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Inversion of Phaseless Total Field Data using a Two-StepStrategy based on the Iterative Multi-Saling Approah
Gabriele Franeshini, Massimo Donelli, Renzo Azaro, and Andrea Massa

AbstratIn this paper, a new approah for the quantitative eletromagneti imaging of un-known satterers loated in free-spae from amplitude-only measurements of thetotal �eld is proposed and disussed. The reonstrution proedure splits the prob-lem into two steps. The method is based on the use of an inverse soure algorithm to�rst omplete the sattering data by estimating the distribution of the radiated �eldin the investigation domain. The objet's funtion pro�le is then retrieved from thephaseless data via an iterative multiresolution proedure integrated with an e�etiveminimization tehnique based on the partile swarm algorithm. Numerial examplesare provided to assess the e�etiveness of the whole two-step strategy in the preseneof syntheti noise-orrupted data as well as in dealing with experimental datasets.Comparison with full-data and �bare� approahes are reported, as well.
Index Terms - Inverse Sattering, Eletromagneti Imaging, Phaseless Data, IntegratedMulti-Saling Approah, Partile Swarm Optimizer.

2



1 IntrodutionIn the last years, the interest in mirowave imaging tehniques is growing thanks to theirsensitivity to the dieletri properties useful for deteting and reonstruting unknownobjets in a non-invasive fashion. As a matter of fat, the reonstrution of the geometrialand physial harateristis of an unknown objet is a key-issue in several appliationsonerned with non-destrutive tests and evaluations [1℄[2℄ in the framework of appliedgeophysis [3℄[4℄, biomedial and industrial diagnostis [5℄-[8℄ or subsurfae sensing [9℄.Nevertheless, although the e�etiveness of these tehniques for diagnosti purposes makesthem very appealing, several open issues still remain partially solved or unsolved. Suhan event gives rise to some doubts on the possibility of their large di�usion beause oftheir intrinsi omplexity.From the sienti� literature (see [10℄ and the referenes ited therein for a detailedoverview), it is well known that the main drawbaks are due to the ill-posedness and thenon-linear nature of the arising inverse sattering mathematial models.On the other hand, for ahieving a suitable resolution level in the reonstrution of theobjet pro�le, a non-negligible amount of information is neessary. Towards this pur-pose, multi-illumination [12℄ and/or multi-view [13℄ and/or multi-frequeny systems [14℄are generally used, but the information olletable from the sattering experiments stillremain limited [10℄ to an upper bound that depends on the geometrial harateristis ofthe imaging system [15℄ even though some a-priori information (when available) on thesenario under test [16℄[17℄ or a set of onstraints [18℄ on the retrievable dieletri pro�leare imposed. Therefore, various multiresolution strategies able to distribute in a non-uniform fashion the unknowns inside the sattering domain have been reently proposed(see [9℄, [19℄-[25℄ for a detailed analysis) for overoming the mismath between number ofsattering data and set of unknowns.Besides the intrinsi drawbaks onerned with the mathematial model of an inverseproblem, there are others pratial issues related to the realization of low-ost and e�etiveaquisition setups. As a matter of fat, while the amplitude measurement is not a ritialpoint, the measurement of the phase of the sattered �eld turns out to be very di�ultor very expensive in several appliations and/or onditions. Although from a theoretial3



point-of-view suh a measure is not ompliated at mirowave and lower frequenies, theuse of amplitude-only data notably simpli�es the imaging setup and it allows a non-negligible redution of osts.On the other hand, by onsidering frequenies beyond tens of gigahertz, the diret mea-surement of the distribution of the phase of the eletromagneti �eld beomes harder andharder. Moreover, holographi and interferometri tehniques, usually used in optial ap-pliations [26℄[27℄ for determining phase information, are experimentally demanding andoften require an expensive post-proessing of the measured data.In order to avoid suh drawbaks, some alternatives approahes have been proposed. Twomain paths of researh seem to be usually taken into aount:
• the diret appliation of a reonstrution algorithm for the proessing of phaseless�eld data (Single-Step Strategy) (see for example [28℄-[31℄);
• the splitting of the phaseless-data reonstrution into a two-step proess (Two-StepStrategy) where the �rst step deals with a phase-retrieval problem for omplet-ing the amplitude-only inversion data and the latter is onerned with a standardreonstrution from omplete �eld data (see for example [32℄[33℄).More in detail, in the framework of approximate methodologies for weak satterers, Malekiet al. [28℄ proposed a single-step tomographi reonstrution proedure for determiningthe omplex-valued index-of-refration of inhomogeneous objets from the far-�eld inten-sity patterns generated by the satterers in a sequene of sattering experiments. Thesame authors applied in [32℄ an alternative two-step methods based on an iterative phase-retrieval algorithm to extrat the phase of the sattered �eld from the measurement ofthe amplitude of the total �eld and from a-priori information on the objet support.Unlike methods based on Born approximations, a omplete single-step approah has beenpresented by Takenaka et al. in [29℄ for the reonstrution of the refrative index ofunknown objets from intensity-only far-�eld data. Although based on a omplete formu-lation of the sattering problem, likewise the approah in [32℄, suh an approah requiressome a-priori knowledge on the objet support and in partiular on its outer boundary.Still in the framework of single-step nonlinearized tehniques, an iterative approah basedon a memeti algorithm has been desribed in [31℄ dealing with dieletri multilayer4



