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Ray Propagation in Non-Uniform Random Lattices

Anna Martini∗, Massimo Franceschetti†, Andrea Massa∗

Abstract

The problem of optical ray propagation in a non-uniform random half-plane lattice is con-
sidered. An external source radiates a planar monochromatic wave impinging at an angle θ
on a half-plane random grid where each cell can be independently occupied with probability
qj = 1 − pj , j being the row index. The wave undergoes specular reflections on the occupied
cells and the probability of penetrating up to level k inside the lattice is analytically estimated.
Numerical experiments validate the proposed approach and show improvement upon previous
results that appeared in the literature. Applications of such a methodology are in the field
of remote sensing and communications, where estimation of the penetration of electromagnetic
waves in disordered media is of interest.

1 Introduction

We study the penetration of a ray propagating in a non-uniform random medium. We consider
the canonical scenario of an external source radiating a plane wave impinging at an angle θ on a
half-plane random grid where each cell can be independently occupied with probability qj = 1− pj,
j being the row index, and we ask how deep can the ray travel inside the medium before being
reflected back into the empty half-plane, see Figure 1. Assuming grid cells to be large with respect
to the wavelength, the propagation mechanism is described by means of geometrical optics and
only specular reflections by occupied cells are considered. We analytically estimate the probability
of penetrating up to level k inside the lattice before escaping back into the empty half-plane, and
validate the result with numerical experiments for different obstacles’ density profiles. We also
compare our solution with the one given in [1].

The authors in [1] considered the same canonical problem described above in the case the
probability q = 1 − p does not depend on the row index j. Such uniform two-state random grid
is known as percolation lattice, see [2, 3]. In this context, lattice cells sharing a common side are
called neighbors. Neighbors of occupied sites are called occupied clusters, and similarly neighbors
of empty sites empty clusters. One peculiar feature of the percolation lattice is that there exists a
threshold probability pc ≈ 0.59275 at which the lattice appearance suddenly changes: for p > pc

an empty cluster of infinite size that spans the whole lattice forms, and we say that the model
percolates; while for p < pc all empty clusters are of finite size, and the model does not percolate.
The authors in [1] were inspired by the possibility of modeling built-up urban areas as percolating
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Figure 1: Example of ray propagation in a random lattice. Left-hand side: the ray is reflected back in the
above empty half-plane before reaching level k. Right-hand side: the ray goes beyond level k.

lattices with p > pc, and studied the ray propagation process inside such lattices. Our present paper
was motivated by their interesting results.

Our formulation improves the one in [1] in several ways: (i) it is not restricted to the uniform
distribution of empty cells, but it describes propagation in random lattices with general occupation
profiles qj; (ii) in the special case when the occupation profile qj = q for all j, our solution is more
accurate than that in [1] for a wide range of incidence angles and occupation probabilities; (iii) even
though compared to an extension of the method in [1] to non-uniform lattices, it provides more
accurate results; (iv) the proposed analytical derivation is simpler.

The formula presented in [1] for the probability Pr{0 7−→ k} that the propagating ray reaches
a grid level k inside the lattice before escaping back into the empty half-plane was obtained using
martingale theory [4] and was given as a function of the occupation probability q and of the imping-
ing angle θ. Numerical experiments showed that such formula requires θ to be not so far from 45o

and the lattice to be not too sparse, nor too dense, to provide a good approximation of the sought
probability distribution. Our simpler derivation assumes that the ray never crosses cells that it has
already encountered along its path. This allows to reduce the problem to a simple one-dimensional
random walk that does not depend on θ. Despite this simplification, our solution approximates very
well the sought probability in a wide range of θ and p values. We note that our assumption clearly
does not hold in the two limiting cases of θ → 90o, or θ → 0. In the first case, the ray tends to
revisit the same empty cells at each level of the lattice multiple times, and in the limit it does not
enter the lattice and Pr{0 7−→ k} becomes 0. In the second case, the ray tends to be reflected back
out of the lattice at the first hit on the horizontal face of an occupied cell and Pr{0 7−→ k} simply
tends to

∏k
j=1 pj. Moreover, if the lattice is dense of obstacles, it is more likely that the ray revisits

the same sequence of cells over and over. However, when θ is far from these two limiting values,
and the lattice is not too dense, it is reasonable to assume that new cells are encountered along
the path most of the time. Furthermore, high density lattices are of little interest in our context,
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due to the percolation phenomenon described earlier that inhibits propagation at high occupation
densities.

