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Abstract

A variant of the ranking aggregation problem is considered in this
work. The goal is to find an approximation of an unknown true rank-
ing given a set of rankings. We devise a solution called Belief Ranking
Estimator (BRE), based on the belief function framework that permits
to represent beliefs on the correctness of the rankings position as well
as uncertainty on the quality of the rankings from the subjective point
of view of the expert. The results of a preliminary empirical compar-
ison of BRE against baseline ranking estimators and state-of-the-art
methods for ranking aggregation are shown and discussed.

1 Introduction

The ranking aggregation task originates from the necessity to aggregate dif-
ferent and possibly contradictory rankings of a finite set of items. Given
several rankings as input, the goal is to find a new ranking that minimize the
distance to each of the ranking in the input set [2]. The problem of ranking
aggregation emerges when it is necessary to combine the opinion of experts
with different background, such as the combination of movie preferences, or
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the combination of web engine results of a queries. Ranking aggregation
solution takes also in consideration the uncertainty associated to the data
when this is available, as in the context of sensor network data or tracking
moving objects [6].
In our work we consider a variant of the problem of ranking aggregation,
that is when the goal is to find a satisfying approximation of an unknown
true ranking given a usually-low number of rankings that are assumed to
be diverse-quality estimations of the true ranking. The main difference with
respect to the usual ranking aggregation problems met in case of preferences
or queries results combination is that we assume that the true ranking over
the set of items do exists. We claim that this is the case when the rank-
ings comes from bioinformatics rankers because of the underlying physical
reality of the unknown biological phenomenon at hand. Moreover and with
the same motivation we assume the rankings to be permutations of a big
but finite set of known items. To treat this problem we have to consider
data fusion aspects where rankings from different experts are combined to
produce a new ranking and also the uncertainty related to the elements of
the ranking. Finally, the evaluation of the solution methods has to take into
account correlation and distance with respect to the true ranking.
In this paper we devise a solution to the ranking aggregation problem based
on belief function heory. The belief function theory provides a robust frame-
work for reasoning with imprecise and uncertainty data, allowing the mod-
eling of subjective knowledge in a non Bayesian way. Belief function has
been applied on machine learning problems such as clustering, classification
[7] and data fusion under uncertainty. To the best of our knowledge, ap-
plication of belief function on a ranking aggregation problem has not yet
been proposed. Our solution, called Belief Ranking Estimator (BRE), es-
timates in an unsupervised way the true ranking given a set of estimating
ranked permutations. Our approach models the uncertainty relying only on
the ranking values, without using any other external information such as the
confidence of the expert. We test the methods over synthetic data, com-
paring our method against some baseline and competitor methods and we
provide also a discussion of the related work. The paper is organized as fol-
lows. In the following section we briefly present belief function framework.
One section is devoted to the presentation of our method and another to the
empirical results. Finally, we draw some conclusions.
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2 The Belief Functions Theory

The theory of the belief functions, also known as Dempster-Shafer theory, is
based on the pioneering work of Dempster [1] and Shafer [4]. More recent
advances of this theory has been introduced in the Transferable Belief Model
(TBM), proposed by Smets [5]. The three main ingredients of the framework
are the basic belief assignment (bba), belief functions and plausibility func-
tions. The basic belief assignment is the way to represent the believes held
by an expert regarding the values of a variable in a finite domain. We define
Θ, called the frame of discernment, as the set of propositions exclusive and
exhaustive in a certain domain. Let 2Θ denote the set of the subsets of Θ. A
function m : 2Θ → [0, 1] is called basic belief assignment (bba) if it satisfies :∑

A⊆Θ m(A) = 1 In order to combine distinct sources m1, . . . , mn on Θ, the
belief function provides several combination rules, such as conjunctive rules,
disjunctive rules and caution rules [5]. One of the most used rules, is the
conjunctive rules defined as: m1 ∩©2(A) =

∑
B∩C=A m1(B)m2(C) A ⊆ Θ.

The conjunctive rule is justified when all the sources of belief are supposed
to assert the truth and to be independent. For belief function theory is a
generalization of probability in a Bayesian setting, homologous of the condi-
tioning and marginalization rules are expressed in the framework. In order
to make decision dealing with belief functions, in the TBM is used the pig-
nistic transformation [5] which transforms a mass function into a probability

function Betp defined as: Betp(ω) =
∑

A⊆Θ
m(A)

1−m(φ)|A| ∀ω ∈ Θ.

