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Figure 9. Histogram of the similarity values relevant to the image in  
Figure 8: 

(a) HD, (b) CM, and (c) WEPF 
 

     
                                    (a)                                            (b)                                  (c) 

 
Figure 10. Colour test image 

(a) Original image (b) relevant edge image (c) query image 
 

  

(a) (b) 

 

(c) 

Figure 11. Histogram of the similarity values relevant to the image in Figure 10: 
(a) HD, (b) CM, and (c) WEPF 

 
The curves in Fig. 7, 9, 11 demonstrate that the proposed algorithm generates a lower number 

of “highest-score” points. This is a positive feature, provided that these points correspond to 

the correct positioning of the object. On the other hand, HD and CM tend to have a large 
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number of positions with very high score. This behavior of HD and CM is not necessarily 

negative, provided that the relevant positions are concentrated in the correct position. It is 

then necessary to study the distribution of the peaks of the fitness function in the different 

cases. The following Figs. 12, 13 show the behavior of the fitness function for the three 

methods along all the possible x,y translations, keeping constant rotation and scaling. It is 

possible to observe that with EPF the points with higher scores form a slope around the 

solution, with a unique peak, while the numerous “high-match” points achieved by the other 

two methods are in fact spread over the image and not concentrated near the correct solution. 

This fact demonstrates that EPF eases the optimization process, making it possible to detect 

the correct matching. 

 

 
(a) 

 
(b) 
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(c) 

Figure 12. 3D surface of the similarity values relevant to the image in Figure 6: 
(a) HD, (b) CM, and (c) WEPF 

 

 
(a) 

 
(b) 
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(c) 

Figure 13. 3D surface of the similarity values relevant to the image in Figure 10: 
(a) HD, (b) CM, and (c) WEPF 

 
 
4.2. Edge matching procedure using EPF and GAs 
 
In this section, EPF is compared with other methods in terms of matching capabilities. In 

order to avoid the dependence of the result on the searching strategy, the same optimized GA 

searching procedure has been applied. In Figure 14, the dialog box specifying the GA 

parameters is shown. 

It should be noted that the position of the sketch in the model image has no effect at all on the 

matching procedure. In fact, the initial population is randomly generated applying casual 

roto-translation and scaling to that shape. Then, the probability of having the exact instance 

of the model which corresponds to the target object in the initial population is exactly the 

same of any other transformation. 

The following Figure 15-16 depict, for each of the three selected test cases described in Sect. 

4.1, the behavior of the fitness function during the iterative process, and the best matching 

achieved at convergence. 
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Figure 14. GA parameters setting 
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(c) (d) 

 

 

 

(e) (f) 

 
Figure 15. Result of matching on the image in Figure 6. 

Left column: behaviour of the fitness function; Right column: best matching. 
First row: HD, Second row: CM, Third row: WEPF 

  

 

 

(a) (b) 
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(c) (d) 

 

 

 

(e) (f) 

 
Figure 16. Result of matching on the image in  

Figure 8 with the query is  
Figure 8c. 

Left column: behaviour of the fitness function; Right column: best matching. 
First row: HD, Second row: CM, Third row: WEPF 
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(a) (b) 

 

 

(c) (d) 

 

 

 

(e) (f) 

Figure 17. Result of matching on the image in  
Figure 8 with the query is  

Figure 8d. 
Left column: behaviour of the fitness function; Right column: best matching. 

First row: HD, Second row: CM, Third row: WEPF 
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(a) (b) 

 

 

 

(c) (d) 

 

 

 

(e) (f) 

 
Figure 18. Result of matching on the image in Figure 10. 

Left column: behaviour of the fitness function; Right column: best matching. 
First row: HD, Second row: CM, Third row: WEPF 

 
Looking at the matching results, it can be observed that WEPF performance is extremely 

satisfactory, for the correct shape is located in all examples. In the first test, HD and CM 

converge to a local maximum in correspondence with a similar shape in the bottom-left of the 

image. Also WEPF does not achieve a perfect matching, although it converges to the right 

object location. In the other two examples, WEPF achieves almost perfect matching, while 

other approaches are attracted by high-density edge areas, thus not converging to a reasonable 

solution. 

