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Abstract. Propositional reasoning (SAT) is an essential part of many
reasoning tasks. Many problems in computer science can be compiled to
SAT and then effectively decided using state-of-the-art solvers. Alterna-
tively, if reduction to SAT is not feasible, the ideas and technology of
state-of-the-art SAT solvers can be useful in deciding the propositional
component of the reasoning task being considered. This last approach
has been used in different contexts by different authors, many times by
authors of this paper. Because of the essential role played by the SAT
solver, these decision procedures have been called “SAT-based”. SAT-
based decision procedures have been proposed for various logics, but
also in other areas such as planning. In this paper we present a unify-
ing perspective on the various SAT-based approaches to these different
reasoning tasks.

1 Introduction

Propositional reasoning (SAT) is an essential part of many reasoning tasks. Many
problems in computer science can be compiled to SAT and then effectively solved
using state-of-the-art solvers, see, e.g., [Kautz and Selman, 1992, Kautz and
Selman, 1996, Biere et al., 1999]. Alternatively, if reduction to SAT is not feasible,
the ideas and technology of state-of-the-art SAT solvers can be useful in deciding
the propositional component of the reasoning task being considered. This last
approach has been used in different contexts by different authors, many times
by authors of this paper. Because of the essential role played by the SAT solver,
it has been called “SAT-based” in [Giunchiglia and Sebastiani, 1996b]. That
paper is about decision procedures for modal logics. The same topic is dealt
with in [Giunchiglia and Sebastiani, 1996a, Giunchiglia et al., 1998, Giunchiglia
et al., 2000b]. SAT-based decision procedures for decidable fragments of first
order logic are presented in [Armando and Giunchiglia, 1989, Armando and



Giunchiglia, 1993]. Finally, SAT-based decision procedures have been proposed
in temporal reasoning [Armando et al., 1999] and planning [Giunchiglia et al.,
2000b, Giunchiglia et al., 2001, Wolfman and Weld, 1999).

In this paper, we present a unifying perspective on the various SAT-based
approaches to the different reasoning tasks previously considered. In particular,
in Section 2 we present the common ideas of all these various works. Then
in Section 3 we show some optimizations to the basic procedures described in
Section 2. Finally, we review the cited works on SAT-based decision procedures,
presenting them in the context of the unifying framework previously introduced.
We conclude the paper in Section 5, with some final remarks.

2 SAT-Based Decision Procedures: a Unifying
Perspective

In the following, we consider an arbitrary logic characterized as a pair £ = (L, T')
where

— L is the language, i.e., a set of formulae in some formal language which
includes the standard propositional connectives, i.e., the unary connective
-, the binary connective D, and the k-ary (k > 0) connectives V, A, =; and

— T is a theory, i.e. a subset of the language closed under propositional rea-
soning and the additional rules specific of the logic at hand.

We also assume that the logic is consistent, i.e., that for any formula ¢ in the
language L, it is not the case that both ¢ and —p belong to T'; and decidable in
the standard sense, see, e.g., [Dreben and Goldfarb, 1979)].

In this paper we focus on the following problem:

Given a logic £ = (L,T) and a formula ¢ € L, is the formula £-
consistent? That is, does = belong to L\ T'?

The decidability of the logic ensures that the task of deciding the £-consistency
of any given formula in L can be accomplished.

In the following, an atom of L is a formula whose main symbol is not a
propositional connective, i.e., is not in {—,D,V,A,=}. A literal is an atom or
the negation of an atom. An assignment p is a finite conjunction of literals such
that it is not the case that both 9 and — are conjuncts of u. An assignment
p satisfies a formula ¢ if the formula g O ¢ can be proved by propositional
reasoning. We write u(A) = T as an abbreviation for “A is a conjunct of u”,
and pu(A) = L as an abbreviation for “—A is a conjunct of p”.

The basic idea behind the SAT-based approach to determine the £-consistency
of a formula ¢ is very simple and consists of the following two steps:

1. generate a (possibly partial) assignment which propositionally satisfies the
formula, and then
2. test that the generated assignment is indeed consistent w.r.t. L.



