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Time Modulated Planar Arrays - Analysis and Optimization

of the Sideband Radiations

L. Poli, P. Rocca, L. Manica, and A. Massa

Abstract

In this paper, the minimization of the power losses due to undesired sideband radiations

in time-modulated planar arrays is dealt with. A closed-form expression for evaluating the

total power wasted in the sideband radiations is obtained and exploited to design a new

procedure based on a Particle Swarm Optimizer for the synthesis of the pulse sequences

devoted to control the array time-modulation. A set of representative results is reported and

analyzed to assess the effectiveness of the proposed approach.

Key words: Planar Arrays, Time-Modulated Arrays, Pattern Synthesis.
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1 Introduction

After the work by Shanks and Bickmore [1] proposing the time domain as an additional degree

of freedom for the control of the radiation characteristicsof an antenna system and the first

prototype of a time-modulated array for the generation of ultra-low sidelobe patterns in [2],

the synthesis of time-modulated (TM) arrays has received a renewed interest in recent years.

Different numerical approaches dealing with both linear arrays [3]-[8] and planar arrangements

[9]-[12] have been proposed. Time modulation has proved to be a suitable synthesis tech-

nique in several applications ranging from sum and difference antennas [7] and phase switched

screens [13] up to airborne pulse doppler radars [8]. As a matter of fact, the improved flexi-

bility of the antenna design which allows to generate several patterns with different shapes [7]

and sidelobe levels (SLL) [2] without the need of changing the static excitations as well as the

possibility to synthesize patterns while keeping very low dynamic range ratios [11] represent

non-negligible advantages of the time-modulation strategy. Some experimental prototypes have

been also recently built and tested in [6][13]. Besides the numerical analyses and the experi-

mental validations, a detailed mathematical description of the key antenna parameters inTM

arrays (e.g., gain and directivity) has been also presented[2][14][15].

The main disadvantage ofTM arrays is related to thesideband radiations(SBRs) due to the

losses in the integer harmonics of the modulation frequency[15]. To avoid this drawback,

different optimization algorithms aimed at minimizing thesideband levels (SBLs) (i.e., the

peak levels of the harmonic radiations) have been used. Approaches based on the Differential

Evolution (DE) [3], the Simulated Annealing (SA) [5], and the Genetic Algorithm (GA) [6]

have been successfully applied. A different strategy exploiting time sequences with arbitrary

switch-oninstants has been also presented in [16]. However, due to theheavy computational

burden for the computation of the harmonic patterns and the successive evaluation of theSBLs,

the optimization has been usually limited to the first harmonic terms [3][4][5]. Recently, a

simple closed-form relationship of the total power associated to theSBRs, derived in [15] for

TM linear arrays, has enabled an easy and complete computationof the power losses.

This paper is then aimed at firstly extending the mathematical formulation in [15] to planar

arrays where the losses at the harmonic frequencies are evenmore relevant due to the larger
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number of elements usually involved. Successively, an optimization procedure based on a Par-

ticle Swarm Optimizer (PSO) [17] is used to fully exploit the analytic expression of theSBRs

for minimizing the power losses.

The outline of the paper is as follows. The radiation of time-modulated planar arrays (TMPA)

is mathematically described in Sect. 2 where a closed-form relationship for theSBRs is deter-

mined and minimized by means of aPSO. In Sect. 3, a selected set of results from an extensive

set of numerical simulations is reported and discussed. Eventually, some conclusions are drawn

(Sect. 4).

