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GA-Enhanced ADS-Based Approach for Array Thinning

G. Oliveri and A. Massa

Abstract

This paper proposes a Genetic Algorithm (GA)-enhanced Almost Difference Set (ADS)-

based methodology to design thinned linear arrays with low peak sidelobe levels (PSLs).

The method allows one to overcome the limitations of the standardADS approach in terms

of flexibility and performances. The numerical validation,carried out in the far-field and for

narrow-band signals, points out that with affordable computational efforts it is possible to

design array arrangements that outperform standardADS-based designs as well as standard

GA approaches.

Key words -Array Antennas, Linear Arrays, Thinned Arrays, Almost Difference Sets, Sidelobe

Control.
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1 Introduction

Modern radars for remote sensing and traffic control, devices for satellite and ground commu-

nications, and biomedical imaging systems often require radiation patterns with a very high

directivity [1]. To meet this requirement, large thinned arrays are usually used because of their

advantages in terms of weight, consumption, hardware complexity, and costs over their filled

counterparts [1]. Unfortunately, thinning large arrays reduces the control of the peak sidelobe

level (PSL). In order to overcome such a limitation, several techniques have been proposed

(e.g., random techniques [2][3], algorithmic approaches [3], dynamic programming [4], genetic

algorithms [5][6], simulated annealing [7][8], and particle swarm optimizers [9]) and efficient

methods for designing thinned arrays with lowPSLs are still of great interest [10] due to their

importance in practical applications [11]. Difference Sets (DSs) have been at first employed to

analytically determine thinned arrangements with well controlled sidelobes [10]. More recently,

such an analytical approach has been extended to a wider class of geometries by exploiting the

mathematical properties of Almost Difference Sets (ADSs) [12][13]. Reliable anda-priori

predictable bounds for thePSL of the synthesized arrays have been provided [14], as well.

Moreover, the reliability of the analyticADS-based thinning has been analyzed also taking

into account the mutual coupling effects among array elements [16]. However, despite several

interesting features and advantages, the use ofADS sequences for array thinning has some

limitations that could prevent their widespread exploitation in real applications [14][16]. More

specifically:

1. ADS-based arrays usually provide sub-optimalPSL performances;

2. although large repositories ofADSs are available [17],ADS arrays with arbitrary aper-

ture sizes and thinning factors cannot be designed, sinceADS sequences exist only for

specific sets of descriptive parameters;

3. even for admissible aperture sizes and thinning factors, general purposeADS construc-

tion techniques do not exist at present and the explicit forms ofADS sequences has to be

determined on a case by case basis using suitable construction theorems [12][13].
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This paper is then aimed at introducing a technique able to enhance theADS-based design

methodology and to overcome the above limitations. Towardsthis end, aGA-based procedure

exploiting and improving the approach in [14] seems to be a potential candidate since: (a)

GAs are intrinsically able to deal with discrete or binary optimization problems [6] as those

of interest, (b) GAs have been extensively and successfully applied to array thinning [5], (c)

a-priori information and constraints fromADS-based designs can be easily integrated into the

GA-based optimization [6]. Accordingly, aGA-enhancedADS methodology is hereinafter

proposed. Unlike previously published works exploitingADS for thinning [14][16] as well as

for other array design problems (such as interleaved arrays[15]), the proposed approach does

not rely on a purely analytic technique and, therefore, it does not allow one to determinea-

priori performance bounds. The main objective of the paper is not only to propose a hybrid

technique to design linear thinned arrays, but rather to present a methodological approach use-

ful when/where either theADS-based array performances do not comply with the radiation

requirements of the application at hand or noADS is available for the geometry (aperture size

or thinning factor) under study. In order to focus on that, the proposed method is applied to

three different classes of problems related to the main limitations ofADS-based arrays.

The outline of the paper is as follows. After a short review onADS thinning, theGA-enhanced

methodology is proposed to address three different problems concerned withADS-based linear

arrays working in the far-field and with narrowband signals (Sect. 2). The hybrid approach is

then validated by means of several numerical simulations. Representative results concerned

with both small and large arrays as well as different thinning factors are discussed to point out

its reliability (Sect. 3). Finally, some conclusions are drawn (Sect. 4).

