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Synthesis of Large Monopulse Linear Arrays through aTree-Based Optimal Exitations Mathing
P. Roa, L. Mania, A. Martini, and A. Massa

AbstratIn this paper, the synthesis of large arrays for monopulse traking appliationsis addressed by means of a simple and e�etive sub-arraying tehnique. Towardsthis purpose, the synthesis problem is reast as the searh of an optimal path in anon-omplete binary tree by exploiting some relationships between independently-optimal sum and di�erene exitations. Beause of a suitable redution of the solu-tion spae and the implementation of a fast path-searhing algorithm, the ompu-tational issues arising in dealing with large array aperture are properly addressed.Some numerial experiments are provided in order to assess the feasibility and theomputational e�etiveness of the tree-based approah.
Key words: Large Linear Arrays, Monopulse Antennas, Sum and Di�erene PatternSynthesis, Tree-Searhing Algorithm. 2



1 IntrodutionThe synthesis of monopulse antennas is not a trivial task beause of the need of generatingtwo di�erent patterns (namely, a sum and a di�erent pattern) by means of the same arraystruture. Suh a di�ulty further inreases for large arrays. As a matter of fat, theoptimal solution of implementing two independent feed networks is almost impratiabledue to the required osts, the arhiteture omplexity, and the spatial extension espeiallywhen dealing with large strutures. As an indiation regarding the pratial aspets of theatual realization on large arrays, let us onsider that when dealing with phased systemsfor beamforming purposes, time delay units are typially plaed at the output of a sub-array due to the high ost of plaing a time delay unitn at eah element of the array[1℄.Alternatively, some methods based on sub-arraying tehniques have been proposed [2℄-[5℄. As a referene, MNamara presented in [2℄ the so-alled exitation mathing methodaimed at obtaining the �best ompromise� di�erene pattern starting from a set of optimalsum exitations. Unfortunately, the reliability of suh an approah redues when largearrays are taken into aount due to the inversion of the arising ill-onditioned solutionmatrix. Optimization approahes [3℄-[5℄ based on the minimization of a suitable ostfuntion overome this drawbak. In suh a framework, Ares et al. proposed in [3℄ aSimulated Annealing-based tehnique where, starting from a �xed on�guration of sub-arrays, the sub-arrays weights are determined through the minimization of a suitableost funtion that penalizes side-lobe levels (SLLs) exeeding a presribed threshold.Unlike [3℄, the simultaneous optimization of sub-arrays partitions and their weights hasbeen addressed in [4℄ and [5℄ by applying a Geneti Algorithm (GAs) and a Di�erentialEvolution (DE) algorithm, respetively.However, although optimization methods are not a�eted by the ill-onditioning issueand perform very well in faing with both multi-onstrained and multi-variable (i.e.,real/disrete/binary unknowns) problems, they are usually time-onsuming when dealingwith large arrays. In suh a ase, even though the solution spae is e�iently sampled,its dimension is very large and several iterations are needed for reahing a reliable and3



satisfatory solution. In order to avoid suh an event, this letter deals with a simple andomputationally-e�etive resolution method. By onsidering that an optimal sub-arrayingan be obtained by exploiting the similarity properties between independently-optimumsum and di�erene exitations, the problem is reast as the searh of an optimal path inan inomplete binary tree arried out by a simple swapping algorithm.The paper is organized as follows. The mathematial formulation of the tree-based ap-proah is desribed in Set. 2, whereas some representative results from a set of numerialexperiments are presented and disussed in Set. 3. Eventually (Set. 4), some onlu-sions are drawn.2 Mathematial FormulationLet us onsider a linear uniform array of N = 2M elements where the sum and di�erenepatterns are obtained staring from symmetri A = {am = a
−m; m = 1, ...,M} and anti-symmetri B = {bm = −b

−m; m = 1, . . . ,M} real exitations, respetively. Thanks tothe symmetries, only one half of the elements of the array S = {ξm; m = 1, ...,M} isonsidered dealing with the monopulse synthesis problem.As far as ideal onditions are onerned, the optimal exitations sets (i.e., optimal sum
Aopt = {αm; m = 1, ...,M} and optimal di�erene Bopt = {βm; m = 1, ...,M} oe�ients)are omputed by using analytial methods based on Chebyshev's [6℄ and Zolotarev's [7℄[8℄polynomials, respetively.On the other hand, sub-arraying tehniques [2℄, starting from the optimal sum pattern (byassuming am = αm; m = 1, ...,M), generate a sub-optimal di�erene pattern by meansof a suitable grouping of theM array elements in Q di�erent sub-arrays. Mathematially,the sub-arrays solution is desribed in terms of the grouping vetor C [5℄ of M positiveintegers cm ∈ [1, Q], whih identi�es the membership of eah element to a sub-array, andby the di�erene exitations given by bm = wmqαm (m = 1, ...,M ; q = 1, ..., Q) where
wmq = δcmqwq (δcmq = 1 if cm = q, δcmq = 0 otherwise) is the weight oe�ient assoiatedto the m-th array element belonging to the q-th sub-array.The proposed synthesis approah is aimed at de�ning a sub-array on�guration Copt suh4



that the ompromise di�erene exitation set B is as lose as possible to Bopt. Towardsthis end, let us observe that, although the total number of sub-array on�gurations isequal to U = QM , the number of �allowed � solutions redues to U (tree) =