It should be noted that EPF tends to give lower fitness values as compared to other 

techniques. This is evident looking at the 3D charts of the potential (Figure 1), which show 

how the potential decreases quite rapidly. Nevertheless, this is not a negative characteristic of 
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the method. In fact, what is really important here is the relative value of the fitness and not 

the absolute one. As seen in above examples, HD or CM can produce a wrong solution with a 

high fitness, then, the result may be not reliable even if the score is very high. On the other 

side, EPF provides the correct position, associated to the highest score, even if the relevant 

absolute value may not be close to 1 due to imperfect overlapping with the model (e.g., due to 

quantization step or differences between model and target). 

Fig. 17 shows the result achieved by applying the human-drawn query of Fig. 8.d. In that 

case, the model is similar but not identical to the target. The test demonstrates that also in this 

situation EPF achieves a very good matching. 

The last example of this section deals with a possible application to image indexing and 

retrieval based on visual object matching. In this case, we imagine that a user can browse an 

image database by sketching a shape on a simple graphical interface. The relevant contours 

are then matched with the images in the database, in order to detect similar objects. In the 

proposed example, the database was made up of more than 400 color pictures of monuments, 

town views, landscapes and other subjects. 

In Figure 19a a sketch query is represented, while in Figure 19b, the precision-recall curve 

achieved by the EPF-based indexing is compared to those of HD and CM. Precision-recall 

curve is a very common measure to evaluate the performance of a information retrieval 

process. Assuming that:  

- RET = set of all images the system has retrieved for a specific query;  

- REL = set of relevant images in the database for the query; 

- RETREL = set of the relevant images retrieved by the algorithm; 

then, precision and recall measures are obtained as follows:  

- precision = RETREL / RET  

- recall = RETREL / REL 

For the sake of completeness, Fig. 16c reports the set of most relevant samples extracted from 

the database with the proposed approach. In each image, the best match is superimposed in 

white. It can be observed that the achieved ranking is very good. As an example, let us 

consider that the subset of Eiffel tower images is composed of 19 images, which are 

successfully retrieved among the first 26 ranked samples. 
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(a) (b) 

 

(c) 

 
Figure 19. Use of WEPF for image indexing and retrieval. 

(a) a user sketch used for query; (b) comparative precision-recall diagram; 
(c) retrieval result. 

 

4.3. Visual object matching in the presence of noise and clutter 
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One of the key advantages of EPF-based matching is the capability of making coherent 

contours prevail over noise spots. In order to experimentally assess this feature of the 

proposed method, a further set of tests is presented in this section, in which the matching is 

performed in extremely critical noise conditions. The first test case refers to the “flowers” 

image (Figure 10a). It consists in performing the matching in the presence of a high-power 

additive Gaussian noise. The noisy image and the relevant query are presented in Figure 20a-

b, while Figure 20c depicts the edge map extracted by the Canny-Rothwell algorithm, 

showing a strongly damaged edge map (contours fragmentation, noise spots). In Figure 20d-f 

the results of the matching are presented, again comparing the proposed methods with the 

optimized HD and CM techniques. As expected, the accuracy of WEPF in locating the right 

shape turns out to be slightly reduced (see Figure 20f vs. Figure 18f). Nevertheless, it should 

be noticed that WEPF definitely outperforms other methods. 

 

  

 

 

 

(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 20. Matching results in the presence of high-power Gaussian noise: 
(a) noisy target image, (b) relevant edge map, (c) query, 

(d) HD, (e) CM, (f) WEPF 
 

In the second test case, a high-frequency texture is added to the same “flowers” image 

(Figure 10a). The texture strongly distorts the image, thus producing a cluttered edge map 
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(Figure 21c). In Figure 21d-f the results of the matching of the query (Figure 21b) are 

presented, again comparing the proposed methods with the optimized HD and CM 

techniques. Also in this case, WEPF is the only method to achieve a correct matching. 