3 Method

3.1 Notation and Definition of the Problem

Let X = {x1, . . . , xn} a set of elements to be ranked by an expert opin-
ion. We denote as τ = (τ(1), . . . , τ(n)) a ranking associated to X, where
τ(i) is the rank associated to the element xi. We suppose to have τTrank =
{τTrank(1), . . . , τTrank(n)}, the golden Truth Ranking on the element of X,
and we denote as Rj the expert involved in the ranking, so for each expert
we have a corresponding ranking τRj = {τRj(1), . . . , τRj(n)}. We suppose
also that the most important element for a ranker Rj receives a ranking value
near to n instead of 1. The problem in its general form is stated as follows.
Given N rankings τRj of length n of the n items X = {x1, . . . , xn}, namely
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Algorithm 1 Belief Ranking Estimator
input I=τ1, . . . , τN {a vector of N Rankings}
input T {Numbers of iterations}

k= 1
BE=ComputeBelief From Rankings(I)
while k != T+1 do

W=ComputeWeight(I)
BE=ApplyWeight(W,BE)
FinalRankk=Combination(Bmod)
I[pos(max(W))]=FinalRankk

k++
end while

output FinalRankk

permutations, that estimate with unknown quality the unknown true ranking
τTrank find a ranking that estimates the true ranking.

3.2 Belief Ranking Estimator

The Belief Ranking Estimator (BRE) method is an unsupervised algorithm
that iteratively learns an estimation of an unknown Truth Ranking, given a
sample of rankings that are permutations of the items of the Truth Ranking
assumed to be approximations of the Truth Ranking of unknown quality. As
showed in Alg. 1 the input parameters are the rankings and the number of
iterations. The algorithm is structured in the following parts: the mapping of
the rankings into belief functions (ComputeBelief From Ranking), the weight
computation from the Truth estimator (ComputeWeight), the application of
the weight to current belief model of the rankers (ApplyWeight), finally the
output ranking is produced by the combination of all the bba of the rankings.
After the first iteration, the method replaces the ranking with the maximum
weight, with the combined ranking produced in the previous iteration. At
each iteration, this replacement drives the methods to combine rankings that
are supposed to be better than the original worst ranking, and to produce
as output a better estimator. With a number of iterations T , please note
that the number of replacements is T − 1. A not weighted version of our
method BRE − NW , is also evaluated in this work. BRE − NW combines
the belief distribution of the rankers given in input, without the application
of the weights. We refer as weighting schema to the BRE − 1T version.
BBA from the rankings: For our problem, we consider a simple frame of

discernment Θ = {P,¬P}, where P , ¬P are the hypothesis that a ranked
element is in the right position or not respectively. Given a set of N rankings
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τ 1, . . . τ j, . . . , τN of the same n elements, the bba of the j-th ranking on the
i-th element is assigned as:

mji(P ) =
τ j(i)

n
mji(¬P ) = 0

mji(Θ) = 1 − τ j(i)

n

(1)

The bba definition reflects the fact that the high-ranking elements should
have more belief to be in the right position from the point of view of the
expert who expressed the ranking. Since the lack of external information
about the correctness of the ranking we are not able to assert if an element
is not in the right position (¬P ), the remain belief is assigned consequently
to the uncertainty about the two possible hypothesis, namely to Θ.
Weight Computation: The weight of the rankings are computed as the nor-
malized values of the Spearman footrule distance [2] between the rankings

and the mean ranking as in the following formula: Wj = D(τj ,M)
1
2
n2 ∀j ∈ 1..N .

Where D(· , · ) is the Spearman distance defined over two rankings τ ,σ as
D(π, σ) = Σn

i=1 | π(i) − σ(i) | and M is the mean ranking. Since weight val-
ues are in the interval [0, 1], rankings are estimated to be similar or dissimilar
to the estimator when the weight values go to 0 or tend to 1 respectively.
According with this, the worst rankers will have the higher weight values.
Discounting of the BBA: The application of the weights to the correspondent
mass distribution of the rankings is computed in the ApplyWeight method,
as following:

if Wj = minjW if Wj 6= minjW
m′

ji(P ) = mji(P ) + (Wj ∗ mji(Θ)) m′
ji(P ) = 1 − m′

ji(Θ)
m′

ji(¬P ) = 0 m′
ji(¬P ) = 0

m′
ji(Θ) = 1 − m′

ji(P ) m′
ji(Θ) = mji(Θ) + (Wj ∗ mji(P ))

where m′
ji are the discounted bba of the j-th ranking on the i-th element.

The idea is to reduce the uncertainty, proportionally to the correspondent
weight for the best rankings (namely, the ranking with minimum weight),
and to increase the uncertainty for all the other rankings.
Combination: All the masses of the rankings are combined, using the Con-
junction rule (Sec. 2) obtaining a new mass distribution that contains the
belief expressed in all the rankings. The use of the conjunctive rule is jus-
tified when all the sources of belief are supposed to tell the truth and to be
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independent. These requirements are fully satisfied here, since we suppose
that the rankings are independent and all rankings are totally reliable be-
cause the unsupervised context does not allow to make other assumptions
on their quality. Finally, we apply the Pignistic Transformation (Sec. 2) to
the combined belief distribution in order to produce the output ranking. Fi-
nal ranking O = (O(1), . . . , O(i), . . . , O(n)) is produced by ranking all the
elements with respect to the BetPi(P ). Althought there is no theoretical
constraint about the number of iterations, we propose as number of iteration
at least T = N

2
+ 1 (refered as BRE-MAXT). The rational of this rule of

the thumb is that replacing more then one half of the original rankings can
possibly lead to poor performance due to the replacement of some of the best
rankings with information affected by the worse ones.

