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Abstract
In this paper we are concerned with the optimal control problem

consisting in minimizing the time for reaching (visiting) a �xed num-
ber of target sets, in particular more than one target. Such a problem
is of course reminiscent of the famous �Traveling Salesman Problem�
and brings all its computational di�culties. Our aim is to apply the
dynamic programming technique in order to characterize the value
function of the problem as the unique viscosity solution of a suitable
Hamilton-Jacobi equation. We introduce some �external� variables,
one per target, which keep in memory whether the corresponding tar-
get is already visited or not, and we transform the visiting problem in
a suitable Mayer problem. This fact allows us to overcome the lacking
of the Dynamic Programming Principle for the originary problem. The
external variables evolve with a hysteresis law and the Hamilton-Jacobi
equation turns out to be discontinuous.

Keywords: visiting problem, minimum time, hysteresis, dynamic
programming, discontinuous Hamilton-Jacobi equations, viscosity so-
lutions, traveling salesman problem.

1 Introduction
By �optimal visiting problem� in this paper we mean the following
optimal control problem. Let us consider the controlled dynamical
system in Rn

{
y′(t) = f(y(t), α(t)) t > 0,
y(0) = x

(1.1)
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where α : [0, +∞[→ A is the measurable control and the dynamic f
is suitably regular, and consider m targets given by m closed disjoint
sets

Tj ⊂ Rn j = 1, . . . , m.

The optimal visiting problem consists in minimizing, above all mea-
surable controls, the necessary time for the trajectory y of (1.1) for
�touching� all the targets. For every control α we may de�ne the vis-
iting time, starting from a point x ∈ Rn,

tx(α) = inf
{

t ≥ 0
∣∣∣∃t1, . . . , tm ∈ [0, t], y(tj) ∈ Tj ∀j = 1, . . . , m

}

In particular, note that we have not �xed any order for the visit of the
targets. We then consider the �minimum visiting� function

T (x) = inf
α

tx(α). (1.2)

The goal of the present paper is to characterize the minimum vis-
iting function as the unique viscosity solution of a suitable Hamilton-
Jacobi equation. To do that we of course need the validity of the Dy-
namic Programming Principle. Unfortunately, this is not the case: the
presence of more than one target makes immediately fail the Principle.
Actually, we may still in some sense recover the Dynamic Programming
Principle but paying the price that we have to decompose the problem
in a great number of sub-problems (exponentially increasing with m,
the number of targets), and so, whenever we would like to calculate
the minimum visiting function we are forced to solve a great number
of sub-equations. This last fact is of course similar to what happens in
the famous Traveling Salesman Problem, to which our problem is cer-
tainly linked. Indeed that problem consists in searching a path which
minimizes the total length of the route a traveling salesman has to fol-
low in order to reach a certain number of towns. This can be certainly
viewed as an optimal visiting problem as above, where the dynamics f
has constant norm equal to 1, and so minimizing the time is equivalent
to minimizing the length among all admissible paths.

The aim of this paper is to overcome such a decomposition in sub-
problems, and write a unique Hamilton-Jacobi equation able to char-
acterize the optimal visiting function as its unique viscosity solution.
To get such a goal we add to the problem some �external variables�
w1(·), . . . , wm(·), one per target, such that wj(t) ≥ 0 and wj(t) = 0 if
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and only if y(τ) ∈ Tj for some 0 ≤ τ ≤ t. The evolutions of the vari-
ables wj , subject to the evolution of y, are represented by a so-called
�hysteresis law� which presents a particular kind of memory, and sat-
is�es a suitable �semigroup property� which allows us to completely
recover the Dynamic Programming Principle. In particular, �memory�
also stands for the fact that, whenever wj(t) = 0 (which means that
the j-th target Tj is already reached), then wj(s) = 0 for all s ≥ t.
We then transform the optimal visiting problem in a suitable Mayer
problem. Namely, we de�ne the function

Ψ : Rn × Rm → R, (x,w1, . . . , wm) 7→ w1 + · · ·+ wm,

and hence, still referring to the controlled system (1.1) and denoting by
w0 the initial state of the variable w = (w1, . . . , wm) whose evolution
is w(·), we consider the optimal control problem given by

V (t, x, w0) = inf
α

Ψ(y(t), w(t)). (1.3)

It is evident that, for any initial datum w0 with w0
j > 0 for all j =

1, . . . , m, the optimal visiting function T (1.2) satis�es

T (x) = inf
{

t ≥ 0
∣∣∣V (t, x, w0) = 0

}
,

and hence, if we know the value function V , we can reconstruct the
optimal visiting function T .

