to find, unless the system is very small. Howeakhough the CME
equation cannot be solved in general, the evolution of tlséesy state in time can be
computed through simulating the joint probability densitgctionp(r, j|x,t), which
is the probability the reactioR; will be fired in the time intervalt + 7,¢t + 7 + dt),
provided we are in stat& (t) = z.

(T, jlz,t) = a;(x)exp(—ao(x)T) 4)

where .
ao(x) = " a(a) ©)

j=1

wherer andj are the time of the reaction firing and its index, respedtivel
Based on 4-5, the Direct Method (DM) computeasnd; by generating two random
numbers-; andr, from the uniform distributiord/ (0, 1), and then applies the inversion

method to obtain the values efandj:

T = iln <1> (6)
ap r1
j
j = the smallest value s.£) _ ax(x) > raao(x) 7)
h=1

A mathematically equivalent procedure is provided by thstHReaction Method
(FRM). In each simulation loop, the algorithm generatesandom numbers, ..., r,,
from the uniform distributior/ (0, 1), and computes the putative times for each reac-

tion as:) .
T = —lIn <> ,j=1.m (8)

aj

Tj
The smallest value; is used, and the corresponding reactityis chosen. The general
schema of the SSA algorithms for the exact simulation oftémcical reaction systems
is given in Algorithm 1.

Algorithm 1 SSA
1: initialize system time¢ = ¢, and system state = g
: for all reaction channeR; do
computea; and their sunug
. end for
: generate the values efandj according to chosen method (FRM, DM)
: update the time = ¢ + 7 and system state = = + v;
: goto step 2

N o b wN

2.1 Next Reaction Method (NRM)

This method is an improvement of FRM. It uses a priority queueich is typically
implemented as a binary heap, to store the putative timesagtions so that retrieving
the smallest one can be performed efficiently. Moreover éataken for handling
dependent reactions: firing one reaction can change thergrobreactants for other
reactions, and so affect the propensity which has to be rpated. Further, in that
case, the putative times which are stored in the priorityuguieave to be adjusted
accordingly. NRM pre-computes a reaction dependency gi@aplerform these steps
efficiently, such as that in Fig. 1.
We denote with affectg{;) the set of reactions thd; affects. Formally:

affect§R;) = { R; |
(reactant§R;) U product$R;)) N reactantsR;) # 0} 9)
where reactant${;) and productsg;) are the set of species taking part in reaction
R; as reactants and products, respectively. The directechdepey graptDG(V, E)
contains as vertice® all the reactions, while we find an edgéR;, R;) € E if and

only if R; € affect{R;). When one reaction fires, NRM searches for neighbors on the
dependency graph, so to update their putative times.

No. Reaction
A+B— C 0 °
C+B— D "‘ ‘
E+C— 2C+F

26— G ";Q
F+H— B ‘

Figure 1: Dependency graph (removing self affected edges)

a A WO N =

3 Binary Search for SSA

Binary search is a more efficient search method than therlsearch which is used
in DM (logarithmic vs. linear complexity). It was proposedliDM to improve DM
exploiting the partial sums of propensities. However, thearlying data structure
was not completely explained. In addition, LDM did not useep@hdency graph for
updating the system, which could further improve the pengomce. In this section, we
first detail the data structures and algorithms used to dgpbry search on a complete
tree to SSA. Then, we switch from complete trees to Huffmaedy so to exploit their
optimal compression property to minimize the number of cargons needed to find
the next reaction firing.

3.1 Complete Tree Search

A (binary) complete tree, is a binary tree completely fillééeery level, except possi-
bly the last; each node as exactly two children (internale)odr zero (leaf). For our
purposes, leaves hold the propensities of reactions, Wwiéenal nodes store the sums
of values of their child nodes. Theorem 1 and the followirgcdssion allow to store a
complete tree on a contiguous array, hence improving ci@mdliness.

Theorem 1 A complete binary tree withn leaves has exactm — 1 nodes.

Proof Denote withs the number of internal nodes. In a complete tree each ifterna
node has two child nodes. Hence, the number of edges in thise Also, the edges
arem + s — 1 = 2s, hences = m — 1. So, the number of nodesdst m = 2m — 1.

Therefore, we can use an array withh — 1 elements to represent a complete tree
with m reaction propensities at the lowest level. In the arrayesgntation, a node
at position: will have its two children at positio: and2i + 1. We can recursively
construct the tree with the internal sums as follows.