Given that the generation step involves propositional reasoning only, it is pos-
sible to use state-of-the-art SAT solvers for generating assignments. Because of
this, we inherit the many optimizations and heuristic strategies (improving the
average case behavior) which are implemented in current SAT solvers. Notice
that in principle any set S of assignments satisfying ¢ can be generated and
tested. However, in all the SAT-based procedures, the main focus has been on
the generation of complete and irredundant sets of assignments. A set S of as-
signments is

— complete for a formula ¢, if ¢ is propositionally logically equivalent to the
disjunction of the assignments in S; and

— irredundant for a formula o, if for any assignment p € S we have that S\ {u}
is not complete.

Completeness is required to have correct and complete SAT-based procedures.
Irredundancy is very important too, as it improves efficiency in many cases.

Several algorithms and techniques have been proposed to solve the satis-
fiability problem in propositional logic (see, e.g., [Gu et al., 1997]). Among
this variety of approaches we have chosen the Davis-Logemann-Loveland (DLL)
method [Davis et al., 1962] to develop our decision procedures. The reasons for
this choice are manyfold:

— DLL is a simple and elegant algorithm whose implemented variants proved
to be very effective in attacking hard SAT instances;

— since most state-of-the-art solvers are based on DLL, there is a lot of knowl-
edge on data structures and algorithms that we can inherit in our setting for
free;

— even if DLL is usually tuned to find a single satisfying assignment, it is rather
easy to modify it to generate a complete and irredundant set of assignments.

Examples of state-of-the-art SAT solvers based on DLL are BOHM [Buro and
Buning, 1992, Béhm and Speckenmeyer, 1996, SATz [Li and Anbulagan, 1997],
RELSAT v2.0 [Bayardo, Jr. and Schrag, 1997], SATO v3.2 [Zhang, 1997], SIM [Giun-
chiglia et al., 2001], and—more recently—CHAFF [Moskewicz et al., 2001].

A basic DLL implementation for SAT-based reasoning in outlined in Figure 1.
The conventions that we use to present the algorithms are those of [Cormen et
al., 1998], described at pages 4 and 5. In particular, variables (e.g. I', S, I)
are treated as pointers to the data structures representing the corresponding
entities. If a pointer does not refer to any object, we give it the special value
NIL. Stacks are considered a primitive data type and are accessed with the usual
constant-time primitives PUSH and Pop, while the function EMPTY builds and
returns an empty stack. The primitive ASSIGN(I", ) returns the set of clauses
I' minus all the clauses in which literal [ occurs, and with all the occurrences of
its negation, I, removed. Finally, we assume that T, F, LA, LB, and HR are five
pairwise distinct constants, each one being distinct from NIL. In particular, T
and F represent logical truth and falsehood, respectively.

Function DLL-SOLVE takes a formula ¢ as input and returns T (F) exactly
when ¢ is satisfiable (unsatisfiable, resp.). Function DLL-SOLVE converts ¢ into



DLL-SOLVE(yp) Is-CONSISTENT(SS)

1I' + CNF-CONVERT(yp) 1 p < ASSIGNMENT-IN(S)

2§ «+ EmPTY( ) 2if L-CONSIST(u) = T then

3 return DLL-SoLVE-CNF(I", S) 3 return T

4 else

DLL—SOLVE—CNF(F, S) 5 return LB

1 next < LA

2 repeat HEeurisTIC(I, §)

3 case next of 1 Choose a literal [ in I"

4 LA : next < LOOK-AHEAD(I', S) 2.5 « PusH(S, (I,HR))

5 HR : next < HEURISTIC(I", S) 3T + AssigN(I, 1)

6 LB : next < LOOK-BACK(I", S) 4return LA

7 until nezt € {T, F}

8 return next Look-Back(I', §)

lrepeat

Look-AHEAD(I, §) 2 (I,l,r) «+ Pop(S)

