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A Multi-Resolution Tehnique based onShape Optimization for the Reonstrutionof Homogeneous Dieletri ObjetsM. Benedetti1,2, D. Lesselier2, M. Lambert2, and A. Massa1
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2Département de Reherhe en Életromagnétisme - Laboratoire des Signaux etSystèmes, CNRS-SUPELEC Univ. Paris Sud 11, 3 rue Joliot-Curie, 91192Gif-sur-Yvette CEDEX, FraneE-mail: manuel.benedetti�disi.unitn.it, lesselier�lss.supele.fr , lambert�lss.supele.fr,andrea.massa�ing.unitn.itAbstrat. In the framework of inverse sattering tehniques, this paper presents theintegration of a multi-resolution tehnique and the level-set method for qualitativemirowave imaging. On one hand, in order to e�etively exploit the limited amountof information olletable from sattering measurements, the iterative multi-salingapproah (IMSA) is employed for enabling a detailed reonstrution only whereneeded without inreasing the number of unknowns. On the other hand, the a-prioriinformation on the homogeneity of the unknown objet is exploited by adopting ashape-based optimization and representing the support of the satterer via a levelset funtion. Reliability and e�etiveness of the proposed strategy are assessed byproessing both syntheti and experimental sattering data for simple and omplexgeometries, as well.Key Words - Mirowave Imaging, Inverse Sattering, Level Sets, Iterative Multi-Saling Approah, Homogeneous Dieletri Satterers.Classi�ation Numbers (MSC) - 45Q05, 78A46, 78M50



2 M. Benedetti et al.1. IntrodutionThe non-invasive reonstrution of position and shape of unknown targets is a topiof great interest in many appliations, suh as non-destrutive evaluation and testing(NDE/NDT) for industrial monitoring and subsurfae sensing [1℄. In this framework,many methodologies have been proposed based on x-rays [2℄, ultrasonis [3℄, andeddy urrents [4℄. Furthermore, mirowave imaging has been reognized as a suitablemethodology sine [1℄[5℄: (a) eletromagneti �elds at mirowave frequenies anpenetrate non-ideal ondutor materials; (b) the �eld sattered by the target isrepresentative of its inner struture and not only of its boundary; () mirowaves showa high sensibility to the water ontent of the struture under test; (d) mirowave sensorsan be employed without mehanial ontats with the speimen. In addition, omparedto x-ray and magneti resonane, mirowave-based approahes minimize (or avoid)ollateral e�ets in the speimen under test. Therefore, they an be safely employed inbiomedial imaging.A further advane in mirowave non-invasive inspetion is represented by inversesattering approahes aimed at reonstruting a omplete image of the region under test.Unfortunately, the underlying mathematial model is haraterized by several drawbakspreventing their massive employment in NDE/NDT appliations. In partiular, inversesattering problems are intrinsially ill-posed [6℄ as well as non-linear [7℄.Sine the ill-posedness is strongly related to the amount of olletable informationand usually the number of independent data is lower than the dimension of the solutionspae, multi-view/multi-illumination systems are generally adopted. However, it iswell known that the olletable information is an upper-bounded quantity [8℄-[10℄.Consequently, it is neessary to e�etively exploit the overall information ontainedin the sattered �eld samples for ahieving a satisfatory reonstrution.Towards this end, multi-resolution strategies have been reently proposed. The ideais that of using an enhaned spatial resolution only in those regions where the unknownsatterers are found to be loated. Aordingly, Miller et al. [11℄ proposed a statistially-based method for determining the optimal resolution level, while Baussard et al. [12℄developed a strategy based on spline pyramids for sub-surfae imaging problems. As foran example onerned with qualitative mirowave imaging, Li et al. [13℄ implemented amultisale tehnique based on Linear Sampling Method (LSM) to e�etively reonstrutthe ontour of the satterers. Unlike [11℄-[13℄, the iterative multi-sale approah (IMSA)