The case when the source is internal to the lattice and the distribution of occupied sites is
uniform is considered in [5, 6]. A different stochastic rays scenario where the obstacles are assumed
small compared to the wavelength, and to diffuse isotropically rather than reflect according to
Snell’s law, appeared in [7, 8]. All of the above works arose in the context of modeling propagation
of electromagnetic waves in urban areas, see [9, 10] for general surveys on this problem. Other
applications are in remote sensing and in optical devices, where estimation of the penetration of
waves in disordered media is of interest, see [11, 12, 13].

The remainder of the paper is organized as follows. In Section 2 the propagation model and
the mathematical derivation of Pr{0 7−→ k} are presented. Section 3 presents a solution extending
the method previously proposed in [1]. Section 4 provides numerical validation and a comparison
between the two approaches. Final comments and conclusions are drawn in Section 5.

2 Markov approach

Let us model the propagation environment by means of a half-plane infinite lattice of square cells
of unitary length. Each cell is either empty, with probability pj , or occupied, with probability
qj = 1−pj, j being the row index of the lattice, see Figure 1. The electromagnetic source is assumed
to be external to the lattice and it radiates a plane monochromatic wave impinging on the lattice
at a prescribed angle θ. Since the scatterers are assumed to be large compared to the wavelength
λ, wave propagation is modeled in terms of parallel rays reflected by the obstacles according to the
geometrical optics laws. Other electromagnetic interactions (i.e., refraction, absorption, diffraction
at the edges and the scattering due to the surface roughness) are neglected. As in [1], we consider
the problem of determining the probability Pr {0 7−→ k} that a ray reaches a prescribed level k
inside the lattice before being reflected back and escaping in the above empty half-plane. We focus
on the general case of a non-uniform random lattice where the density qj of the occupied cells
changes with the level index j. The homogeneous arrangement considered in [1] is a particular case
with qj = q = 1 − p at every lattice level.

We proceed by transforming the problem from a two-dimensional ray propagation problem into
a simple one-dimensional random walk problem, where the dependence on θ is lost. We formally
proceed as follows. First, we note that at each level the ray runs into one horizontal face of a square
cell, independently of θ, and in a number s of vertical faces proportional to θ (s = btan θcordtan θe).
Then, we observe that whenever the ray hits a vertical face of an occupied cell, it does not change
its vertical direction of propagation. Thus, focusing on the propagation depth it is as reflections on
vertical faces never occur. Assuming that the propagating ray never crosses cells that it has already
encountered along its path, then we consider propagation in the vertical direction occurring with
steps that are independent of each other.

Focusing on reflections on horizontal faces, we have that a ray proceeding into a generic level j
either changes direction of propagation, remaining in the same level, or it keeps the same direction
of propagation, entering a new level. The former event takes place with probability qj+1, if the ray
is traveling with positive direction, or with probability qj−1, if the ray is proceeding with negative
direction. Accordingly, the ray enters a new level with probability pj+1 or pj−1, depending on
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Figure 2: Markov chain. The ray propagation in the non-uniform random half-plane lattice is modelled as a
Markov process.

its direction of propagation. Furthermore, if the ray traveling in the positive direction changes
direction of propagation an even number of times before entering a new level, then the depth level
is increased by one, otherwise it is decreased by one. This situation is formally described by the
Markov chain [14] depicted in Figure 2, where states j+ and j− denote a ray crossing level j traveling
with positive or negative direction, respectively.

