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EXISTENCE AND STABILITY OF SQUARE-MEAN ALMOST

PERIODIC SOLUTIONS TO A SPATIALLY EXTENDED

NEURAL NETWORK WITH IMPULSIVE NOISE

STEFANO BONACCORSI, GIACOMO ZIGLIO

Abstract. Our work is concerned with a neural network with n nodes, where

the activity of the k-th cell depends on external, stochastic inputs as well

as the coupling generated by the activity of the adjacent cells, transmitted
through a diffusion process in the network. This paper aims to throw some

light on time-varying, stochastically perturbed, neuronal networks. We show

that when the coefficients oscillate around a reference value, with ascillations
that are almost periodic and suitably small in percentage, then there exists a

unique solution for the system, that is almost periodic and uniformly bounded
in the mean square norm for all times.

1. Introduction

Cellular neural networks have attracted a large amount of mathematical research
due to their applications in various modelling models. These applications depend
(or, on the other hand, influence) the shape and dynamics of the network. Neural
networks should have a spatial extent, that is usually negletted in the current
mathematical research. Our model is related to neural networks [12] and cellular
neural networks [6, 7], although their dynamics is usually modelled through a finite
dimensional system (possibly using some delay to model the physical extension of
transmitters).

Since their introduction, such models have been used in several applications
(from image processing to pattern recognition and other areas); many authors have
analyzed the dynamical behavior of such systems with particular respect to stability,
periodicity and almost periodicity of the system (compare for instance [5]). In
general, neural networks are complex and large-scale nonlinear dynamical systems.
To the best of our knowledge, few authors have considered periodic oscillatory
solutions for large-scale networks with stochastic impulses. Also literature dealing
with time networks parameters appears to be scanty. Such studies, however, are
very important to understand the dynamics of neural networks in time-varying
environments.

Let us briefly introduce our model, following the approach of [3, 4]. Let G =
(V,E) be a graph with n vertices and m edges; to each node vi ∈ V is associated a

2000 Mathematics Subject Classification. 37N25, 34K14, 60H15.
Key words and phrases. diffusion equations on networks, stochastic impulses, almost periodic

solutions.
The research of G. Ziglio was supported by Project NeSt funded by Provincia Autonoma di

Trento (P.A.T.) within Bando unità di ricerca 2006 .
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variable pi(t) evolving according to the stochastic equation

∂

∂t
pi(t) = −bi(t)pi(t) + ki(t) + σi(t, pi(t))

∂

∂t
L(t, vi), (1.1)

for all t ∈ R and i = 1, . . . , n. The coefficients bi(t) > 0 represent the passive decay
rate of the cell activity at node vi. In words, we may say that the variation of
the value of pi(t) depends on the feedback from the network ki(t) and a stochastic
input, which takes into account both the intrinsic cellular noise and the external
input signals. All the weights bi and σi and the inputs ki should be almost peri-
odically varying in time. Biological motivations, going back at least to the works
of Kallianpur [13], lead us to model this term by a Lévy-type process (compare
Section 2.3 for details). L(t, vi), i = 1, ..., n, represent the stochastic perturbation
acting on each node, due to the external surrounding, and ∂

∂tL(t, vi) is the formal
time derivative of the process L, which takes a meaning only in integral sense.

A different feature of this paper with respect to the existing literature on cellu-
lar neural networks is that we take into account that the network have a spatial
extension and that each signal is propagated along the network with a diffusive
mechanism. To be precise, we assume that each edge ej in the network is isomor-
phic to the segment [0, 1]. The electrical potential in the network shall be denoted
by ū(t, x) where ū ∈ (L2(0, 1))m is the vector (u1(t, x), . . . , um(t, x)). We impose
a general diffusion equation on every edge with time-dependent, almost periodic
coefficients:

∂

∂t
uj(t, x) =

∂2

∂x2
uj(t, x)− vj(t)uj(t, x) + fj(t, x, uj(t, x)), (1.2)

for all (t, x) ∈ R× (0, 1) and all j = 1, ...,m.
Then, we assume that the feedback from the network is given by a Kirchhoff’s

type function of the electric potential on the edges:

ki(t) = (1 + ci(t))

m∑
j=1

φiju
′
j(t, vi)

where the sum is taken over all edges ej that insist on the node vi and φij are
coefficients that depend on the geometry of the network. The functions ci(t) mea-
sure the oscillations around the mean value of the influence of the network on the
evolution in every node.

In this paper we consider a situation where the parameters of the system are not
constant in time but can vary, almost periodically, around the mean value. Such
variation is supposed to be small in percentage with respect to the mean value
itself, see Hypothesis 2.2 for a precise statement.

