

DISI - Via Sommarive 14 - 38123 Povo - Trento (Italy)
http://www.disi.unitn.it

TREE-BASED SEARCH FOR

STOCHASTIC SIMULATION

ALGORITHM

Vo Hong Thanh, Roberto Zunino

November 2011

Technical Report # DISI-11-478

Tree-Based Search for Stochastic Simulation
Algorithm

Vo Hong Thanh
University of Trento, Italy

vo@disi.unitn.it

Roberto Zunino
University of Trento, Italy and COSBI

zunino@disi.unitn.it

Abstract

In systems biology, the cell behavior is governed by a series of biochemical
reactions. The stochastic simulation algorithm (SSA), which was introducedby
Gillespie, is a standard method to properly realize the dynamic and stochasticna-
ture of such systems. In general, SSA follows a two-step approach: finding the
next reaction firing, and updating the system accordingly. In this paper we apply
the Huffman tree, an optimal tree for data compression, so to improve thesearch
for the next reaction firing.

Keywords: Systems biology, SSA, Tree search SSA, Huffman tree SSA.

1 Introduction

In recent years, the modeling and simulation of biological systems has become an
emergent research field in computational systems biology. Earlier approaches use de-
terministic models such as ordinary differential equations (ODE) to analyze the behav-
ior of systems. Recent research has shown the importance of fluctuation and noise in
e.g. gene expression and biochemical networks [18]. Hence,instead of considering de-
terministic changes of the concentration of each reactant,the stochastic approach tries
to realize the dynamics in the population of each species in the system.

The stochastic simulation algorithm (SSA) [7, 8] is an exactsimulation method
for simulating and reproducing the intrinsic noise of chemical reactions. The evolu-
tion of the system is computed by firing one reaction at each step. SSA uses a Monte
Carlo simulation technique to sample the system state, where the firings of each reac-
tion define a Poisson process with propensity (or rate)aj . There are two well-known
implementations of the SSA method, namely the First Reaction Method (FRM) and
the Direct Method (DM). DM and FRM are mathematically equivalent procedures but

1

differ in how to compute the next reaction firing. In FRM, the putative times of all
reactions are generated, after which the smallest one is chosen to fire. By contrast, DM
generates the next firing time, and then a search is conductedto find the fired reaction.
The system is updated accordingly after that, and the algorithm proceeds with the next
simulation step.

Many improvements have been introduced to both FRM and DM. The Next Re-
action Method (NRM) [5] improves FRM by representing the dependencies among
reactions using a graph, and employing a special indexed structure to store putative
times. Hence, less time is spent for choosing a reaction and updating the system state.
The Optimized Direct Method (ODM) [22] and Sorting Direct Method (SDM) [17]
improve DM based on the observation that the search will be faster when reactions are
indexed according to their frequencies. The Logarithmic Direct Method (LDM) [15]
speeds up the simulation by applying binary search instead of sequential search in DM.

Variants of SSA by dividing reactions into groups have been proposed in [16, 19].
In [16] it is proposed a 2D search for finding the next reaction, storing the propensities
in a matrix. The next firing reaction is found by two linear searches: one finds the row
using partial sums, and the other finds the reaction within the row. The method in [19]
combines the sequential search in a first stage and rejectionmethod in a second stage
for choosing the reaction.

Recently, the computational power of parallel and distributed environment has been
exploited to improve the performance of SSA. There are two main types of parallel
techniques for simulating the dynamic behavior of the cell:simulation parallelism and
functional parallelism. The former will execute the same simulation multiple times on
each logical process to generate many samples of the system [15]. In the latter instead
the simulation algorithm is divided into functional components and a number of logical
processes will simulate for corresponding components [4,20].

Beyond exact methods, various approximated methods have been presented to re-
duce the simulation time, such as [9]. For example, theτ -leaping method (more details
in [2,6,10]) assumes that the propensity of some reaction isroughly constant for a small
amount of time, so that the simulation clock can be advanced for that amount in one
step. Approximated methods greatly speed up the simulation. However, the accuracy
of the results sometimes is uncertain, and care must be takento avoid abnormal results
(e.g., negative populations).