We now introduce the following notation. We write Pr{A 7−→ B ≺ C} to indicate the probability
a ray in state A reaches state B before going into state C. According to this notation and to the
Markov chain of Figure 2, the probability that a ray reaches a grid level k inside the lattice before
escaping back into the empty half-plane can be expressed as Pr{0+ 7−→ k+ ≺ 1−}. As a matter of
fact, when a ray reaches the state 1− it escapes from the grid, since there are no occupied horizontal
faces between level 1 and level 0. Moreover, a ray always enters a new level traveling in the positive
direction, therefore a ray always reaches state k+ before state k−.

We state our main result as follows,

Proposition 2.1.

Pr{0+ 7−→ k+ ≺ 1−} =
p1p2

1 + p1p2

k−3
∑

i=0

qk−i

pk−ipk−i−1

, k ≥ 1. (1)

In the above statement the following convention is used. Consider a generic summation
∑n

i=m f(i).
When m = n + 1 the value returned is 0, while for m > n + 1 the value returned is −

∑m−1
i=n+1 f(i).

Accordingly, in Proposition 2.1, the summation returns 0 for k = 2, and − q2

p2p1
for k = 1.

Before proving Proposition 2.1, some observations are appropriate. First of all, we note that
when propagation in uniform random lattices is considered our solution reduces to

Pr{0+ 7−→ k+ ≺ 1−} =
p2

(k − 2)q + 1
, k ≥ 1, (2)

which simplifies the previously proposed formula of [1], being independent from the incident angle
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Figure 3: Examples of propagating rays. Left-hand side: θ < 45o, the ray is more likely to travel back through
the same cells whenever a reflection occurs. Right-hand side: high density of scatterers, the ray tends to travel over
and over on the same sequence of cells.

θ. We also note that for very sparse or very dense lattices we have, as expected,

lim
q→0

Pr{0+ 7−→ k+ ≺ 1−} = 1, (3)

lim
q→1

Pr{0+ 7−→ k+ ≺ 1−} = 0. (4)

Finally, we note that our solution is derived assuming that the propagating ray never crosses
cells that it has already encountered along its path. Clearly this assumption does not hold whatever
value of θ and for all occupation profiles. When θ is far from 45o, the ray is more likely to travel
back through the same cells whenever a reflection occurs, see left-hand side of Figure 3. On the
other hand, when the obstacles density increases, the ray tends to travel over and over on the same
sequence of cells, see right-hand side of Figure 3. Accordingly, we expect the proposed solution to
be more accurate as the obstacles are more sparse and the incidence angle θ is closer to 45o. This
is confirmed by the numerical experiments reported in Section 4.

In order to prove Proposition 2.1 we now state and prove some preliminary lemmas.

Lemma 2.2.

Pr{(j − 1)+ 7−→ j+ ≺ 1−} =
pj

pj + qjPr{(j − 1)− 7−→ 1− ≺ (j − 1)+}
, j ≥ 2. (5)

Proof of Lemma 2.2. According to the Markov chain depicted in Figure 2, we can write

Pr{(j − 1)+ 7−→ j+ ≺ 1−} = pj + qjPr{(j − 1)− 7−→ (j − 1)+ ≺ 1−}×
Pr{(j − 1)+ 7−→ j+ ≺ 1−}, j ≥ 2,

(6)
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and thus,

Pr{(j − 1)+ 7−→ j+ ≺ 1−} =
pj

1 − qjPr{(j − 1)− 7−→ (j − 1)+ ≺ 1−}
, j ≥ 2. (7)

Now, since the events {(j − 1)− 7−→ (j − 1)+ ≺ 1−} and {(j − 1)− 7−→ 1− ≺ (j − 1)+} are mutually
exclusive, (7) can be written as

Pr{(j − 1)+ 7−→ j+ ≺ 1−} =
pj

pj + qjPr{(j − 1)− 7−→ 1− ≺ (j − 1)+}
, j ≥ 2. (8)

2

Lemma 2.3.