2 Problem Statement and Mathematical Formulation

The design of an equally-weighted thinned linear array defined over a regularly-spaced lattice of

N elements is carried out by properly selecting the array weightsw(n) ∈ {0, 1}, n = 1, ..., N ,

to obtain a suitable array factorS(u) [1]
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S(u) =
N−1
∑

n=0

w(n)exp(i2πndu) (1)

(d being the inter-element distance in wavelength). According to theADS-based methodology

described in [14], the weight selection is performed as follows

w(n) =











1 if n ∈ D

0 otherwise

whereD is an(N, K, Λ, t)-Almost Difference Sets (ADS), that is a set ofK unique integers

belonging to the range[0, N − 1], whose associated binary sequence has a cyclic autocorrelation

function,ξ(τ) ,
∑N−1

n=0 w(n)w [ (n + τ)|mod N ], τ = 0, .., N − 1, of periodN given by

ξ(τ) =























K τ = 0

Λ for t values of τ

Λ + 1 otherwise.

(2)

Because of (2) and the relationship between the autocorrelation function andS(u), it results

that the samples of the array power pattern atk
dN

are equal to the values of the inverse discrete

Fourier transform (IDFT ) of ξ(τ), Ξ(k) ,
∑N−1

τ=0 ξ (τ) exp
(

2πi τk
N

)

[i.e., Ξ(k) =
∣

∣S
(

k
dN

)
∣

∣

2
].

Thanks to this property, it can be shown [14] that the arisingPSL complies with the following

inequality

PSL
opt
MIN ≤ PSL

opt
DW ≤ PSLopt {D} ≤ PSL

opt
UP ≤ PSL

opt
MAX (3)

wherePSLopt {D} = minσ∈[0,N−1]

{

PSL
(

D
(σ)

)}

, D(σ) ,

{

d
(σ)
k ∈ Z

N , k = 1, ..., K : d
(σ)
k =

(dk + σ)|mod N} is theσ-shifted version of the originalADS (D(σ) is still anADS [12]),PSL
(

D
(σ)

)

,
maxu/∈R|S(u)|2

|S(0)|2
is thePSL of the array deduced byD

(σ)
, R , {−U ≤ u ≤ U , U = 1

2Nd

r

maxkΞ(k)

Ξ(0)







,

and the performance bounds are the following:PSL
opt
MIN =

K−Λ−1−
q

t(N−t)
(N−1)

(N−1)Λ+K−1+N−t
, PSL

opt
DW =

maxkΞI (k)
ΞI(0)

, PSL
opt
UP = maxkΞI(k)

ΞI(0)
(0.8488 + 1.128 log10N), andPSL

opt
MAX =

“

K−Λ−1+
√

t(N−t)
”

(N−1)Λ+K−1+N−t

(0.8488 + 1.128 log10N) [14]. Equation (3) indicates thatADS-based thinned arrays exhibit a
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sidelobe level which can be predicteda-priori either from the knowledge of the features of the

ADS sequence (PSL
opt
MIN andPSL

opt
MAX only depend onN , K, Λ, andt) or, with a higher ac-

curacy, from the expression ofΞ(k) (necessary for computingPSL
opt
DW andPSL

opt
UP ). Despite

the implicit advantages in terms of computational efficiency and predictable performances, the

ADS-based approach for array thinning has the limitations outlined in the Introduction (Sect.

1). Therefore, a methodology able to overcome these limitations while exploiting theADS

analytic features seems to be of some interest in view of its application to wireless communica-

tions.

Towards this end, a hybrid approach (ADSGA in the following) is proposed. By sake of clarity,

the critical situations of theADS approach are modeled in the following sub-sections as suitable

optimization problems then solved through theADSGA. Concerning the iterativeADSGA op-

timization, the standard structure of theGA (summarized in Appendix I) is modified to exploit

the positive key-features of theADSs.