1 for each ! deduced from I" do 3until r = HR

2 S« PusH(S, (I,l,LA)) 4if length[S] = 0 then

3 I' «+ AssigN(I, 1) 5 returnF

4 if an empty clause is in I" then 6 else

5 return LB 7 8 « Pusu(S, (I,i,LB))

6if I' is not empty then 8 I « AssigN(I, 1)

7 return HR 9 return LA

8 else

9 return Is-CONSISTENT(.S)

Fig. 1. Implementation of the DLL method for SAT-based reasoning.

an equi-satisfiable clausal normal form I' (line 1) using the function CNF-
CONVERT. We do not discuss here CNF-CONVERT and the issues related to
conversion in clausal normal form. More details can be found in [Giunchiglia et
al., 2000b]. Here it is sufficient to say that the conversion can be done in such
a way that |I'| is in O(|¢|) where |¢| is the size, i.e. the number of symbols of
¢. Function DLL-SOLVE also initializes the search stack S (line 2) and then
calls DLL-SoOLVE-CNF to determine the satisfiability of I'. The elements of the
search stack are triples of the form (I',l, flag), where I' is a set of clauses, [ a
literal, and flag € {T,F,LA,LB, HR}. Function ASSIGNMENT-IN takes as input
the search stack S and returns a conjunction of the literals stored in it, i.e.
A (= 1,—)es l. Function DLL-SOLVE-CNF solves I by iteratively applying one of
the following steps:

LoOOK-AHEAD to deduce new truth assignments from I'. LOOK-AHEAD keeps
simplifying I' (for instance, by exploiting the unit clauses in it) until an
inconsistency arises or a fix point is reached. In case of inconsistency (line
4), the return value of LOOK- AHEAD is LB, meaning that the main loop has
to call Look-BACK. In case of a fix point, we have two possibilities: if there



are still clauses in I', then the return value is HR; if I' is empty, then all the
clauses have been satisfied and the function IS-CONSISTENT is invoked.

HEURISTIC to decide the next truth assignment and to enforce it; the decision
is taken by considering I and/or possibly some I" obtained from I' by
tentatively assigning truth values to literals.

LoOK-BACK to undo truth assignments, until a point from which the search
can continue without loosing solutions. If there is no such a point (i.e., the
search tree is complete), then LOOK-BACK concludes that the initial formula
cannot be satisfied.

Since I and S are pointers, the actions LOOK-AHEAD, LOOK-BACK, and HEURIS-
TIC all update the input formula and stack of DLL-SOLVE-CNF in various ways
during the repeat ...until loop (lines 2-7). Each action modifies I" and S and
returns the next action to be taken which is stored in next (lines 4-6 in the
program). LA, LB, HR, T, and F are the possible values taken by nezt, meaning
that the next action must be LOOK-AHEAD, LOOK-BACK, HEURISTIC, or that
of stopping the loop respectively. In the latter case, if next is assigned T then
I' is satisfied, otherwise (i.e. if next is assigned F) I' is unsatisfiable. When I"
is satisfiable, the corresponding satisfying truth assignment p can be extracted
from S. This task is accomplished in Figure 1 by Is-CONSISTENT which extracts
u from S (lines 1-3) and then calls the consistency test L-CONSIST specific for
the logic at hand. Notice that in the case of mere propositional satisfiability
Is-CONSISTENT simply returns T.

3 Optimizations

The simple generate and test strategy implemented by the SAT-based procedure
outlined in Section 2 can be improved in several ways. Here we present two
optimizations which often lead to dramatic improvements in the performance of
the procedure.

3.1 Adding Constraints to the Input Formula

A key feature of the SAT-based procedure presented in Section 2 is that all the
consistency checks are carried on-line. An alternative is to preprocess the formula
and look for sets of literals in the input formula that are £-inconsistent.! If S is
one of such sets, the clause \/; s can be added to the formula at hand without
affecting its L-consistency. This simple optimization can be very effective as
shown by the following example.