In case of constant coefficients, the dynamics of the linearized system is de-
scribed by an evolution semigroup etA on a suitable product space H; properties
of this semigroup are given in [3, 4]. In case of time-varying coefficients, the same
system is described by a family of evolution operators U(t, s) generated by the
non-autonomous perturbation A(t) = A+ V(t).

Almost periodicity for stochastic differential equations in infinite dimensional
spaces has been studied by many authors, compare for instance [9, 17]. Let H
denote a real separable Hilbert space. We recall that a continuous function f :
R → H is almost periodic if for every ε > 0 there exists a number `(ε) > 0 such
that each interval (a, a + `(ε)), a ∈ R, contains an almost period τ = τε and the
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estimate ‖f(t + τ) − f(t)‖ ≤ ε holds for all t ∈ R. The space of almost periodic
H-valued functions will be denoted by AP (R;H)). We shall also mention that any
almost periodic function is bounded and uniformly continuous and that the space
of all almost periodic functions from R to H, which we denote by AP (R, H) is a
complex Banach space in the canonical way.

It is worth noticing that, when translated in an abstract setting, our problem
takes the form of an evolution problem on an Hilbert space H with stochastic
multiplicative term that is driven by a (finite dimensional, two-sided) Lévy process,
having the form

dX(t) = [A(t)X(t) + F (t,X(t))] dt+G(t,X(t)) dL(t), t ∈ R. (1.3)

The precise assumptions on the coefficients in (1.1) and (1.2) will be given in Section
2. There we also show that (A(t), D(A)) for t ∈ R generates an evolution family
{U(t, s) : t ≥ s, t, s ∈ R}.

Next, we introduce the concept of mild solution for the problem (1.3).

Definition 1.1. An H-valued predictable process X(t) is said to be a mild solution
of (1.3) if P-a.s.

X(t) = U(t, s)X(s) +

∫ t

s

U(t, r)F (r,X(r)) dr +

∫ t

s

U(t, r)G(r,X(r)) dL(r) (1.4)

for all t ≥ s, t, s ∈ R.

The following definition introduces the concept of almost periodicity with regard
to (Hilbert space valued) square integrable stochastic process. This concept has
been applied to study the existence and uniqueness of square-mean almost periodic
mild solutions to different classes of non-autonomous semilinear stochastic differ-
ential equations driven by two-sided Wiener processes (see for instance Bezandry
and Diagana [1, 2]).

Definition 1.2. Let X : R → L2(Ω;H) be a mean-square continuous stochastic
process. Then X is said to be square-mean almost periodic on R if, for each ε > 0,
the set

T (X, ε) = {τ | E‖X(t+ τ)−X(t)‖2 ≤ ε, ∀ t ∈ R}

is relatively dense (see e.g. [10]); equivalently (see e.g. [2]) X is square-mean
almost-periodic if, for all ε > 0, it is possible to find a real number ` = `(ε) > 0
such that for any interval of length `(ε), there exists a number τ = τε in this interval
with

sup
t∈R

E‖X(t+ τ)−X(t)‖2 < ε.

In the next lemma we collect some properties of square-mean almost periodic
processes (compare for instance [1, §2.]).

Lemma 1.3. A square-mean almost periodic process X ∈ AP (R;L2(Ω;H)) satis-
fies

(i) the mapping t→ E‖X(t)‖2 is uniformly continuous;
(ii) there exists a constant N > 0 such that sup

t∈R
E‖X(t)‖2 ≤ N .
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We can now proceed to present our main result. The following theorem holds
provided it is verified a smallness condition on the Lipschitz constants of the coef-
ficients F and G, see (3.2) for a precise statement.

Theorem 1.4. In our assumptions, there exists an unique square-mean almost
periodic mild solution X(t) of (1.3) which is the solution of the following integral
equation

X(t) =

∫ t

−∞
U(t, r)F (r,X(r)) dr +

∫ t

−∞
U(t, r)G(r,X(r)) dL(r) for each t ∈ R.

2. Abstract setting for the neural network model

Let ū denote the electric potential on the whole dendritic network, including the
ramification points (synapses or dendritic junctions or somata). ū = ū(t, x) is a
function of the position x along the network and of time t only and ū(t, x) denotes
the deviation from resting potential, which we rescale to 0 for simplicity (in concrete
neurophysical measurements it is of approx. −70mV ). The reference space for ū is
the Hilbert space H = (L2(0, 1))m. The choice to take real-valued Hilbert spaces
is done for coherence with the physical problem at hand; no further mathematical
complications arise if we had taken into account complex-valued functions instead.

As already mentioned in the introduction, up to considering suitable rescaling
diffusion parameters in the equations, we may and do parametrize the edges as
intervals of unitary length. The diffusion of electric potential along every edge of
the graph thus follows the equation (1.2). We avoid to introduce more general
network elliptic operators: in fact, under uniform ellipticity assumptions this case
is known to present no serious mathematical challenges over the basic case of a
plain network Laplacian: compare [16].