The initial population (i = 0, i being the iteration index) is generated as follows. TheN

shifted versions of a referenceADS are ranked according to theirPSL values. Then, half trial

solutions (P being the dimension of theGA population) are chosen with chromosomes equal

to the binary sequences of the firstP
2

highly-ranked shiftedADSs

ρp(i) =
{

bp(n) = w(p)(n); n = 0, ..., N − 1
}

, 1 ≤ p ≤ P

2
(4)

where bp(n) is the n-th digit of the p-th trial solution andw(σ)(n) = 1 if n ∈ D
(σ) and

w(σ)(n) = 0, otherwise. Concerning the remaining of the population, the trial solutions are

chosen randomly within the range of admissibility of the problem at hand

ρp(i) = {bp(n) = rp(n); n = 0, ..., N − 1} , 1 ≤ p ≤ P

2
(5)

rp(n) being a random digit. Such an initialization allows the “transfer” into theGA chro-

mosomes of the goodADS-based schemata also providing a sufficient variability within the

population to avoid the stagnation [6].

As regards theGA operators, both crossover and mutation are applied following the standard
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binary implementations [6], but also guaranteeing the updated trial solutions be admissible and

comply with the problem constraints (e.g., fixed thinning factor ν , K
N

). Towards this end,

the crossover operation is repeated until the new chromosomes satisfy the solution constraints,

while a conditioned-mutation is applied. More specifically, let ν be the user-defined thinning

factor, then the bit-mutation probability is defined as follows

PBM(n) =

[

N × ν − ∑n−1
m=0 b(m)

]

N − n
× [1 − 2b(n)] + b(n) (6)

2.1 Problem I - PSL Minimization in Array Synthesis

In order to determine an optimal thinned configuration starting from the (usually) sub-optimal

ADS arrangement with a given aperture sizeNADS and thinning factorνADS, let us formulate

the following constrained optimization problem

Problem I - Minimize F {ρ} ,
maxu/∈RM{|S(u)|2}

|S(0)|2
, RM being the mainlobe region

defined asRM , {−UM ≤ u ≤ UM} andUM is the angular location of the first

null, subject toK = KADS andN = NADS

to be solved throughADSGA. In such a case, theGA fitness function is defined as thePSL

of the array while the constraints force the array to kept itsdescriptive parameters (i.e., original

dimension,N = NADS, and thinning,ν = νADS).

2.2 Problem II - Extension of the Range ofADS Applicability in Array

Synthesis

The use of anADS-based technique for array synthesis is sometimes limited to fixed array

dimensions and thinning values because of the limited, although quite large, set of available

ADS sequences. In order to design a thinned configuration with arbitrary values ofN andν,

still exploiting the properties of the existingADS arrangements, the following problem is at

hand
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Problem II - Minimize F {ρ} =
maxu/∈RM{|S(u)|2}

|S(0)|2
subject toK = K̂ andN = N̂ ,

beingN̂ 6= NADS and/orK̂ 6= KADS

Such a constrained optimization problem is quite similar tothat in Sect. 2.1, but, in this case,

noADS-based array is available in correspondence with the array parameters (̂N , K̂).

2.3 Problem III - Definition of a General PurposeADS Construction Tech-

nique for Array Synthesis

With reference to the potential limitation (III) outlined in the Introduction, the aim is now to find

the explicit forms ofADSs sequences (i.e., binary sequences with a three-level autocorrelation

function) for arbitrary values ofN . Towards this end, let us denote withL {ρ} andR {ρ} the

number of levels of the autocorrelation functionξ(τ) of a trial solutionρ and the number of

τ values for whichξ(τ) differ from (2). Then, the search for admissible (but not available in

ADS repositories)ADS sequences is recast as the solution of the following

Problem III - MinimizeF {ρ} = α [L {ρ} − 3]+βR {ρ} subject toN = N̂ , where

N̂ 6= NADS andα andβ are suitable user-defined weight coefficients.

In such a case, the optimization at hand turns out to be different from that inProblem I and

Problem II. As a matter of fact, it is defined and performed with theADSGA within the “auto-

correlation space” instead of in the “pattern space”, whilethe constraints are still on the set of

parameters defining theADS as well as the corresponding array arrangement.