We then perform the study of the value function V (1.3). After
proving its continuity in a suitable space Ω ⊂ Rn×Rm, we prove that
it is the unique viscosity solution of the following Cauchy problem for
a discontinuous Hamilton-Jacobi equation
{

Vt(y, w, t) + H(y, w, DyV (y, w, t), DwV (y, w, t)) = 0 in Ω×]0,+∞[
V (y, w, 0) = Ψ(y, w)

(1.4)
with

H(y, w, p, q) := sup
a∈A

{
−f(y, a)·p+

m∑

j=1

qjχ(gj(y), wj)(Dgj(y)·f(y, a))−
}

,

where Vt, DyV,DwV indicate partial derivatives, χ denotes the char-
acteristic function of the bisector of the �rst quadrant in gj(y) − wj

plane, where gj are suitable functions, and �nally (·)− stays for the
negative part.
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The price we pay for having added the variable w (and hence for the
possibility of writing a unique equation) is given by the fact that the
equation in (1.4) is discontinuous. To prove the uniqueness result we
transform it in a continuous equation with suitable boundary condi-
tions of Neumann type.

For the general viscosity solutions theory and for applications to
Hamilton-Jacobi equations, we refer the reader to the book by Bardi
and Capuzzo Dolcetta [3], as well as to the seminal papers Crandall-
Lions [6] and Crandall-Evans-Lions [7]. For what concerns mathe-
matical hysteresis models, and in particular the so-called hysteresis
operators, we refer to the book by Visintin [14]. An optimal con-
trol problem with hysteresis evolution, similar to the present one, was
studied in Bagagiolo [1]. In that article, however, (besides an in�nite
dimensional problem) the state variable is only one-dimensional, only
one hysteresis operator is applied (instead of m operators as in the
present case), and the optimal control is of in�nite horizon type, i.e.
without explicit dependence on time, as instead the Mayer problem is.
In the last decade, control and optimal control problems for ODEs with
hysteresis have been the subject of an increasing number of articles,
see for instance Gudovich-Quincampoix [9], Ilchmann-Logemann-Ryan
[10], Bagagiolo [2] and the references therein. Finally, the literature
concerning the Traveling Salesman Problem is of course very huge,
and also several versions of suitable dynamic programming algorithms
are intensively studied via optimization techniques. However, we do
not report here anything of that but a little paper by R. Bellman [4],
where a possible dynamic programming approach to the problem is
proposed. In that paper, in order to make the Dynamic Programming
Principle hold, some external variables are indeed inserted, but they
do not evolve, they are stationary, and no Hamilton-Jacobi (Bellman)
equation is written down, only some calculation of the numbers of
sub-problems is performed. Indeed, it seems that our paper, and this
is one of its novelty, is the �rst one to write and to study a partial
di�erential equation of Hamilton-Jacobi type, linked to problems of
Traveling-Salesman nature.

The article is organized as it follows. In Chapter 2 we expose all
the reasoning that lead us to formulate the optimal visiting problem as
a Mayer problem for a controlled evolution with hysteresis. In Chap-
ter 3 we recall some basic facts and some properties concerning the
particular hysteresis operator we are going to consider, and concern-
ing viscosity solutions for discontinuous Hamilton-Jacobi equations,
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as well as for the Neumann boundary problem. In Chapter 4 we rig-
orously formulate the Mayer problem, we prove the continuity of the
value function, and we derive the discontinuous Hamilton-Jacobi equa-
tion satis�ed by the value function in the viscosity sense. In Chapter
5 we transform the discontinuous equation in a continuous one with
boundary conditions in the Neumann type, and we prove the unique-
ness result. Finally in Chapter 6 we give some remarks and extensions
about other possible formulations and/or approximations of the opti-
mal visiting problem.

2 Reasoning about the problem and the
model
In this section we analyze the following facts: the general non valid-
ity of the Dynamic Programming Principle for the case with m > 1
targets; a �rst almost natural solution to that problem: the decomposi-
tion in many sub-problems; the introduction of the external variables;
a �rst possible new formulation of the problem, but the non continuity
of the value function.