Improving the exact method, therefore, is still useful. In this work, we describe in
detail a tree-based data structure and its implementation for improving the original SSA
method. Tree-based structures allow binary search, which is of course more efficient
than the linear search used in many variants of SSA. However,using a complete binary
tree may not lead to an optimal performance, i.e. it might notlead to a minimum
number of comparisons performed during search. Indeed, in this work we study how
to use the Huffman tree for this purpose, and discuss some experimental findings.

The paper is organized as follows: in the next section (section 2) we review the
main stochastic simulation methods. In section 3, we describe the tree-based approach
for reducing the computation cost for finding the next reaction firing. Section 4 gives
some experimental results for our approach. The concludingremarks discuss, and some
possible future research directions are provided in section 5.

2

2 SSA

We consider a well-stirred chemical system withn species denoted asS1, ...Sn, which
interact throughm reactionsR1, ...Rm. Each reaction has the following general form:

Rj : v1jS1 + ...+ vnjSn

kj

→ v′
1jS1 + ...+ v′njSn (1)

wherevij and v′
1j are thestoichiometric coefficientsand kj is the rate constantof

reactionRj . In the case the system contains reversible reactions, theycan be modelled
as two irreversible reactions.

The dynamical state of the system is represented by a vectorX(t) = (X1(t), ..., Xn(t))
whereXi(t) denotes the population of speciesSi at timet. If the next reactionRj fires
at timet+dt, then the system state changes by the amount denoted by vector vj where
ith element equals tov′ij −vij , which describes the change in the population of species
Si. Therefore, the state transition of the system can be formulated as:

X(t+ dt) = X(t) + vj (2)

Let P (x, t) be the probability of system being in statex at time t. The follow-
ing differential equation expresses the time evolution ofP (x, t) given the initial state
X(t0) = x0 at timet0.

δP (x, t|x0, t0)

δt
=

m
∑

j=1

aj(x− vj)P (x− vj , t|x0, t0)

−
m
∑

j=1

aj(x)P (x, t|x0, t0) (3)

whereaj is the propensity function, defined so thataj(x)dt is the probability that
reactionRj is fired in the time interval[t, t+ dt).

Equation 3 is generally called chemical master equation (CME). The CME com-
pletely determines the time evolution of the system. An analytic solution of this equa-
tion is hard to find, unless the system is very small. However,although the CME
equation cannot be solved in general, the evolution of the system state in time can be
computed through simulating the joint probability densityfunctionp(τ, j|x, t), which
is the probability the reactionRj will be fired in the time interval[t + τ, t + τ + dt),
provided we are in stateX(t) = x.

p(τ, j|x, t) = aj(x)exp(−a0(x)τ) (4)

where

a0(x) =

m
∑

j=1

aj(x) (5)

whereτ andj are the time of the reaction firing and its index, respectively.
Based on 4-5, the Direct Method (DM) computesτ andj by generating two random

numbersr1 andr2 from the uniform distributionU(0, 1), and then applies the inversion

3

method to obtain the values ofτ andj:

τ =
1

a0
ln

(

1

r1

)

(6)

j = the smallest value s.t.
j

∑

k=1

ak(x) > r2a0(x) (7)

A mathematically equivalent procedure is provided by the First Reaction Method
(FRM). In each simulation loop, the algorithm generatesm random numbersr1, ..., rm
from the uniform distributionU(0, 1), and computes the putative times for each reac-
tion as:

τj =
1

aj
ln

(

1

rj

)

, j = 1...m (8)

The smallest valueτj is used, and the corresponding reactionRj is chosen. The general
schema of the SSA algorithms for the exact simulation of biochemical reaction systems
is given in Algorithm 1.

Algorithm 1 SSA
1: initialize system timet = t0 and system statex = x0

2: for all reaction channelRj do
3: computeaj and their suma0
4: end for
5: generate the values ofτ andj according to chosen method (FRM, DM)
6: update the timet = t+ τ and system statex = x+ vj
7: goto step 2

2.1 Next Reaction Method (NRM)

This method is an improvement of FRM. It uses a priority queue, which is typically
implemented as a binary heap, to store the putative times of reactions so that retrieving
the smallest one can be performed efficiently. Moreover, care is taken for handling
dependent reactions: firing one reaction can change the amount of reactants for other
reactions, and so affect the propensity which has to be recomputed. Further, in that
case, the putative times which are stored in the priority queue have to be adjusted
accordingly. NRM pre-computes a reaction dependency graphto perform these steps
efficiently, such as that in Fig. 1.