 

  

 

 

 

(a) (b) (c) 

   

(d) (e) (f) 

 
Figure 21. Matching results in the presence of texture noise: 

(a) noisy target image, (b) relevant edge map, (c) query, 
(d) HD, (e) CM, (f) WEPF 

 

Finally, the third example concerns the detection of a simple triangular object. Here, the main 

difficult is in the fact that the target shape is strongly fragmented (a dashed line) and it is 

immersed in a high-frequency texture. The test image and the query are shown in Figure 22a-

b, while the matching results for the three competing techniques are depicted in Figure 22c-e. 

Again, it is possible to observe that only the EPF-based approach converges to the correct 

solution, while HD and CM are mislead by the highly dense edge map generated by the 

background texture. 
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(a) (b) 

 

(c) (d) (e) 

 
Figure 22. Matching results in the presence of high-frequency background texture: 

(a) target image, (b) query,(c) HD, (d) CM, (e) WEPF 
 

The interpretation of these last results is that in most complex situations, where edges are 

weak and noise or textures tend to prevail, it is very important the property of EPF of 

exploiting the superposition of effects between edge points along the target curve, so that 

coherent structures acquire a greater weight in the fitness function. 

 
4.3. Algorithm convergence and complexity issues 
 
Studies have been carried out in order to ascertain the convergence properties of the proposed 

algorithm and its computational complexity. As far as the verification of the convergence of 

the GA is concerned, due to the stochastic nature of the algorithm the figures reported 

throughout the paper refer to average values achieved by multiple runs of the algorithm (10 

executions for each test, with randomly generated initial populations). 

In order to show the steadiness of the algorithm,  in Table 3 we report the complete test set 

for the example of Fig. 17. Each row shows the result of the run in terms of best fitness and 

resulting affine transform parameter set. 

 

TABLE 2. STATISTICAL REPORT OF EXAMPLE IN FIGURE 17 

Bold rows denote the best match under human perspective 

 Times Fitness at 

convergence 

( )θ,,, stt yx  
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1 0.895831 (53, 53, 1, 0) 

2 0.906262 (52, 54, 1, 0) 

3 0.890051 (49, 62, 1, 6) 

4 0.884643 (51, 56, 1, 3) 

5 0.869046 (61, 53, 0.9, 0) 

6 0.895985 (52, 55, 1, 0) 

7 0.878611 (49, 49, 1, 6) 

8 0.903584 (50, 58, 1, 3) 

9 0.894045 (59, 53, 1, 356) 

WEPF 

10 0.87052 (51, 62, 0.9, 3) 

    

1 0.994031 (108, 60, 0.9, 303) 

2 0.994437 (133, 73, 0.9, 273)  

3 0.995021 (134, 104, 0.9, 263) 

4 0.995937 (134, 98, 0.9, 267) 

5 0.995496 (114, 127, 0.9, 189)  

6 0.994713 (47, 101, 0.9, 65) 

7 0.993689 (55, 45,  0.9, 353)  

8 0.995937 (134, 98, 0.9, 267)  

9 0.994646  (53, 107, 0.9, 75) 

CM 

10 0.994377  (154, 88, 0.9, 189) 

7    

1 0.995928  (134, 98, 0.9, 267) 

2 0.994132  (61, 55, 0.9, 6) 

3 0.994389  (195, 72, 0.9, 276) 

4 0.993919  (48, 39, 0.9, 6) 

5 0.994667  (117, 125, 0.9, 192)  

6 0.994192  (60, 68, 0.9, 12) 

7 0.995737  (133, 96, 0.9, 270) 

8 0.995508  (135, 98, 0.9, 267) 

9 0.994121  (125, 82, 0.9, 281)  

HD 

10 0.994132  (155, 92, 0.9, 189) 
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It is possible to observe that in EPF the best match between the query and the target image 

under human perspective has the highest fitness at convergence. On the contrary, for CM and 

HD the best match under human perspective does not correspond to the highest fitness. This 

demonstrates that EPF works well in complex environments, where CM and HD tend to 

remain trapped in local maxima. 