Pr{j− 7−→ 1− ≺ j+} =
pj−1Pr{(j − 1)− 7−→ 1− ≺ (j − 1)+}

pj + qjPr{(j − 1)− 7−→ 1− ≺ (j − 1)+}
, j ≥ 2. (9)

Proof of Lemma 2.3. We consider the two following disjoint events. Let A be the event that,
starting from j−, the ray reaches state 1− before reaching state (j − 1)+; and let B be the event
that, starting from j−, the ray reaches (j − 1)+ first, and then 1−. We have

Pr{j− 7−→ 1− ≺ j+} = Pr{A} + Pr{B}, j ≥ 2. (10)

According to the Markov chain depicted in Figure 2, we then write the two terms of the sum as

Pr{A} = pj−1Pr{(j − 1)− 7−→ 1− ≺ (j − 1)+}, (11)

Pr{B} = pj−1Pr{(j − 1)− 7−→ (j − 1)+ ≺ 1−}Pr{(j − 1)+ 7−→ 1− ≺ j+}. (12)

The second term can be further expanded as follows,

Pr{B} = pj−1 [(1 − Pr{(j − 1)− 7−→ 1− ≺ (j − 1)+})(1 − Pr{(j − 1)+ 7−→ j+ ≺ 1−})]

= pj−1

[

qjPr{(j−1)− 7−→1−≺(j−1)+}(1−Pr{(j−1)− 7−→1−≺(j−1)+})
pj+qjPr{(j−1)− 7−→1−≺(j−1)+}

]

,
(13)

where the last equality follows by applying to Lemma 2.2. Now, combining (10), (11), and (13),
after some algebra we get

Pr{j− 7−→ 1− ≺ j+} =
pj−1Pr{(j − 1)− 7−→ 1− ≺ (j − 1)+}

pj + qjPr{(j − 1)− 7−→ 1− ≺ (j − 1)+}
, j ≥ 2. (14)

2

We are now ready to give a proof of the main result.
Proof of Proposition 2.1. The proof is by induction. The base case k = 1 trivially gives
Pr{0+ 7−→ 1+ ≺ 1−} = p1. Let us now assume that (1) holds for k − 1 and let us show that this
implies (1) holds for k. By expressing the unknown as

Pr{0+ 7−→ k+ ≺ 1−} = Pr{0+ 7−→ (k − 1)+ ≺ 1−}Pr{(k − 1)+ 7−→ k+ ≺ 1−}, k ≥ 2, (15)
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the result (1) follows immediately after some algebra (see Appendix A) if we can show that

Pr{(k − 1)+ 7−→ k+ ≺ 1−} =
pk−1pk

pk−1pk + qkPr{0+ 7−→ (k − 1)+ ≺ 1−}
, k ≥ 2. (16)

According to Lemma 2.2 we have,

Pr{(k − 1)+ 7−→ k+ ≺ 1−} = pk

pk+qkPr{(k−1)− 7−→1−≺(k−1)+}

=
pk−1pk

pk−1pk+pk−1qkPr{(k−1)− 7−→1−≺(k−1)+}
, k ≥ 2.

(17)

Thus, (16) follows if we can show that

Pr{(k − 1)− 7−→ 1− ≺ (k − 1)+} =
Pr{0+ 7−→ (k − 1)+ ≺ 1−}

pk−1
, k ≥ 2. (18)

To prove that (18) holds, we need an additional induction argument. The base case k = 2 trivially
gives Pr{1− 7−→ 1− ≺ 1+} = 1. Let us now assume that (18) holds and let us compute Pr{k− 7−→
1− ≺ k+} for k ≥ 2. We apply Lemma 2.3, which in this case is stated as,