4 Experimental Results on Synthetic Data

In this section we describe the results of an evaluation test on synthetic data
that suits perfectly the problem at hand. The aim of this series of experi-
ments is to evaluate the ranking produced by our method with respect to the
mean and the median of the rankings in input and the optimal aggregated list
[2]. The performance are measured with Spearman correlation coefficient (re-
ferred to as ρ,[3]) and with normalized Spearman footrule distance (referred
to as D) computed with respect to the Truth Ranking (Trank). For all the
synthetic data experiments, the input rankings are randomly generated un-
der the constraint to exhibit fixed values of ρ with a fixed ranking Trank of 300
elements. In order to have more reliable results we performed 10 independent
replicas of the procedure using the same generation parameters. We generate
our data in order to combine a number of rankings N equals to 3,10,30. For
each N value, we propose different cases that correspond to different values of
ρ of the ranking with respect to the Trank. With N = 3 we define 4 different
cases: (case 1 ) 1 ranker extremely good (ρ=.80) with respect to the other
(ρ=.06,ρ=.01), (case 2 ) two good rankers (ρ = .60, .40) and a very poor one
(ρ=.01), (case 3 ) 3 rankers with high correlation (ρ=.80,.60,.10), (case 4 ) 3
rankers with poor correlation (ρ=.01, .06, .03). With N = 10 and N = 30,
three cases good, equal and poor are defined. In the case good the 80% of the
rankers are highly informative (ρ ∈ [0.95, 0.70]) and the remaining 20% are
low informative (ρ ∈ [0.30, 0.1]). In the case equal the rankers are equally
distributed among the three types: highly, medium (ρ ∈ [0.70, 0.30]) and
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Table 1: The result of BRE and the other competitors w.r.t. the Truth
Ranking for all cases of combination of 3, 10 and 30 rankers.

Evaluation measure ρ
Method 3 Rankers Cases 10 Rankers Cases 30 Rankers Cases

MAXT=4T MAXT=6T MAXT=16T
1 2 3 4 good equal poor good equal poor

Mean .4781 .5419 .7958 .0782 .9621 .8760 .7793 .9856 .9543 .8802
Median .4257 .5106 .7678 .0693 .9748 .8656 .7641 .9941 .9546 .8550

Optimal list .4065 .4953 .7515 .0594 .9754 .8686 .7781 .9957 .9663 .8787
BRE-NW .4888 .5254 .7799 .0804 .9383 .8453 .7723 .9409 .8941 .8074
BRE-1T .4322 .5717 .8214 .0733 .9751 .915 .8751 .9896 .9686 .9176

BRE-MAXT .4237 .5786 .8314 .0701 .9780 .9250 .8750 .9800 .9725 .9273
Evaluation measure: D

Mean .4584 .4341 .2817 .6225 .1199 .2156 .2903 .0734 .1265 .2035
Median .4628 .4492 .2846 .6270 .0798 .2309 .2974 .0305 .1313 .2298
Opt list .4531 .4399 .2808 .6311 .0538 .1780 .2523 .0144 .0672 .1660

BRE-NW .4511 .4393 .2912 .6235 .1444 .2326 .3129 .1406 .1919 .2669
BRE-1T .4697 .4147 .2591 .6282 .0953 .1749 .2115 .0614 .1036 .1672

BRE-MAXT .4719 .4107 .2477 .6286 .0891 .1649 .2131 .0824 .1023 .1600

low informative. Finally, the case poor is similar to the good one, but with
inverted percentages of highly and low informative rankers. For N = 10, 30 ρ
of the generated rankings with respect to Trank are randomly chosen within
the defined intervals. Taking into account ρ in Tab 1, BRE with weight-
ing schema outperforms all the three competitors in the case 2,3 (N=3) and
in all the three cases for N=10. For N=30 (good case) BRE outperforms
the mean but not the median and the optimal list that show slightly better
values. With regard to the iterative process, BRE-MAXT outperforms all
the competitors with a notable difference in most of the cases, exept in the
good case (N=30) and cases 1,2 (N=3). Taking into account D, BRE-1T
and BRE-MAXT shows the same performance for N=3 as with ρ. For N=30
(all cases) BRE-1T outperforms only the median and the mean but not the
optimal list that shows always low D values. These preliminary results show
the significant performance of BRE w.r.t the competitors using both evalua-
tion measures. We point out that BRE-MAXT in the poor cases is the best
estimator of the Truth Ranking.

5 Conclusion

In this work we have presented preliminary results on the Belief Ranking Es-
timator, an unsupervised method that estimates a true ranking given a set
of estimating ranked permutations. BRE, through the use of the belief func-
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tion framework, models the uncertainty of each ranking and combine them
according to weights computed as distances from the mean of the rankings.
From results on synthetic data, with low-quality input a variant of BRE has
provided better estimation of the true ranking with respect to the mean the
median and optimal aggregated lists used as competitor method. As future
work, we plan to extend BRE to the aggregation of top-k lists.
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