3 Numerical Analysis

In this section, the effectiveness of theADSGA in solving Problems I-III is analyzed by dis-

cussing a set of representative numerical results concerned with different aperture sizes and

thinning factors. The set of parameters of theGA-based procedure are:PC = 0.9 (crossover

rate), PM = 0.01 (mutation rate), andP = N (population size) if not otherwise stated.
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3.1 Application to Problem I

The first experiment deals with the(100, 50, 24, 25)-ADS [17] (NADS = 100, νADS = 0.5).

Figure 1(a) shows the behavior of the optimal fitness value

FPOP (i) = minp [F {ρp(i)}] , p = 0, ..., P − 1, (7)

versus the iteration numberi in correspondence with theADSGA and the standardGA min-

imization (d = 1
2

is assumed hereinafter). ThePSL value of the referenceADS sequence

is reported, as well. Obviously,F ADS
POP (0) ≤ F ADSGA

POP (0) since theADS sequence belongs to

the initial population of theADSGA. It is also worth to notice that the convergence(1) rate

of the optimization process improves when using theADSGA as compared to theGA-bare

approach (while the average iteration time(2) does not sensibly change - Tab. I). As a matter

of fact, IADSGA = 386 iterations are necessary to reach the convergence, whileIGA = 598

[Imax = 1000 - Fig. 1(a)]. Moreover, the thinned arrangement synthesized withADSGA turns

out to be significantly better than the referenceADS in terms ofPSL [PSLADSGA = −20.64

dB vs.PSLADS = −14.45 dB]. Furthermore, it improves the performance of theGA of about

1 dB as confirmed by the plots of the corresponding power patterns [Fig. 1(c)].

However, bothGA-based optimizations also enlarge the mainlobe beamwidth compared to the

ADS reference solution [UADSGA
M ≈ UGA

M = 0.041 vs. UADS
M = 0.020 - Tab. I] because

of the quasi-dense nature of the arising layouts (in both cases, the average spacing is close

to 0.6λ - Tab. I). In order to perform a more fair comparison, anotheroptimization has been

carried out by setting a constraint on the extension ofRM , as well. More specifically, the

mainlobe region has been required to be equal to that of the “best” ADS-based array, that is

the shifted array with the best trade-off betweenPSL andRM among allADS layouts whose

representative points belong to the Pareto front (i.e., theset of all nondominated solutions [6])

in the (PSL, RM) plane (Fig. 2):RM = RADS
M . The obtained results are shown in Figs.

(1) The process is assumed toconvergewhen the fittest (withinImax iterations) solutionρconv has been
reached. Accordingly,I (I ≤ Imax) is the “convergence iteration” such thatF {ρconv} = (minp [F {ρp(I)}]) =
mini (minp [F {ρp(i)}]).

(2) The values of theaverage iteration timehave been computed by exploiting non-optimizedC-coded
versions running on an Intel2.1 GHz single core laptop.
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1(b)-1(d)-1(f ). As expected, thePSL improvement of theADSGA over theADS turns out

to be smaller, although non-negligible [PSLADSGA
C = −16.39 - Fig. 1(d)], and the number of

iterations to reach the final design increases (IADSGA
C = 629 vs. IADSGA = 704). On the other

hand and unlike the unconstrained case [Fig. 1(e)], the array elements of the new arrangements

[Fig. 1(f )] are now distributed within a spatial rangeΦ of extension close to that ofΦADS (i.e.,

ΦADSGA
C = 45.5 λ, ΦGA

C = 44.5 λ, andΦADS = 48.5 λ) in order to fit the beamwidth condition

RM = RADS
M .

Similar conclusions generally hold true also for wider apertures as confirmed by the resum-

ing plots in Fig. 3 where the values of thePSL [Fig. 3(a)] and the mainlobe sizeUM [Fig.