A Multi-Resolution Tehnique based on Shape Optimization 3developed by Caorsi et al. [14℄ performs a multi-step, multi-resolution inversion proessin whih the ratio between unknowns and data is kept suitably low and onstant at eahstep of the inversion proedure, thus reduing the risk of ourrene of loal minima [9℄in the arising optimization problem.On the other hand, the lak of information a�eting the inverse problem has beenaddressed through the exploitation of the a-priori knowledge (when available) on thesenario under test by means of an e�etive representation of the unknowns. As far asmany NDE/NDT appliations are onerned, the unknown defet is haraterized byknown eletromagneti properties (i.e., dieletri permittivity and ondutivity) and itlies within a known host region. Under these assumptions, the imaging problem reduesto a shape optimization problem aimed at the searh of loation and boundary ontoursof the defet. Parametri tehniques aimed at representing the unknown objet in termsof desriptive parameters of referene shapes [15℄[16℄ and more sophistiated approahessuh as evolutionary-ontrolled spline urves [17℄[18℄, shape gradients [19℄-[21℄ or level-sets [22℄-[30℄ have then been proposed. As far as level-set-based methods are onerned,the homogeneous objet is de�ned as the zero level of a ontinuous funtion and, unlikepixel-based or parametri-based strategies, suh a desription enables one to representomplex shapes in a simple way.In order to exploit both the available a-priori knowledge on the senario under test(e.g., the homogeneity of the satterer) and the information ontent from the satteringmeasurements, this paper proposes the integration of the iterative multi-saling strategy(IMSA) [14℄ and the level-set (LS ) representation [23℄.The paper is strutured as follows. The integration between IMSA and LS isdetailed in Set. 2 dealing with a two-dimensional geometry. In Setion 3, numerialtesting and experimental validation are presented, a omparison with the standard LSimplementation being made. Finally, some onlusions are drawn (Set. 4).2. Mathematial FormulationLet us onsider a ylindrial homogeneous non-magneti objet with relativepermittivity ǫC and ondutivity σC that oupies a region Υ belonging to aninvestigation domain DI . Suh a satterer is probed by a set of V transverse-magneti(TM) plane waves, with eletri �eld direted along the axis of the ylindrial geometry,



4 M. Benedetti et al.namely ζv(r) = ζv(r)ẑ (v = 1, . . . , V ), r = (x, y). The sattered �eld, ξv(r) = ξv(r)ẑ, isolleted at M(v), v = 1, ..., V , measurement points rm distributed in the observationdomain DO.In order to eletromagnetially desribe the investigation domain DI , let us de�nethe ontrast funtion τ(r) given by
τ(r) =





τC

0

r ∈ Υotherwise (1)where τC = (ǫC − 1)− j σC

2πfε0
, f being the frequeny of operation (the time dependene

ej2πft being implied).The sattering problem is desribed by the well-known Lippmann-Shwinger integralequations
ξv (rm) =

(
2π

λ

)2 ∫

DI

τ (r′)Ev (r′)G2D (rm, r′) dr′, rm ∈ DO (2)
ζv (r) = Ev (r) −

(
2π

λ

)2 ∫

DI

τ (r′)Ev (r′)G2D (r, r′) dr′, r ∈ DI (3)where λ is the bakground wavelength, Ev is the total eletri �eld, and G2D (r, r′) =

− j

4
H

(2)
0

(
2π
λ
‖r − r′‖

) is the free-spae two-dimensional Green's funtion, H
(2)
0 being theseond-kind, zeroth-order Hankel funtion.In order to retrieve the unknown position and shape of the target Υ by step-by-step enhaning the spatial resolution only in that region, alled region-of-interest (RoI),

R ∈ DI , where the satterer is loated [14℄, the following iterative proedure of Smaxsteps is arried out.With referene to Fig. 1(a) and to the blok diagram displayed in Fig. 2, at the�rst step (s = 1, s being the step number) a trial shape Υs = Υ1, belonging to DI ,is hosen and the region of interest Rs [ Rs=1 = DI ℄ is partitioned into NIMSA equalsquare sub-domains, where NIMSA depends on the degrees of freedom of the problem athand and it is omputed aording to the guidelines suggested in [9℄.In addition, the level set funtion φs is initialized by means of a signed distanefuntion de�ned as follows [23℄[25℄:
φs (r) =





−minb=1,...,Bs
‖r − rb‖ if τ (r) = τCminb=1,...,Bs
‖r − rb‖ if τ (r) = 0

(4)where rb = (xb, yb) is the b-th border-ell (b = 1, . . . , Bs) of Υs=1.Then, at eah step s of the proess (s = 1, ..., Smax), the following optimizationproedure is repeated (Fig. 2):



A Multi-Resolution Tehnique based on Shape Optimization 5
• Problem Unknown Representation - The ontrast funtion is represented interms of the level set funtion as follows