We denote with affects(Rj) the set of reactions thatRj affects. Formally:

affects(Rj) = { Ri |

(reactants(Rj) ∪ products(Rj)) ∩ reactants(Ri) 6= ∅} (9)

where reactants(Rj) and products(Rj) are the set of species taking part in reaction
Rj as reactants and products, respectively. The directed dependency graphDG(V,E)
contains as verticesV all the reactions, while we find an edgee(Ri, Rj) ∈ E if and
only if Rj ∈ affects(Ri). When one reaction fires, NRM searches for neighbors on the
dependency graph, so to update their putative times.

4

Figure 1: Dependency graph (removing self affected edges)

3 Binary Search for SSA

Binary search is a more efficient search method than the linear search which is used
in DM (logarithmic vs. linear complexity). It was proposed in LDM to improve DM
exploiting the partial sums of propensities. However, the underlying data structure
was not completely explained. In addition, LDM did not use a dependency graph for
updating the system, which could further improve the performance. In this section, we
first detail the data structures and algorithms used to applybinary search on a complete
tree to SSA. Then, we switch from complete trees to Huffman trees, so to exploit their
optimal compression property to minimize the number of comparisons needed to find
the next reaction firing.

3.1 Complete Tree Search

A (binary) complete tree, is a binary tree completely filled at every level, except possi-
bly the last; each node as exactly two children (internal node), or zero (leaf). For our
purposes, leaves hold the propensities of reactions, whileinternal nodes store the sums
of values of their child nodes. Theorem 1 and the following discussion allow to store a
complete tree on a contiguous array, hence improving cache-friendliness.

Theorem 1 A complete binary tree withm leaves has exactly2m− 1 nodes.

Proof Denote withs the number of internal nodes. In a complete tree each internal
node has two child nodes. Hence, the number of edges in the tree is2s. Also, the edges
arem+ s− 1 = 2s, hences = m− 1. So, the number of nodes iss+m = 2m− 1.

Therefore, we can use an array with2m− 1 elements to represent a complete tree
with m reaction propensities at the lowest level. In the array representation, a node
at positioni will have its two children at position2i and2i + 1. We can recursively
construct the tree with the internal sums as follows.

In Algorithm 2, each element of the array TREE stores the partial sums of the re-
action propensities, so we simply need each array cell to store a simple type (a floating
point double). In order to build the tree, the number of reactionsm must be an even

5

Algorithm 2 Building the complete tree
procedure: build tree(position)

require: array TREE with2m − 1 elements where elements fromm − 1 to 2m − 1
are filled with reaction propensities

1: if position is not leafthen
2: build tree(2position)
3: build tree(2position + 1)
4: TREE[position] = TREE[2position] + TREE[2position + 1]
5: end if

number. In the casem is not even, we can add a dummy reaction (with propensity0)
as the last element of the array.

After having built the tree, to search for the next reaction firing we proceed as
follows. Let r be a random number inU(0, 1), andra0 be the value we are looking
for, as in (7). Starting from the root, we travel down the tree, following the left or
right branches according to whether the propensity sum stored in the left one is smaller
than the search value. Whenever we take a right branch, we adjust the search value by
subtracting from it the value stored in the left branch. The whole procedure is outlined
in Algorithm 3. The procedure is correct, in the sense that itfinds the same leafj as in
(7), so each reaction indeed can be fired with the correct probability aj/a0.

Algorithm 3 Finding the next reaction firing
procedure: search(position, v)

require: properly set up array TREE, search value v
1: while position is not leafdo
2: if TREE[2position]≥ v then
3: search(2position, v)
4: else
5: v = TREE[position] - v
6: search(2position + 1, v)
7: end if
8: end while

When updating the system state, we need to update the propensity tree as well. For
that, we use a dependency graph and exploit the fact that the parent of nodei is located
at position⌊i/2⌋. Therefore, we only need to update the affected reactions and their
ancestor nodes in the tree.