On the Sobolev space H2 = (H2(0, 1))m we introduce the operator-valued matrix

Aū =
(
∂2

∂x2u1 · · · ∂2

∂x2um

)>
with maximal domain D(A) = H2. With the aid of this operator, we may write the
linear, autonomous part of (1.2) in the form d

dt ū(t) = Aū.

We assume that somata and synapses are equipotential; if qi(t) is the electric
potential in the junction node vi at time t, then it shall hold qi(t) = uj(t, vi) for
every edge ej that insists on the node vi.

The potential qi(t) = ū(t, vi) undergoes internal dynamics, subject to internal
electrical activity and a stochastic feedback from the dendritic network. In the spirit
of Rall’s lumped soma model (see e.g. [14]) we impose general, possibly absorbing
(and also possibly non-local) nodal conditions.

Remark 2.1. We recall some useful notation from graph theory. For every i =
1, . . . , n, we let Γ(vi) = {ej : vi = ej(0) or ej(1)}. Also, the incidence matrix Φ of
the graph, Φ = Φ+−Φ−, is defined in terms of the incoming and outgoing incidence
matrices defined by

φ+
ij :=

{
1 if ej(0) = vi,

0 otherwise,
and φ−ij :=

{
1 if ej(1) = vi,

0 otherwise,

respectively.
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For the sake of notational simplicity, let us introduce the Kirchhoff operator K
mapping the Sobolev space H2 of vector-valued twice weakly differentiable functions
into the boundary space Rn, defined by

Kū :=


∑

ej∈Γ(v1)

φ1ju
′
j(t, v1)

...∑
ej∈Γ(vn)

φnju
′
j(t, vn)

 .

Thus, the vector Kū represents the differences between incoming and outgoing flows
in each of the nodes of the network. The presence of small perturbations in the
system is described by the additional term

K(t)ū :=


c1(t)

∑
ej∈Γ(v1)

φ1ju
′
j(t, v1)

...
cn(t)

∑
ej∈Γ(v1)

φnju
′
j(t, vn)


where the coefficients ci(t) are continuous functions.

We assume that bi(t) = bi(1 + δbi (t)) is a time dependent function that oscillates
around a given value bi, which defines the inhibitory properties of each node. On
the boundary space Rn we introduce the matrix

B +B(t) = diag(b1, . . . , bn) + diag(b1 δ
b
1(t), . . . , bn δ

b
n(t)).

It shall be noticed that in [3], more general, possibly nonlocal, forms of the matrix
B are considered.

Also, in order to model the fluctuations of the diffusion operator, we introduce
the matrix-valued operator

V (t) = diag(v1(t), . . . , vm(t))).

With the above notation, problem (1.1)–(1.2) can be written as an abstract
nonautonomous Cauchy problem on the product space H = H× Rn endowed with
the natural inner product

〈X,Y 〉H = 〈ū, v̄〉H + 〈p, q〉Rn , where X =

(
ū
p

)
, Y =

(
v̄
q

)
∈ H.

We introduce the family of linear matrix operators A(t) for t ∈ R on the space H,
given in the form

A(t) = A+ V(t) :=

(
A 0
K −B

)
+

(
V (t) 0
K(t) −B(t)

)
(2.1)

with domain

D(A(t)) = D(A) = {X = (ū, p) ∈ H : ū ∈ D(A), uj(vi) = pi for every j ∈ Γ(vi)}.
In next section, we consider the Cauchy problem{

Ẋ(t) = A(t)X(t),

X(0) = X0

(2.2)

where u0 = (uj(0, ·))j=1,...,m ∈ C([0, 1])m is the H-valued vector of initial condi-
tions, p0 = (u(0, vi))i=1,...,n and X0 = (u0, p0) is the initial condition in (2.2). We
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obtain that the operator family A(t) generates an evolution family of operators
with suitable properties that are related to the almost periodic behaviour of the
coefficients.

2.1. Generation of an evolution family of operators. We recall from [4,
Proposition 2.4] that the operator A is self-adjoint, dissipative and has compact
resolvent; therefore, the semigroup {T (t), t ≥ 0} generated by A is strongly con-
tinuous, analytic, contractive and exponentially bounded, with growth bound ω0

given by the strictly negative spectral bound of the operator A.
Using the above stated properties of A, we can introduce the interpolation spaces

H2s = (H, D(A))s,2 for every s ∈ [0, 1].

As we mentioned in the introduction, we are interested in the case of small,
almost periodic perturbations of the mean value. We suppose that such perturba-
tions do not overcome a fixed percentage δ < 1 of the mean value; we state this
condition in the following assumption.