τ̃ks
(r) =

s∑

i=1

NIMSA∑

ni=1

τki
B

(
rni

)
r ∈ DI (5)where the index ks indiates the k-th iteration at the s-th step [ks = 1, ..., kopt

s ℄,
B

(
rni

) is a retangular basis funtion whose support is the n-th sub-domain at the
i-th resolution level [ni = 1, ..., NIMSA, i = 1, ..., s℄, and the oe�ient τki

is givenby
τki

=





τC ifΨki

(
rni

)
≤ 0

0 otherwise (6)letting
Ψki

(
rni

)
=






φki

(
rni

) if i = s

φk
opt
i

(
rni

) if (i < s) and (
rni

∈ Ri

) (7)with i = 1, ..., s as in (5).
• Field Distribution Updating - One τ̃ks

(r) has been estimated, the eletri�eld Ev
ks

(r) is numerially omputed aording to a point-mathing version of theMethod of Moments (MoM) [31℄ as
Ẽv

ki

(
rni

)
=

∑NIMSA
pi=1 ζv

(
rpi

) [
1 − τ̃ki

(
rpi

)
G2D

(
rni

, rpi

)]−1
,

rni
, rpi

∈ DI

ni = 1, ..., NIMSA .

(8)
• Cost Funtion Evaluation - Starting from the total eletri �eld distribution(8), the reonstruted sattered �eld ξ̃v

ks
(rm) at the m-th measurement point,

m = 1, ..., M(v), is updated by solving the following equation
ξ̃v
ks

(rm) =
s∑

i=1

NIMSA∑

ni=1

τ̃ki

(
rni

)
Ẽv

ki

(
rni

)
G2D

(
rm, rni

) (9)and the �t between measured and reonstruted data is evaluated by the multi-resolution ost funtion Θ de�ned as
Θ {φks

} =

∑V
v=1

∑M(v)
m=1

∣∣∣ξ̃v
ks

(rm) − ξv
ks

(rm)
∣∣∣
2

∑V
v=1

∑M(v)
m=1

∣∣∣ξv
ks

(rm)
∣∣∣
2 . (10)

• Minimization Stopping - The iterative proess stops [i.e., kopt
s = ks and τ̃ opt

s = τ̃ks
℄when: (a) a set of onditions on the stability of the reonstrution holds true or (b)when the maximum number of iterations is reahed [ks = Kmax℄ or () when the



6 M. Benedetti et al.value of the ost funtion is smaller than a �xed threshold γth. As far as the stabilityof the reonstrution is onerned [ondition (a)℄, the �rst orresponding stoppingriterion is satis�ed when, for a �xed number of iterations, Kτ , the maximumnumber of pixels whih vary their value is smaller than a user de�ned threshold γτaording to the relationshipmaxj=1,...,Kτ





NIMSA∑

ns=1

|τ̃ks
(rns

) − τ̃ks−j (rns
)|

τC



 < γτ · NIMSA. (11)The seond riterion, about the stability of the reonstrution, is satis�ed when theost funtion beomes stationary within a window of KΘ iterations as follows:

1

KΘ

KΘ∑

j=1

Θ {φks
} − Θ {φks−j}

Θ {φks
}

< γΘ. (12)
KΘ being a �xed number of iterations and γΘ being user-de�ned thresholds;. Whenthe iterative proess stops, the solution τ̃ opt

s at the s-th step is seleted as the onerepresented by the �best� level set funtion φopt
s de�ned as

φopt
s = arg [minh=1,...,k

opt
s

(Θ {φh})
]
. (13)

• Iteration Update - The iteration index is updated [ks → ks + 1℄;
• Level Set Update - The level set is updated aording to the following Hamilton-Jaobi relationship

φks
(rns

) = φks−1 (rns
) − ∆tsVks−1 (rns

)H{φks−1 (rns
)} (14)where H{·} is the Hamiltonian operator [32℄[33℄ given as

H2 {φks
(rns

)} =





max2
{
Dx−

ks
; 0

}
+ min2

{
Dx+

ks
; 0

}
+

+max2
{
Dy−

ks
; 0

}
+ min2

{
Dy+

ks
; 0

}if Vk(s)

(
rn(s)