3.2 Huffman Tree Search

While storing the reactions in a complete tree minimizes theheightof the tree, this does
not lead to an optimal average-case performance. Indeed, consider the average number
of comparisons performed during the search of the next reaction firing. Denoting this
number withTm(C), we have:

6

Tm(C) =

m
∑

j=1

wjDj (10)

wherem is the total number of reactions,wj is the weight of reactionj, andDj is the
depth of the leaf in the tree corresponding to reactionRj , respectively. The weightwj

is the probability of reactionRj being selected to fire.
In the complete tree approach, the depthsDj are roughly equal, since all the leaves

are in the last level or in the next-to-last one. So, we are performing the same number
of comparisons in every case, i.e., the likely event of picking a fast reaction requires the
same computational effort of the unlikely event of picking aslow reaction. It is simple
to check that this choice leads to a non optimalTm(C). Consider the extreme case
in which reaction1 has91% probability, while reactions2, 3, 4 have3% probability
each. In a complete tree, we would haveDj = 2, henceTm(C) = 2. Using a non-
complete tree it would however be possible to move reaction1 up in the tree (D1 = 1),
while moving the other reactions down (Dj = 3, j > 1). This leads toTm(C) =
1.18 comparisons, which is better. Intuitively, we can improve the performance of the
complete tree search, especially for multi-scale systems which can be separated into
fast and slow reactions. The main idea would then be to place fast reactions close to
the root, while slow ones farther from it.

The above facts are very closely related to well-known results in data compression.
Indeed, the minimization ofTm(C), which leads to optimal performance in our set-
ting, is the purpose of the Huffman encoding for data compression. In [12], Huffman
described a possible way to construct the tree so to minimizeTm(C). The basic idea
there is to build the tree by repeatedly merging trees in a forest, which initially contains
only trees with one node. At each step, the two trees whose roots (p andq) have the
smallestweights (wp andwq) are merged. A new rootpq is created and the two previ-
ous trees become the subtrees ofpq. Thepq node is assigned weightwpq = wp + wq.
This is repeated until the forest contains only one tree. From this, it is clear that in the
final tree we haveDpq + 1 = Dq = Dp, wherep, q, pq are the nodes involved in any
merge. Hence, we obtain for any suchp, q, pq:

Tm(C) =

m
∑

j=1

j 6=p,q

wjDj + wpDp + wqDq

= (

m
∑

j=1

j 6=p,q

wjDj + wpqDpq) + wpq

= Tm−1(C) + wpq (11)

which relatesTm(C) with Tm−1(C). The above allows us to recall the main result for
Huffman trees.

Theorem 2 The Huffman tree gives the minimum value ofTm(C)

Proof By induction onm. Base case: easy to check form = 2. Inductive case:
by the inductive hypothesis, the Huffman tree form − 1 gives the optimum value

7

for Tm−1(C). By contradiction, suppose the Huffman tree form is not optimal. So
there is some tree having total number of comparisonsT ′

m(C) such thatT ′
m(C) <

Tm(C). W.l.o.g. the smallest weights must be placed at lowest level. Hence, letp
andq are nodes with smallest weight and their parent labeledpq. Using (11), we have
T ′
m−1

(C) + wpq < Tm−1(C) + wpq thenT ′
m−1

(C) < Tm−1(C), contradicting the
inductive hypothesis.

Because each node in Huffman tree has two children, Theorem 1still holds. There-
fore, we can still use an array with size2m−1 for representing the Huffman tree. Note
that in this case we do not needm to be even. The elements at position fromm − 1
to 2m − 1 are filled by reactions as leaves. However, unlike for complete trees, each
element in the array must point to its left child and right child. Building a Huffman
tree is done as follows: we use a heap to extract the nodesp, q with minimum weight
at each step.