M − 1

Q− 1







by avoiding �empty� or �equivalent�(1) sub-arrays on�gurations. Suh a set of solutionsan be usefully represented by means of a binary tree (or �solution tree�) of depth Mby properly sorting the array elements. More in detail, let us de�ne a set of refereneparameters V = {vm; m = 1, ...,M} alled �optimal gains�
vm =

βm
αm

m = 1, ...,M (1)in orrespondene with eah element of S. Then, the values of the vm parameters areordered in a list L = {lm; m = 1, ...,M}, where li ≤ li+1, i = 1, ...,M−1, l1 = minm {vm},and lM = maxm {vm}, in order to build the solution tree shown in Fig. 1 (M = 5 and
Q = 3) where the positive integer q inside a node at the lm-th level indiates that thearray element identi�ed by lm is a member of the q-th sub-array. Suh an arhitetureguarantees that elements grouped in the same sub-array have lose vm values. Moreover,aording to this representation, it is possible to reast the problem solution (i.e., Copt)as the searh of an optimal path inside the tree. Towards this end, let us de�ne a suitableost funtion (or metri) Ψ that quanti�es the loseness of eah andidate/trial solution
C to the optimal one

Ψ {C} =
M
∑

m=1

(vm − dm {C})
2 , (2)where the estimated parameters dm (C) are omputed as follows

dm (C) =

∑M
s=1 δcsqvs

∑M
s=1 δcsq

m = 1, . . . ,M. (3)Consequently, C(opt) is identi�ed as the result of a sequene of trial solutions that min-
(1) As an example, Ci = {3, 1, 1, 2, 1, 3, 2, 2} is equivalent to Cj = {1, 2, 2, 3, 2, 1, 3, 3}.5



imizes the ost funtion Ψ (i.e., Copt = arg [mink=1,...,KΨ {Ck}], k being the iterationindex) and the sub-array weights are assumed to be equal to the optimal values of the�omputed gains� dm (

Copt

)

wq = δcmqdm
{

Copt

}

q = 1, ..., Q. (4)It should be notied that the sub-arrays weights {wq; q = 1, ..., Q} are analytially-omputedone the sub-array membership of eah element is determined and they are not involvedin the optimization proess.As far as the generation of the sequene of trial solutions {Ck; k = 1, ..., K} is on-erned, let us observe that only some elements of the list L are andidate to hangetheir sub-array membership without violating the sorting ondition of the allowed sub-array on�gurations. These array elements (alled �border elements�) are identi�ed bythe lm indexes whose adjaent list values lm−1 or/and lm+1 belong to a di�erent sub-array. Therefore, Copt is found starting from an initial path C(0), randomly-hosen amongthe set of paths of the solution tree, and iteratively updating the andidate solution
Ck ← Ck+1 just modifying the membership of the border elements, until a maximumnumber of iterations K (i.e., k > K) or a stationary ondition for the �tness value (i.e.,
∣

∣

∣
KwindowΨ

(k−1)
opt −

∑Kwindow
j=1

Ψ
(j)
opt

∣

∣

∣

Ψ
(k)
opt

≤ η, Kwindow and η being a �xed number of iterations and a�xed numerial threshold, respetively) is satis�ed.3 Numerial ResultsIn order to assess the e�etiveness of the proposed method in dealing with large arrays,some numerial simulations have been performed. Sine, likewise [2℄, suh an approahbelongs to the lass of synthesis tehniques aimed at determining the �best ompromise�di�erene pattern, let us de�ne some indexes for allowing a quantitative evaluation ofthe loseness of sub-optimal ompromises to optimal patterns. In partiular, the patternmathing ∆ 6



∆ =

∫ π
0

∣

∣

∣|AF (ψ)|optn − |AF (ψ)|recn

∣

∣

∣ dψ
∫ π
0 |AF (ψ)|optn dψ

, (5)where ψ = (2πd/λ) sinθ, θ ∈ [0, π/2], (λ and d being the free-spae wavelength andthe inter-element spaing, respetively), |AF (ψ)|optn and |AF (ψ)|recn are the optimal andsynthesized di�erene pattern, respetively. Moreover, the beamwidth BW and the powerslope Pslo that numerially �desribe� the pattern slope on the boresight diretion
Pslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −
∫ ψmax

