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Abstract

We study the null controllability problem for a semilinear parabolic equation,
with hysteresis entering in the semilinearity. Under suitable hypotheses,
we prove the controllability result and explicitly treat the cases where the
hysteresis relationship is given by a Play or a Preisach operator.
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1. Introduction

We consider the null controllability problem for the system





ut(x, t)−∆u(x, t) + F [u](x, t) = m(x)v(x, t) in Q = Ω× (0, T ),
u(x, t) = 0 in Σ = ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(1.1)
where Ω ⊂ Rn is a bounded open set with C2 boundary, T > 0, u0 : Ω → R
is a given initial datum, m : Ω → R is the characteristic function of a given
open compactly embedded subset ω ⊂ Ω (i.e. m(x) ∈ {0, 1} for all x ∈ Ω
and m(x) = 1 if and only if x ∈ ω), v : Q → R is the control function,
and finally F is a so-called hysteresis operator (or more generally a memory
operator) which represents the hysteretic behavior of the system. The null
controllability problem consists in finding (or proving the existence of) a
control function v such that the corresponding solution u of (1.1) satisfies
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u(·, T ) ≡ 0 in Ω. In the case of positive answer, we say that the system (1.1)
is exactly null controllable.

The null controllability problem for various kinds of linear and semilinear
parabolic equations is an intensively studied subject in the recent years. The
main contribution to that was given by Fursikov & Imanuvilov in [4] where
they introduced (and proved) the so-called Carleman estimates which has
become the major ingredient for obtaining new results. For our purpose
we recall here the null controllability result for a (suitable) linear parabolic
equation.

Proposition 1.1. Let a : Q → R be an L∞ function. Then, for every initial
datum u0 ∈ L2(Ω), the following controlled initial/boundary value problem





ut(x, t)−∆u(x, t) + a(x, t)u(x, t) = m(x)v(x, t) in Q,
u(x, t) = 0 in Σ
u(x, 0) = u0(x) in Ω,

(1.2)

is null controllable. This means that there exists a control function v ∈ L2(Ω)
such that the (unique) solution u ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1

0 (Ω)) of
(1.2) satisfies u(x, T ) = 0 a.e. x ∈ Ω. Moreover, the control function v can
be taken such that

‖v‖L2(Q) ≤ C‖u0‖L2(Ω), (1.3)

where the constant C only depends on the datum ‖a‖L∞(Q).

Given the result of Proposition 1.1, there is a standard technique for get-
ting the null controllability result for the semilinear equation where in (1.2)
you replace the linear term a(x, t)u(x, t) by the nonlinear one f(x, t, u(x, t))
with f a suitable given nonlinear function from Q×R to R. Such a technique
consists in a suitable linearization and in a fixed point procedure. However,
besides some suitable growth conditions, f has to satisfy f(x, t, 0) = 0 for
all (x, t) (by the way, if it is not true, then u ≡ 0 is not an equilibrium for
the system). We refer to the survey papers Barbu [1] and Fernandez-Cara &
Guerrero [3] for a comprehensive account of the subject.

When a some kind of memory term is present in the parabolic equation,
the adopted technique is to directly attack the memory equation obtaining
a suitable Carleman estimate and then eventually getting the controllability
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(see for instance Barbu & Iannelli [2], Munoz Rivera & Naso [6], Lavanya &
Balachandran). However, in the literature, the memory effects usually enter
the system in a (almost) linear fashion (for instance as a convolution with a
suitable kernel), and this fact makes the equation prone to be attacked by a
Carleman/observability estimates technique, even if this is often done in an
absolutely non obvious way. Indeed, the Carleman estimate procedure passes
through the careful analysis of a linear adjoint system. When the memory
term is strongly nonlinear, as an hysteresis term is, it is then not obvious what
is the adjoint system to be studied in order to obtain, if possible, Carleman
estimates.