)
≥ 0min2

{
Dx−

ks
; 0

}
+ max2

{
Dx+

ks
; 0

}
+

+min2
{
Dy−

ks
; 0

}
+ max2

{
Dy+

ks
; 0

}otherwise
(15)

and Dx±
ks

=
±φks(xns±1,yns)∓φks(xns ,yns)

ls
, Dy±

ks
=

±φks(xns ,yns±1)∓φks (xns ,yns)

ls
. ∆ts is thetime-step hosen as ∆ts = ∆t1

ls
l1
with ∆t1 to be set heuristially aording to theliterature [23℄, ls being the ell-side at the s-th resolution level. Vks

is the veloity



A Multi-Resolution Tehnique based on Shape Optimization 7funtion omputed following the guidelines suggested in [23℄ by solving the adjointproblem of (8) in order to determine the adjoint �eld F v
ks
. Aordingly,

Vks
(rns

) = −ℜ

{∑V

v=1
τCEv

ks
(rns)F

v
ks

(rns)∑V

v=1

∑M(v)

m=1 |ξ
v
ks

(rm)|
2

}
,

ns = 1, ..., NIMSA

(16)where ℜ stands for the real part.When the s-th minimization proess terminates, the ontrast funtion is updated[τ̃ opt
s (r)= τ̃ks−1 (r), r ∈ DI (5)℄ as well as the RoI [Rs → Rs−1℄. To do so, the followingoperations are arried out:
• Computation of the Baryenter of the RoI - the enter of Rs of oordinates

(x̃c
s, ỹ

c
s) is determined by omputing the enter of mass of the reonstruted shapesas follows [14℄ [Fig. 1(b)℄

x̃c
s =

∫
DI

xτ̃ opt
s (r)B (r) dx dy

∫
DI

τ̃ opt
s (r)B (r) dx dy

(17)
ỹc

s =

∫
DI

yτ̃ opt
s (r)B (r) dx dy

∫
DI

τ̃ opt
s (r)B (r) dx dy

; (18)
• Estimation of the Size of the RoI - the side Ls of Rs is omputed by evaluatingthe maximum of the distane δc (r) =

√
(x − x̃c

s)
2 + (y − ỹc

s)
2 in order to enlosethe satterer, namely

L̃s = maxr

{
2 ×

τ̃ opt
s (r)

τC

δc (r)

}
. (19)One the RoI has been identi�ed, the level of resolution is enhaned [ks → ks−1℄ onlyin this region by disretizing Rs into NIMSA sub-domains [Fig. 1()℄ and by repeatingthe minimization proess until the syntheti zoom beomes stationary (s = sopt), i.e.,

{
|Qs−1 − Qs|

|Qs−1|
× 100

}
< γQ, Q = x̃c, ỹc, L̃ (20)

γQ being a threshold set as in [14℄, or until a maximum number of steps (sopt = Smax)is reahed.At the end of the multi-step proess (s = sopt), the problem solution is obtained as
τ̃ opt

(
rni

)
= τ̃ opt

s

(
rni

), ni = 1, ..., NIMSA, i = 1, ..., sopt.



8 M. Benedetti et al.3. Numerial ValidationIn order to assess the e�etiveness of the IMSA-LS approah, a seleted set ofrepresentative results onerned with both syntheti and experimental data is presentedherein. The performanes ahieved are evaluated by means of the following error �gures:
• Loalization Error δ

δ|p =

√(
x̃c

s|p − xc|p
)2

−
(
ỹc

s|p − yc|p
)2

λ
× 100 (21)where rc|p =

(
xc|p , yc|p

) is the enter of the p-th true satterer, p = 1, ..., P , Pbeing the number of objets. The average loalization error < δ > is de�ned as
< δ >=

1

P

P∑

p=1

δ|p . (22)
• Area Estimation Error ∆

∆ =




I∑

i=1

1

NIMSA

NIMSA∑

ni=1

Nni


 × 100 (23)where Nni

is equal to 1 if τ̃ opt
(
rni

)
= τ

(
rni

) and 0 otherwise.As far as the numerial experiments are onerned, the reonstrutions have beenperformed by blurring the sattering data with an additive Gaussian noise haraterizedby a signal-to-noise-ratio (SNR)
SNR = 10log∑V

v=1

∑M(v)
m=1 |ξv (rm)|2

∑V
v=1

∑M(v)
m=1 |µv,m|2

(24)
µv,m being a omplex Gaussian random variable with zero mean value.3.1. Syntheti Data - Cirular Cylinder3.1.1. Preliminary Validation In the �rst experiment, a lossless irular o�-enteredsatterer of known permittivity ǫC = 1.8 and radius ρ = λ/4 is loated in a squareinvestigation domain of side LD = λ [23℄. V = 10 TM plane waves are impinging fromthe diretions θv = 2π (v − 1)/V , v = 1, ..., V , and the sattering measurements areolleted at M = 10 reeivers uniformly distributed on a irle of radius ρO = λ.As far as the initialization of the IMSA-LS algorithm is onerned, the initial trialobjet Υ1 is a disk with radius λ/4 and entered in DI . The initial value of the timestep is set to ∆t1 = 10−2 as in [23℄. The RoI is disretized in NIMSA = 15 × 15sub-domains at eah step of the iterative multi-resolution proess. Conerning the