Algorithm 4 Building Huffman tree
procedure: build huffmantree

require: An array TREE with2m − 1 elements, where the elements fromm − 1 to
2m− 1 are filled

1: build heap H with elements(m − 1, w1),... (2m − 1, wm), ordered according to
wj

2: for position = m− 2 down to1 do
3: extract top element (p, wp) from H
4: extract top element (q, wq) from H
5: TREE[position].VALUE =

TREE[p].VALUE + TREE[q].VALUE
6: TREE[position].LEFT = p
7: TREE[position].RIGHT = q
8: insert(position, wp + wq) into H
9: end for

The Huffman tree we build in the Algorithm 4 is stored in an array in which each
cell contains the fields VALUE, LEFT, and RIGHT. The partial sum of propensity is
now stored in the VALUE field. The index of left and right subtree is indicated by LEFT
and RIGHT field, respectively. The same binary search procedure of Algorithm 3 is
applied to search the Huffman tree for the next reaction, except that now LEFT and
RIGHT fields are used to travel the tree, instead of the previous method which works
only for complete trees.

3.3 The weight function and tree updates

Using the Huffman tree, we want to reduce the number of comparisons to find the next
firing reaction. A good candidate for the weight function is the propensity functionaj
since this choice leads to less time spent for finding the fastreaction (which have large
propensity).

8

However, during the execution of the SSA, reaction firings affect the propensity of
reactions, which can also change rapidly. This happens, forexample, whenever the
reaction has a very large rate constant but a small number of reactant molecules. When
it is fired, its propensity significantly changes by a large amount. When propensities
change, we need to update the values stored in the tree, as we did using the complete
trees. This update, however, could make the tree no longer optimal, i.e. no longer an
Huffman tree. In this case, we face the choice of either proceeding with a non-optimal
tree (which could still be near the optimum, though), or rebuilding the Huffman tree.
Rebuilding the tree is rather expensive, so we need a trade-off. For this reason we
choose to keep using a non-optimal tree for some predefined (and tunable) number of
SSA steps, postponing the reconstruction of the tree after those steps. Note that the
choice of this parameter only affects the performance, while the results are still exact.

Further, to cope with propensities changing rapidly, we slightly modify the weights
wj so to assign a higher weight to those reactions which are morelikely to change. For
each reactionRj , we define sets conflicts(Rj) as the collection of reactions that affect
or compete withRj

conflicts(Rj) = {Ri|Rj ∈ affects(Ri),

reactants(Ri) ∩ reactants(Rj) 6= ∅} (12)

and favors(Rj) is the collection of reactions that affects and favorsRj

favors(Rj) = {Ri|Rj ∈ affects(Ri),

products(Ri) ∩ reactants(Rj) 6= ∅} (13)

In terms of the dependency graphDG(V,E), we have the following relationship:
|conflicts(Rj)| + | favors(Rj)| = in-degree(Rj).

Under these definitions, when a reaction fires, we can estimate the probability it will
increase (decrease) the propensity of reactionRj as|conflicts(Rj)|/m (|favors(Rj)|/m).
After k simulation steps, the estimated weight of reactionRj is:

wj(aj , k) = aj + α1k
|favors(Rj)|

m
+ α2k

|conflicts(Rj)|

m
(14)

whereα1, α2 are parameters denoting the average change amount. For simplicity, we
assign it to the stochastic rate constant for the reaction athand i.e,α1 = −α2 = kj .

To update the propensity of affected reactions, we adapt theHuffman tree building
procedure by storing location of parent node in an additional field, called PARENT, in
each element of array TREE. With this information we can build the path from a leaf
to the root and reflect the changes.

4 Experimental Results

In this section, we report the simulation results for various models differing in size.
The table 1 provides a summary of the number of reactions and species of the simulated
systems.

9

Table 1: List of tested systems with number of reactions and species
Model Species Reactions
Oregonator 8 5
Circadian Cycle 9 11
HSR of E. Coli 28 61
MAP Kinase Cascade 106 296

4.1 Tested Models

The smallest model is the Oregonator model. The underlying mechanism of the Oreg-
onator dynamics contains both an autocatalytic step and a delayed negative feedback
loop. It is a kind of chemical reaction that shows a periodic change in the concentra-
tions of the products and reactants [1]. The species and reactions of Oregonator model
are shown in table 1.