Let £ be the quantifier-free fragment of first-order logic with equality and
let ¢ be a formula of the form

(=yA-y=z)A... (1)

! It is worth pointing out that this check can be carried out by any correct, even
though not necessarily complete, procedure.



All the propositional assignments generated by DLL-SOLVE are then rejected
by L-ConsiST. The useless generation of many propositional assignments is
due to the failure of DLL-SOLVE to recognize that the truth values of x =
y and y = z are not independent. The role of the constraints added by the
proposed optimization is to rule out such assignments. For instance, by adding
the constraint

r=yVy=z (2)

to (1) we obtain a formula which is readily found unsatisfiable by DLL-SOLVE.

In the context of SAT-based procedures, the idea of adding constraints has
been introduced in [Armando et al., 1999)]. In that paper, all pairs of mutually
inconsistent inequalities (i.e., z —y < 0 and x — y > 5) are detected a priori at
a reasonable cost, and for each such pair a constraint is added. As a result, the
search is greatly reduced. The idea can be generalized to n-uples of inconsistent
inequalities, but only until the cost of the preprocessing remains sustainable.

The idea of constraints generalizes the pre-processing technique introduced
in [Giunchiglia and Sebastiani, 1996a), and since then used in all the subsequent
papers on SAT-based procedures for modal logics. In that paper, the input for-
mula is initially pre-processed by taking into account standard properties of the
propositional connectives, e.g. associativity and commutativity. Thus, for exam-
ple, the formula

O(y1 Vah2) A=O(h2 Vh1) A .. (3)

is translated into

O(¢1 V 4pa) A-O(1h1 Vo) A ...

and thus easily recognized as unsatisfiable. In the current approach, we can
detect the L-inconsistency of the set of formulae:

{O®1 V 4ha), ~O(th2 V 91) }

and this would add the constraint

—0(¢1 V 4h2) VO V ¢1)

to (3) thereby leaving us with a trivially inconsistent formula. As a final remark,
it is worth emphasizing that the strategy here presented is more general than
pre-processing because it allows us to rule out assignments in cases where pre-
processing is of no help. For example, consider the formula

O(t1 V 9P2) A=D1 V h2 V 93).

Using our strategy, by simple syntactic manipulations, we can build and add the
following constraint:

—0(31 Vb)) V O(3h1 Vb2 V 4h3)



Look-AHEAD(I, S) HeurisTic(T, S)
1for each [ s.t. I A AssiaNMENT-IN(S) 1 Choose a literal I in I’

falsifies I" with reason r do 2 S + PusH(S, (I',l,NIL))
2 S « PusH(S, (I,1,7)) 3T + AssiGN(I, 1)
3 I« AssigN(I, 1) 4 return LA

4 if aclause r' € I’
has become empty then

5 S « PusH(S, (NIL,NIL, 7)) Look-Back(I', §)

6 return LB 1{—,—,r) < Pop(S)

7if I' is not empty then 2 wr < INIT-REASON(r)

8 return HR 3 repeat

Jelse 4 (Il,ry « Pop(S)
10 7" « Is-CONSISTENT(S) 5 wr < UPDATE-REASON(uwr, [, r)
11 if 7" # NIL then 6 until » = NIL and

12 $ « PusH(S, (NI, NIL, 7)) Is-IN-REASON(1, wr)
13 return LB 7if length[S] > 0 then

14 else 8 S « Pusu(S, (I}, wr))
15 return T 9 I « AssigN(T, 1)

10 return LA

Is-CONSISTENT(S) 11 else

1p + ASSIGNMENT-IN(S) 12 return F

2if L-CoNsI1sT(u) = T then

3 return NIL

4 else

5 return L-EXTRACT-REASON(p)

Fig. 2. Modifying DLL-SOLVE to introduce CBJ.