A Multi-Resolution Tehnique based on Shape Optimization 9stopping riteria, the following on�guration of parameters has been seleted aordingto a preliminary alibration dealing with simple known satterers and noiseless data:
Smax = 4 (maximum number of steps), γx̃c

= γ ỹc

= 0.01 and γL̃ = 0.05 (multi-step proess thresholds), Kmax = 500 (maximum number of optimization iterations),
γΘ = 0.2 and γτ = 0.02 (optimization thresholds), KΘ = Kτ = 0.15 Kmax (stabilityounters), and γth = 10−5 (threshold on the ost funtion).Figure 3 shows samples of reonstrutions with the IMSA-LS . At the �rst step[Fig. 3(a) - s = 1℄, the satterer is orretly loated, but its shape is only roughlyestimated. Thanks to the multi-resolution representation, the qualitative imaging of thesatterer is improved in the next step [Fig. 3(b) - s = sopt = 2℄ as on�rmed by the errorindexes in Tab. 1. For omparison purposes, the pro�le retrieved by the single-resolutionmethod [23℄ (indiated in the following as Bare-LS ), when DI has been disretized in
NBare = 31 × 31 equal sub-domains, is shown [Fig. 3()℄. In general, the disretizationof the Bare-LS has been hosen in order to ahieve in the whole investigation domaina reonstrution with the same level of spatial resolution obtained by the IMSA-LS inthe RoI at s = sopt.Although the �nal reonstrutions [Figs. 3(b)()℄ ahieved by the two approahesare similar and quite lose to the true satterer sampled at the spatial resolution of Bare-LS [Fig. 3(d)℄ and IMSA-LS [Fig. 3(b)℄, the IMSA-LS more faithfully retrieves thesymmetry of the atual objet, even though the reonstrution error appears to be largerthan the one of the Bare-LS (Fig. 4). During the iterative proedure, the ost funtion
Θopt = Θ {φopt

s } is initially haraterized by a monotonially dereasing behavior. Then,
Θopt⌋IMSA

beomes stationary until the stopping riterion de�ned by relationships (11)and (12) is satis�ed (Fig. 4 - s = 1). Then, after the update of the �eld distributioninduing the error spike when s = sopt = 2 and ks = 1, Θopt⌋IMSA
settles to a value of

6.28×10−4 whih is of the order of the Bare-LS error (Θopt⌋Bare
= 1.42×10−4). Suh aslight di�erene between Θopt⌋IMSA

and Θopt⌋Bare
depends on the di�erent disretization[i.e., the basis funtions B

(
rn(i=2)

), n(i) = 1, ..., NIMSA are not the same as those ofBare-LS ℄, but it does not a�et the reonstrution in terms of both loalization andarea estimation, sine δ⌋IMSA−LS < δ⌋Bare−LS and ∆⌋IMSA−LS < ∆⌋Bare−LS (Tab. 1).Fig. 4 also shows that the multi-step multi-resolution strategy is haraterized bya lower omputational burden beause of the smaller number of iterations for reahingthe onvergene (Fig. 4 - ktot⌋IMSA = 125 vs. ktot⌋Bare = 177, being ktot the totalnumber of iterations de�ned as ktot =
∑sopt