For the second test, we use the simplified circadian cycle model in [21]. The cir-
cadian rhythm is a daily cycle in the biochemical processes of many living beings and
is widely observed in plants and animals, so providing a sortof internal clock and
regulate behavior accordingly. The key mechanism of the circadian rhythm is the in-
tracellular transcription regulation of two genes, an activator and a repressor. Both are
translated into activator and repressor proteins. Activator acts as the positive element
in transcription in binding to promoter, while repressor acts as the negative element by
repressing the activator.

In the third model, we simulate the heat shock response (HSR)process occurring
when cells are shifted to high temperature. The synthesis ofa small number of proteins,
called the heat shock proteins (HSPs), is rapidly induced. In E. coli, the response is
controlled by the so-called sigma factor. The sigma factor is capable of binding to
various regions of the DNA that stimulate the transcriptionof the particular gene under
their control. When E.coli senses the raised temperature thespecial heat shock sigma
factorσ32 will replaceσ70, which is the boundσ unit of RNA Polymerase (RNAP),
to accelerate HSPs synthesis (more detais in [14]).

The largest model is the the mitogen-activated protein (MAP) kinase (MAPK) cas-
cade. The MAP kinase signaling pathway is a chain of proteinsin the cell that cascade
a signal from a receptor on the surface of the cell to its nucleus. The signal begins when
mitogens or growth factors bind to the receptor on the cell surface and ends when the
cell responds a response pattern including growth, differentiation, inflammation and
apoptosis. The cascade is well-conserved which means this process can be found in a
large number of cell types. The basic of this pathway is constructed by three protein
kinases: MAPKKK (such as RAS/Raf), MAPKK (such as MEK) and MAPK. The ex-
ternal stimuli activate the first element the MAPKKK of the pathway. The activated
MAPKKK phosphorylates MAPKK at two sites. The phosphorylated MAPKK then
activates the MAPK through the phosphorylation on its threonine or tyrosine of the
protein structure. MAPK can then act as a kinase for transcription factors, but may
also have a feedback effect on the activity of kinases like the MAPKKK further up-
stream (more details in [13]).

10

Figure 2: Comparisons performed by each algorithm

Figure 3: Overall performance

4.2 Performance

The performance of our algorithm is reported in Fig. 2-3. Four algorithms are com-
pared: DM, NRM, Complete Tree Search, Huffman Tree Search. The results have
been computed for500, 000 simulation steps on an Intel Core i5-540M processor. The
DM algorithm we used was adapted so to exploit a reaction dependency graph for up-
dating the propensities of the affected reactions. For the Huffman Tree Search, we
had to pick a numberk of steps after which we reconstruct the Huffman Tree, as we
discussed in Sect. 3.3. Picking a too small or too large valuefor k may degrade the
overall performance. In our simulation, we chosek = 100, 000, so causing the tree to
be rebuilt5 times in the whole simulation.

In Fig. 2 we show the number of comparisons performed for finding the next re-
action firing in each case. The NRM algorithm is not shown because the smallest
putative time is always on the top of queue for selecting. In all the samples, the Huff-
man tree search performed the least number of comparisons. When simulating small
models, the difference between linear search and binary search is not very significant.

11

However, when using the bigger models binary search is nearly 50% faster than linear
search, and Huffman Tree Search still gain another∼ 20% in comparisons with respect
to Complete Tree Search.

As shown in Fig. 3, simulating small models is not significantly affected by the
choice of the algorithm. This is intuitive, since in these models there is little room to
improve both in search time and in update time, which contribute roughly in the same
way to the overall performance. However, when the system is large, then search time
dominates update time. In this case, search time significantly benefits from using an
algorithm such as Huffman tree search, as our results for theMAP Kinase model show.

5 Conclusions

Stochastic simulation is an emerging research area for investigating bio-inspired pro-
cesses, especially whenever fluctuation and noise play an important role. Gillespie’s
SSA has become ade factostandard for simulating the cell behavior. In general, the
stochastic simulation of biochemical reaction systems is composed of two steps: find-
ing the next reaction firing, and updating the system state. In this paper we apply the
Huffman tree to the SSA to reduce the number of comparisons tofind the next reaction
firing. By estimating the change of the weights in the Huffmantree, we can minimize
the overhead due to the need of rebuilding the tree.