Hypothesis 2.2. The functions vj(t) : R+ → R, δbi (t) : R+ → R and ci(t) : R+ →
R, for i = 1, . . . , n and j = 1, . . . ,m are continuous and bounded and locally Hölder
continuous. Moreover, there exists a constant 0 < δ < 1 such that

|vj(t)| ≤ δ,
∣∣δbi (t)∣∣ ≤ δ, |ci(t)| ≤ δ.

Under previous assumption, the operator V(t) : R+ → L(Hα,H) is locally Hölder
continuous for every α > 3

2 and uniformly bounded: there exists a constant C = Cα
such that the following estimate holds:

‖V(t)‖L(Hα,H) ≤ Cα δ. (2.3)

Then it follows from [11, Section 7.1] that there exists a family of evolution operators
U(t, s) associated to A(t) = A+ V(t) and

‖U(t, s)‖ ≤M1 e
ωV (t−s)

with

ωV = ω0 + (Cα δ)
1/(1−α). (2.4)

Remark 2.3. If the constant δ in Hypothesis 2.2 is taken suitably small, then it is
possible to take ωV < 0.

Lemma 2.4. The operators V(t) are almost-periodic in the space L(D(A),H).

Proof. This is a consequence of the fact that AP (R) is an algebra and it is closed
under the lattice operations on real functions, see [10, Theorem 1.9]. Therefore,
the maximum of a finite number of almost periodic functions is an almost peri-
odic function. In our framework, this maximum coincides with the operator norm
‖V(t)‖L(D(A),H) and the thesis is proved. �

2.2. The nonlinear coefficients. We conclude our construction with the nonlin-
ear coefficients F and G.

In the definition of the diffusion process along every edge ej , see Eq. (1.2), the
function fj(t, x, u) takes real values and it is defined in the set R× (0, 1)× R.
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Hypothesis 2.5. For every j ∈ {1, . . . ,m}, the map fj : R × (0, 1) × R → R is
continuous and mean square almost periodic, uniformly with respect to u ∈ R.

Further, the function fj(t, x, ·) : R → R is Lipschitz continuous uniformly in
(t, x) ∈ R× (0, 1).

Remark 2.6. An example of interest for us, in the context of Eq. (1.2), is the
McKean’s caricature to the cubic h(u) = H(u− a)−u, for some Hölder continuous
and almost periodic function 0 < a(t, x) < 1. The linear part −u can be incorporated
into the definition of the operator A, thus leaving us concerned with the Heaviside
function. We take f(t, x, u) to be a smooth approximation of H(u − a) so that
f(t, u) enters in our framework.

Setting f(t, ū) : R × H → H by f(t, ū) = (f1(t, u1), . . . , fm(t, um)), we further
define

F (t,X) =

(
−f(t, ū)

0

)
for X =

(
ū
p

)
. (2.5)

Next we turn to the diffusion coefficient G. We require the following.

Hypothesis 2.7. For every i ∈ {1, . . . , n}, the map σi : R× R→ R is continuous
and almost periodic, uniformly with respect to u ∈ R.

Further, the function σi(t, ·) : R→ R is Lipschitz continuous uniformly in t ∈ R.

We set

G(t,X)

(
v̄
q

)
=

(
0

(σ1(t, p1)q1, . . . , σn(t, pn)qn)
>

)
for X =

(
ū
p

)

where

(
v̄
q

)
∈ H. In our assumptions, there exist constants KF and KG such that

for all X,Y ∈ L2(Ω;H)

E ‖F (t,X)− F (t, Y )‖2H ≤ KFE‖X − Y ‖2

E ‖G(t,X)−G(t, Y )‖2L(H) ≤ KGE‖X − Y ‖2

uniformly in t ∈ R.

Remark 2.8. We conclude this section with a simple, but crucial, observation
that we eill use several times in next section: compare, for instance [8, Proposition
3.21]. Given a finite family {φ1, . . . , φk} of almost periodic mappings, it follows
that for every ε there exist common ε-translation numbers for these functions and,
in particular, the vector valued function φ = (φ1, . . . , φk) is almost periodic.

2.3. Noise. All stochastic elements are defined on a filtered probability space
(Ω,F , {Ft},P) satisfying the usual hypotheses of right continuity and complete-
ness. For the sake of simplicity we assume that random disturbances occour only in
the nodes of the graph; the extension to a stochastic version of the diffusion equa-
tion (1.2) can be handled with essentially the same techniques and leads to similar
results. We shall consider an n-dimensional Lévy process {L(t), t ∈ R+}, i.e., a
stochastically continuous, adapted process, with L(0) = 0 almost surely, stationary
and independent increments and càdlàg trajectories, hence with discontinuities of
jump type. By the classical Lévy-Itô decomposition theorem, the Lévy process L(t)
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has a decomposition

L(t) = mt+QW (t) +

∫
‖x‖≤1

x[N(t,dx)− tν(dx)] +

∫
‖x‖>1

xN(t, dx), t ≥ 0

(2.6)
where m ∈ Rn, Q is a symmetric nonnegative operator, {W (t), t ∈ R+} is a
cylindrical Brownian motion and the Lévy measure ν(dx) is σ-finite on Rn\{0} and

such that
∫

min(1, x2) ν(dx) <∞. We denote by Ñ(dt, dx) := N(dt,dx)−dt ν(dx)
the compensated Poisson measure.