In Algorithm 2, each element of the array TREE stores theigdastims of the re-
action propensities, so we simply need each array cell te stsimple type (a floating
point double). In order to build the tree, the number of resmstm must be an even

Algorithm 2 Building the complete tree
procedure: build_tregposition)

require: array TREE with2m — 1 elements where elements fram— 1 to 2m — 1
are filled with reaction propensities
1: if position is not leathen
2: build_tree(2position)
3: build_tree(2position + 1)
4. TREEJposition] = TREE[2position] + TREE[2position + 1]
5. end if

number. In the case is not even, we can add a dummy reaction (with propertity
as the last element of the array.

After having built the tree, to search for the next reactioindi we proceed as
follows. Letr be a random number if¥(0,1), andra, be the value we are looking
for, as in (7). Starting from the root, we travel down the tridlowing the left or
right branches according to whether the propensity sunedtorthe left one is smaller
than the search value. Whenever we take a right branch, wetddpisearch value by
subtracting from it the value stored in the left branch. Thl& procedure is outlined
in Algorithm 3. The procedure is correct, in the sense thidts the same legfas in
(7), so each reaction indeed can be fired with the correcigitity a;/ao.

Algorithm 3 Finding the next reaction firing

procedure: searct{position, v)

require: properly set up array TREE, search value v
1: while position is not leatlo

if TREE[2position]> v then

3 search(2position, v)

4. dse

5: v = TREE[position] - v

6

7

8:

search(2position + 1, v)
end if
end while

When updating the system state, we need to update the propeasias well. For
that, we use a dependency graph and exploit the fact thabtleaipof node is located
at position|i/2]. Therefore, we only need to update the affected reactiodstemir
ancestor nodes in the tree.

3.2 Huffman Tree Search

While storing the reactions in a complete tree minimizestightof the tree, this does
not lead to an optimal average-case performance. Indeadid=y the average number
of comparisons performed during the search of the nextimrafiting. Denoting this
number withT,,, (C'), we have:

T (C) = zm: w;D; (10)
j=1

wherem is the total number of reactions; is the weight of reactiori, andD; is the
depth of the leaf in the tree corresponding to reacfynrespectively. The weighb;
is the probability of reactiol?; being selected to fire.

In the complete tree approach, the depthsare roughly equal, since all the leaves
are in the last level or in the next-to-last one. So, we aréopming the same number
of comparisons in every case, i.e., the likely event of pigla fast reaction requires the
same computational effort of the unlikely event of pickingi@w reaction. It is simple
to check that this choice leads to a non optirfigl(C'). Consider the extreme case
in which reactionl has91% probability, while reactiong, 3,4 have3% probability
each. In a complete tree, we would habe = 2, hencel,,,(C) = 2. Using a non-
complete tree it would however be possible to move readtigp in the tree D; = 1),
while moving the other reactions dowd{ = 3,7 > 1). This leads tdl},(C) =
1.18 comparisons, which is better. Intuitively, we can improwe performance of the
complete tree search, especially for multi-scale systehishwcan be separated into
fast and slow reactions. The main idea would then be to plastréactions close to
the root, while slow ones farther from it.

The above facts are very closely related to well-known tesaldata compression.
Indeed, the minimization dof;,,(C), which leads to optimal performance in our set-
ting, is the purpose of the Huffman encoding for data congioes In [12], Huffman
described a possible way to construct the tree so to miniffiiz&”). The basic idea
there is to build the tree by repeatedly merging trees inestoevhich initially contains
only trees with one node. At each step, the two trees whods (p@ndq) have the
smallestweights (v, andw,) are merged. A new rogly is created and the two previ-
ous trees become the subtreepqf Thepq node is assigned weight,, = w, + wg.
This is repeated until the forest contains only one treemRtGs, it is clear that in the
final tree we havd,, + 1 = D, = D,, wherep, ¢, pq are the nodes involved in any
merge. Hence, we obtain for any sycly, pq:

m
T,.(C) = Z w;D; + wpDy, + wy Dy,
j=1
J#P:q
m

= (Z w; Dj + wpgDpq) + wpq
j=1
J#p.q

=T—1(C) + wpq (11)

which relate<l’,, (C) with T,,,_1(C). The above allows us to recall the main result for
Huffman trees.

Theorem 2 The Huffman tree gives the minimum valudgf(C)

Proof By induction onm. Base case: easy to check forn = 2. Inductive case:
by the inductive hypothesis, the Huffman tree for— 1 gives the optimum value

for T,,,—1(C). By contradiction, suppose the Huffman tree foris not optimal. So
there is some tree having total number of comparisBfjéC) such thatT!, (C) <
T,.(C). W.Lo.g. the smallest weights must be placed at lowest.leMence, letp
andq are nodes with smallest weight and their parent labgiedJsing (11), we have
T, _1(C) 4+ wpg < Tr—1(C) + wpq thenT), _(C) < T,,—1(C), contradicting the
inductive hypothesis.