3.2 Introducing CBJ and Learning

Since the basic DLL algorithm of Section 2 relies on simple chronological back-
tracking, it is not infrequent for DLL to keep exploring a possibly large subtree
whose leaves are all dead-ends. This phenomenon occurs also when the formula
is satisfiable, but some choice performed way up in the search tree is responsi-
ble for the constraints to be violated. A solution borrowed from the constraint
satisfaction literature (see, e.g., [Prosser, 1993]) is to jump back over the choices
that do not belong to the reason for the failure. Intuitively, if u is an assignment
which falsifies the input formula ¢, then a reason v for p is a subset of the liter-
als in p such that any assignment extending v falsifies . Reasons are initialized
as soon as an inconsistency is detected, and updated while backtracking. The
corresponding technique is widely known as (Conflict-Directed) Backjumping
(CBJ). In Figure 2 we show how to modify the functions LOOK-AHEAD, Is-
CONSISTENT, HEURISTIC, and LOOK-BACK presented in Figure 1 to introduce
CBJ. The elements of the search stack are now triples of the form (I",1, r), where
I' is a set of clauses, [ a literal, and r a reason.

Looking at Figure 2 we see that each deduction carried out by LOOK- AHEAD
is now justified by a reason (line 1). For example, if a literal [ occurs in a unit



clause, then it is assigned the truth value T and the reason for such an assignment
is the set of literals that caused the clause to become unit, see, e.g., [Prosser,
1993]. Notice that LOOK-AHEAD records the reasons of each deduction using
the search stack S (line 2), but also the reason for a propositional dead-end
(line 5) and the possible failure of the Is-CONSISTENT test (line 12). All such
reasons are used by the function LOOK-BACK in order to identify the choices
performed by HEURISTIC that led to the dead-end in the search. Notice that the
algorithms shown in Figure 2 smoothly combine CBJ for propositional failures as
well as for failures originated by Is-CONSISTENT. In this case, the assignment in
S propositionally satisfies I', so triggering propositional backjumping would lead
to incorrect results. This is why we need an additional function L-EXTRACT-
REASON in Is-CONSISTENT to extract the reason for the failure of y in the
specific logic at hand. The function L-EXTRACT-REASON has to return a subset
of the literals in the current assignment which is not L-consistent. In principle
any such a set can be returned, e.g. the set of literals in u. However, returning
a smaller subset has the advantage of potentially enabling backjumping.

CBJ can be very effective in “shaking” the solver from regions where no
solutions can be found. However, since the reasons of the conflict are discarded
as soon as it gets mended, the solver may get repeatedly stuck in such regions.
To escape this pattern, some sort of global knowledge is needed: the reasons of
the conflicts may be turned into additional constraints (i.e., clauses) that have
to be satisfied. As long as we have a function that turns reasons into clauses, it
is quite easy to implement learning on top of DLL with CBJ. With reference to
Figure 2, it is sufficient to add an instruction that converts the working reasons
wr created inside LOOK-BACK into additional constraints. In this way, we end
up adding all the clauses corresponding to the reasons of the discovered conflicts
and the same mistake is never repeated. On the other hand, this may cause an
exponential blow up of the size of the formula. In practice, it is necessary to
introduce some limit to the number of stored clauses, either by dropping some
of the clauses that should be learned, or by periodically removing some of the
learnt clauses. For more details on learning see, e.g., [Giunchiglia et al., 2001].

CBJ and learning have been proposed and successfully used in SAT-based
procedures for planning [Wolfman and Weld, 1999, Castellini et al., 2001]. In
particular, [Wolfman and Weld, 1999] proposes a SAT-based procedure for clas-
sical planning with resources, while [Giunchiglia, 2000, Castellini et al., 2001]
present a SAT-based procedure for conformant planning in nondeterministic do-
mains, see the respective papers for more details. It is worth mentioning that
both in [Wolfman and Weld, 1999] and in [Castellini et al., 2001] the function
L-EXTRACT-REASON returns a minimal subset of the current assignment whose
extensions are bound to fail. By returning such a subset, the hope is to maximise
the effects of CBJ and learning.



4 SAT-Based Decision Procedures: Examples

In this Section we briefly review some specific examples of SAT-based decision
procedures for quantifier-free decidable fragments of First-Order Logic (Subsec-
tion 4.1), temporal reasoning (Subsection 4.2) and various modal logics (Subsec-
tion 4.3).