In (1.3) we consider a two-sided Lévy process obtained as follows:

L(t) :=

{
L(t), t ≥ 0,

L′(−t), t < 0,

with L′ an independent copy of L, on the naturally associated filtration {F̃t, t ∈ R}.
Below we state the precise form of the noise that we consider in this paper. Note

however that combining the results in [2] with ours and appealing to the Lévy-Itô
decomposition theorem (2.6), one could rather easily obtain corresponding results
for evolution equations driven by general square-integrable Lévy noise.

Hypothesis 2.9. We assume that∫
‖x‖>1

x ν(dx) = 0. (2.7)

We also assume throughout that the Lévy process is a pure jump process, i.e. m ≡ 0
and Q ≡ 0.

Therefore, the stochastic term is driven by an impulsive noise of the form

L(t) =

∫
H

xÑ(t,dx). (2.8)

We suppose that the measure ν has finite second order moment, i.e.∫
H

‖x‖2ν(dx) =: ν2 <∞. (2.9)

In particular, condition (2.9) implies that the generalized compound Poisson
process

∫
‖x‖>1

xN(t,dx) has finite moments of first and second order.

3. Main result

In this section we discuss the existence of an almost-periodic solution for the
abstract equation (1.3). Our main result, Theorem 3.4 below, holds in a fairly
general setting that comprises, but is not confined to the framework of a stochastic
equation on a network. Our presentation aims to maintain this generality without
losing sight of the problem at hand.

(A:1) {A(t), t ∈ R} is a family of linear operators such that
(a) for any t ∈ R, the operator A(t) generates an analytic semigroup
{eτA(t),
τ ≥ 0};

(b) there exists a unique strongly continuous evolution family {U(t, s)}
such that u(t) = U(t, s)x0 is the unique classical solution of u′(t) =
A(t)u(t) with initial condition u(s) = x0, for every x0 ∈ H and s ≤ t;
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(c) {U(t, s)} is continuous in L(H) for s < t ∈ R and there exists M1 ≥ 1
and ωV < 0 such that ‖U(t, s)‖ ≤M1 e

ωV (t−s) for all t ≥ s ∈ R.

Notice that assumption (A:1) holds in our framework as a consequence of [3,
Proposition 2.4] and the results in Section 2.1 above.

By previous assumption it follows that Σφ ∪{0} ⊂ ρ(A(t)−ω0) and there exists
a constant K > 0 such that

‖R(λ,A(t)− ω0)‖L(H) ≤
K

1 + |λ|
for every <λ > ω0, t ∈ R and λ ∈ Σφ = {λ ∈ C \ {0} : | arg λ| ≤ φ}, φ ∈

(
π
2 , π

)
.

(A:2) The resolvent operator is an almost-periodic mapping taking values in the
space of linear operators on H: R(ω0,A(·)) ∈ AP (R;L(H)) for ω0 as in
(A:1).

For a discussion of the above assumption we refer, for instance, to [15]. The
following result shows why in our main example assumption (A:2) is satisfied.

Lemma 3.1. A sufficient condition for (A:2) to hold, in case A(t) = A+ V(t), is
that V(·) ∈ AP (R;L(D(A),H)).

Proof. Let z(t) = R(ω0,A(t))x = (I −R(ω0,A)V(t))−1R(ω0,A)x for given x ∈ H.
Then it holds

(I −R(ω0,A)V(t))z(t) = (I −R(ω0,A)V(s))z(s)

and we get

z(t)− z(s) = R(ω0,A)[V(t)− V(s)]z(t) +R(ω0,A)V(s)[z(t)− z(s)]
that is,

z(t)− z(s) = R(ω0,A(s))[V(t)− V(s)]R(ω0,A(t))x.

Fix s, ε > 0 and a and let τ = τε be the almost period of B(·) in (a, a+ `(ε)); then

‖R(ω0,A(s+ τ))−R(ω0,A(s))‖L(H) ≤ K2ε

which shows that R(ω0,A(·)) is almost periodic. �

As a consequence of the above assumptions, we get that the solution of the linear
nonautonomous problem is, in some sense, almost periodic. The following result is
proved in [15, Proposition 4.4].