Because each node in Huffman tree has two children, TheowdithHolds. There-
fore, we can still use an array with si2ex — 1 for representing the Huffman tree. Note
that in this case we do not needto be even. The elements at position fram— 1
to 2m — 1 are filled by reactions as leaves. However, unlike for coteptieees, each
element in the array must point to its left child and righti@¢hiBuilding a Huffman
tree is done as follows: we use a heap to extract the npdewith minimum weight
at each step.

Algorithm 4 Building Huffman tree
procedure: build_huffmantree

require: An array TREE with2m — 1 elements, where the elements fram— 1 to
2m — 1 are filled
1: build heap H with elementgn — 1,w1),... (2m — 1,w,,), ordered according to
wj
2. for position = m — 2 down tol do
extract top elemenip(w,) from H
extract top elemeny(w,) from H
TREE[position].VALUE =
TREE[p].VALUE + TREE[¢].VALUE
TREE[position].LEFT =p
TREE[position].RIGHT = ¢
insertposition, w, + w,) into H
end for

gk w

© ® N

The Huffman tree we build in the Algorithm 4 is stored in aragrin which each
cell contains the fields VALUE, LEFT, and RIGHT. The partiahs of propensity is
now stored in the VALUE field. The index of left and right sudwris indicated by LEFT
and RIGHT field, respectively. The same binary search puaeedf Algorithm 3 is
applied to search the Huffman tree for the next reactionegixthat now LEFT and
RIGHT fields are used to travel the tree, instead of the ptsvinethod which works
only for complete trees.

3.3 Theweight function and tree updates

Using the Huffman tree, we want to reduce the number of coismas to find the next
firing reaction. A good candidate for the weight functionrie propensity function;
since this choice leads to less time spent for finding therésttion (which have large
propensity).

However, during the execution of the SSA, reaction firindgsafthe propensity of
reactions, which can also change rapidly. This happensgXample, whenever the
reaction has a very large rate constant but a small numbeaofant molecules. When
it is fired, its propensity significantly changes by a largeoanm. When propensities
change, we need to update the values stored in the tree, aisl weinlg the complete
trees. This update, however, could make the tree no longanalpi.e. no longer an
Huffman tree. In this case, we face the choice of either prdicey with a non-optimal
tree (which could still be near the optimum, though), or ileliog the Huffman tree.
Rebuilding the tree is rather expensive, so we need a tridd=or this reason we
choose to keep using a non-optimal tree for some predefimedt@mable) number of
SSA steps, postponing the reconstruction of the tree dfteget steps. Note that the
choice of this parameter only affects the performance,enthié results are still exact.

Further, to cope with propensities changing rapidly, wghgly modify the weights
w; SO to assign a higher weight to those reactions which are likeig to change. For
each reactior?;, we define sets conflictB;) as the collection of reactions that affect
or compete with?;

conflicty R;) = {R;|R; € affect{R;),
reactantsRk;) N reactantgR,;) # 0} (12)

and favorsg;) is the collection of reactions that affects and favars

favordR;) = {R;|R; € affectgR;),
product$R;) N reactant§R;) # 0} (13)

In terms of the dependency graphG(V, E), we have the following relationship:
|conflicts(R;)| + | favors(®;)| = in-degreeR;).

Under these definitions, when a reaction fires, we can edithatprobability it will
increase (decrease) the propensity of readipas|conflicts@®;)|/m ([favors®;)|/m).
After k simulation steps, the estimated weight of reactttris:

wj(aj, k) = a; + « (14)

N [favorg R;)| +agk |conflicty R;)|
m m

wherea;, ao are parameters denoting the average change amount. Fdic#iynpe

assign it to the stochastic rate constant for the reactiba@d i.e; = —as = k;.

To update the propensity of affected reactions, we adagtttinan tree building
procedure by storing location of parent node in an additibell, called PARENT, in
each element of array TREE. With this information we candtlie path from a leaf
to the root and reflect the changes.

4 Experimental Results

In this section, we report the simulation results for vasionodels differing in size.
The table 1 provides a summary of the number of reactionsparies of the simulated
systems.

Table 1: List of tested systems with number of reactions pedies

Model Species| Reactions
Oregonator 8 5
Circadian Cycle 9 11
HSR of E. Coli 28 61
MAP Kinase Cascade 106 296

41 Tested Models

The smallest model is the Oregonator model. The underlyiaghanism of the Oreg-
onator dynamics contains both an autocatalytic step andagetenegative feedback
loop. Itis a kind of chemical reaction that shows a periodiange in the concentra-
tions of the products and reactants [1]. The species antisra®f Oregonator model
are shown in table 1.