In a following section we are going to describe the Mayer problem
which, in some sense, bypasses all those problems.

2.1 Lacking of dynamic programming
As it is well known, the Dynamic Programming Principle can be
expressed informally by: pieces of optimal trajectories are optimal.
Namely, �xing any point along an optimal trajectory, the remaining
piece of trajectory results to be optimal for that �xed point. In or-
der to solve our optimal visiting problem, every target set Tj has to
be reached. Consequently, when there are more than one target, the
Dynamic Programming Principle does not hold: an optimal trajectory
y(·) is not necessary optimal for every point on it. Indeed, If we con-
sider for example an instant t > 0 such that y(t) has already reached
one of the targets, let us say Tj , then the remaining part of trajectory
y(·) with initial state y(t) has no reason to be optimal for y(t): it
probably even does not touch the target Tj anymore.
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2.2 Decomposition into sub-problems
We can think to solve our optimal visiting problem by minimizing the
time spent by the trajectory, with initial state x ∈ Rn, for reaching one
of the targets Tk, k ∈ {1, . . . , m}, plus a cost Tk de�ned on ∂Tk. Here
Tk on ∂Tk is given by the minimum time to visit all the other targets
Tj j ∈ {1, . . . ,m} \ {k}. In this way, the optimal visiting problem is
similar to a minimal time problem with target

⋃ Tj with a �reaching-
cost� given by the functions Tj on the boundaries ∂Tj . In particular,
with suitable assumptions, the Dynamic Programming Principle holds
and the minimal time function T can be characterized as the unique
continuous and lower bounded solution of





sup
a
{−f(x, a) ·DT (x)} = 1 in Rr⋃m

j=1 Tj

T → +∞ x → ∂R
T (x) = Tj(x) ∀x ∈ ∂Tj∀j = 1, . . . , m

where R is the set of controllable starting points. So, before analyzing
such a problem, we have to calculate all the functions Tj on ∂Tj for
j = 1, . . . , m, which means that we must solve m optimal visiting
problems with m−1 targets. Each one of such problems leads us to face
up other sub-problems with m − 2 targets, and so on. In conclusion,
with this procedure, we have to solve all the possible optimal visiting
sub-problems with a number of targets less than m.

2.3 Introduction of the external variables
To overcome the lacking of the Dynamic Programming Principle in
section 2.1, and the decomposition in several sub-problems in section
2.2, we add new variables, one per target, that register in every instant
t > 0 whether a target has been already visited or not. Such variables
may be initially thought as

wj(t) = min
τ∈[0,t]

{
dist(y(τ), Tj), w0

j

}
=: SP [dist(y(·); Tj), w0

j ](t),

where w0
j is a suitable initial state and SP stays for the �Semiplay op-

erator of hysteresis�, which will be introduced later on, and is suitable
to represent such an evolution.

The new state of the problem is then (x,w1, . . . , wm) ∈ Rn × Rm.
Now, even supposing that the targets are convex, the distance function
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from one of them, let us say Tk, is C1 only in Rn \ Tk, hence it may
be convenient to add a state constraint to enforce the trajectory y(·)
stays out of the targets (if the targets are planets to be reached by a
spacecraft, this is obviously a natural assumption). This is certainly
possible to be studied (see Remark 6.1), however here we suppose that
we can go through the targets, (they can be thought as cities to be
reached by the traveling salesman). Therefore instead of the distance
function we consider some suitable scalar functions gj : Rn → R such
that

gj ∈ C∞, gj ≥ 0 and gj(x) = 0 ⇔ x ∈ Tj ,

and hence the evolution of the new variables is given by

wj(t) = SP [(gj ◦ y)(·), w0
j ](t).

2.4 A natural model with non continuous value
function
With the external variables introduced above, the controlled system is





y′(t) = f(y(t), α(t)) t > 0
wj(t) = SP [gj ◦ y, w0

j ](t) ∀j = 1, . . . , m

y(0) = x x ∈ Rn

w0
j ≤ gj(x) ∀j = 1, . . . , m

(2.5)

where SP is the Semiplay hysteresis operator with continuous out-
put wj(t). Every initial state (x,w) = (x,w0

1. . . . , w
0
m) belongs to the

closure Ω of the following set

Ω := {(x,w) ∈ Rn × Rm : 0 < wj < gj(x) ∀j = 1, . . . ,m}.