In this paper we adapt the technique for the semilinear problem without
memory, to a semilinear problem with hysteresis, or more generally, nonlinear
memory. In doing that, we have to make a crucial assumption to the memory
operator F . We indeed require that the output F [u](x, t) is null whenever
the input u(x, t) is also null. This is of course a restrictive hypothesis, but
however, up to our knowledge, this is the first study of the controllability of a
parabolic equation with hysteresis, and the following result may be the first
step towards more general ones. For instance the approximate controllability
of more general cases may be investigated (i.e. the steering of the solution to
a fixed neighborhood of the value 0), or, in the case of the Preisach operator,
a direct manipulation of the memory curve in the Preisach plane may possible
improve the result. Moreover, the result may be applied to more complicated
hysteresis operators, such as Prandtl-Ishlinskii operator of Play/Stop type.

In Section 2 we give a controllability result for the case of a rather gen-
eral memory operator F , with a sort of “uniform” behavior of F when u
is around zero. In section 3 we give particular results in the case where F
is a generalized Play or a Preisach operator, first with the same “uniform”
behavior as before and then, directly working on the hysteron shape in the
phase-portrait, for a more general case.

For the description of the generalized Play and of the Preisach operators
of hysteresis we refer to Visintin [7], as well as for the general results about
semilinear equations with hysteresis.

2. The memory operator case

Following Visintin [7], a (particular case of) nonlinear memory operator
is an operator
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F : L2(Ω; C0([0, T ])) → L2(Ω; C0([0, T ])), z(·, ·) 7→ F [z](·, ·),
which is causal and strongly continuous i.e., respectively

i) z1, z2 ∈ L2(Ω; C0([0, T ])), t ∈ [0, T ], z1 = z2 in [0, t] a.e. x ∈ Ω
=⇒ F [z1](·, t) = F [z2](·, t) a.e. x ∈ Ω

ii) zn ∈ L2(Ω; C0([0, T ])), zn → z uniformly in [0, T ] a.e. x ∈ Ω
=⇒ F [zn] → F [z] uniformly in [0, T ] a.e. x ∈ Ω.

(2.4)

We also suppose that there exist two constants L > 0 and h ∈ R such that,
for all z ∈ L2(Ω; C0([0, T ])), for all t ∈ [0, T ] and for almost every x ∈ Ω

i) |F [z](x, t)| ≤ L|z(x, t)|;
ii) z(x, t) = 0 =⇒ lim

τ→t,z(x,τ)6=0

F [z](x, τ)

z(x, τ)
= h uniformly in [0, T ].

(2.5)

The uniformity of the limit in (2.5) means that there exists a continuous
increasing function ω with ω(0) = 0 such that for all z(x, t) = 0 it is
| (F [z](x, τ)) /z(x, τ) − h| = ω(|t − τ |) for all z(x, τ) 6= 0. Note that (2.5)
implies that F [z](x, t) = 0 whenever z(x, t) = 0.

In the sequel, by X we denote the space H1(0, T ; L2(Ω))∩L∞(0, T ; H1
0 (Ω)),

and we recall that it is compactly embedded in L2(Ω; C0([0, T ])).

Proposition 2.1. If F satisfies (2.4) and (2.5), then the system (1.1) is
null controllable, that is, for every initial values u0 ∈ H1

0 (Ω), there exists
a control function v ∈ L2(Q) such that the corresponding solution u ∈ X
satisfies u(x, T ) = 0 a.e. x ∈ Ω.

Proof. We define the following memory operator G : L2(Ω; C0([0, T ])) →
L2(Ω; C0([0, T ])) as

G[z](x, t) =





F [z](x, t)

z(x, t)
if z(x, t) 6= 0,

h if z(x, t) = 0.