ellipti ylinders has been used. On the other hand, in [30℄, the minimization of thetwo-omponent disrepany funtion is performed by means of the binary-onstrainedmodi�ed gradient method for deteting buried ylindrial homogeneous targets.As far as two-step strategies are onerned, Isernia et al. proposed in [33℄ an innovativealgorithm for better ontrolling the non-linearity with respet to single-step strategiesthrough a onvenient exploitation of the theoretial results on the inversion of quadratioperators.The approah presented in this paper has several ommon and omplementary featureswith respet to the above tehniques. As a matter of fat, the proposed strategy is atwo-step proedure where, nevertheless, the �rst step is not aimed at ompleting theamplitude-only sattering data, but at determining the input data for the so-alled stateequation for phaseless inputs. Furthermore, the seond step is not onerned with a lassi-al full-data inverse sattering problem, but it deals with a phaseless-data reonstrutionthrough a suitable multi-saling algorithm in order to fully exploit the limited amountof olletable information. To the best of the authors' knowledge, suh a two-step re-trieval proess is ompletely innovative in the framework of intensity-only methods andit requires only the measurement of the sattering data in a limited number of loationsin observation domain notably simplifying the olletion-data proess both in terms ofmeasurement setup and aquisition time.The paper is organized into four setions. The geometry of the problem and the generalarhiteture of the proposed two-step strategy are desribed in Setion 2. The resultsof a seleted set of experiments are disussed in Setion 3. Finally, Setion 4 presents adisussion and some onlusions.2 Mathematial FormulationLet us onsider a lassial tomographi mirowave imaging problem where an unknownylindrial objet loated in an inaessible investigation domain Dinv is illuminated ata �xed working frequeny f by a set of V TM -polarized inident eletromagneti wavesharaterized by eletri �elds Ev
inc(r) = Ev

inc(x, y)ẑ, v = 1, ..., V (Figure 1).For a Full-Data (FD) formulation, the sattered �elds Ev
scatt = Ev

tot−Ev
inc, v = 1, ..., V , are5



olleted in M (v) measurement loations [(xm(v), ym(v)

), m(v) = 1, ..., M(v), v = 1, ..., V ℄plaed in an observation domain Dobs external to Dinv [13℄ and the inversion proess isaimed at reonstruting the objet funtion τ(x, y) de�ned as follows
τ(x, y) = [εr(x, y) − 1] − j

σ(x, y)

2πfǫ0
(x, y) ∈ Dinv (1)

εr and σ being the relative dieletri permittivity and the eletri ondutivity, startingfrom the knowledge in amplitude and phase ofEv
inc(x, y), (x, y) ∈ Dinv, and Ev

scatt

(
xm(v), ym(v)

),
(
xm(v), ym(v)

)
∈ Dobs. Towards this purpose and aording to the desription of the sat-tering phenomena in terms of the Fredholm formalism [?℄, the following equations areformulated and solved

Ev
scatt

(
xm(v), ym(v)

)
= −j

k2
0

4

∫ ∫

S
τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0d) dx′dy′

(
xm(v), ym(v)

)
∈ Dobs(2)

Ev
inc(x, y) = Ev

tot(x, y)+j
k2

0

4

∫ ∫

S
τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0d) dx′dy′ (x, y) ∈ Dinv (3)where k0 is the free-spae wavenumber, H

(2)
0 is the 0-th order seond-kind Hankel funtion,and d =

√
(x − x′)2 + (y − y′)2.Unlike FD approah, let us onsider a �phaseless data� (PD) inversion where only theamplitude of the total �eld in the observation domain, ∣∣∣Ev

tot

(
xm(v), ym(v)

)∣∣∣, (
xm(v), ym(v)

)
∈

Dobs, m(v) = 1, ..., M(v), v = 1, ..., V , and of the amplitude of the inident �eld in Nloations of the investigation domain, |Ev
inc (xn, yn)|, (xn, yn) ∈ Dinv, n = 1, ..., N , areavailable. Under these hypotheses, the system of equations (2)-(3) is modi�ed as follows

∣∣∣Ev
tot

(
xm(v), ym(v)

)∣∣∣ =
∣∣∣Ev

inc

(
xm(v), ym(v)

)
− j

k2
0

4

∫ ∫
S τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0dm(v)) dx′dy′

∣∣∣
(
xm(v), ym(v)

)
∈ Dobs (4)
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|Ev
inc (xn, yn)| =

∣∣∣∣∣E
v
tot(xn, yn) + j

k2
0

4

∫ ∫

S
τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0dn) dx′dy′

∣∣∣∣∣ (xn, yn) ∈ Dinv(5)As an be notied, while the mathematial formulation of the PD problem does notnotably di�er from that onerned with the FD ase, ertainly the use of intensity-onlydata turns out in a further redution of the olletable information on the senario undertest with respet to that already limited in the FD situation. Therefore, even more soin the ase of phaseless data, the use of an adaptive multi-resolution strategy seems tobe even more mandatory in order to fully and e�etively exploit the limited amount ofavailable information for ahieving a suitable auray in the reonstrution. Towardsthis end, a ustomized version of the iterative multi-saling approah (IMSA) an bepro�tably used.The appliation of the IMSA approah to phaseless data requires at eah step s (s =

1, ..., S) of the multi-step proedure the minimization of the following multi-resolutionost funtion(1)