2 Mathematical Formulation

Let us consider a planar array withM ×N elements displaced on a regular grid along thex− y

plane. Thestaticset of element excitationsA = {αmn; m = 0, ..., M − 1, n = 0, ..., N − 1} is

modulated by means of periodic rectangular pulse functionsgenerated byRF switches inserted

into the antenna feed network to obtaindynamicexcitations. The array factor is then given by

AF (θ, φ, t) = ejω0t
M−1∑

m=0

N−1∑

n=0

αmngmn (t) ejβ sin θ(xm cos φ+yn sinφ) (1)

wherexm = m×dx andyn = n×dy denote the location of themn-th array element,β = ω0

c
is

the free-space wave number,ω0 andc being the carrier angular frequency and the speed of light

in vacuum, respectively. Moreover, the time behavior of theRF switches is mathematically

modeled through the functiongmn (t) = gmn (t + iTp), i andTp being an integer value and

the modulation period, respectively. As for the linear case, such a periodic function can be

expressed in terms of its Fourier coefficients

gmn (t) =
∞∑

h=−∞
Gmnhe

jhωpt, m = 0, ..., M − 1, n = 0, ..., N − 1 (2)

whereωp = 2π
Tp

andGmnh is a real quantity ifgmn (t) is considered to be

gmn (t) =





1 if 0 < |t| ≤ t̃mn

2

0 otherwise
(3)
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equal to

Gmnh =
1

Tp

∫ Tp/2

−Tp/2
gmn(t)e−jhωptdt. (4)

Thanks to this expansion, the array factor (1) results a summation of infinite harmonics [15],

AF (θ, φ, t) =
∑∞

h=−∞ AFh(θ, φ, t), where

AF0(θ, φ) =
M−1∑

m=0

N−1∑

n=0

αmnτmnejβ sin θ(xm cos φ+yn sinφ) (5)

is the pattern at the working frequency (h = 0), beingτmn = t̃mn

Tp
= Gmn0, and theh-th

harmonic term is given by

AFh(θ, φ, t) = ej(ω+hωp)t
M−1∑

m=0

N−1∑

n=0

αmnGmnhe
jβ sin θ(xm cos φ+yn sin φ). (6)

The power radiated by aTMPA defined as

PTOT =
1

Tp

∫ Tp/2

−Tp/2

[∫ 2π

0

∫ π

0
Re {AF (θ, φ, t)}2

sinθdθdφ

]
dt (7)

turns out to be equal to

PTOT =
∫ 2π

0

∫ π

0

1

2

∞∑

h=−∞
|µh(θ, φ)|2 sinθdθdφ (8)

whereµh(θ, φ) =
∑M−1

m=0

∑N−1
n=0 αmnGmnhe

jβ sin θ(xm cos φ+yn sin φ), while the power losses associ-

ated to the sideband radiations are given by

PSBR =
1

2

∫ 2π

0

∫ π

0

∞∑

h=−∞,h 6=0

|µh(θ, φ)|2 sinθdθdφ. (9)

Since|µh(θ, φ)|2 = µh(θ, φ) [µh(θ, φ)]∗ and taking into account the following relationship from

[15]
∞∑

h=−∞,h 6=0

GmnhGrsh = ∆τ rs
mn − τmnτrs (10)

where∆τ rs
mn = τmn if τmn ≤ τrs and∆τ rs

mn = τrs otherwise, Equation (9) can be rewritten as

follows

PSBR = 2π
M−1∑

m=0

N−1∑

n=0

M−1∑

r=0

N−1∑

s=0


Re {αmnα∗

rs}
sin

(
β

√
(xm − xr)2 + (yn − ys)2

)

β
√

(xm − xr)2 + (yn − ys)2
(∆τmn,rs − τmnτrs)




(11)

after simple manipulations detailed inAppendix.
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For square (N × N) planar arrays, Equation (11) simplifies

PSBR = 2π
∑N−1

m, n=0

[
|αmn|2 τmn(1 − τmn)

]
+

+2π
N−1∑

m, n=0, (r,s)6=(m,n)


Re {αmnα∗

rs}
sin

(
β

√
(xm − xr)2 + (yn − ys)2

)

β
√

(xm − xr)2 + (yn − ys)2
(∆τ rs

mn − τmnτrs)


 .