Lemma 3.2. Suppose that A(t) satisfies assumptions (A:1–2). Then the evolution
family

r 7→ U(t+ r, s+ r)

is a L(H)-valued almost periodic function for t > s ∈ R. Further, given ε > 0 and
h > 0, there exists `(ε) > 0 such that for any interval of length `(ε), there exists a
number τ = τε in this interval such that

‖U(t+ τ, s+ τ)− U(t, s)‖L(H) ≤ ε e
ωV
2 |t−s| (3.1)

for all t > s ∈ R, |t− s| > h.

We now consider the nonlinear coefficients F : R × L2(Ω;H) → L2(Ω;H) and
G : R× L2(Ω,H)→ L2(Ω,L(H)).

(F) F (t, ξ) is a jointly continuous mapping such that
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(a) for any compact K ⊂ L2(Ω;H) the process t 7→ F (t, ξ) is an H-valued
square-mean almost periodic process uniformly in ξ ∈ K, i.e., for any
ε > 0 there exists a real number ` = `(ε,K) > 0 such that for any
s ∈ R we can find a point in the interval

(
s, s+ `(ε,K)

)
with

sup
t∈R

E‖F (t+ τ, ξ)− F (t, ξ)‖2 < ε

for all ξ ∈ K;
(b) there exists a constant KF > 0 such that for all ξ, η ∈ L2(Ω;H) and

for each t ∈ R,

E‖F (t, ξ)− F (t, η)‖2 ≤ KF E‖ξ − η‖2.

(G) G(t,X) is a jointly continuous mapping such that
(a) for any compact K ′ ⊂ L2(Ω;H) the process t 7→ G(t, ξ) is an L(H)-

valued square-mean almost periodic process uniformly in ξ ∈ K ′;
(b) there exists a constant KG > 0 such that for all ξ, η ∈ L2(Ω;H)

E ‖G(t, ξ)−G(t, η)‖2L(H) ≤ KGE‖ξ − η‖2

uniformly in t ∈ R.

Remark 3.3. It is known (compare [2, Theorem 2.7]) that if F : R× L2(Ω;H)→
L2(Ω;H) satisfies assumption (F) above and X(t) is a square-mean almost periodic
process with values in H then the composition t 7→ F (t,X(t)) is square-mean almost
periodic as well.

The same remark applies for the composition t 7→ G(t,X(t)) for any almost-
periodic process X(t) and G : R×L2(Ω;H)→ L2(Ω;L(H)) which satisfies assump-
tion (G).

We can now proceed to present the main result of this section.

Theorem 3.4. Under Hypotheses (A:1–2), (F) and (G), assume that

M2
1

|ωV |

(
2KF

|ωV |
+ ν2KG

)
< 1 (3.2)

where ν2 is the constant from assumption (2.9). Then there exists an unique square-
mean almost periodic mild solution X(t) of problem (1.3) which is explicitly given
by the formula

X(t) =

∫ t

−∞
U(t, r)F (r,X(r)) dr +

∫ t

−∞
U(t, r)G(r,X(r)) dL(r) (3.3)

for each t ∈ R.

The proof of this theorem is rather technical so we provide a short outline for
the sake of clearness.

It is known that the space AP (R;L2(Ω;H)) of H-valued square-mean almost
periodic processes is a Banach space when endowed with the norm

‖X‖∞ = sup
t∈R

(
E‖X(t)‖2

)1/2
.

Therefore, it is possible to apply on this space a fixed-point argument which will pro-
vide the existence of the solution. We introduce the mapping Λ : AP (R;L2(Ω;H))→
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AP (R;L2(Ω;H)) by

ΛX(t) :=

∫ t

−∞
U(t, r)F (r,X(r)) dr +

∫ t

−∞
U(t, r)G(r,X(r)) dL(r). (3.4)

Our first task is to prove that this mapping is well-defined, compare Lemmas 3.5
and 3.6. Then, we prove that under condition (3.2), Λ is a contraction, hence there
exists a unique fixed point that is the solution for problem (1.3).

Lemma 3.5. Under assumption (A:1–3) and (F), let X be a square-mean almost
periodic process. Then

Ψ(t) =

∫ t

−∞
U(t, r)F (r,X(r)) dr

is a square-mean almost periodic process with values in H.

Proof. Let ε > 0 and h > 0; by assumption, X is a square-mean almost periodic
process, hence by Remark 3.3 F (r,X(r)) is square-mean almost periodic as well.
Moreover, by Lemma 3.2 we can choose `(ε) > 0 such that any interval of length
`(ε) contains a number τ such that

sup
r∈R

E‖F (r + τ,X(r + τ))− F (r,X(r))‖2 ≤ ε

and

‖U(t+ τ, s+ τ)− U(t, s)‖ ≤ ε e
ωV
2 (t−s)