Φ(s)





τ
(
xn(r), yn(r)

)
, Ev

tot

(
xn(r), yn(r)

)
;

v = 1, ..., V

n(r) = 1, ..., N(r) r = 1, ..., s





= Φ
(s)
Data + Φ

(s)
State(6)

Φ
(s)
Data =

V∑

v=1

M(v)∑

m(v)=1

||Ev

tot(xm(v), ym(v))|−|ξv

tot(xm(v), ym(v))||
2

V∑

v=1

M(v)∑

m(v)=1

|Ev

tot(xm(v), ym(v))|
2

Φ
(s)
State =

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

||Ev

inc(xn(r), yn(r))|−|ξv

inc(xn(r), yn(r))||
2

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

|Ev

inc(xn(r), yn(r))|
2where

(1) Suh a disretized form has been obtained by applying the Rihmond's [34℄ proedure to thesystem of equations (4)-(5). 7



∣∣∣ξv
tot

(
xm(v), ym(v)

)∣∣∣ =

∣∣∣∣∣∣
Ev

inc

(
xm(v), ym(v)

)
+

s∑

r=1

N(r)∑

n(r)=1

{
ω

(s)
n(r)

[
τ

(
xn(r), yn(r)

)
Ev

tot

(
xn(r), yn(r)

)
Gm(v),n(r)

]}
∣∣∣∣∣∣(7)

∣∣∣ξv
inc

(
xn(r), yn(r)

)∣∣∣ =

∣∣∣∣∣∣
Ev

tot

(
xn(r), yn(r)

)
−

s−1∑

t=0

N(r)∑

q(t)=1

{
ω

(s)
q(t)

[
τ

(
xq(t), yq(t)

)
Ev

tot

(
xq(t), yq(t)

)
Gn(r),q(t)

]}
∣∣∣∣∣∣(8)and ω

(s)
n(r) is the weighting funtion de�ned as

ω
(s)
n(r) =





0 if r 6= s and
(
xn(r), yn(r)

)
/∈ D(s)

1 if
(
xn(r), yn(r)

)
∈ D(s)

(9)
r being the index of the resolution level and D(s) the Region of Interest (RoI ) at the
s-th step de�ned on the basis of the information olleted by the reonstrution of the
(s − 1)-th iteration aording to the proedure detailed in [22℄.However, it should be notied that suh an implementation requires the knowledge of
|Ev

inc (x, y)| at di�erent level of resolution with a step-by-step dereasing of the samplinginterval. From a pratial point of view, the measure of |Ev
inc (x, y)| is generally arriedout in a limited number of measurement points [(xn, yn) , n = 1, ..., N ℄ in Dinv althoughtheoretially it ould be performed in whatever loation of the investigation domain.Nevertheless, the experimental system (and in partiular the eletromagneti sensors) ismoved by means of a mehanial apparatus with some toleranes in the positioning (whihstrongly depends on the appliation, but generally it is of the order of millimeters [5℄).Therefore, a redued sampling distane between adjaent positions in Dinv would resultin an inaurate measure of the �eld and, onsequently, eah measured sample would beorrupted by a non-negligible error.Beause of suh a drawbak, there is the need of de�ning a suitable model of the radiatingsoure in order to apply an iterative multi-resolution strategy and thus for omputing theradiated �eld in whatever position of the investigation domain. Towards this end, avoidingthe measurement of |Ev

inc (xn, yn)|, (xn, yn) ∈ Dinv, some alternative information on theradiated �eld are neessary. Therefore, let us suppose that the knowledge of the inident�eld radiated by the eletromagneti soure is available both in amplitude and phase inthe observation domain, Ev
inc

(
xm(v), ym(v)

), (
xm(v), ym(v)

)
∈ Dobs. Suh an assumption is8



generally veri�ed in real situations as on�rmed by the laboratory-ontrolled experimentsarried out at the Centre Commun de Ressoures Miro-ondes (CCRM ) in Marseille[35℄[36℄. As a matter of fat, suh an evaluation an be performed only one and o�-line(i.e., non during the imaging proess of an unknown objet) for eah measurement system(i.e., the measurement setup onstituted by the illuminating soure and the reeivers) andin a non-so-expensive and aurate fashion for a redued number of adequately-spaedloations. Furthermore, unlike the measurement in Dinv, the measurement loations in
Dobs are not so lose the one to the others and they are in a small number if hosenaording to the �golden rule� de�ned in [15℄.Aording to these idea, the inversion proess turns out to be arried out through thetwo-step strategy shematized in Fig. 2 and detailed in the following.Step 1 - Soure SynthesisLet us assume that, beause of the omplexity and di�ulties in olleting reliable and in-dependent measures in a dense grid of points, the inident �eld is only available at the mea-surement points belonging to the observation domain [Ev

inc

(
xm(v), ym(v)

), (
xm(v), ym(v)