(12)

2.1 PSO-based Power Losses Minimization

The analytic form ofPSBR [Eq. (11)] enables a computationally-efficient optimization of the

power losses inTMPAs. Towards this end, the problem unknowns are thestatic excitation

coefficients,A = {αmn; m = 0, ..., M − 1, n = 0, ..., N − 1}, and the set ofswitch-on times,

τ = {τmn; m = 0, ..., M − 1, n = 0, ..., N − 1}. Let us assume a fixed set ofstaticexcitations,

A = Â. Therefore, the use of time-pulses would allow an initial pattern (generated by the

static excitation distribution) to be reconfigured by the insertion of the on-off switches between

the generator and the array elements, avoiding a new feedingnetwork design that would be

necessary if time-modulation were not applied.

The minimization of the losses is then recast as the solutionof an equivalent optimization prob-

lem mathematically formulated in terms of the following cost function

Ψ {τk} = wSLLH
[
S̃LL − SLL (τ k)

]
∣∣∣S̃LL − SLL (τ k)

∣∣∣
2

∣∣∣S̃LL
∣∣∣
2 + wSBR

PSBR (τk)

PTOT (τ k)
(13)

and aimed at defining the optimal setτ opt at the convergence of an iterative process,k being the

iteration index. Moreover,H(·) is the Heaviside step function, whilewSLL andwSBR are real

and positive weights. The first term in (13),ΨSLL, penalizes quantifies the mismatch between

the sidelobe level generated ath = 0 by τk, SLL (τk), and the desired one,̃SLL, whether

SLL (τk) > S̃LL. It acts like a constraint of the minimization of the power losses forced by

the other term,ΨSBR.

Since the unknown setτ k is real-valued, the minimization of (13) is carried out by means of a

Particle Swarm Optimizer (PSO) [17] whose implementation is detailed in [18]. The iterative

process stops when a maximum number of iterationsK is reached or at the stationariness of
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the value ofΨopt
k = Ψ

{
τ

opt
k

}
, τ

opt
k = arg

{
mins=1,...,S

[
Ψ

(
τ

(s)
k

)]}
, S being the number of

particles/agents of the swarm.

3 Numerical Results

A set of representative results is here reported to show the potentialities of the proposed method

for the synthesis ofTMPA with reducedSBRs. The first example deals with a planar array

having circular contour, while the second one is concerned with the synthesis of a rectangular

arrangement. As regards thePSO, the control parameters have been set to the values derived in

[18], namelyω = 0.4 (inertial weight),C1 = 2.0 (cognitive acceleration coefficient),C2 = 2.0

(social acceleration coefficient).

In the first example, the array elements are placed on a regular grid of dimensionN × M =

20×20 with inter-elements spacing equal todx = dy = 0.5λ and the antenna contour has radius

r = 5λ, λ = cT0 being the free space wavelength. Thus, the number of radiating array elements

amounts toL = 316, while the other84 elements laying outside the circular contour are deleted

from the grid (i.e.,αmn = 0). Starting from a set ofstaticexcitationÂ obtained through the

sampling of the Taylor distribution (SLL = −30 dB, n̄ = 6 [19]) and affording a pattern with

SLL = −29.25 dB [20] and because of the quadrantal symmetry of the array architecture, a

quarter of the total number of elements,U = 79, has been optimized for the synthesis of a

broadside pencil beam pattern. The cost function (13) has been then minimized with a swarm

of S = 30 particles. The valuẽSLL has been set to−40 dB and the weight coefficients have

been heuristically tuned towSLL = 2 andwSBR = 1. Moreover,K = 2000 iterations have

been considered and, at the initialization, theswitch-on timeshave been randomly-generated

with uniform probability withinτ (0)
mn ∈ [0, 1], ∀(m, n).

The normalized power pattern generated at the central frequency is shown in Fig. 1. The level of

the secondary lobes is reduced of almost8 dB (SLLopt = −37.8 dB) compared to that afforded

with the static excitations and the power wasted inSBRs amounts toPSBR = 13.2% of the

total input power. ThePSO-optimized pulse sequenceτ opt is reported in Fig. 2(a) together

with the distribution of the static excitations [Fig. 2(b)].