4.1 Quantifier and Function-Free FOL

In [Armando and Giunchiglia, 1989, Armando and Giunchiglia, 1993], a SAT-
based decision procedure for the quantifier- and function-free fragment of First-
Order Logic (FOL) is presented. The language may thus have individual con-
stants and variables as well as predicate symbols of any arity.

Let ¢ be formula in this language and let p be an assignment returned by
DLL-SoLVE(yp). If ¢ does not contain equalities, the existence of such an assign-
ment g is sufficient for the L£-consistency of . Thus, in this case, it is sufficient
for L-CONSIST to return T. But if ¢ contains equalities, then L-CONSIST must
determine the satisfiability of p w.r.t. the properties of equality. More in detail,
let C be the set of terms occurring in ¢ and let ~ be the smallest equivalence
relation over C such that if u(c; = ¢2) = T then ¢; ~ ¢y. Similarly, if A is the
set of atomic subformulae occurring in ¢ then let = be the smallest equivalence
relation over A such that if P(ry,...,r,) € A, P(s1,...,8,) € A, and r; ~ s; for
i=1,...,n, then P(ry,...,m,) = P(s1,-..,8,). An assignment p is satisfiable
if and only if it is not the case that there are two terms c¢;,co € C such that
ey = ¢2) = L and ¢; ~ ¢a, or there exist atomic formulae A;, As € A such that
u(Ay) =T, p(A2) = L, and A; = Ap. With reference to Figure 1, L-CONSIST

1. looks for the equalities ¢; = ¢ such that u(c; =¢3) =T,
2. builds the data structures representing ~ and 2, and
3. detects inconsistencies by exploiting the strategy suggested above.

The above procedure can be readily generalized to a SAT-based procedure for the
quantifier-free fragment of FOL with uninterpreted function symbols by using a
standard congruence closure algorithm (see, e.g., [Nelson and Oppen, 1980]) to
perform the consistency checks.

4.2 Linear Constraints over the Reals

In [Armando et al., 1999], the logic admits the function constant “—” and the
domain of interpretation is fixed to the set of the real numbers. Formally, a
temporal constraint is a linear inequality of the form z — y < r, where z and y
are variables ranging over the real numbers and r is a real constant. A disjunctive
temporal constraint is a disjunction of the form ¢; V --- V ¢, where ¢1,...,¢,
are temporal constraints and n > 1. A disjunctive temporal problem (DTP) is
a finite set of disjunctive temporal constraints to be intended conjunctively. A
temporal assignment is a function which maps each variable into a real number. A
temporal assignment o satisfies an assignment g if, for each temporal constraint
r—y<r,



— if y(xz —y <r) =T then it is indeed the case that o(z) —o(y) <,
— if pw(z —y < r) = L then it is indeed the case that o(z) — o (y) > r.

An assignment is satisfiable iff there exists a temporal assignment satisfying it.
In the literature, the problem of determining whether an assignment is satis-
fiable or not is called a Simple Temporal Problem (STP). There are a num-
ber of procedures for checking the satisfiability of an STP, see, e.g., [Chleq,
1995]. The SAT-based decision procedure for checking the satisfiability of DTPs,
TSAT, was implemented on top of Bohm’s SAT solver [Buro and Buning, 1992,
Bohm and Speckenmeyer, 1996]. TSAT proved to be more effective than the other
procedures presented in the literature.? One of the reasons is that the semantic
branching characteristic of DLL-SOLVE is superior (see also [Oddi and Cesta,
2000]) to the syntactic branching performed by tableau-based procedures pro-
posed in [Stergiou and Koubarakis, 1998]. Moreover, since in TSAT consistency
checks are performed by an optimized implementation of the simplex method,
the system can efficiently handle temporal constraints involving the “—” and
the “4” function symbols, multiplication by constants, and any finite number of
variables, whereas the procedures proposed in [Stergiou and Koubarakis, 1998]
and in [Oddi and Cesta, 2000] can only deal with the temporal constraints as
defined above. Finally, we point out that a SAT-based procedure similar to TSAT
is at the basis of the planning system described in [Wolfman and Weld, 1999,
which is implemented on top of RELSAT [Bayardo, Jr. and Schrag, 1997].