For the second test, we use the simplified circadian cycleefrind21]. The cir-
cadian rhythm is a daily cycle in the biochemical proces$esamy living beings and
is widely observed in plants and animals, so providing a ebitternal clock and
regulate behavior accordingly. The key mechanism of theadian rhythm is the in-
tracellular transcription regulation of two genes, anvattir and a repressor. Both are
translated into activator and repressor proteins. Adiivatts as the positive element
in transcription in binding to promoter, while repressatsats the negative element by
repressing the activator.

In the third model, we simulate the heat shock response (H&&)ess occurring
when cells are shifted to high temperature. The synthesisofall number of proteins,
called the heat shock proteins (HSPs), is rapidly inducedE.Icoli, the response is
controlled by the so-called sigma factor. The sigma faciocapable of binding to
various regions of the DNA that stimulate the transcriptibthe particular gene under
their control. When E.coli senses the raised temperaturepbeial heat shock sigma
factor 032 will replaces70, which is the bound unit of RNA Polymerase (RNAP),
to accelerate HSPs synthesis (more detais in [14]).

The largest model is the the mitogen-activated protein (MiRase (MAPK) cas-
cade. The MAP kinase signaling pathway is a chain of profeitise cell that cascade
a signal from a receptor on the surface of the cell to its rugcl&he signal begins when
mitogens or growth factors bind to the receptor on the cefbse and ends when the
cell responds a response pattern including growth, diffexgon, inflammation and
apoptosis. The cascade is well-conserved which meansrthiegs can be found in a
large number of cell types. The basic of this pathway is constd by three protein
kinases: MAPKKK (such as RAS/Raf), MAPKK (such as MEK) and RIA The ex-
ternal stimuli activate the first element the MAPKKK of thetipgay. The activated
MAPKKK phosphorylates MAPKK at two sites. The phosphorgitMAPKK then
activates the MAPK through the phosphorylation on its thiee or tyrosine of the
protein structure. MAPK can then act as a kinase for trapsori factors, but may
also have a feedback effect on the activity of kinases likeNFAPKKK further up-
stream (more details in [13]).

10

9000 -

EDM

7500 + Complete Tree

Huffman Tree
6000 -
4500
3000 -
1500 -+

o, |

HSR

MAP Kinase

number of comparison (103)

Oregonator Circadian
Figure 2: Comparisons performed by each algorithm

2500 A =DM

B NRM

2000 - Complete Tree
Huffman Tree
1500
1000 -
500
0 4

Oregonator Circadian HSR MAP Kinase

number of reactions/sec

Figure 3: Overall performance

4.2 Performance

The performance of our algorithm is reported in Fig. 2-3. rFalgorithms are com-
pared: DM, NRM, Complete Tree Search, Huffman Tree Seardme résults have
been computed fd¥00, 000 simulation steps on an Intel Core i5-540M processor. The
DM algorithm we used was adapted so to exploit a reactionrgrecy graph for up-
dating the propensities of the affected reactions. For th#inkhn Tree Search, we
had to pick a numbet of steps after which we reconstruct the Huffman Tree, as we
discussed in Sect. 3.3. Picking a too small or too large vidué may degrade the
overall performance. In our simulation, we chdse- 100, 000, so causing the tree to
be rebuilt5 times in the whole simulation.

In Fig. 2 we show the number of comparisons performed for figdhe next re-
action firing in each case. The NRM algorithm is not shown beeathe smallest
putative time is always on the top of queue for selecting.llitha samples, the Huff-
man tree search performed the least number of comparisonsen Witmulating small
models, the difference between linear search and binarglsé&anot very significant.

11

However, when using the bigger models binary search isy&a#h faster than linear
search, and Huffman Tree Search still gain anothéfH% in comparisons with respect
to Complete Tree Search.

As shown in Fig. 3, simulating small models is not signifitamffected by the
choice of the algorithm. This is intuitive, since in thesedals there is little room to
improve both in search time and in update time, which coateloughly in the same
way to the overall performance. However, when the systemrggel| then search time
dominates update time. In this case, search time significhentefits from using an
algorithm such as Huffman tree search, as our results fdvithié Kinase model show.