Pr{k− 7−→ 1− ≺ k+} =
pk−1Pr{(k − 1)− 7−→ 1− ≺ (k − 1)+}

pk + qkPr{(k − 1)− 7−→ 1− ≺ (k − 1)+}
, k ≥ 2. (19)

Substituting (18) in the numerator of (19) we obtain

Pr{k− 7−→ 1− ≺ k+} =
Pr{0+ 7−→ (k − 1)+ ≺ 1−}

pk + qkPr{(k − 1)− 7−→ 1− ≺ (k − 1)+}
, k ≥ 2. (20)

Now, we note that by (15) and (17)

Pr{0+ 7−→ k+ ≺ 1−} =
pkPr{0+ 7−→ (k − 1)+ ≺ 1−}

pk + qkPr{(k − 1)− 7−→ 1− ≺ (k − 1)+}
, k ≥ 2, (21)

and thus, by comparing (20) with (21) we can argue that

Pr
{

k− 7−→ 1−
∣

∣k−
}

=
Pr{0+ 7−→ k+ ≺ 1−}

pk

, k ≥ 2. (22)

which concludes the proof. 2

3 Martingale approach

In [1] the authors presented an analytical derivation based on martingale theory, obtaining a solution
for Pr{0 7−→ k} that depends on the ray incident angle θ on the lattice. Their method was restricted
to the case of uniform random lattices, however it can also be generalized to non-uniform random
lattices. The detailed derivation and discussion of the range of validity of the approach in this case
is the subject of a companion paper [15]. Next, we briefly summarize the main steps required for
this generalization and then compare results with our approach presented in the previous section.
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Figure 4: Martingale approach. The propagation process is modelled as the sum of many vectorial variables.
The n-th element of the stochastic process {rn, n ≥ 0} is the vertical component of the vector rn. Under some
assumptions, the process

Pn

m=1 xm behaves as a martingale with respect to the sequence {xm} [1].

With reference to Figure 4 we define the following stochastic process,

rn = r0 +

n
∑

m=1

xm, n ≥ 0, (23)

where rn is the row where the reflection n + 1 takes place (i.e. it is the vertical component of vector
rn) and

xm = rm − rm−1, m ≥ 1. (24)

We now express the probability of reaching level k inside the lattice as,

Pr{0 7−→ k} =
∑

i

Pr{0 7−→ k|r0 = i}Pr{r0 = i}, (25)

where Pr{r0 = i} is the probability mass function of the first jump r0 and Pr{0 7−→ k|r0 = i} is
the probability a ray goes beyond level k conditioned to the level where the first reflection occurs.

As far as Pr{r0 = i} is concerned, proceeding along the same lines of [1] yields,

Pr{r0 = i} =

{

q1, i = 0

q+
e1

(

∏i−1
j=1 p+

ej

)

, i ≥ 0
, (26)

where p+
ej

= 1 − q+
ej

= ptan θ
j pj+1 is the effective probability that a ray, traveling with positive

direction and angle θ through level j, reaches level j + 1.
We now consider the second term of (25), i.e., Pr{0 7−→ k|r0 = i}. Following the same procedure

as in [1], it can be shown that

Pr{0 7−→ k|r0 = i} ∼=







0, i = 0
i
k
, 0 < i < k

1, i ≥ k
. (27)
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Above equation is derived assuming the jumps xn’s following the first one being independent,
identically distributed and zero-mean, and using martingale theory [4].

Now, substituting (26) and (27) into (25), after some mathematical manipulations (see Ap-
pendix B) the following closed form solution is obtained,

Pr{0 7−→ k} =
k−1
∑

i=1

i

k
p1q

+
ei

i−1
∏

j=1

p+
ej

+ p1

k−1
∏

j=1

p+
ej

, (28)

that represents a generalization of the result in [1] to the non-uniform case.

4 Numerical comparison

We now validate our proposed approach with numerical experiments and provide a comparison with
the method in [1] and its generalization presented in Section 3.

In the following we refer to our proposed approach as Markov approach (MKV), while to the
one in [1] and its generalization as Martingale approach (MTG).