Note that G is causal and, by (2.5) and in particular by the “uniformity” of
the limit, it is also strongly continuous. For any fixed function z ∈ X, we
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define ζ(t, x) = G[z](x, t) in Ω× [0, T ], and consider the following linearized
controlled system in the unknown u





ut(t, x)−∆u(t, x) + ζ(t, x)u(t, x) = m(x)v(t, x) in Q,
u(t, x) = 0 in Σ
u(0, x) = u0(x) in Ω,

(2.6)

By (2.5), ‖ζ‖L∞(Q) ≤ L. Hence, by virtue of Proposition 1.1, there exists
at least a control vz ∈ L2(Q) such that the (unique) corresponding solution
of (2.6) uvz satisfies uvz(x, T ) = 0 a.e. x ∈ Ω. Note that, by our hypotheses,
ζ ∈ L2(Ω; C0([0, T ])) and hence, also the solution uvz belongs to the same
space. Indeed, we can interpret the partial differential equation in (2.6) as
an equation of the form ut − ∆u + G̃[u] = f where f = mvz ∈ L2(Q) is
the known source term and G̃ is a memory operator from L2(Ω, C0([0, T ]))
to itself, which acts as G̃[g](x, t) = ζ(x, t)g(x, t) and is causal and strongly
continuous. Hence, by a standard technique (see Visintin [7]) we get that
uvz ∈ X, and so in L2(Ω; C0([0, T ])).

Note that we can take a successful control v satisfying (1.3) with C de-
pending only on L, and from this, we also have ‖uvz‖X ≤ C̃ with C̃ > 0 inde-

pendent from z and vz. We define the convex set K =
{

z ∈ X
∣∣∣‖z‖X ≤ C̃

}

and we endowed it by the topology of L2(Ω; C0([0, T ])), which makes it com-
pact. Then we consider the multivalued map

Φ : K → 2K , z 7→
{

u ∈ X
∣∣∣∃vz ∈ L2(Q) satisfying (1.3), u = uvz

}

For any z ∈ K, Φ(z) is convex. Moreover Φ is upper-semicontinuous (for the
topology of L2(Ω; C0([0, T ]))), since it has closed graph. Indeed, if zn → z
in L2(Ω; C0([0, T ])), then (at least along a subsequence) zn → z uniformly
in [0, T ] for almost every x ∈ Ω and so the same happens to ζn = G[zn] →
ζ = G[z] from which, by the boundedness of G, ζn → ζ in L∞(Q), at least
weakly-star. Now, if moreover zn, z ∈ K and un ∈ Φ(zn) converges to u
in L2(Ω; C0([0, T ])), then, since every un ∈ K, the sequence also strongly
converges in L2(Q), and hence ζnun converges to ζu weakly in L2(Q). This
permits to pass to the limit in the equation and to prove that u = uvz , where
vz is a weak limit of vzn in L2(Ω). This means that u ∈ Φ(z). Finally, as usual,
an infinite dimensional version of the Kakutani theorem gives the existence
of a fixed point for Φ, which exactly corresponds to our controllability claim.
ut
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3. The hysteretic case

In this section we suppose that the memory operator is a hysteresis oper-
ator, i.e. rate-independent. In particular we examine the case of generalize
Play and of Preisach operator.

The Play case. Let F be a so-called generalized Play operator E defined
by two increasing Lipschitz boundary hysteron curves γ`, γr satisfying

γ`(ξ) ≤ γr(ξ) ∀ξ ∈ R, γ`(ξ) = γr(ξ) = γ(ξ) ∀ξ ∈ [−δ, δ], γ(0) = 0, (3.7)

where δ > 0 and γ has finite derivative in ξ = 0 (see Figure 1). We then
define the hysteron

D =
{

(ξ, w) ∈ R2
∣∣∣γ`(ξ) ≤ w ≤ γr(ξ)

}
.

For any fixed initial output-state w0 ∈ L2(Ω) we define the memory operator

F :
{

z ∈ L2(Ω; C0([0, T ]))
∣∣∣(z(x, 0), w0(x)) ∈ D

}
→ L2(Ω; C0([0, T ])),

as F [z](x, t) = E [z(x, ·); w0(x)](t) for all t ∈ [0, T ], and a.e. x ∈ Ω. Apart
from the restricted domain, the memory operator F satisfies all the hypothe-
ses of the operator in Proposition 2.1. Hence we have

Proposition 3.1. Given a generalized Play satisfying (3.7) and two initial
states (u0, w

0) ∈ H1
0 (Ω) × L2(Ω) such that (u0(x), w0(x)) ∈ D a.e. x ∈ Ω,

then, the corresponding system (1.1) is null controllable.