3(b)] along with the behavior ofIconv [Fig. 3(c)] and of the normalized apertureΦ
N

[Fig. 3(d)]

are reported as functions of the array sizeN for both theRM -constrained and unconstrained

problems. With reference to Fig. 3(a), theADSGA provides enhanced performances in com-

parison with theGA for any array sizeN , even though the improvements are not always very

significant. Furthermore, bothGA-based techniques result better than the referenceADS ar-

rangements, setting or not the same mainlobe beamwidth. As expected, the improvements of

the RM -constrained synthesis are lower, but the differences withthe unconstrained approach

reduce asN grows sinceΦC → Φ [Fig. 3(d)] andUC
M → UM [Fig. 3(b)]. On the other hand,

the plots in Fig. 3(c) point out the following: (i) the iteration indexIconv increases dealing with

a higher complexity problem (i.e.,RM -constrained vs.RM -unconstrained) or a larger solution

space (S = 2N , S being the dimension of the solution space as a function of thearray lattice

dimension); (ii ) whatever the dimension and the synthesis,IADSGA
conv ≤ IGA

conv thanks to theADS

initialization and the customized genetic evolution of theADSGA optimization.

For illustrative purposes, Figures 4-5 and Tabs. II-III complete the “picture” coming from

Fig. 1 and concerned with a small arrangement (N = 100) with those on the synthesis of a

medium array (N = 198 - Fig. 4 and Tab. II) and a large array (N = 502 - Fig. 5 and Tab.

III). More specifically, the power patterns and the corresponding arrangements generated from

the (198, 99, 49, 148)-ADS [17] (νADS ≈ 0.5) are reported in Fig. 4, while the case of the

(502, 251, 125, 376)-ADS [17] (νADS ≈ 0.5) is analyzed in Fig. 5.
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3.2 Application to Problem II

Dealing with the application of theADSGA to Problem II, let us consider the(198, 99, 49, 148)-

ADS [17] (νADS ≈ 0.5) and let us set the following objective parameters:N̂ = 198, ν̂ = 0.601,

andImax = 2000. It is worthwhile to note that the thinning factor of the referenceADS and of

the initial population differ from that of the target array.

The plots in the first row of Fig. 6 show the evolution of the fitness function during the itera-

tive process for the approaches with and without the constraint on RM . Also in this case, the

ADSGA enhances the optimization performances of the standardGA approach [Fig. 6(a)-6(b)]

synthesizing the power patterns shown in Figs. 6(c)-6(d) whose characteristics are summarized

in Tab. IV. More in detail, thePSL of the optimalRM -unconstrainedADSGA (GA) configu-

ration is of about4 dB lower than that of theADS [Fig. 6(a) - Tab. IV]. Such an enhancement

is also kept almost unaltered when matching the mainbeam width requirement. On the other

hand and as expected, it should be pointed out that the amountof thePSL improvement turns

out to be more significant than for the similar test case of theProblem I because of the larger

number of active elements (ν̂ = 0.601 vs. ν = 0.5) in the array [Fig. 6(c)].

To further validate the proposed approach, Problem II has been re-formulated by using again

the (198, 99, 49, 148)-ADS [17] ( νADS ≈ 0.5) as the reference, but now settinĝN = 200

and ν̂ = 0.77 (i.e., a target array with both different dimension and thinning factor). Such a

parameter setup has been chosen to compare the synthesized solution with those from state-of-

the-artGA optimizations available in the literature [5][6]. Since the pattern in [5] presents a

beamwidth different fromRADS
M (U [Haupt 1994]

M = 0.0125 vs. UADS
M = 0.0108), the results from

theRM -unconstrained problem are at first analyzed.

The ADSGA solution is characterized by a fitness value atIconv = 1598 (Imax = 3000) of

almost7 dB below that obtained with the referenceADS [Fig. 7(a) - Tab. V]. Such a non-

negligible improvement is mainly due to the increased aperture size (N = 200 vs. NADS =

198) and to the larger number of active elements (K = 144 vs. KADS = 99) [Fig. 7(c)]. On

the other hand, by comparing theADSGA result with that from the standardGA approach

and the state-of-the-artGA in [5], the ADSGA improvement is of about0.6 dB and1 dB,

respectively [Fig. 7(b)]. It is worth noting that this reduction is certainly related to theADS
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initialization and it is obtained without enlarging the mainlobe region (U [Haupt 1994]
M = 0.0125

≈ UADSGA
M = 0.0120). The arrangements in correspondence with the difference solutions are

provided in Fig. 7(c).