4.3 Modal Logics

SAT-based decision procedures for modal logics have been proposed in [Giun-
chiglia and Sebastiani, 1996a, Giunchiglia and Sebastiani, 1996b, Giunchiglia et
al., 2000b], and have been comparatively evaluated in [Giunchiglia et al., 2000a,
Giunchiglia et al., 2000b]. Moreover, in [Giunchiglia and Sebastiani, 1996a, Giun-
chiglia and Sebastiani, 1996b] the authors clearly pointed out the potentials of
the SAT-based approach.

In the modal logics considered in the above cited papers, the language is
extended by allowing denumerately many (modal) unary operators O, ..., O".
Depending on the specific properties of each operator, different logics are ob-
tained, from the weakest classical modal logic E, to the normal modal logic
K [Chellas, 1980]. Decision procedures for 8 modal logics have been proposed
in [Giunchiglia et al., 2000b]. Here, for the sake of conciseness, we restrict our
attention to the modal logics E and K.

Consider an assignment p = Ai(A;0%u;) A Ai Aj =O°Bj; Ay where v is a
propositional formula.

— In the modal logic E, p is satisfiable if for each pair 0w, —|E|"ﬂz’.k of con-
juncts in p, the formula a;; = -}, is satisfiable.

2 The experimental results reported in [Armando et al., 1999] show that TSAT performs
up to 2 orders of magnitude less consistency checks than the best procedure presented
in [Stergiou and Koubarakis, 1998].



L-ConsisT(A;Oa; A Aj—-OB; A7) L-ConsIsT(A;Oa; A A;—-OB; A )

1 for each conjunct O8; do 1 for each conjunct O8; do

2 for each conjunct Oa; do 2 if not DLL-SOLVE(A;a; A —8;)
3 if not DLL-SOLVE(a;; = -f3;) 3 then return r

4 return then F 4return T

Sreturn T.

Fig. 3. L-ConsIsT for the modal logics E (left) and K (right).

!

— In the modal logic K, u is satisfiable if for each conjunct —Diﬂij

formula Aja;; A —=B;; is satisfiable.

in pu, the

Thus, in F and in K the problem of determining whether an assignment is
satisfiable or not boils down to the problem of determining the satisfiability of
“simpler” formulae. Simpler, because the number of modal operators gets re-
duced. Still, modal operators can be nested, as any standard connective. Thus,
in order to determine the satisfiability of these simpler formulae, L-CONSIST
calls the DLL-SOLVE procedure. As a result, we have two mutually recursive
procedures. The fact that at each call from L-CONSIST to DLL-SOLVE the num-
ber of modal operators diminishes guarantees termination of the whole process.
Definitions of the L-CONSIST procedure for £ and K are sketched in Figure 3,
in case there is a single modality 0. The extension to multiple modalities is
straightforward.

Notice that the procedures for E and K of Figure 3 are naive and suffer from
the fact that consistency checks of the same set of formulae can be repeated
many times. A way out of the problem which has been proved very effective is the
incorporation of caching mechanisms. For F, we check the consistency of pairs of
formulae, and thus caching can be accomplished using a matrix, see [Giunchiglia
et al., 2000b). For K, we check the consistency of sets of formulae, and thus
more complex data structures, such as bit matrices, are needed [Giunchiglia and
Tacchella, 2001].

5 Conclusions

In this paper we have provided a unifying perspective of a family procedures for
automated reasoning based on the common idea of combining state-of-the-art
SAT-solvers with reasoning specialists for the theory at hand. To substantiate our
claim, we have shown that a variety of SAT-based procedures developed in the
last decade (namely decision procedures for quantifier-free decidable fragments
of First-Order Logic, for temporal reasoning, and for several modal logics) can
be readily recast in our framework.
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