For completeness, the behavior of the cost functionΨopt
k along the iterative optimization process
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is shown in Fig. 3, while the patterns at the first (|h| = 1) and the second (|h| = 2) harmonics

are shown in Fig. 4(a) and Fig. 4(b), respectively.

The second test deals with a square array withN × M = 10 × 10 elements located on the

same grid of the previous example. In this case, thestaticelement excitations are uniformly-

distributed:αmn = 1, ∀(m, n). The array factor ath = 0 can be expressed either through (5)

or, assuming theseparable distributioncondition for the dynamic excitations, as the product of

the array factors of two linear arrays ofM andN elements along thex andy axes, respectively

AF0(θ, φ) =
M−1∑

m=0

αmτmejβxmsinθcosφ
N−1∑

n=0

αnτnejβynsinθsinφ. (14)

Moreover, the following relationships hold true

αmτm =
αm0τm0

α00τ00

, αnτn =
α0nτ0n

α00τ00

(15)

m = 0, ..., M − 1 andn = 0, ..., N − 1.

The number of unknowns in the non-separable case [Eq. (5)] isequal toU = 25 (i.e., a quarter

of the total number of elementsL = 100), while the separable case [Eq. (14)] considers only

U = 10 variables. As regards the optimization, a swarm ofS = 15 particles has been used with

a maximum number of iterations equal toK = 1000. Moreover, the constraint on the sideband

level has been set tõSLL = −20 dB.

At the end of thePSO-based optimization, the patterns in Fig. 5(a) and Fig. 5(b) have been

synthesized for the non-separable case (NSD) and the separable one (SD), respectively. The

level of the sidelobes is equal toSLLNSD = −19.6 dB andSLLSD = −19.4 dB, respectively.

Moreover, the secondary lobes behave differently (Fig. 5).As expected, higher levels verify

along the orthogonal axis of the array (i.e., thex andy axes) in correspondence with the sepa-

rable distribution [Fig. 5(b)]. On the contrary, the energy wasted outside the main lobe is more

uniformly-distributed within the visible range in Fig. 5(a).

The optimized time-sequences are shown in Fig. 6. More in detail, Figure 6(a) shows that9

among25 elements are switched-off, while theswitch-on timesof the separable distribution

[Fig. 6(b)] satisfy (15).

Thanks to the larger number of degrees of freedom (UNSD = 25 vs. USD = 9), the power losses
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in theSBRs result lower than3% (i.e.,PSBR = 2.8%), while they rise toPSBR = 11.1% for

the pattern synthesized with the optimized separable distribution. The non-negligible reduction

of PSBR has also a positive effect on theSBLs of the harmonic radiations. Figure 7 shows the

patterns generated by the pulse sequence in Figs. 6(a)-6(b) at the first (|h| = 1) [Figs. 7(a)-(b)]

and the second (|h| = 2) [Figs. 7(c)-(d)] harmonic terms. TheSBLs of the patterns generated

optimizing UNSD = 25 elements [Figs. 7(a)-(c)] are much lower than those obtained when

USD = 10 [Figs. 7(b)-(d)]. More specifically,SBL
(1)
NSD = −31.8 dB vs. SLL

(2)
SD = −20.2 dB

andSBL
(1)
NSD = −33.1 dB vs. SLL

(2)
SD = −22.9 dB. For completeness, the values of the

SBLs untilh = 20 are reported in Fig. 8.

As far as the iterative minimization is concerned, the convergence has been yielded in the sepa-

rable case only after226 iterations, while the maximum number of iterations (K = 1000) have

been necessary otherwise to get the final solution because ofthe wider solution space to be

sampled during the optimization.

4 Conclusions

In this paper, the minimization of the power losses in time-modulated planar arrays has been

carried out by means of an effectivePSO-based optimization strategy thanks to the definition

of an analytical closed-form relationship that allows a simple and complete computation of

the power losses in the infinite sideband radiation patterns. The obtained results have shown

the effectiveness of the proposed method as a reliable alternative to other approaches aimed at

optimizing theSBLs at the first harmonic terms. The use of either separable and non-separable

coefficient distributions has been also analyzed to point out that the sideband radiations can

be effectively reduced exploiting a larger number of degrees of freedom, but at the cost of an

increased computational burden.