Coherently with the de�nitions given till now, by the choice of func-
tions gj and the properties of Semiplay operator, we may interpret
the optimal visiting problem as a minimum time problem in Rn×Rm,
subject to (2.5), with the (unique) target

T := Rn × {w ∈ Rm : wj = 0 ∀j = 1, . . . , m}.
The trajectory (y(x,w0)(·; α), w(x,w0)(·; α)) with initial state (x,w0) ∈

Ωr T and control α has reaching time

t(x,w0)(α) := inf
{
t > 0 : (w(x,w0)(t;α))j = 0 j = 1, . . . , m

}
,
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where (v)j stays for the j-th component of the vector v. The minimum
time function is then

T (x,w0) := inf
α

{
t(x,w0)(α)

}
. (2.6)

Unfortunately, the function T (2.6) is not continuous at points with,
for at least one j = 1, . . . , m, wj = 0 and gj(x) > 0, . Indeed, for such
initial states (x,w) ∈ Ω, the trajectory will ignore the target Tj (since
it is, in some sense, already reached). However, around to (x, w), a
point (y, z) could be such that zj = ε > 0. So the trajectory with
initial state (y, z) must consider Tj and reach it in a time t > 0 that
does not tend to zero for ε → 0. Then T (y, z) does not converge to
T (x,w).

3 Some tools and results
In this section we de�ne Semiplay operator of hysteresis and we prove
its main properties, which we shall use in the following sections.
Next we give the necessary de�nitions to introduce the concept of
viscosity solution for discontinuous Hamilton-Jacobi equation and for
a Neumann problem.

3.1 The Semiplay operator of hysteresis
Hysteresis is a particular memory-type relationship (the so-called rate
independent one) between a continuous time-dependent input u and
a time-dependent output w. It can be often suitably described by the
concept of hysteresis operator, that is a suitable operators between
some functional spaces (see Visintin [14]). Here, for our purposes, we
introduce a particular example of such operators, and we call it the
Semiplay operator of hysteresis.

For every T > 0, let us consider the following sets

Σ := {(ξ, w) ∈ R2 : w < ξ},
D = {(u,w0) ∈ C0([0, T ])× R : (u(0), w0) ∈ Σ}

The Semiplay operator SP : D → C0([0, T ]), with output w(·) :=
SP [u;w0](·), is de�ned by the following theorem. Let ∂I[0,+∞[ be the
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subdi�erential of the indicator function I[0,+∞[ of the set [0,+∞[⊂ R
(I[0,+∞[(x) = 0 if x ≥ 0, I[0,+∞[(x) = +∞ if x < 0):

∂I[0,+∞[(x) =
{ {0} if x ∈]0, +∞[

]−∞, 0] if x = 0

Theorem 3.1. Given an input u ∈ W 1,1(0, T ) and an initial state
w0 ∈ R such that (u(0), w0) ∈ Σ, the output w(·) = SP [u;w0](·) is
characterized as the unique solution w ∈ W 1,1(0, T ) of the following
di�erential inclusion:

{
w′(t) ∈ ∂I[0,+∞[(u(t)− w(t)) for a.e. t ∈]0, T [
w(0) = w0 (3.7)

Moreover: the Semiplay operator is Lipschitz continuous with Lip-
schitz constant 1, that is ∀(u,w), (v, z) ∈ D

‖ SP [u,w]− SP [v, z] ‖C0([0,T ])≤‖ u− v ‖C0([0,T ]) +|w − z|; (3.8)
the Semiplay operator satis�es a semigroup property, that is for every
(u,w0) ∈ D and for every t, τ ∈ [0, T ] with t + τ ≤ T , let w(t) :=
SP [u,w0](t) we have

SP [u,w0](t + τ) = SP [u(t + ·), w(t)](τ). (3.9)

Proof. The Semiplay is a particular case of the so-called Play op-
erator of hysteresis. Fixed ρ > 0 and de�ned the strip Σρ := {(ξ, w) ∈
R2 : ξ − ρ < w < ξ}, the output of the Play operator

Pρ : {(u,w0) ∈ C0([0, T ])× R : (u(0), w0) ∈ Σρ} → C0([0, T ])

is characterized as the unique solution w ∈ W 1,1(0, T ) of
{

w′(t) ∈ ∂I[−ρ,ρ](u(t)− w(t)) a.e. t ∈ (0, T )
w(0) = w0.