s=1 kopt
s for the IMSA-LS ), and espeially to the



10 M. Benedetti et al.redued number of �oating-point operations. As a matter of fat, sine the omplexityof the LS -based algorithms is of the order of O (2 × η3), η = NIMSA, NBare (i.e., thesolution of two diret problems is neessary for omputing an estimate of the sattered�eld and for updating the veloity vetor), the omputational ost of the IMSA-LS ateah iteration is two orders in magnitude smaller than that of the Bare-LS .3.1.2. Noisy Data As for the stability of the proposed approah, Figure 5 showsthe reonstrutions with the IMSA-LS [Figs. 5(a)()(e)℄ ompared to those of theBare-LS [Figs. 5(b)(d)(f )℄ with di�erent levels of additive noise on the sattereddata [SNR = 20 dB (top); SNR = 10 dB (middle); SNR = 5 dB (bottom)℄. Asexpeted, when the SNR dereases, the performanes worsen. However, as outlinedby the behavior of the error �gures in Tab. 2, blurred data and/or noisy onditionsa�et more evidently the Bare implementation than the multi-resolution approah. Forompleteness, the behavior of Θopt⌋IMSA
versus the iteration index is reported in Fig.6 for di�erent levels of SNR. As it an be notied, the value of the error at the end ofthe iterative proedure dereases as the SNR inreases.In the seond experiment, the same irular satterer, but entered at a di�erentposition within a larger investigation square of side LD = 2λ (ρO = 2λ), has beenreonstruted. Aording to [9℄, M = 20; v = 1, ..., V reeivers and V = 20 views areonsidered and DI is disretized in NIMSA = 13 × 13 pixels.Figure 7(a) shows the reonstrution obtained at the onvergene (sopt = 3) byIMSA-LS when SNR = 5 dB. The result reahed by the Bare-LS (NBARE = 47 × 47)is reported in Fig. 7(b) as well. As it an be notied, the multi-resolution inversion isharaterized by a better estimation of the objet enter and shape as on�rmed by thevalues of δ and ∆ (δ⌋IMSA−LS = 0.59 vs. δ⌋Bare−LS = 2.72 and ∆⌋IMSA−LS = 0.48 vs.

∆⌋Bare−LS = 0.64). As for the omputational load, the same onlusions from previousexperiments hold true.3.2. Syntheti Data - Retangular SattererThe seond test ase deals with a more omplex sattering on�guration. A retangularo�-entered satterer (L = 0.27λ and W = 0.13λ) haraterized by a dieletripermittivity ǫC = 1.8 is loated within an investigation domain of LD = 3λ as indiatedby the red dashed line in Fig. 8. In suh a ase, the imaging setup is made up of V = 30soures and M = 30 measurement points for eah view v [9℄. DI is partitioned into
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NIMSA = 19 × 19 sub-domains (while NBare = 33 × 33) and ∆t1 is set to 0.06.3.2.1. Validation of the Stopping Criteria Before disussing the reonstrutionapabilities, let us show a result onerned with the behavior of the proposed approahwhen varying the user-de�ned thresholds (γΘ, γτ , γx̃c , γỹc , γ

L̃
) of the stopping riteria.Figure 8 displays the reonstrutions ahieved by using the sets of parameters given inTab. 3 [Γ1 - Fig. 8(a); Γ2 - Fig. 8(b); Γ3 - Fig. 8(); Γ4 - Fig. 8(d)℄ while the behaviorsof the ost funtion are depited in Fig. 9. As it an be notied, the total number ofiterations ktot inreases as the values of the thresholds γΘ and γτ derease. However,in spite of a larger ktot, using lower threshold values does not provide better results, asshown by the omparison between settings Γ2 and Γ4 [Figs. 8(b)-(d), and Fig. 9℄. Thesets of parameters haraterized by γΘ = 0.2 and γτ = 0.02 provide a good trade-o�between the arising omputational burden and the quality of the reonstrutions. Asfar as the stopping riterion of the multi-resolution proedure is onerned, Figure 9also shows two di�erent behaviors of the ost funtion when using Γ2 and Γ3 (letting

γΘ = 0.2 and γτ = 0.02). In partiular, the proposed approah stops at sopt = 3,instead of sopt = 4, when inreasing by a degree of magnitude the values of γx̃c , γỹc , and
γ

L̃
. Although with a heavier omputational burden, the hoie γx̃c = γỹc = 0.01 and

γ
L̃

= 0.05 results more e�etive [see Fig. 8(b) vs. Fig. 8()℄.3.2.2. Noisy Data Figures 10-12 and Table 4 show the results from the omparativestudy arried out in orrespondene with di�erent values of signal-to-noise ratio [SNR =

20 dB - Fig. 10(a) vs. Fig. 10(b); SNR = 10 dB - Fig. 10() vs. Fig. 10(d); SNR =

5 dB - Fig. 10(e) vs. Fig. 10(f )℄. They further on�rm the reliability and e�ienyof the multi-resolution strategy in terms of qualitative reonstrution errors (Fig. 11),espeially when the noise level grows. In partiular, the Bare implementation does notyield either the position or the shape of the retangular satterer when SNR = 5 dB,whereas the IMSA-LS properly retrieves both the baryenter and the ontour of thetarget. As for the omputational ost, it should be notied that although the IMSA-LSrequires a greater number of iterations for reahing the onvergene (Fig. 12, Tab. 4),the total amount of omplex �oating-point operations, fpos = O (2 × η3) × ktot, usuallyresults smaller (Tab. 4).