for all t− s ≥ h.
For these values of ε, h and τ , we compute

‖Ψ(t+ τ)−Ψ(t)‖ =

∥∥∥∥∫ t+τ

−∞
U(t+ τ, r)F (r,X(r)) dr −

∫ t

−∞
U(t, r)F (r,X(r)) dr

∥∥∥∥
≤
∫ t

t−h
‖U(t+ τ, r + τ)− U(t, r)‖L(H) ‖F (r,X(r))‖ dr

+

∫ t−h

−∞
‖U(t+ τ, r + τ)− U(t, r)‖L(H) ‖F (r,X(r))‖ dr

+

∫ t

−∞
‖U(t+ τ, r + τ)‖L(H) ‖F (r + τ,X(r + τ))− F (r,X(r))‖ dr

The above computation thus leads to

E‖Ψ(t+ τ)−Ψ(t)‖2

≤ 3E
(∫ t

t−h
‖U(t+ τ, r + τ)− U(t, r)‖L(H) ‖F (r,X(r))‖ dr

)2

+ 3E

(∫ t−h

−∞
‖U(t+ τ, r + τ)− U(t, r)‖L(H) ‖F (r,X(r))‖ dr

)2

+ 3E
(∫ t

−∞
‖U(t+ τ, r + τ)‖L(H) ‖F (r + τ,X(r + τ))− F (r,X(r))‖ dr

)2

=I1 + I2 + I3.
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The first term is bounded as follows: since ‖U(t, s)‖L(H) ≤ M1e
ωV (t−s), it follows

by Hölder inequality that

I1 ≤ 3

(∫ t

t−h
2M1 e

ωV (t−r) dr

)
E
(∫ t

t−h
2M1 e

ωV (t−r) ‖F (r,X(r))‖2 dr

)
and the boundedness of the square-mean almost periodic process F (r,X(r)) implies
that there is NF > 0 such that sup

t∈R
E‖F (r,X(r))‖2 ≤ NF (see Lemma 1.3), thus

I1 ≤ 3NF

[
2M

ωV
(1− eωV h)

]2

.

Now we use (3.1) in the second integral (here |t− r| ≥ h), again with the inequality
supt∈R E‖F (r,X(r))‖2 ≤ NF and Hölder inequality, to get

I2 ≤ 3E

(∫ t−h

−∞
εe

ωV
2 (t−r) ‖F (r,X(r))‖ dr

)2

≤ 3NF

[
2ε

ωV
e
ωV
2 h

]2

Finally, since F (r,X(r)) is square-mean almost periodic with ε-almost period τ , it
holds that

I3 ≤ 3

(∫ t

−∞
M1 e

ωV (t−r) dr

)2

sup
r∈R

E ‖F (r + τ,X(r + τ))− F (r,X(r))‖2 = 3ε
M2

1

ω2
V

Choose h such that (1− eωV h) = ε; letting

ε′ = 12NF
M2

ω2
V

ε2 + 12NF
ε2

ω2
V

(1− ε) + 3ε
M2

ω2
V

we have thus proved that Ψ is a square-mean almost periodic process with ε′-almost
period τ . �

Lemma 3.6. Under assumption (A:1–2) and (G), let X be a square-mean almost
periodic process. Then

Φ(t) =

∫ t

−∞
U(t, r)G(r,X(r)) dL(r)

is a square-mean almost periodic process with values in H.

Proof. Let ε > 0 and h > 0; by assumption, X is a square-mean almost periodic
process, hence by Remark 3.3 G(r,X(r)) is square-mean almost periodic as well.
Moreover, by Lemma 3.2 we can choose `(ε) > 0 such that any interval of length
`(ε) contains a number τ such that

sup
r∈R

E‖G(r + τ,X(r + τ))−G(r,X(r))‖2L(H) ≤ ε

and

‖U(t+ τ, s+ τ)− U(t, s)‖ ≤ εe
ωV
2 (t−s)

for all t− s ≥ h.
In order to avoid difficulties when we change variables in stochastic integrals, we

define L̃(s) := L(s+ t)−L(t) for each s ∈ R and fixed t. Note that L̃ is also a Lévy
process and has the same distribution as L.
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Now we compute

E‖Φ(t+ τ)− Φ(t)‖2

=E
∥∥∥∥∫ t+τ

−∞
U(t+ τ, r)G(r,X(r)) dL(r)−

∫ t

−∞
U(t, r)G(r,X(r)) dL(r)

∥∥∥∥2

=E
∥∥∥∥∫ +∞

0

U(t+ τ, t+ τ − s)G(t+ τ − s,X(t+ τ − s)) dL̃(s)

−
∫ +∞

0

U(t, t− s)G(t− s,X(t− s)) dL̃(s)

∥∥∥∥2

≤ 3E
∥∥∥∥∫ +∞

0

U(t+ τ, t+ τ − s)[G(t+ τ − s,X(t+ τ − s))−G(t− s,X(t− s))] dL̃(s)

∥∥∥∥2

+ 3E
∥∥∥∥∫ +∞

h

[U(t+ τ, t+ τ − s)− U(t, t− s)]G(t− s,X(t− s)) dL̃(s)