As far as the computational complexity is concerned, it is to be pointed out that the proposed 

approach implies a higher cost for the calculation of the potential function, while it is 

characterized by an almost equivalent cost for the computation of the fitness function, used in 

the optimization process. This drawback turns out to be acceptable in many applications (e.g., 

image indexing and retrieval applications), where the computation of the EPF can be 

performed off-line and stored for each target image, thus not affecting the matching time. In 

the case of on-line computation of the EPF, the overall matching time slightly increases. The 

following TABLE 3 indicates the CPU time relevant to the above examples when different 

methodologies are used. The reported times (in seconds) refer to the execution of the code on 

PC equipped with a P4 processor at 2.6GHz. It can be noticed that the computation of the 

EPF matrix is higher as compared to nearest-neighbor-based approaches, while GAs 

convergence requires similar CPU time. Moreover, the computation of the EPF is strongly 

dependent on the complexity of the edge image (since the number of “equivalent charges” to 

be considered increases with the edge density), and of course it benefits of the windowing 

procedure. 

 
TABLE 3.  COMPARISON IN TERMS OF COMPUTATION TIME (IN SECONDS) 

Bottle 
(216 x 146) 

Flower 
(144 x 160) 

Synthetic 
(114 x 96) 

 

Time to 

run GA 

Time to 

compute 

EP/CF 

Time to 

run GA 

Time to 

compute 

EP/CF 

Time to 

run GA 

Time to 

compute 

EP/CF 

EPF 5.047 13.609 2.469 2.968 2.984 0.719 

WEPF 32 5.031 11.75 2.485 2.968 2.984 0.703 

WEPF 16 5.069 10.03 2.481 2.468 2.75 0.578 

CM 5.187 0.453 2.468 0.281 2.891 0.156 

HD 5.375 0.453 2.5 0.281 2.984 0.156 
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A further note concerns the dependence of the GA convergence on the number of 

quantization levels used in the encoding of the parameters. This is a not trivial task, since the 

best performance of the optimizer occurs when a good trade-off between exploration of the 

searching space and exploitation of the best features of trial solutions is achieved. As a matter 

of fact, a coarse quantization does not require large populations, but it does not allow 

achieving a satisfactory matching, due to the granularity of the geometrical transformations. 

On the other hand, a finer quantization can achieve a closer matching, while significantly 

enlarging the solution space, thus requiring a larger population in order to converge in a 

reduced number of iterations. 

 
5. Conclusions 
 
A new approach to the problem of edge-based visual object matching in digital images was 

presented, based on the concept of Edge Potential Function (EPF) and the use of a GA-based 

optimization. The potential function is calculated starting from the edge map of the image, 

and it is used as an attraction pattern in order to find the best possible match with a template 

or hand-drawn sketch. 

Different possible approaches to the computation of the EPF were suggested, including 

binary and continuous functions, as well as windowed procedures. The new approach was 

extensively tested on both synthetic and photographic pictures, showing very good 

performance in comparison with state-of-the-art methods. It is worth noting that, thanks to 

the capability of exploiting the joint effect of continuous charges aligned over coherent 

structures, EPF matching demonstrated a reliable performance also in the presence of high-

power noise and clutter. Furthermore, it is effective also when the sketch does not fit exactly 

the target image, thus allowing the development of effective and robust tools in the 

framework of content-based image retrieval applications. 

Future developments will take into consideration additional features of the potential field not 

exploited in the present implementation, such as the direction and continuity information. 
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