12 M. Benedetti et al.3.3. Numerial Data - Hollow CylinderThe third test ase is onerned with the inversion of the data sattered by a higherpermittivity (ǫC = 2.5) o�-entered ylindrial ring, letting LD = 3λ. The externalradius of the ring is ρext = 2
3
λ, and the internal one is ρint = λ

3
. By assuming thesame arrangement of emitters and reeivers as in Setion 3.2, the investigation domainis disretized with NIMSA = 19× 19 and NBare = 35× 35 square ells for the IMSA-LSand the Bare-LS , respetively. Moreover, ∆t1 is initialized to 0.003.As it an be observed from Fig. 13, where the pro�les when SNR = 20 dB [Figs.13(a)(b)℄ and SNR = 10 dB [Figs. 13()(d)℄ reonstruted by means of the IMSA-LS[Figs. 13(a)()℄ and the Bare-LS [Figs. 13(b)(d)℄ are shown, the integrated strategyusually overomes the standard one both in loating the objet and in estimating theshape. In partiular, when SNR = 20 dB, the distribution in Fig. 13(a) is a faithfulestimate of the satterer under test (δ⌋IMSA−LS = 1.25 and ∆⌋IMSA−LS = 3.13). Onthe ontrary, the reonstrution with the Bare-LS is very poor (δ⌋Bare−LS = 65.2 and

∆⌋Bare−LS = 34.39). Certainly, a smaller SNR value impairs the inversion as shownin Fig. 13() [ompared to Fig. 13(a)℄. However, in this ase, the IMSA-LS is able toproperly loate the objet (δ⌋IMSA−LS = 1.7 vs. δ⌋Bare−LS = 65.9) giving rough butuseful indiations about its shape (∆⌋IMSA−LS = 7.6 vs. ∆⌋Bare−LS = 34.55).3.4. Syntheti Data - Multiple SatterersThe last syntheti test ase is aimed at illustrating the behavior of the IMSA-LS whendealing with P = 3 satterers (ǫC = 2.0) distaned from one another. The test geometryis haraterized by an ellipti o�-entered ylinder, a irular o�-entered satterer, anda square o�-entered objet loated in a square investigation domain haraterized by
LD = 3λ. By adopting the same arrangement of emitters and reeivers as in Setion3.3, the investigation domain is disretized with NIMSA = 23× 23 and NBare = 31× 31square ells for the IMSA-LS and the Bare-LS , respetively. Moreover, ∆t1 is set to
0.03.Figures 14 and 15 show the results from the omparative study arried outin orrespondene with di�erent values of signal-to-noise ratio. As shown by thereonstrutions (Fig. 14) and as expeted, the multi-resolution approah provides moreaurate results and appears to be more reliable than the Bare-LS espeially with low
SNR. This onlusion is further on�rmed by the behavior of the reonstrution errors