Dealing with the same test case, but constraining the array to fit the ADS beamwidth, the

ADSGA method confirms its reliability and efficiency synthesizingan array with performances,

summarized in Tab. V, close to that of the unconstrained solution and still better than those in

[5] (Fig. 8).

For completeness, Figure 8 provides an overview of the results concerned with Problem II. As

it can be noticed, theADSGA solution overcomes theGA-based designs whatever the test case

at hand further pointing out the convenience of theADS initialization and its integration with

theGA optimization.

3.3 Application to Problem III

To complete the preliminary validation presented in [18] (but there limited to the use of a ’bare’

GA procedure) and to further confirm, in a more exhaustive fashion, the underlying proof-

of-concept, a representative example of the numerical definition of new ADS sequences is

performed by choosinĝN = 55 (nor ADS sequence with such a length is known/available

[17], neither suitable theorems for its computation are available). TheGA parameters have

been set to:Imax = 50, α = 10−2, β = 10−4. Moreover, the(53, 14, 3, 26)-ADS [17] has been

assumed as the starting point for the optimization process.

The plot of the optimal fitness in Fig. 9(a) shows that anADS of the desired size has been

found just afterIconv = 34 iterations [FPOP (Iconv) = 0] as confirmed by the three-level au-

tocorrelation function of the arising optimal sequence [Fig. 9(b)]. As it can be observed, the

synthesizedADS is characterized byK = 7 (K , maxτ {ξ(τ)}), Λ = 0 (Λ , minτ {ξ(τ)}),

andt = 12 [t being the number ofτ values for whichξ(τ) = Λ]. For completeness, the binary

arrangement is given in Fig. 9(c).

Similar results can be also obtained for largerN̂ values, even though with a greater number

of iterations, assessing the reliability of the approach whatever the dimension at hand. For

illustrative purposes, a different instance of the ProblemIII is addressed by settinĝN = 214
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(once again, no explicit expression for the correspondingADS is available [17]). Because of

the wider solution space, the maximum number of iterations has been enlarged toImax = 1500,

while keeping the same values of the other parameters. Moreover, the following referenceADS

has been chosen:(210, 105, 52, 157)-ADS [17].

As expected, the optimal sequence has been synthesized after more than1200 iterations [Fig.

10(a)] with a significant increase of the computational cost for reaching the convergence com-

pared to the previous smaller case. Anyway, the approach is still able to define a binary config-

uration [Fig. 10(c)] with three-levels [Fig. 10(b)] as requested for theADS sequences. More

specifically, the newADS is described by the following parameters:K = 10, Λ = 0, and

t = 123.

As a final observation, it is worthwhile to point out that the new ADSs determined solving

different instances of Problem III can be directly used to define new thinned arrays or as start-

ing points for different formulations of Problem I or Problem II. Indeed, the power patterns

|S(u)|2 of the arrays derived from the binary sequences(55, 7, 0, 12)-ADS [Fig. 11(a)] and

(214, 10, 0, 123)-ADS [Fig. 11(b)] fit the ADS radiation properties with samples constrained

to the associatedΞ(k) values.

4 Conclusions and Remarks

In this paper, a hybridGA-based approach has been developed to further exploit and enhance

the features in the far-field and for narrow-band signals ofADS-based binary sequences for lin-

ear array thinning. In order to overcome the main limitations (i.e., flexibility and performances)

of ADS-based thinned arrays, while taking advantage of their properties, an innovative method-

ological approach that, unlike theADS thinning techniques described in [14], does not rely on

purely analytical design method, has been proposed.

An extensive numerical analysis has been performed by addressing different kinds of problems,

each one concerned with a specificADS limitation. The obtained results have pointed out the

following outcomes:

• thanks to theADS initialization, theADSGA provides improved performances with
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respect to a standardGA approach when dealing with linear array thinning, even though

the improvements are not always very significant;

• ADSGA-constrained designs are usually advantageous since they avoid both quasi-dense

layouts of limited practical importance as well as large mainlobe widths, unlike uncon-

strained architectures;

• the knowledge ofADS reference sequences and thea-priori information on the perfor-

mances of the corresponding arrays turn out to be useful evenfor synthesizing antenna

arrangements with different (also whenADSs do not exist) thinning factors or sizes;

• the hybrid approach can be profitably employed to determine the explicit form of new

ADS sequences of desired length beyond those already available[17], thus extending the

range of applicability of theADS-based array thinning.