5 Conclusions

Stochastic simulation is an emerging research area fosiigaing bio-inspired pro-
cesses, especially whenever fluctuation and noise play partemt role. Gillespie’s
SSA has become de factostandard for simulating the cell behavior. In general, the
stochastic simulation of biochemical reaction system®immosed of two steps: find-
ing the next reaction firing, and updating the system statehis paper we apply the
Huffman tree to the SSA to reduce the number of comparisofisddhe next reaction
firing. By estimating the change of the weights in the Huffnree, we can minimize
the overhead due to the need of rebuilding the tree.

In fact, in the literature we can find various methods to effitly choose the next
reaction firing, such as those described in [3,11]. For exenmpstead of sequential or
binary search a lookup table (or guide table) could be usellive the search. How-
ever, its main drawback is the requirement to set up a latgle t&fter each reaction
firing. Overall, there is no optimal solution for all modeds\d a combination of meth-
ods into the current stochastic simulation algorithm cam fpeomising approach for
the future.

References

[1] S. Alonso, F. Sagus, and A. S. Mikhailov. Negative-tensinstability of scroll
waves and winfree turbulence in the oregonator moddl. Phys. Chem. A
110(43):12063-12071, 2006.

[2] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Effit step size selection
for the tau-leaping simulation methodl. Chem. Phys124(4):044109, 2006.

[3] Luc Devroye.Non-Uniform Random Variate Generatio8pringer-Verlag, 1986.

[4] C. Dittamo and D. Cangelosi. Optimized parallel implertegion of Gillespie’s
first reaction method on graphics processing units.Pioc. of ICCMS pages
156-161, 2009.

[5] Michael A. Gibson and Jehoshua Bruck. Efficient exactiséstic simulation
of chemical systems with many species and many chandelBhys. Chem. A
104(9):1876-1889, 2000.

12

[6] Daniel T. Gillespie. Approximate accelerated stocltasimulation of chemically
reacting systemsl. Chem. Phys115:1716-1733, 2001.

[7] Daniel T. Gillespie. A general method for numericallyrsilating the stochastic
time evolution of coupled chemical reactiond. Comp. Phys.22(4):403-434,
1976.

[8] Daniel T. Gillespie. Exact stochastic simulation of pted chemical reactions.
Phys. Chem81(25):2340-2361, 1977.

[9] Daniel T. Gillespie. Stochastic simulation of chemikaletics. Annu. Rev. Phys.
Chem, 58:35-55, 2007.

[10] Daniel T. Gillespie and Linda R. Petzold. Improved lespe selection for accel-
erated stochastic simulatiod. Chem. Phys119(16):1716-1723, 2003.

[11] Wolfgang Hormann, Josef Leydold, and Gerhard Derflingeitomatic Nonuni-
form Random Variate GeneratioSpringer-Verlag, 2004.

[12] David A. Huffman. A method for the construction of minim-redundancy
codes. InProc. of IRE volume 40, pages 1098-1101, 1952.

[13] W Kolch. Meaningful relationships: the regulation bétras/raf/mek/erk pathway
by protein interactionsBiochem. J.351(2):289-305, 2000.

[14] H. Kurata, H. El-Samad, T.-M. Yi, M. Khammash, and J. Boyreedback regu-
lation of the heat shock response in E. coliPiroc. of CDG volume 1, 2001.

[15] Hong Li and Linda Petzold. Logarithmic direct method fliscrete stochastic
simulation of chemically reacting systems. Technical Re[2906.

[16] Sean Mauch and Mark Stalzer. Efficient formulations émact stochastic sim-
ulation of chemical systemdEEE/ACM Trans. on Computational Biology and
Bioinformatics 8(1):27-35, 2011.

[17] James M. McCollum, Gregory D. Peterson, Chris D. CoxciMiel L. Simpson,
and Nagiza F. Samatova. The sorting direct method for sttichaimulation
of biochemical systems with varying reaction executionawidr. Comput. Bio.
Chem, 30(1):39-49, 2006.

[18] Jonathan M. Raser and Erin K. O’'Shea. Noise in gene egpa: Origins, con-
sequences, and contr@cience309(5743):2010-2013, 2005.

[19] Tim P. Schulze. Efficient kinetic monte carlo simulatio J. Comp. Phys.
227(4):2455.

[20] Vo H. Thanh and Roberto Zunino. Parallel stochasticusattion of biochemical
reaction systems on multi-core processorsPioc. of CSSim2011.

[21] J. Vilar, H. Kueh, N. Barkai, and S. Leibler. Mechanisofsnoise-resistance in
genetic oscillators. IProc. of PNASvolume 99, 2002.

13

[22] Linda R. Petzold Yang Cao, Hong Li. Efficient formulatiof the stochastic simu-
lation algorithm for chemically reacting systendsChem. Phys121(9):405967,
2004.

14