This is indeed a good de�nition (i.e. there exists one and only one
solution), as it is proved in Visintin [14], where it is also proved that
the Play operator Pρ is Lipschitz continuous with constant 1 and sat-
is�es the semigroup property. Given an input u ∈ W 1,1(0, T ) and
de�ned a = max

{
|u(t)− u(0)|

∣∣∣t ∈ [0, T ]
}
, it is not di�cult to see

that SP [u,w0] = P2a[u,w0], from which the conclusion follows.
Note that the name �Semiplay� just means that the strip Σ is

bounded from only one side, and not from both sides as for the Play
operator. ut
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Figure 1: SemiPlay hysteresis operator

Remark 3.2. Figure 1 describes the behavior of the output w of the
Semiplay operator: on the left it is depicted a sort of phase portrait
of the hysteretic relationship in the input-output plane, u − w; on the
right the graph of an input u and of the corresponding output w, with
the same initial state u(0) = w0, are reported.

Theorem 3.1 expresses what is represented in Figure 1, that is:
• w′(t) = 0 if u(t)− w(t) > 0, i.e. w(t) is constant if u(t) > w(t);
• w′(t) ≤ 0 if u(t) − w(t) = 0, i.e w(t) is nonincreasing if u(t) =

w(t).
As a consequence of the same theorem, in particular of the de�nition
of the subdi�erential, we have also that u(t) ≥ w(t) for every t ∈]0, T [,
that is (u(t), w(t)) ∈ Σ for all t; moreover we also have u′(t) = w′(t)
whenever w(t) = u(t) and u′(t) ≤ 0 (for a.e. t).

Finally, let us note that if we take as input u the distance function
as in section 2.3, then the output w has exactly the desired behavior,
that is it represents the minimal distance from the target reached by
y during its evolution. We may similarly interpret the behavior of w
when the input is not more the distance function from the target Tj but
instead the function gj ◦y. In such a case the output w = SP [gj ◦y, w0]
is exactly storing the minimal value reached by gj ◦ y and so it is null
if and only if y has already reached the target.

The following results characterizes the output of the Semiplay op-
erator as a solution of a discontinuous di�erential equation. Let us
denote by χ(·, ·) the characteristic function of the straight line in
the (ξ, w)-plane of equation w = ξ (i.e. χ(ξ, w) = 1 if w = ξ,
χ(ξ, w) = 0 otherwise). For a ∈ R we indicate its negative part by
a− := max{−a, 0}.
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Theorem 3.3. For every u ∈ W 1,1(0, T ) and for every admissible
initial state w0 ∈ R, the output w of the Semiplay operator satis�es
the following discontinuous di�erential equation:

w′(t) = −χ(u(t), w(t))(u′(t))− for a.e. t ∈]0, T [. (3.10)

Proof. Let t ∈ (0, T ) be such that w′(t) and u′(t) exist. If u(t) −
w(t) > 0, we get the thesis as a consequence of sign's permanence
theorem and Theorem 3.1. Whereas if u(t) = w(t), we can prove the
following relations (the second one along a suitable sequence hn → 0):

u(t) ≤ 0;

w′(t) = lim
n→+∞

w(t + hn)− w(t)
hn

= lim
n→+∞

u(t + hn)− u(t)
hn

= u′(t).

through which we conclude (see also Bagagiolo [1] for explicit calcula-
tions in the case of the Play operator). ut

3.2 Viscosity solutions for discontinuous H-J
equations
Let Ω ⊆ Rn be a set, T ∈]0, +∞], H : Ω × Rn → R a function, and
consider the Hamilton-Jacobi equation:

ut(x, t) + H(x,Dxu(x, t)) = 0 in Ω×]0, T [, (3.11)

where ut and Dx respectively stay for the time derivative and for the
spatial gradient of the unknown function u : Ω×]0, T [→ R. In order to
handle possible discontinuities of the Hamiltonian H, following Ishii
[11], we introduce the following variant for the classical de�nition of
viscosity solutions, which involves the lower semicontinuous and upper
semicontinuous envelopes of H:

H∗(x, p) = lim inf
(y,p′)→(x,p)

H(y, p′), H∗(x, p) = lim sup
(y,p′)→(x,p)

H(y, p′).