As regards the array synthesis, future developments will beaimed at assessing the performances

of the hybrid approach in dealing with non-ideal structures(e.g., mutual coupling effects and

real radiators). Moreover, extensions to more complex and high-dimension array geometries

will be analyzed to verify advantages and potentialities, but also limitations and reliability, of

theADSGA approach in terms of radiation properties and implementation/HW issues.

Appendix I

In this section, the building blocks of theGA considered in this paper are briefly summarized.

1. Initialization - A randomly-chosen initial (i = 0) population ofP trial solutions,ρp(i),

p = 1, ..., P is defined;

2. Coding - Each solutionρp(i) (individual) codes the values of an unknown set of parame-

ters into a binary string (chromosome);

3. GA-Evolution - At each iterationi, the genetic evolution takes places through suitable

binary operators (selection, crossover, reproduction, mutation, elitism [9][6]) applied in
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a probabilistic fashion and taking into account the fitness valuesFp = F {ρp(i)}, p =

1, ..., P of current trial solutions;

4. Termination - The iterative optimization terminates when the optimal fitness value,FPOP (i) =

minp {Fp}, is smaller than an user-defined threshold or when a maximum number of iter-

ationsImax has been reached. The “final solution” is the fittest trial solution determined

throughout the whole iterative process,ρconv = arg {mini (minp [F {ρp(i)}])}.
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FIGURE CAPTIONS

• Figure 1. Problem I (NADS = 100, νADS = 0.5) - Synthesis results from theRM -

Unconstrained (left column) andRM -Constrained (right column) approaches: (a)(b) be-

havior of the optimal fitness value,FPOP (i) = PSL(i), versus the iteration number,i,

(c)(d) power patterns plots,|S(u)|2, and (e)(f ) array arrangements.

• Figure 2. Problem I (NADS = 100, νADS = 0.5) - Representative points in the space

(UM , PSL) of theADS-based arrays derived from the shifted versions of the(100, 50, 24, 25)-

ADS [17].

• Figure 3. Problem I(νADS = 0.5) - Synthesis results from theRM -Unconstrained (I ) and

RM -Constrained (II ) approaches versusN (array dimension): (a) peak sidelobe level,

PSL, (b) first null location,UM , (c) convergence iteration number,Iconv, and (d) normal-

ized array aperture,Φ
N

.

• Figure 4. Problem I (NADS = 198, νADS = 0.5) - Synthesis results from theRM -

Unconstrained (left column) andRM -Constrained (right column) approaches: (a)(b) power

patterns plots,|S(u)|2, and (c)(d) array arrangements.

• Figure 5. Problem I (NADS = 502, νADS = 0.5) - Synthesis results from theRM -

Unconstrained (left column) andRM -Constrained (right column) approaches: (a)(b) power

patterns plots,|S(u)|2, and (c)(d) array arrangements.

• Figure 6. Problem II(N̂ = 198, ν̂ = 0.601) - Synthesis results from theRM -Unconstrained

(left column) andRM -Constrained (right column) approaches: (a)(b) behavior of the op-

timal fitness value,FPOP (i) = PSL(i), versus the iteration number,i, (c)(d) power

patterns plots,|S(u)|2, and (e)(f ) array arrangements with theADSGA, theGA, and the

ADS-based method.

• Figure 7. Problem II (N̂ = 200, ν̂ = 0.77) - (a) Behavior of the optimal fitness value,

FPOP (i) = PSL(i), versus the iteration number,i, (b) power patterns plots,|S(u)|2, and

(c) array arrangements with theADSGA, the standardGA, theADS-based method, and

the solution in [5].
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• Figure 8. Problem II - Representative points in the space(UM , PSL) of the thinned

arrays synthesized when̂N = 198, ν̂ = 0.601 andN̂ = 200, ν̂ = 0.77.