Appendix

The solution of the integral in Eq. (9) is here derived.
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The integral can be rewritten as

I =
∫ π

0
Iθsinθdθ (16)

where

Iθ =
∫ π

−π
ej(acosφ+bsinφ)dφ (17)

beinga = βsinθ(xm − xr) andb = βsinθ(yn − ys). By considering the Euler relationships

acosφ + bsinφ = a

(
ejφ + e−jφ

)

2
+ b

(
ejφ − e−jφ

)

2j
=

√
a2 + b2sin

[
φ + atan

(
a

b

)]
(18)

and after simple mathematical manipulations, it can be proved that

Iθ =
∫ π

−π
ej

√
a2+b2 sin[φ+atan( a

b )]dφ (19)

whose closed-form solution in terms of Bessel functions turns out to be [21]

Iθ = 2πJ0(
√

a2 + b2). (20)

Therefore, Equation (16) reduces to

I = 2π
∫ π

0
J0(

√
a2 + b2)sinθdθ (21)

or in its explicit form [22]

I = 4π
sin

(
β

√
(xm − xr)2 + (yn − ys)2

)

(
β

√
(xm − xr)2 + (yn − ys)2

) . (22)
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FIGURE CAPTIONS

• Figure 1. Circular Aperture(N = M = 20, L = 316, Taylor [19] SLL = −30 dB,

n̄ = 6) - Normalized power pattern at the carrier frequency (h = 0).

• Figure 2. Circular Aperture(N = M = 20, L = 316, Taylor [19] SLL = −30 dB,

n̄ = 6) - Distribution of (a) the optimized switch-on timesτ opt and (b) the static element

excitations.

• Figure 3. Circular Aperture(N = M = 20, L = 316, Taylor [19] SLL = −30 dB,

n̄ = 6) - Behavior of the cost function terms during the iterativePSO-based optimization.

• Figure 4. Circular Aperture(N = M = 20, L = 316, Taylor [19] SLL = −30 dB,

n̄ = 6) - Normalized power patterns at (a) the first (h = 1) and (b) the second (h = 2)

harmonics.

• Figure 5. Rectangular Aperture(N = M = 10, L = 100, αmn = 1) - Normalized

power patterns at the carrier frequency (h = 0) for (a) the non-separable case and (b) the

separable one.

• Figure 6. Rectangular Aperture(N = M = 10, L = 100, αmn = 1) - Distribution of the

optimized switch-on timesτ opt for (a) the non-separable and (b) the separable cases.

• Figure 7. Rectangular Aperture(N = M = 10, L = 100, αmn = 1) - Normalized

power patterns at (a)(b) the first (|h| = 1) and (c)(d) the second (|h| = 2) terms in

correspondence with (a)(c) theNSD case and (b)(d) theSD one.

• Figure 8. Rectangular Aperture(N = M = 10, L = 100, αmn = 1) - Behavior of the

sideband levels,SBL(h), h ∈ [0, 20], of the solutions synthesized in theNSD and the

SD cases.
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Fig. 1 - L. Poli et al., “Analysis and Optimization of the Sideband Radiations ...”
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Fig. 2 - L. Poli et al., “Analysis and Optimization of the Sideband Radiations ...”
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(a)

(b)

Fig. 4 - L. Poli et al., “Analysis and Optimization of the Sideband Radiations ...”
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(a)

(b)

Fig. 5 - L. Poli et al., “Analysis and Optimization of the Sideband Radiations ...”
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Fig. 6 - L. Poli et al., “Analysis and Optimization of the Sideband Radiations ...”
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Fig. 7 - L. Poli et al., “Analysis and Optimization of the Sideband Radiations ...”
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