De�nition 3.4. A function u ∈ C(Ω×]0, T [) is said to be a
i) �viscosity subsolution� of (3.11) if, for every ϕ ∈ C1(Ω×]0, T [)

and (x0, t0) ∈ Ω×]0, T [ local maximum point for u− ϕ:
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ϕt(x0, t0) + H∗(x0, Dxϕ(x0, t0)) ≤ 0.

ii) �viscosity supersolution� of (3.11) if, for every ϕ ∈ C1(Ω×]0, T [)
and (x0, t0) ∈ Ω×]0, T [ local minimum point for u− ϕ:

ϕt(x0, t0) + H∗(x0, Dxϕ(x0, t0)) ≥ 0.

iii) �viscosity solution� of (3.11) if it is simultaneously a viscoscosity
sub- and supersolution.

The following lemma asserts that, if T is �nite, we can push the
property of being solution till to the upper closure ]0, T ].

Lemma 3.5. Referring to De�nition 3.4, if u ∈ C(Ω×]0, T ]) is a
viscosity subsolution (respectively supersolution) of (3.11), then it is
also a subsolution (respectively a superoslution) in Ω×]0, T ], that is

ϕt(x0, t0) + H∗(x0, Dxu(x0, t0)) ≤ 0

(respectively ≥ 0 with H∗) for every local maximum (respectively min-
imum) point (x0, t0) of u− ϕ in Ω×]0, T ], where ϕ ∈ C1(Ω×]0, T ]).

Proof. The main ingredient of the proof is the monotonicity of
the equation with respect to the time derivative. In Bardi-Capuzzo
Dolcetta [3], it can be found the proof for continuous Hamiltonians H,
however continuity is not necessary: the semicontinuity of H∗ and H∗

is enough. ut

3.3 Neumann problem
In this section we suppose Ω open, H continuous, we consider a regular
set Γ ⊆ ∂Ω, and a continuous outward vector ν(·) on Γ.

A viscosity subsolution (respectively supersolution) of the bound-
ary value problem of Neumann type in the viscosity sense

{
ut(x, t) + H(x,Dx(x, t)) = 0 in (Ω \ Γ)×]0, T [
Dx(x, t) · ν(x) = 0 on Γ×]0, T [

(3.12)

is a continuous function u : Ω×]0, T [→ R such that, for every test
function ϕ ∈ C1(Ω×]0, T [), and for every (x0, t0) ∈ Ω×]0, T [ maximum
(respectively minimum) point for u− ϕ in Ω×]0, T [
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



ϕt(x0, t0) + H(x0, Dxϕ(x0, t0)) ≤ 0,
(resp. ϕt(x0, t0) + H(x0, Dxϕ(x0, t0)) ≥ 0)

if (x0, t0) ∈ (Ω \ Γ)×]0, T [,
min {Dxϕ(x0, t0) · ν(x0), ϕt(x0, t0) + H(x0, Dxϕ(x0, t0))} ≤ 0,
(max {Dxϕ(x0, t0) · ν(x0), ϕt(x0, t0) + H(x0, Dxϕ(x0, t0))} ≥ 0)

if (x0, t0) ∈ Γ×]0, T [,

The �rst notion of such a boundary condition, can be found in Lions
[12]. See also Day [8] for the case of re�ected dynamics, which is linked
to our hysteresis problem (also see Bagagiolo [1]).

4 Study of the Mayer problem
In this section the Mayer problem is rigorously formulated and studied
with Dynamic Programming technique.