A Multi-Resolution Tehnique based on Shape Optimization 13(Fig. 15), for whih the IMSA-LS ahieves a lower loalization error as well as a lowerarea error than those of Bare-LS, espeially for SNR = 5 dB. On the other hand,both algorithms provide good estimates of the satterer under test when inverting dataa�eted by low noise [SNR = 20 dB - Fig. 14(a) vs. Fig. 14(b); Fig. 15(a) and (b)℄.3.5. Laboratory-Controlled DataIn order to further assess the e�etiveness of the IMSA-LS also in dealingwith experimental data, the multiple-frequeny angular-diversity bi-stati benhmarkprovided by Institut Fresnel in Marseille (Frane) has been onsidered. With refereneto the experimental setup desribed in [34℄, the dataset �dielTM_de8f.exp� has beenproessed. The �eld samples [M = 49, V = 36℄ are related to an o�-enteredhomogeneous irular ylinder ρ = 15mm in diameter, haraterized by a nominalvalue of the objet funtion equal to τ(r) = 2.0 ± 0.3, and loated at xc = 0.0,
yc = −30mm within an investigation domain assumed in the following of squaregeometry and extension 20 × 20 m2.By setting ǫC = 3.0, the reonstrutions ahieved are shown in Fig. 16 (left olumn)ompared to those from the standard LS (right olumn) at F = 4 di�erent operationfrequenies. Whatever the frequeny, the unknown satterer is aurately loalized andboth algorithms yield, at onvergene, strutures that oupy a large subset of the trueobjet. Suh a similarity of performanes, usually veri�ed in syntheti experiments whenthe value of SNR is greater than 20 dB, seems to on�rm the hypothesis of a low-noiseenvironment as already evidened in [35℄.Finally, also in dealing with experimental datasets, the IMSA-LS proves itse�ieny sine the overall amount of omplex �oating point operations still remainstwo orders in magnitude lower than the one of the Bare-LS (Tab. 5 - Fig. 17).4. ConlusionsIn this paper, a multi-resolution approah for qualitative imaging purposes based onshape optimization has been presented. The proposed approah integrates the multi-sale strategy and the level set representation of the problem unknowns in order topro�tably exploit the amount of information olletable from the sattering experimentsas well as the available a-priori information on the satterer under test.The main key features of suh a tehnique an be summarized as follows:
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• innovative multi-level representation of the problem unknowns in the shape-deformation-based reonstrution tehnique;
• e�etive exploitation of the sattering data through the iterative multi-stepstrategy;
• limitation of the risk of being trapped in false solutions thanks to the redued ratiobetween data and unknowns;
• useful exploitation of the a-priori information (i.e., objet homogeneity) about thesenario under test;
• enhaned spatial resolution limited to the region of interest.From the validation onerned with di�erent senarios and both syntheti andexperimental data, the following onlusions an be drawn:
• the IMSA-LS usually proved more e�etive than the single-resolution implementa-tion, espeially when dealing with orrupted data sattered from simple as well asomplex geometries haraterized by one or several objets;
• the integrated strategy appeared less omputationally-expensive than the standardapproah in reahing a reonstrution with the same level of spatial resolutionwithin the support of the objet.
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IMSA − LS Bare − LS

s = 1 s = 2

δ 6.58× 10−6 2.19 × 10−6 5.21 × 10−1

∆ 2.36 0.48 0.64

Table 1. Numerial Data. Cirular ylinder (ǫC = 1.8, Noiseless Case). Error �gures.
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SNR = 20 dB SNR = 10 dB SNR = 5 dB

IMSA − LS Bare − LS IMSA − LS Bare − LS IMSA − LS Bare − LS

δ 5.91 × 10−1 2.72 2.28 2.45 6.78 × 10−1 1.63

∆ 0.98 1.28 1.07 1.80 1.50 2.07

Table2.NumerialData.Cirularylinder(ǫ
C

=
1.8,NoisyCase).Valuesofthe

errorindexesfordi�erentvaluesof
S
N

R.
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Set of Parameters γΘ γτ γx̃c, γỹc γ

L̃

Γ1 0.5 0.05 0.01 0.05

Γ2 0.2 0.02 0.01 0.05

Γ3 0.2 0.02 0.1 0.5

Γ4 0.02 0.002 0.01 0.05

Table 3. Numerial Data. Retangular ylinder (ǫC = 1.8, LD = 3λ, Noiseless Case).Di�erent settings for the parameters of the stopping riteria.
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SNR = 20 dB SNR = 10 dB SNR = 5 dB

IMSA − LS Bare − LS IMSA − LS Bare − LS IMSA − LS Bare − LS

ktot 1089 41 393 53 410 28

N 361 1089 361 1089 361 1089

fpos 1.02 × 1011 1.02 × 1011 3.70 × 1010 1.37 × 1011 3.86 × 1010 7.23 × 1010

Table4.NumerialData.Retangularylinder(ǫ
C

=
1.8,

L
D

=
3λ,NoisyCase).

Computationalindexesfordi�erentvaluesof
S
N

R.
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f = 1 GHz f = 2 GHz

IMSA − LS Bare − LS IMSA − LS Bare − LS

ktot 506 69 532 200

fpos 4.88 × 109 1.22 × 1011 5.14 × 109 3.55 × 1011

f = 3 GHz f = 4 GHz

IMSA − LS Bare − LS IMSA − LS Bare − LS

ktot 678 198 621 200

fpos 6.55 × 109 3.51 × 1011 5.99 × 109 3.55 × 1011

Table 5. Experimental Data (Dataset �Marseille� [34℄). Cirular ylinder(�dielTM_de8f.exp�). Computational indexes.