0
|AF (ψ)|n dψ

]

, (6)
ψmax being the angular position of the maximum of the array pattern.In the numerial assessment, a linear array of N equally-spaed (d = λ

2
) elements hasbeen onsidered. Conerning the optimal referene setup, sum and di�erene exitationshave been hosen to generate a Dolph-Chebyshev pattern [6℄ with SLL = −25 dB anda Zolotarev pattern [8℄ with SLL = −30 dB. Moreover, in order to evaluate the perfor-mane of the tree-based method versus the array dimension, N has been varied from 20(small/medium arrays, i.e. M < 50) up to 500 (large arrays, i.e. M ≥ 50) and di�erentarray partitions (Q ∈ [3, 10]) have been onsidered.The plot of ∆ versus M for di�erent values of Q is shown in Figure 2. As it an beobserved, for a �xed number Q of sub-arrays, the distane between the optimal di�erenepattern and the ompromise one does not signi�antly vary as the number of elements Minreases (M > 50) ranging from ∆ ∼= 0.15 (Q = 10) up to ∆ ∼= 0.36 (Q = 3). Moreover,as expeted, for eah array aperture (i.e., M = cost), the synthesized di�erene patternsget loser and loser to the optimal one when the value of Q grows (Q→M).As a representative result, sum and ompromise di�erene patterns when N = 500 and

Q = 3 are shown (Fig. 3) as well as the orresponding sets of exitations (Fig. 4). Forompleteness, the number of elements of eah sub-array, nq, and the sub-arrays weightsare reported in Tab. I. Notwithstanding the value of M
Q
≃ 83 (i.e., a limited numberof large sub-arrays), it turns out that the di�erenes in terms of Pslo and Bw betweenompromise pattern and optimal di�erene target are less than 1.5% and 2% (being ∆ <7



0.4), respetively.As far as the omputational issues are onerned, let us �rstly analyze the dimensionof the solution spae U (tree) of the tree-based method as shown in Fig. 5. As statedin Set. 2, U (tree) behaves as a binomial funtion of M and Q, while the total numberof on�gurations U (i.e., the dimension of the solution spae sampled by optimizationalgorithms) grows exponentially with M (U = QM). Thanks to the redued dimensionof U (tree) and beause of the omputational simpliity of the swapping algorithm, thenumber of iterations kopt needed to reah the �nal solution turns out to be aeptablewhatever the array aperture (maxM,Q

{

kopt⌋M,Q

}

< 90) espeially taking into aountthat the CPU-time tk for evaluating a trial solution (on a 3GHz Pentium 4 and 512MBof RAM ) is lower than max {tk} = 0.81 [sec] (M = 250 and Q = 10 - Fig. 7) and, as anexample, it redues to 0.12 [sec] when M = 100.4 ConlusionsIn this paper, the synthesis of large array monopulse antennas has been dealt with atree-based sub-arraying method. In order to reah an optimal mathing between syn-thesized and independently-optimum sum and di�erene patterns and by exploiting somerelationships among admissible aggregations, the synthesis problem has been reast as thesearh of the minimum-ost path in a non-omplete binary tree. Towards this purpose,a simple and a�etive swapping algorithm that onsiders the presene of border elementsmore suitable to hange sub-array membership, has been used. Some representative re-sults from an exhaustive set of numerial experiments on�rmed the potentialities of theapproah in dealing with large arrays both in terms of omputational osts and auray.AknowledgmentsThe authors wish to thank Dr. M. Donelli and Prof. M. Pastorino for useful disussionsand suggestions. This work has been partially supported in Italy by the �Progettazionedi un Livello Fisio 'Intelligente' per Reti Mobili ad Elevata Rion�gurabilità,� Progetto8
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FIGURE CAPTIONS
• Figure 1. Solution-Tree struture (M = 10, Q = 3).
• Figure 2. Large Arrays (d = λ

2
) - Behavior of ∆ versus M for various values of Q.

• Figure 3. Large Arrays (M = 250, d = λ
2
, Q = 3) - (a) Optimal sum pattern(Dolph-Chebyshev pattern [6℄ - SLL = −30 dB) and (b) ompromise di�erene pat-tern.

• Figure 4. Large Arrays (M = 250, d = λ
2
, Q = 3) - Exitations oe�ients.

• Figure 5. Computational Analysis - Behavior of U versus M for various values of
Q.
• Figure 6. Computational Analysis - Behavior of kopt versus M for various valuesof Q.
• Figure 7. Computational Analysis - Behavior of tk versus M for various values of
Q.
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TABLE CAPTIONS
• Table I. Large Arrays (M = 250, d = λ

2
, Q = 3) - Number of elements per sub-array, nq, and sub-array weights, wq.
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q 1 2 3

nq 93 105 52

wq 1.59 7.29 14.50
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