As a reference, the propagation depth has been evaluated by means of computer-based ray
tracing experiments. N = 100 random lattices with the same scatterers’ density have been generated
and M = 500 rays have been launched from different entry positions for every grid. By using the
same numerical procedure described in [1], the probability Pr{0 7−→ k} has been estimated from
the collection of paths in the first Kmax = 32 levels of the lattice.

We define the following error figures,

δk ,
|PrR {0 7−→ k} − PrP {0 7−→ k}|

max
k

[PrR {0 7−→ k}]
× 100, (Prediction Error) (29)

〈δ〉 ,
1

Kmax

Kmax
∑

k=1

δk, (Mean Error) (30)

δmax = max
k

{δk} , (Maximum Error) (31)

where the sub-script R indicates the value estimated with the reference approach and the sub-script
P stands for the same value computed by means of either (1) or (28).

In the remainder of this section first we consider the case of a homogeneous grid, providing a
comparison with the result in [1]. Then, we consider the non-uniform grid case.

4.1 Uniform random lattices

As a first test case, a sparse grid is considered with q = 0.05. In Figure 5 we report the estimated
Pr{0 7−→ k} as a function of the penetration index k, for different values of θ. It is evident that
the MKV approach describes very well the propagation in the random medium in this case. The
range of 〈δ〉 is from 0.23% (for θ = 45o) to 1.11% (for θ = 15o), while 0.74%≤δmax≤1.42%. On the
other hand, the MTG approach does not perform very well, resulting in values 2.16%≤〈δ〉≤20.37%
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Figure 5: Uniform random lattice with q=0.05. We plot Pr{0 7−→ k} versus k for different values of θ. Crosses
denote reference data, while solid line and dashed line represent reconstructions obtained by the MKV approach and
the MTG approach, respectively.
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Figure 6: Uniform random lattice with q=0.15 We plot the prediction error δk versus k for different incidence
angles θ. Left-hand side: MKV approach. Right-hand side: MTG approach.

and 3.87%≤δmax≤25.14%. This is not surprising since the MTG approach is not expected to work
well for low-density media [1].

A similar behavior is observed when q is increased to 0.15. In Figure 6 it is shown that the
MKV approach again gives the best prediction of the propagation depth in this case when θ = 45o

(〈δ〉 = 0.46% and δmax = 0.68%). As expected from the theory, results become worse as θ diverges
from 45o. Nevertheless, the MKV approach outperforms the MTG approach for all considered
incident angles, and the error is also more stable for different values of the penetration index k and
of the angle θ.

When q increases even further and the grid becomes more dense (i.e., q = 0.25 and q = 0.35),
prediction results of the MKV approach become worse, see Figure 7. In fact, the assumptions
behind the method fail: the ray tends to travel over and over through the same sequence of cells
and independence is lost. Nevertheless, the MKV approach is more stable than the MTG approach
with respect to both the incidence angle θ and the lattice depth k, and prediction results are still
good for a wide range of incident angles.

4.2 Non-uniform random lattices

We now consider the non-uniform grid case with various obstacles’ density profiles. The profiles
depicted in the left-hand side of Figure 8 are increasing linear profiles of the type,

q(x) = q + α(x − 1), (32)

while the profiles depicted in the right-hand side of the figure are double exponential profiles of the
type,

q(x) =

{

α exp[(x − L)τ ], x ≤ L
α exp[(L − x)τ ], x > L

, (33)

x being the lattice depth. The parameters’ values corresponding to the plots in Figure 8 are q = 0.05,
L = Kmax/2 = 16, and α and τ as described in Table 1.