)
∈

Dobs℄. Therefore, in order to apply the onstraints stated through the �State� equation(5) and before faing with the data inversion, it is mandatory to develop a suitable modelable to predit the inident �eld radiated by the atual eletromagneti soure in theinvestigation domain Dinv.Towards this aim, let us onsider the so-alled Distributed-Cylindrial-Waves Model (pro-posed and validated in [37℄ when dealing with experimental) where the atual soure isrepresented by a linear array of W equally-spaed line-soures, whih radiates an eletri�eld given by
Ẽv

inc (x, y) = −
k2

0

8πfε0

W∑

w=1

A (xw, yw) H
(2)
0 (k0dw) (10)where A(xw, yw) is the unknown oe�ient related to the w-th element of the array.Suh a model is ompletely de�ned when the set of unknown oe�ients, A = {A(xw, yw) ,

w = 1, ..., W}, is determined starting from the knowledge of the inident �eld measured9



in the observation domain through the solution of the following problem
Aopt = arg





minA




∑V
v=1

∥∥∥Ev
inc − Ẽv

inc

∥∥∥
2

∑V
v=1 ‖E

v
inc‖

2








(11)where Ev
inc is an array of the measures olleted for the v-th view at M(v) measurementpoints of the observation domain whose m(v)-th element is equal to Ev

inc

(
xm(v)

, ym(v)

);
Ẽv

inc is the array of numerially-omputed values of the inident �eld in the observationdomain given by Ẽv
inc = [G]A, [G] being a W × M(v) matrix whose generi element isequal to Gm(v),w = −

k2
0

8πfε0
H

(2)
0

(
k0dm(v),w

).Unfortunately, (11) involves the limitations of an inverse-soure problem, that is [G] is ill-onditioned and the solution is usually non-stable and non-unique. In order to overomesuh a drawbak, the solution of (11) is reast as the inversion of the linear operator
[G] through a SVD-deomposition [38℄ by looking for the optimal on�guration Aopt thatprovides the optimal mathing between measured and numerially-omputed values of theinident �eld in the observation domain

Aopt = arg





minW




∑V
v=1

∥∥∥
{
Ωv [Γv]

−1 Θ∗

v

}
Ev

inc

∥∥∥
2

∑V
v=1 ‖E

v
inc‖

2








(12)where Ωv and Θv are isometri matries, (∗) denotes the adjoint operator, and [Γv] is adiagonal matrix whose positive diagonal elements are the singular values of [G] [10℄.Step 2 - Objet Funtion ReonstrutionFollowing the general arhiteture of the multi-step proedure detailed in [21℄ for the FDproblem, the IMSA is applied to the phaseless data problem by repeating the followingproedural operations until the termination onditions hold true [22℄:
• Data ComputationStarting from the modeling of the eletromagneti soure derived at the �Step 1 �with the determination of Aopt, ompute ∣∣∣Ẽv

inc

(
xn(r), yn(r)

)∣∣∣, (
xn(r), yn(r)

)
∈ Dinv,

n(r) = 1, ..., N(r), r = s, through Eq. (10);
• Retrieval Proess 10



Minimize the multi-resolution ost funtion Φ̃(s) de�ned as follows
Φ̃(s) = Φ

(s)
Data + Φ̃

(s)
State (13)

being
Φ̃

(s)
State =

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

||Ẽv

inc(xn(r), yn(r))|−|ξv

inc(xn(r), yn(r))||
2

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

|Ẽv

inc(xn(r), yn(r))|
2by onsidering the multiresolution representation of the unknowns at the s-th step

{
τ

(
xn(r), yn(r)

)
, Ev

tot

(
xn(r), yn(r)

) ; n(r) = 1, ... , N(r); r = 1, ... , s; v = 1, ... , V }and aording to the iterative PSO-based approah [11℄.
3 Numerial ValidationThis setion is aimed at presenting the results obtained during the testing and numerialvalidation of the two-step reonstrution strategy. After a short overview of the har-ateristis of the measurement setup and of the senario onditions that we followed inour study, several experiments are presented in order to: (a) assess the e�etiveness andurrent limitations of the proposed PD approah in various environmental onditions andsatterers on�gurations; (b) ompare the obtained results with those reahed exploit-ing the information ontained in both amplitude and phase of the sattered �eld (FDapproah) both qualitatively, in terms of dieletri pro�le maps, and quantitatively, interms of the reonstrution errors as de�ned in [21℄. Towards these purposes and in orderto better understand and appreiate the usefulness of the implemented phaseless-datastrategy, two meaningful lasses of test ases are onsidered. The �rst one deals with syn-theti examples where sattering data are orrupted with di�erent levels of an additiveGaussian noise (de�ned as in [22℄) for evaluating the robustness of the approah. Whilethe seond one is onerned with some of the experimental datasets of the �Marseille�database [35℄[36℄. 11



3.1 Syntheti AssessmentThe �rst step of the numerial assessment deals with syntheti test ases for whih sat-tering data are user-de�ned (thus ontrolled) as well as the soures of noise.In all the following examples, the unknown satterers belong to a square investigationdomain of side Linv = 2 λ and they are illuminated by plane waves impinging from V = 32equally-spaed diretions [θv = 2π (v−1)
V

, v = 1, ..., V ℄. The observation domain is a irle
Robs = 5 λ in radius and the sattering data are omputed in M(v) = 32, v = 1, ..., V ,measurement points equally-distributed along Dobs.As far as the PSO-based method for the �retrieval proess� is onerned, the followingon�guration of parameters has been adopted aording to the guidelines in the relatedliterature [39℄[40℄ and to the heuristi study arried out in [11℄: w = 0.4 (onstant inertialweight), I = 5