• Figure 9. Problem III (N̂ = 55) - (a) Behavior of the optimal fitness,FPOP , versus the

iteration number,i, and (b) three-level autocorrelation function of the convergenceADS

arrangement (c).

• Figure 10. Problem III (N̂ = 214) - (a) Behavior of the optimal fitness,FPOP , versus the

iteration number,i, and (b) three-level autocorrelation function of the convergenceADS

arrangement (c).

• Figure 11. Problem III - Plots of the power patterns and samples ofΞ(k) for the thinned

arrangements from (a) the(55, 7, 0, 12)-ADS and (b) the(214, 10, 0, 123)-ADS.

TABLE CAPTIONS

• Table I. Problem I(NADS = 100, νADS = 0.5) - Comparative assessment.

• Table II. Problem I(NADS = 198, νADS = 0.5) - Comparative assessment.

• Table III. Problem I(NADS = 502, νADS = 0.5) - Comparative assessment.

• Table IV. Problem II (N̂ = 198, ν̂ = 0.601) - Comparative assessment.

• Table V. Problem II (N̂ = 200, ν̂ = 0.77) - Comparative assessment.
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Figure 1 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 3(I) - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 4 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 5 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 6 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 7 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 9 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 10 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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Figure 11 - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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UnconstrainedRADS
M ConstrainedRADS

M

ADS GA ADSGA GA ADSGA

Φ [λ] 48.5 31.5 31 44.5 45.5

Average spacing[λ] 0.989 0.642 0.632 0.908 0.928

PSL [dB] −14.45 −19.82 −20.64 −15.71 −16.39

UM [rad] 0.020 0.041 0.041 0.022 0.022

ICONV - 598 386 704 629

Average iteration time[s] - 0.397 0.397 0.397 0.397

Table I - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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UnconstrainedRADS
M ConstrainedRADS

M

ADS GA ADSGA GA ADSGA

Φ [λ] 98.5 98 88.5 92.5 92.0

Average spacing[λ] 1.005 1.000 0.903 0.943 0.938

PSL [dB] −16.60 −18.12 −19.24 −17.86 −18.40

UM [rad] 0.0108 0.0167 0.0170 0.0108 0.0108

ICONV - 730 619 1359 1049

Average iteration time[s] - 0.704 0.704 0.704 0.704

Table II - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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UnconstrainedRADS
M ConstrainedRADS

M

ADS GA ADSGA GA ADSGA

Φ [λ] 250.5 250.0 250.5 248.5 249.5

Average spacing[λ] 1.002 1.000 1.002 0.994 0.998

PSL [dB] −15.91 −20.83 −21.31 −20.40 −20.54

UM [rad] 4.12 × 10−3 4.90 × 10−3 4.93 × 10−3 4.12 × 10−3 4.12 × 10−3

ICONV - 1450 1274 2000 1878

Average iteration time[s] - 3.723 3.723 3.723 3.723

Table III - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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UnconstrainedRADS
M ConstrainedRADS

M

ADS GA ADSGA GA ADSGA

Φ [λ] 98.5 98.0 90.5 92.5 96.0

Average spacing[λ] 1.005 0.830 0.766 0.783 0.813

PSL [dB] −16.60 −19.95 −20.26 −19.70 −20.01

UM [rad] 0.0108 0.0160 0.0140 0.0108 0.0108

ICONV - 1730 637 1741 1264

Average iteration time[s] - 0.704 0.704 0.704 0.704

Table IV - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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UnconstrainedRADS
M ConstrainedRADS

M

ADS GA ADSGA GA ADSGA [5]

Φ [λ] 98.5 99.5 98.5 99.0 98.5 99.5

Average spacing[λ] 1.005 0.650 0.643 0.647 0.643 0.650

PSL [dB] −16.60 −22.47 −23.05 −22.26 −22.79 −22.09

UM [rad] 0.0108 0.0124 0.0120 0.0108 0.0108 0.0125

ICONV - 1725 1528 2187 2062 -

Average iteration time[s] - 0.704 0.704 0.704 0.704 -

Table V - G. Oliveri et al., “GA-Enhanced ADS-Based Approach for Array Thinning”
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