In fact, in the literature we can find various methods to efficiently choose the next
reaction firing, such as those described in [3,11]. For example, instead of sequential or
binary search a lookup table (or guide table) could be used todrive the search. How-
ever, its main drawback is the requirement to set up a large table after each reaction
firing. Overall, there is no optimal solution for all models,and a combination of meth-
ods into the current stochastic simulation algorithm can bea promising approach for
the future.

References

[1] S. Alonso, F. Sagus, and A. S. Mikhailov. Negative-tension instability of scroll
waves and winfree turbulence in the oregonator model.J. Phys. Chem. A,
110(43):12063–12071, 2006.

[2] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step size selection
for the tau-leaping simulation method.J. Chem. Phys., 124(4):044109, 2006.

[3] Luc Devroye.Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

[4] C. Dittamo and D. Cangelosi. Optimized parallel implementation of Gillespie’s
first reaction method on graphics processing units. InProc. of ICCMS, pages
156-161, 2009.

[5] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation
of chemical systems with many species and many channels.J. Phys. Chem. A,
104(9):1876-1889, 2000.

12

[6] Daniel T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems.J. Chem. Phys., 115:1716-1733, 2001.

[7] Daniel T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions.J. Comp. Phys., 22(4):403-434,
1976.

[8] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.J.
Phys. Chem., 81(25):2340-2361, 1977.

[9] Daniel T. Gillespie. Stochastic simulation of chemicalkinetics.Annu. Rev. Phys.
Chem., 58:35-55, 2007.

[10] Daniel T. Gillespie and Linda R. Petzold. Improved leap-size selection for accel-
erated stochastic simulation.J. Chem. Phys., 119(16):1716-1723, 2003.

[11] Wolfgang Hormann, Josef Leydold, and Gerhard Derflinger. Automatic Nonuni-
form Random Variate Generation. Springer-Verlag, 2004.

[12] David A. Huffman. A method for the construction of minimum-redundancy
codes. InProc. of IRE, volume 40, pages 1098-1101, 1952.

[13] W Kolch. Meaningful relationships: the regulation of the ras/raf/mek/erk pathway
by protein interactions.Biochem. J., 351(2):289-305, 2000.

[14] H. Kurata, H. El-Samad, T.-M. Yi, M. Khammash, and J. Doyle. Feedback regu-
lation of the heat shock response in E. coli. InProc. of CDC, volume 1, 2001.

[15] Hong Li and Linda Petzold. Logarithmic direct method for discrete stochastic
simulation of chemically reacting systems. Technical Report, 2006.

[16] Sean Mauch and Mark Stalzer. Efficient formulations forexact stochastic sim-
ulation of chemical systems.IEEE/ACM Trans. on Computational Biology and
Bioinformatics, 8(1):27-35, 2011.

[17] James M. McCollum, Gregory D. Peterson, Chris D. Cox, Michael L. Simpson,
and Nagiza F. Samatova. The sorting direct method for stochastic simulation
of biochemical systems with varying reaction execution behavior. Comput. Bio.
Chem., 30(1):39-49, 2006.

[18] Jonathan M. Raser and Erin K. O’Shea. Noise in gene expression: Origins, con-
sequences, and control.Science, 309(5743):2010-2013, 2005.

[19] Tim P. Schulze. Efficient kinetic monte carlo simulation. J. Comp. Phys.,
227(4):2455.

[20] Vo H. Thanh and Roberto Zunino. Parallel stochastic simulation of biochemical
reaction systems on multi-core processors. InProc. of CSSim, 2011.

[21] J. Vilar, H. Kueh, N. Barkai, and S. Leibler. Mechanismsof noise-resistance in
genetic oscillators. InProc. of PNAS, volume 99, 2002.

13

[22] Linda R. Petzold Yang Cao, Hong Li. Efficient formulation of the stochastic simu-
lation algorithm for chemically reacting systems.J. Chem. Phys., 121(9):405967,
2004.

14