100
U (swarm dimension, U being the number of problem unknowns), and

C1 = C2 = 2.0 (aeleration oe�ients). Moreover, the IMSA has been used with theparameters setting de�ned in [22℄.In the �rst example, the satterer is a entered (xref = xRoI = 0.0, yref = yRoI = 0.0)homogeneous dieletri (τref = 1.0) square ylinder Lref = LRoI = λ
2
sided. After solvingthe �soure-synthesis� step, the array oe�ients turned out to be distributed as shownin Fig. 3. Suh a on�guration an be onsidered optimal in terms of the mathingwith problem data as requested by (12). In order to give an idea of the �tting between�measured� and estimated data, Figure 4 shows the values of the amplitudes and phasesof the radiated-�elds in Dobs for v = 1. As an be seen, an aurate reonstrution isahieved both in amplitude [Fig. 4(a)℄ and phase [Fig. 4(b)℄. Similar onlusions holdtrue for all inidene angles.Starting from the estimated model of the soure, the �objet-funtion reonstrution� hasbeen arried out applying the iterative multi-saling approah. In Fig. 5, proessingresults at various stages through the multi-step reonstrution are shown. As a referene,the ideal reonstrution is displayed in [Fig. 5(a)℄. For omparison purposes, the pro�leestimated with the FD approah is reported in Fig. 5(e), as well. As it an be observed,the satterer appears fairly well retrieved by the IMSA, be this inversion led with orwithout the phase information (Tab. I). The orresponding objet-funtion maps illustrate12



that, whatever the approah, both a good loation and shape retrieval are obtained. Theonly di�erene omes from the fat that the PD inversion slightly shifts the loation ofthe objet with respet to its real position as on�rmed by the value of the loalizationerror (ρ(PD)
⌋
S=3

= 2.80 vs. ρ(FD)
⌋
S=3

= 0.02). In order to further on�rm the similarbehavior of the two approahes, let us onsider the distribution of the sattered �eld inthe observation domain (Fig. 6) as a similarity index.For ompleteness and in order to point out the e�etiveness of the optimization approahbased on the PSO algorithm [11℄, Figure 7 gives an indiation of the �tting betweenatual and estimated data both in Dobs [Fig. 7(a)℄ and in the RoI at di�erent steps ofthe reonstrution proess [e.g., (r = 0) indiates the loations in Dind that belong to theRoI estimated at (s = 1)℄.The last experiment of this syntheti test ase is aimed at evaluating the robustness ofthe two-step PD approah to the presene of the noise in the inversion data. In orderto benhmark how the �two-step� strategy adapts to a hanging environment, di�erentamounts of gaussian noise [22℄ have been added to ∣∣∣Ev
tot

(
xm(v), ym(v)

)∣∣∣, (
xm(v), ym(v)

)
∈

Dobs.Figure 8 shows the evolution through di�erent signal-to-noise ratios (SNRs) of the errorindexes. The SNR has been varied between 5 dB and 40 dB and 100 realizations wereaveraged for eah value, whih onstitutes a reasonable on�dene margin for a statistievaluation. As expeted, the FD approah yields the best results through the wholesignal-to-noise domain. It is also notieable that the di�erenes between FD and PDredues when the noise level inreases indiating a signi�ant impat of the noise espeiallyin the phase information. Moreover, sine both qualitative and quantitative error �guresassume similar values for non-negligible noise levels, it seems to indiate that the PDstrategy ould be pro�tably adopted in suh onditions beause of the favorable trade-o�between auray and simpliity of the imaging setup with respet to a FD methodology.Similar results hold true for other test ases. As an example, let us observe the estimatedpro�les [Figs. 9()-9(d)℄ when SNR = 20 dB and the sattering senario is that shownin [Figs. 9(a)-9(b)℄.
13



3.2 Experimental AssessmentIn the light of the aeptable results obtained in dealing with syntheti data orruptedby various amounts of an additive noise and simulating real situations (where real-timeaquired phaseless data are subjet to temperature and/or humidity variations, mea-surement noise at the sensors, observation noise, et.), the �two-step� strategy has beenassessed faing the real sattering data kindly provided by M. Saillard and K. Belkebir[35℄[36℄.As far as the PD approah is onerned, even though the knowledge of the total �eldin Dobs was available both in phase and amplitude, only the amplitude has been used.Moreover, the laboratory-aquired measures of Ev
inc

(
xm(v), ym(v)

), (
xm(v), ym(v)

)
∈ Dobs,have been onsidered for de�ning the model of the atual soure.The �rst test ase onsiders the so-alled �dielTM_de8f.exp� sattering on�guration[35℄, whih onsists of a homogeneous dieletri (τref = 2.0 ± 0.3) ylinder of radius

LRoI

2
= 1.5 × 10−2 [mt] loated in an o�-entered position (xref = xRoI = 0.0, yref =

yRoI = −3.0 × 10−2 [mt]) in the investigation domain (Linv = 30.0 × 10−2 [mt]) wherethe satterer is assumed to lie. Beause of the aspet-limited nature of the aquisitionsetup, the omplete set of measures [M(v) = 49, v = 1, ..., V , V = 36℄ olleted in a irle
Robs = 76.1×10−2 [mt] in radius has been used, but only mono-frequeny data have beenonsidered.In the �rst experiment, the reonstrution has been arried out at the working frequenyof f = 1 GHz. Moreover, di�erent methods onsidering both omplex and amplitude-onlydata have been used for allowing an exhaustive omparative analysis.Let us onsider the retrieved dieletri maps obtained with PD through the �bare�(2)PSO-based approah [Fig. 10(a)℄ and the IMSA-PSO strategy [Fig. 10(b)℄ desribed inthis paper. Conerning the FD, we will show the results obtained with stohasti [the�bare� PSO-based approah - Fig. 10() - and the IMSA-PSO strategy [11℄ - Fig. 10(d)℄as well as deterministi [the �bare� CG-based approah - Fig. 10(e) - and the IMSA-CGstrategy [21℄ - Fig. 10(f )℄ optimization methods.Let us observe the reonstruted pro�le shown in Fig. 10(b), even though some artifats