∥∥∥∥2

+ 3E

∥∥∥∥∥
∫ h

0

[U(t+ τ, t+ τ − s)− U(t, t− s)]G(t− s,X(t− s)) dL̃(s)

∥∥∥∥∥
2

Using the classical isometry for Poisson integrals and denoting by ν2 the finite
second order moment of ν (recall condition (2.9)), we obtain

E‖Φ(t+ τ)− Φ(t)‖2 ≤ 3ν2

∫ +∞

0

‖U(t+ τ, t+ τ − s)‖2L(H)×

× E ‖G(t+ τ − s,X(t+ τ − s))−G(t− s,X(t− s))‖2L(H) ds

+ 3ν2

∫ +∞

h

‖U(t+ τ, t+ τ − s)− U(t, t− s)‖2L(H) E ‖G(t− s,X(t− s))‖2L(H) ds

+ 3ν2

∫ h

0

‖U(t+ τ, t+ τ − s)− U(t, t− s)‖2L(H) E ‖G(t− s,X(t− s))‖2L(H) ds

≤ 3M2
1 ν2

(∫ +∞

0

e2ωV s ds

)
sup
r∈R

E ‖G(r + τ,X(r + τ))−G(r,X(r))‖2L(H)

+ 3M2
1 ε

2ν2

(∫ +∞

h

eωV s ds

)
sup
r∈R

E ‖G(r,X(r))‖2L(H)

+ 6M2
1 ν2

(∫ h

0

e2ωV s ds

)
sup
r∈R

E ‖G(r,X(r))‖2L(H)

≤ 3
ν2

|ωV |

[
ε
M2

1

2
+ ε2NGe

ωV h + ε
2M2

1NG
2

(1− e2ωV h)

]
which implies, choosing h in such a way 1− e2ωV h = ε, that

sup
t∈R

E‖Φ(t+ τ)− Φ(t)‖2 ≤ 3
ν2

|ωV |

[
ε
M2

1

2
+ ε2
√

1− εNG + ε2 2M2
1NG
2

]
=: ε′

i.e. Φ(t) is square-mean almost periodic with ε′-almost period τ . �

Lemma 3.7. The mapping Λ defined in (3.4) is a contraction on the space of
almost periodic processes AP (R;L2(Ω;H)).
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Proof. Let us fix X,Y ∈ AP (R;L2(Ω;H)); then we get

E‖ΛX(t)− ΛY (t)‖2 ≤ 2E
(∫ t

−∞
‖U(t, r)‖L(H)‖F (r,X(r))− F (r, Y (r))‖ dr

)2

+ 2E
∥∥∥∥∫ t

−∞
U(t, r)[G(r,X(r))−G(r, Y (r))] dL(r)

∥∥∥∥2

≤ 2E
(∫ t

−∞
‖U(t, r)‖L(H)‖F (r,X(r))− F (r, Y (r))‖ dr

)2

+ 2ν2

∫ t

−∞
‖U(t, r)‖2L(H) E ‖G(r,X(r))−G(r, Y (r))‖2L(H) dr

where we have used the isometry for the Lévy integral in the last term; recalling
the Lipschitz estimates on F and G, the growth bound on U(t, s) we obtain

E‖ΛX(t)−ΛY (t)‖2

≤ 2M2
1

(∫ t

−∞
eωV (t−r)dr

)(∫ t

−∞
eωV (t−r)E‖F (r,X(r))− F (r, Y (r))‖2 dr

)
+ 2ν2M

2
1KG

∫ t

−∞
e2ωV (t−r)E ‖X(r)− Y (r)‖2 dr

≤ 2M2
1KF

(∫ t

−∞
eωV (t−r) dr

)(∫ t

−∞
eωV (t−r)E‖X(r)− Y (r)‖2 dr

)
+ 2ν2M

2
1KG

∫ t

−∞
e2ωV (t−r)E ‖X(r)− Y (r)‖2 dr

≤ 2M2
1KF

(∫ t

−∞
eωV (t−r) dr

)2

sup
t∈R

E‖X(t)− Y (t)‖2

+ 2ν2M
2
1KG

(∫ t

−∞
e2ωV (t−r) dr

)
sup
t∈R

E‖X(t)− Y (t)‖2

=
M2

1

|ωV |

(
2KF

|ωV |
+ ν2KG

)
‖X − Y ‖2∞.

Thus it follows that

‖ΛX − ΛY ‖2∞ ≤
M2

|ωV |

(
2KF

|ωV |
+ ν2KG

)
‖X − Y ‖∞.

Consequently, if condition (3.2) holds, we get that the mapping Λ defined in (3.4)
has a unique fixed point, which obviously is the unique almost periodic mild solution
of (3.3). �
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