We first consider the case θ = 45o, for different density profiles. Results for the linear profiles
are depicted in Figure 9. It is evident that the MKV approach outperforms the MTG approach
in all the considered cases. For this method, the values of 〈δ〉 range from 0.29% (profile L1) to
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Figure 7: Uniform random lattice with q = 0.25 and q = 0.35. We plot the prediction error δk versus k for
different incidence angles θ. Left-hand side: MKV approach. Right-hand side: MTG approach.
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Figure 8: Density profiles q(x) versus the lattice depth x. Left-hand side: linear profiles. Right-hand side:
double-exponential profiles.

Profile α[×10−3]

L1 1.61
L2 4.84
L3 8.06
L4 11.29

Profile α τ [×10−2]

DE1 0.1 4.62
DE2 0.2 9.24
DE3 0.3 11.94
DE4 0.4 13.86

Table 1: Parameters of the density profiles
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Figure 9: Linear density profiles. Estimated values of Pr{0 7−→ k} versus k. Crosses denote reference data, while
solid line and dashed line represent predictions obtained by the MKV approach and the MTG approach, respectively.

0.71% (profile L4). On the other hand, performance of the MTG approach is very sensitive to the
considered profile with 〈δ〉 increasing with the slope α of the occupation profile from 1.11% (profile
L1) to 7.82% (profile L4).

Results for the double exponential profiles are depicted in Figure 10. Similar observations hold
in this case. For the MKV approach the values of 〈δ〉 range from 0.31% (profile DB1) to 1.09%
(profile DE4), while for the MTG approach we have 1.44% ≤ 〈δ〉 ≤ 10.25%. It is worth noting that
MKV satisfactorily performs even in correspondence of level L = 16 where the discontinuity in the
occupancy profile (33) occurs. On the contrary, when the MTG approach is used, we can observe
non-negligible errors around the level L = 16, see Figure 10. This is due to the fact that in the
MTG approach ray jumps following the first one are considered as a single mathematical entity, i.e.,
they are governed only by Pr{0 7−→ k|r0 = i}, see (25). On the contrary, in the MKV approach
each single jump is considered. As a consequence, abrupt changes in the slope of Pr{0 7−→ k} due
to discontinuities in the obstacles’ density profile are correctly detected and reconstructed.

We now consider a second set of experiments, varying the incident angle θ. We report the results
relative to the worst cases, i.e., the most variable profiles L4 and DE4. Similar considerations also
hold true for the remaining profiles. First of all, by looking at Figure 11, we observe that the MKV
approach outperforms the MTG approach for all considered values of θ. As expected from the
theory, the performance of the MKV approach slightly weakens when the incidence angle θ diverges
from 45o. In the worst case θ = 15o we have 〈δ〉 = 3.16% and 〈δ〉 = 3.59% for the profile L4 and
the profile DE4, respectively. On the contrary, the MTG approach provides reconstructions that
are much more sensitive to the incident angle θ. In the worst case θ = 15o we have 〈δ〉 = 17.31%
and 〈δ〉 = 19.26% for the profile L4 and the profile DE4, respectively. Finally, we can compare the
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Figure 10: Double exponential density profiles Estimated values of Pr{0 7−→ k} versus k. Crosses denote
reference data, while solid line and dashed line represent reconstructions obtained by the MKV approach and the
MTG approach, respectively.
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the worst prediction error. We plot the mean error 〈δ〉 and the maximum error δmax versus θ for the MKV approach
and the MTG approach.
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maximum and the average error values. The MTG approach shows a larger gap between the two
values, thus showing larger variance of the error at different lattice levels.

5 Conclusions

In this paper we have statistically described the ray propagation process inside non-uniform random
lattices. We have assumed a far-external source scenario and large, lossless scatterers, whose density
changes with the lattice depth. Our approach is based on the key observation that in evaluating the
propagation depth it is as reflections on vertical faces of occupied cells never occur, since they do not
change the vertical direction of the propagating ray. This observation has allowed us to transform the
problem from a two-dimensional ray propagation problem into a simple one-dimensional random
walk problem. By modeling propagation in terms of a Markov chain, we have derived a simple
closed-form analytical formula. The solution estimates the propagation depth as a function of the
obstacles distribution and it is independent from the incident conditions.