(2) A single-step inversion where the whole investigation domain is disretized with a spatial samplingsize equal to that reahed in the RoI by the IMSA estimated at the onvergene step.14



are present and the image turns out partially smoothed, it is possible to distinguish theshape and infer the position of the atual objet. On the ontrary, neither the loationnor the shape of the satterer an be deduted from the reonstrution obtained throughthe PD �bare� PSO-based approah [Fig. 10(a)℄.By omparing these results with those of the FD approahes [Figs. 10()-10(f )℄, some dif-ferenes an be observed. As expeted, the amplitude-only knowledge auses a redutionof the quality of the reonstrution with respet to a omplete data inversion. However,it turns out that the retrieved pro�le through the �two-step� PD strategy is better thanthose of the single-step �bare� methods both using PD [Fig. 10(a)℄ and FD [Fig. 10()and Fig. 10(e)℄. Moreover, it ompares in an aeptable fashion with others IMSA−FDmethods as on�rmed by the values reported in Tab. II. These onsiderations furtherpoint out the need of faing the lak of information (in this ase, the phase of the �eld)with an e�etive use of that available by means of e�etive multiresolution methodologies.Therefore, whether in [21℄ the need of improving the ahievable spatial resolution moti-vated the use of an IMSA approah, it beomes essential for ahieving a fair inversionwhen onsidering amplitude-only data.Finally, in order to give some indiations on the relationship between reonstrution a-uray and information ontent of the data, let us observe the plots of the �elds thatare produed by the inversion algorithm (di�erent from those whih ould be derived bythe retrieved dieletri map by solving the diret problem independently). The reasonof a redued auray in the reonstrution when dealing with PD annot be asribedto an unsatisfatory minimization of (13), sine the �tting between atual and estimatedsattering data is optimal at the onvergene [Fig. 11℄. It is ertainly related to theinformation on the phase as indiretly pointed out in Fig. 12 where it is evident the mis-mathing between the amplitude of the sattered �eld estimated by using the retrievedpro�le with the PD approah and the atual one, whereas the FD algorithm suitablyreprodues the referene plot.The seond experiment of this setion is aimed at evaluating the impat of the phaseinformation on the reonstrution at di�erent frequenies. Towards this end, the datasetsof the �Marseille� benhmark onerned with di�erent frequenies from 1 GHz up to15



8 GHz have been proessed.Likewise the FD approahes, the e�etiveness of PD methods in reonstruting the sat-terer signi�antly redues when the frequeny inreases as on�rmed by the evolution ofthe loalization error (Fig. 13). Moreover, by omparing the loalization auraies ofthe IMSA approahes, it turns out that the di�erene between the error indexes (i.e.,
Θ = ρ(IMSA−PD) − ρ(IMSA−FD)) enlarges as the frequeny inreases. Suh a behaviorlearly indiates the more and more negative e�et in negleting the phase informationwhen higher frequenies are used for sensing the satterer under test.In order to show the apability of the proposed strategy in deteting and reonstrutinglayered strutures, the last test ase deals with a two-layer irular struture desribed inthe new �Marseille� database [36℄ and denoted by the aronym �FoamDielIntTM �. Suha sattering on�guration is haraterized by the following quantities: τ

(1)
ref = 2.0 ± 0.3,

L
(1)
ref = 1.5 × 10−2 [mt], τ

(2)
ref = 0.45 ± 0.15 and L

(2)
ref = 4.0 × 10−2 [mt]. As far as theimaging setup is onerned, the desriptive parameters are all the same as in the �rstexperimental sattering database [35℄, exept for the radius of the observation domain(Robs = 1.67 [mt]) and the number of views and measurement loations [M(v) = 241,

v = 1, ..., V , V = 8℄. For a detailed desription of the measurement setup please see [41℄.Taking into aount previous results in dealing with dieletri obstales, the dataset re-lated to the lowest working frequeny has been onsidered (f = 2 GHz). Moreover, thesame number of array elements used for the �rst example of this sub-setion has beenonsidered for modeling the atual soure and omputing their amplitudes by means ofthe SV D. Suh a onstraint has been imposed to verify the validity of the same souremodel for both the �Marseille� datasets as well as the dependene of the reonstrutionon the auray of the equivalent soure.Even though the adopted soure model faithfully reprodues the phase [Fig. 14(b)℄ ofthe radiated �eld in the observation domain, some deviations from the real data an benotied in the orresponding amplitudes [Fig. 14(a)℄. Suh an event learly indiates thatthe soure modeling is not ompletely optimal. Starting from suh soure-synthesis, theresults of the retrieval proesses arried out with PD and FD approahes are shown in Fig.15. Despite the approximate model of the radiating soure, both the inversion performed16