Now, we suppose that, in place of (3.7), the two Lipschitz increasing
hysteron curves satisfy

γ`(ξ) ≤ γr(ξ) ∀ξ ∈ R, γ`(0) = γr(0) = 0. (3.8)

The difference between (3.7) and (3.8) is that, in the second case, even if
still supposing that the output is always zero when the input is zero too, the
“velocity” of approaching zero by the output depends on the past history,
since it may be given by γ′`(0) or by γ′r(0), depending on the monotonicity of
the input (see Figure 1). In other words, we are amending the existence of a
unique limit (and a-fortiori of the “uniformity”) in (2.5).
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Proposition 3.2. Given a generalized Play E satisfying (3.8) and two initial
states (u0, w

0) ∈ H1
0 (Ω) × L2(Ω) such that (u0(x), w0(x)) ∈ D a.e. x ∈ Ω,

then, the corresponding system (1.1) is null controllable.

Proof. Let us take two sequences of equi-Lipschitz functions γn
` , γn

r uni-
formly convergent on R to γ`, γr respectively and satisfying (3.7) with δ =
1/n. Let En and Dn be the corresponding generalized Play operator and
hysteron, respectively. Take a sequence of functions w0

n ∈ L2(Ω) such that,
for every n, (u0(x), w0

n(x)) ∈ Dn a.e. x ∈ Ω and |w0
n(x) − w0(x)| = O(1/n)

independently on x ∈ Ω. Let Fn and F be the memory operator correspond-
ing to (En, w0

n) and to (E , w0), respectively. Then Fn[zn] uniformly converges
to F [z] in [0, T ] for almost every x ∈ Ω, whenever zn similarly converges to z
and zn(·, 0) = z(·, 0) = u0(x) a.e. x ∈ Ω. From this, by the Lipschitz proper-
ties of the generalized Play, we get that F [un] strongly converges to F [u] in
L2(Q), whenever un strongly converges to u in L2(Ω; C0([0, T ]])). This is suf-
ficient for passing to the limit in the approximating controllability problem
and, since by Proposition 3.1 the approximating problem is null controllable,
we eventually get the null controllability for the originary one. ut

The Preisach case. Here we suppose that the memory operator F is given,
in a similar way as for the Play operator, by a Preisach operator H defined
by a density function f on the Preisach plane P . In particular, we suppose
that there exists δ ≥ 0 such that

f(ρ) = 0 if ρ1 ≤ δ and ρ2 ≥ −δ. (3.9)

Proposition 3.3. Let us suppose that f belongs to L1(P), has bounded sup-
port, satisfies (3.9) and that

∫

{ρ∈P|ρ2≤0}
f(ρ)dρ =

∫

{ρ∈P|ρ1≥0}
f(ρ)dρ.

Then for every initial datum u0 ∈ H1
0 (Ω) and for every initial output-state

w0 ∈ L2(Ω) (corresponding to a suitable initial relays configuration), the
controlled system (1.1) is null controllable.

Proof. First suppose that, in (3.9), it is δ > 0. Hence, the memory
operator F fulfills (2.4) and (2.5), and so we get null controllability. In
particular, regarding (2.5), it has the limit property since δ > 0 (see Figure
1), and the Lipschitz property since f has bounded support.
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If instead δ = 0, it means that we do not have the limiting properties in
(2.5). Also in this case we can easily approximate with problems for which
(2.5) holds and then get the conclusion. For instance, for every ε > 0, we
can define the density

fε(ρ) =





f(ρ− (ε, ε)) if ρ1 ≥ ε
f(ρ + (ε, ε)) if ρ1 ≤ −ε
0 otherwise,

and pass to the limit in the corresponding controllability problem. In a
similar way as done for the Play case, known continuity/stability properties
of the Preisach operator permit to successfully perform the procedure. ut

Note that, when δ = 0, the output has a continuum of possible slopes for
approaching zero, which depend on the past history (and not only two as for
the case of generalized Play).
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Figure 1: From left-up to left-down: generalized Play without limit property (2.5), gener-
alized Play with limit property, Preisach with property, Preisach without property.
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