Numerical experiments have confirmed the effectiveness of our approach, which is accurate for a
wide range of incident angles and obstacles’ densities. They have shown improvement upon previous
results as well, in particular for low density propagation media. Our approach also outperforms
generalizations of previous methods to the inhomogeneous case.

Possible extensions of the present work can be aimed at overcoming limitations that the perco-
lation model intrinsically exhibits in describing wave propagation in disordered media. With care
about trading-off accuracy versus simplicity, we can think about introducing in our model phys-
ical phenomena such as absorption, scattering due to surface roughness and small obstacles, and
diffraction.

Finally, we would like to stress that the percolation model can find application in a wide range
of applied problems arising in the framework of wireless communications, remote sensing, and radar
engineering. Our solution based on theory of Markov chains may be of interest in all the scenarios
that are studied in percolation theory, provided that the ray approach is justified.
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6 Appendix A

In this section we show that (1) follows if (16) holds true. By substituting (16) in (15) we get

Pr{0+ 7−→ k+ ≺ 1−} = Pr{0+ 7−→ (k − 1)+ ≺ 1−}
pk−1pk

pk−1pk + qkPr{0+ 7−→ (k − 1)+ ≺ 1−}
k ≥ 2.

(34)
Since by assumption

Pr{0+ 7−→ (k − 1)+ ≺ 1−} =
p1p2

1 + p1p2

k−4
∑

i=0

q(k−1)−i

p(k−1)−ip(k−1)−i−1

, k ≥ 2, (35)

we can write

Pr{0+ 7−→ k+ ≺ 1−} =
p1p2

1 + p1p2

k−4
∑

i=0

qk−1−i

pk−1−ipk−2−i

pk−1pk

pk−1pk + qk
p1p2

1+p1p2

k−4
∑

i=0

qk−1−i
pk−1−ipk−2−i

=
p1p2

1 + p1p2

k−4
∑

i=0

qk−1−i

pk−1−ipk−2−i

pk−1pk(1 + p1p2

k−4
∑

i=0

qk−1−i

pk−1−ipk−2−i
)

pk−1pk + pk−1pk

k−4
∑

i=0

qk−1−i

pk−1−ipk−2−i
+ qkp1p2

=
p1p2

1 + p1p2

k−4
∑

i=0

qk−1−i

pk−1−ipk−2−i
+ qk

p1p2

pk−1pk

=
p1p2

1 + p1p2

k−4
∑

i=−1

qk−1−i

pk−1−ipk−2−i

=
p1p2

1 + p1p2

k−3
∑

i=0

qk−i

pk−ipk−i−1

, k ≥ 2. (36)
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7 Appendix B

In this section we show how to obtain (28) by substituting (26) and (27) into (25).

Pr{0 7−→ k} =

k−1
∑

i=1

i

k
p1q

+
ei





i−1
∏

j=1

p+
ej



 +

∞
∑

i=k

p1q
+
ei





i−1
∏

j=1

p+
ej



 . (37)

By expressing q+
ei

in terms of p+
ei

, the second term of the right-side of (37) can be rewritten as follows

∞
∑

i=k

p1q
+
ei

i−1
∏

j=1

p+
ej

=
∞
∑

i=k

p1

i−1
∏

j=1

p+
ej
−

∞
∑

i=k

p1p
+
ei

i−1
∏

j=1

p+
ej

= p1

k−1
∏

j=1

p+
ej

+ p1

∞
∑

i=k+1

i−1
∏

j=1

p+
ej
− p1

∞
∑

i=k

i
∏

j=1

p+
ej

= p1

k−1
∏

j=1

p+
ej

+ p1

∞
∑

i=k+1

i−1
∏

j=1

p+
ej
− p1

∞
∑

i=k+1

i−1
∏

j=1

p+
ej

= p1

k−1
∏

j=1

p+
ej

. (38)
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