with the IMSA − PD and with the IMSA − FD lead to aeptable results. Although,the satterer annot be exatly identi�ed, the algorithms onverged to a struture thatoupies a large subset of the true obstale and both of them revealed the boundaries ofthe layers. In partiular, it should be pointed out that the �nal reonstrution obtainedby the �two-step� PD strategy is essentially almost idential to that one ahieves startingfrom omplete sattering data as on�rmed by the values in Tab. III.4 ConlusionsA two-step strategy based on amplitude-only measurements of the total �eld has beenproposed and analyzed. The system arhiteture has been designed integrating the iter-ative multi-resolution reonstrution strategy with a soure modeling tehnique to fullyexploit the limited amount of information ahievable from sattering data, without re-quiring expensive measurement setups or omplex aquisition proedures.The main features of the proposed strategy are the following:
• apability to exploit the limited amount of information ahievable from amplitude-only measurements in an e�etive fashion by means of the use of a multi-salingrepresentation of the problems unknowns;
• apability to deal with omplex nonlinear ost funtions as well as the ourreneof possible false solutions (or loal minima of the ost funtional) thanks to thee�etiveness of a distributed-intelligene optimization algorithm;
• robustness to ommon levels of noise.Conerning the methodologial novelties of this work, besides the de�nition of the globalarhiteture of the whole system, some spei� aspets should be pointed out:
• original two-step strategy that allows a redued number of measures and externalto the investigation domain;
• spei� and innovative formulation of the amplitude-only data inversion within theframework of inverse sattering algorithms;17



• use of a multi-resolution proedure to address the phaseless-data inversion;
• use of a partile swarm optimizer for the iterative minimization of the non-di�erentiableamplitude-only ost funtion.In the numerial assessment arried out on di�erent onditions and experimental datasetsonerned with various sattering on�gurations, the proposed arhiteture proved e�e-tive, providing both aeptable reonstrution auray and robustness to the noise aswell as to false solutions. Final reonstrutions have usually shown a general agreementwith those from full data (amplitude and phase) and atual pro�les. As far as the in-formation related to the phase value is onerned, the numerial results pointed out thatphaseless inversions are very lose and essentially idential to those obtained with a om-plete approah in the presene of non-negligible levels of noise (syntheti experiments)and for lower frequenies (experimental datasets).Beause of the favorable trade-o� between omplexity/osts of the aquisition setup andreonstrution e�etiveness, the proposed approah seems a very promising tool to be usedin industrial appliations for non-destrutive tests and evaluations. Towards this purpose,further developments of this researh work will be oriented in two di�erent diretions:1. further simplifying the required imaging system by developing a proedure that doesnot require the measure of the phase of the radiated �eld (even though in suh a aseit is limited to the observation domain and it an be performed one and o�-lineduring the alibration of the measurement setup);2. extending the two-step strategy from free-spae on�gurations to layered/strati�edmedia as well as inhomogeneous bakgrounds for dealing with biomedial and morerealisti industrial appliations.
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Figure Captions
• Figure 1. Problem geometry.
• Figure 2. Blok diagram of the Two-Step reonstrution Strategy.
• Figure 3. Centered square dieletri ylinder (Lref = λ

2
, τref = 1.0) - Weightingsoure oe�ients Aw, w = 1, ..., W of the DCW-Model (W = 15): (a) amplitudeand (b) phase.

• Figure 4. Centered square dieletri ylinder (Lref = λ
2
, τref = 1.0) - Comparisonbetween the inident �eld measured in Dobs and the numerially-omputed valuesof Ev

inc

(
xm(v), ym(v)

): (a) amplitude and (b) phase (v = 1).
• Figure 5. Centered square dieletri ylinder (Lref = λ

2
, τref = 1.0) - Atualdieletri pro�le (a). PD Approah - Reonstruted pro�les at (b) s = 1, () s = 2,and (d) at the onvergene step (s = 3) of the IMSA-PSO Strategy . FD Approah- Reonstruted pro�les at the onvergene step (s = 3) of the IMSA-PSO Strategy(e).

• Figure 6. Centered square dieletri ylinder (Lref = λ
2
, τref = 1.0) - Compari-son between atual, estimated with FD approah, and PD approah values of (a)amplitude and (b) phase of Ev

scatt

(
xm(v), ym(v)

) in Dobs.
• Figure 7. Centered square dieletri ylinder (Lref = λ

2
, τref = 1.0) - (a) Ampli-tudes of the atual Ev

tot

(
xm(v), ym(v)

) and reonstruted ξv
tot

(
xm(v), ym(v)

) total �eldin Dobs. (b) Amplitudes of the atual Ev
inc

(
xn(r), yn(r)

), estimated Ẽv
inc

(
xn(r), yn(r)

),and reonstruted ξv
inc

(
xn(r), yn(r)

) inident �eld in Dinv.
• Figure 8. Centered square dieletri ylinder (Lref = λ

2
, τref = 1.0) - Comparisonbetween PD Approah and FD Approah (IMSA-PSO Strategy) in terms of error�gures: (a) ρ, (b) ∆, () γtot, (d) γint and (e) γext.

• Figure 9. Two square lossy ylinders (L(1)
ref = λ

4
, τ

(1)
ref = 3.0 − j0.4 and L

(2)
ref = λ

2
,

τ
(2)
ref = 1.5 − j0.25 - SNR = 20 dB) - Atual dieletri pro�le: (a) Re {τref (x, y)}and (b) Im {τref (x, y)}. PD Approah - Reonstruted pro�les at the onvergene25



step (s = 3) of the IMSA-PSO Strategy : () Re {τ (x, y)} and (d) Im {τ (x, y)}. FDApproah - Reonstruted pro�les at the onvergene step (s = 2) of the IMSA-PSOStrategy : (e) Re {τ (x, y)} and (f ) Im {τ (x, y)}.
• Figure 10. O�-entered homogeneous irular dieletri ylinder (Real dataset [35℄�dielTM_de8f.exp� - f = 1 GHz). PD Approah - Reonstruted pro�les with (a)�bare� PSO-based Approah and (b) IMSA-PSO Strategy . FD Approah - Reon-struted pro�les with () �bare� PSO-based Approah, (d) IMSA-PSO Strategy, (e)�bare� CG-based Approah, and (f ) IMSA-CG Strategy .
• Figure 11. O�-entered homogeneous irular dieletri ylinder (Real dataset [35℄�dielTM_de8f.exp� - f = 1 GHz) - (a) Amplitudes of the atual Ev

tot

(
xm(v), ym(v)

)and reonstruted ξv
tot

(
xm(v), ym(v)

) total �eld in Dobs. (b) Amplitudes of the esti-mated Ẽv
inc

(
xn(r), yn(r)

) and reonstruted ξv
inc

(
xn(r), yn(r)

) inident �eld in Dinv.
• Figure 12. O�-entered homogeneous irular dieletri ylinder (Real dataset[35℄ �dielTM_de8f.exp� - f = 1 GHz) - Comparison between atual, estimatedwith FD approah, and PD approah values of (a) amplitude and (b) phase of

Ev
scatt

(
xm(v), ym(v)

) in Dobs.
• Figure 13. O�-entered homogeneous irular dieletri ylinder (Real dataset [35℄�dielTM_de8f.exp�) - Behavior of the loalization error ρ versus frequeny.
• Figure 14. Multi-layer dieletri irular ylinder (Real dataset [36℄ �FoamDielIntTM �- f = 2GHz) - Comparison between the inident �eld measured in Dobs and thenumerially-omputed values of Ev

inc

(
xm(v), ym(v)

): (a) amplitude and (b) phase(v = 1).
• Figure 15. Multi-layer dieletri irular ylinder (Real dataset [36℄ �FoamDielIntTM �- f = 2GHz). PD Approah - Reonstruted pro�les with (a) �bare� PSO-basedApproah and (b) IMSA-PSO Strategy . FD Approah - Reonstruted pro�les with() �bare� PSO-based Approah and (d) IMSA-PSO Strategy .
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Table Captions
• Table I. Centered square dieletri ylinder (Lref = λ

2
, τref = 1.0) - Values of thequalitative (ρ and δ) and quantitative (γtot, γint, and γext) error �gures at di�erentsteps s (s = 1, 2, 3) of the IMSA-PSO strategy for the FD and PD approah,respetively.

• Table II. O�-entered homogeneous irular dieletri ylinder (Real dataset [35℄�dielTM_de8f.exp� - f = 1 GHz) - Loation and shape parameters.
• Table III.Multi-layer dieletri irular ylinder (Real dataset [36℄ �FoamDielIntTM �- f = 2GHz) - Loation and shape parameters.
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Step No. γtot γint γext ρ ∆

PD Approach

s = 1 7.25 28.6 5.83 2.65 161

s = 2 5.41 22.9 4.25 2.49 44.1

s = 3 3.49 21.1 2.32 2.80 31.8

FD Approach

s = 1 8.41 32.8 6.79 1.08 191

s = 2 4.19 25.7 2.09 0.82 61.8

s = 3 2.02 15.1 2.00 0.02 7.83

Tab. I - G. Franeshini et al., �Inversion of phaseless total �eld data using ...�
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xRoI

λ
yRoI

λ
LRoI

2λ

Actual Profile

0.0 −1.0 × 10−1 5.0 × 10−2

Reconstructed Profile (PD Approach)

PSO 1.3 × 10−2 −4.0 × 10−4 2.9 × 10−1

IMSA − PSO 4.3 × 10−3 −6.0 × 10−2 1.2 × 10−1

Reconstructed Profile (FD Approach)

PSO 7.0 × 10−3 −1.1 × 10−1 2.0 × 10−1

IMSA − PSO 6.0 × 10−3 −1.1 × 10−1 5.0 × 10−2

CG 2.3 × 10−2 −1.3 × 10−1 1.9 × 10−1

IMSA − CG −8.7 × 10−3 −1.0 × 10−1 1.1 × 10−1

Tab. II - G. Franeshini et al., �Inversion of phaseless total �eld data using ...�
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xRoI

λ
yRoI

λ
LRoI

2λ

Actual Profile

7.3 × 10−3 0.0 2.7 × 10−1

Reconstructed Profile (PD Approach)

PSO 2.5 × 10−2 1.3 × 10−3 8.7 × 10−1

IMSA − PSO 3.5 × 10−2 −1.3 × 10−2 2.5 × 10−1

Reconstructed Profile (FD Approach)

PSO 3.5 × 10−2 2.5 × 10−2 3.0 × 10−1

IMSA − PSO 3.1 × 10−2 −8.7 × 10−3 2.6 × 10−1

Tab. III - G. Franeshini et al., �Inversion of phaseless total �eld data using ...�
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