4.1 The Mayer problem
Referring to Section 2.4 for motivation, given m scalar functions gj :
Rn → R such that

gj ≥ 0, gj ∈ C2 and Lipschitz continuous, (4.13)
we consider the dynamic system





y′(t) = f(y(t), α(t)) t > 0
wj(t) = SP [gj ◦ y, w0

j ](t) ∀j = 1, . . . ,m

y(0) = x x ∈ Rn

w0
j ≤ gj(x) ∀j = 1, . . . ,m

(4.14)

where SP is the Semiplay operator of hysteresis as in Section 3.1. The
measurable control α : [0, +∞[→ A takes value in the compact set
A ⊂ Rk for some k ∈ N and the set of all measurable controls is A.
The dynamics f : Rn ×A → Rn is continuous and satis�es:

∃M, L > 0 such that |f(x, a)| ≤ M ∀a ∈ A,∀x ∈ Rn;
|f(x, a)− f(z, a)| ≤ L|x− z| ∀a ∈ A,∀x, z ∈ Rn.

(4.15)

A solution (trajectory) of (4.14) is a continuous function (y, w) :
[0, +∞[→ Rn × Rm such that wj(t) = SP [gj ◦ y, w0

j ](t) for all t ≥ 0
and
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y(t) = x +
∫ t

0
f(y(s), α(s))ds, ∀ t ≥ 0.

Proposition 4.1. Let us suppose that (4.13) and (4.15) hold. Then
for every initial state (x,w0) ∈ Rn ×Rm, such that w0

j ≤ gj(x) for all
j = 1, . . . ,m, and for every control α ∈ A, there exists a unique solu-
tion of the system (4.14), which we denote by

(
y(x,w0)(·; α), w(x,w0)(·; α)

)
.

Proof. The proof follows from standard techniques for ordinary dif-
ferential equations, in particular from the boundedness and Lipschitz
continuity of f (4.15), the Lipschitz continuity if gj (4.13), and from
Lipschitz continuity of SP operator (3.8). ut

In order to constrain, for simplicity, the trajectories inside a bounded
set, we suppose that there exists B ⊆ Rn open, regular and bounded
such that, denoted by ν the outward normal vector:

f(x, a) · ν(x) < 0 ∀x ∈ ∂B, ∀a ∈ A. (4.16)
Hence, as set of admissible initial states, we consider the closure, Ω,
of the open bounded set:

Ω := {(x, w) ∈ B × Rm : 0 < wj < gj(x) ∀j = 1, . . . , m}.

Remark 4.2 Note that by the hypothesis (4.16), by the non-negativity
of the function gj, and by the properties of the SP operator, the bounded
set Ω ⊂ Rn×Rm is invariant for the trajectories of (4.14), that is, for
every measurable control and for every initial state in Ω, the trajectory
remains inside Ω for all time.

Concerning the optimal visiting problem, note that the restriction
to nonnegative wj is coherent with the model. Moreover, the set B may
be viewed as a, su�ciently large, bounded set containing all the targets
Tj. The hypothesis (4.16) can be then arti�cially inserted in the model,
just thinking that it would be reasonable to suppose that an optimal
trajectory starts immediately pointing towards one of the targets, and
hence not exit from a large, but bounded, set. However, using suitable
penalization techniques in the study of the Hamilton-Jacobi equation,
hypothesis (4.16) may be dropped.

The �nal cost of our Mayer problem is the function

Ψ : Rn × Rm → [0, +∞[, (x,w) 7→ w1 + w2 + . . . + wm.

14



For every initial state (x,w0) ∈ Ω, for every t ≥ 0 and for every
measurable control α ∈ A, we consider the cost

J(x,w0, t, α) := Ψ(y(x,w0)(t; α), w(x,w0)(t; α)).

The Mayer problem is given by the minimization, over all mea-
surable controls, of the cost J . Hence we de�ne the value function
V : Ω× [0, +∞[→ [0,+∞[ as

V (x,w0, t) := inf
α∈A

J(x,w0, t, α). (4.17)

We end this section by stating suitable estimates on the trajectories
of (4.14).

Proposition 4.3. Let us suppose that (4.13),(4.15), (4.16) hold. For
every τ > 0, there exists a constant Cτ such that ∀α ∈ A, ∀t ∈ [0, τ ]
and ∀(x0, w0), (x1, w1) ∈ Ω the following holds

‖ (y(x0,w0)(t;α), w(x0,w0)(t; α))− (y(x1,w1)(t;α), w(x1,w1)(t;α)) ‖Rn×Rm

≤ Cτ (‖ (x0, w0)− (x1, w1) ‖Rn×Rm).

Proof. We write yi(·) = y(xi,wi)(·; α) and wi(·) = w(xi,wi)(·;α) for
i = 0, 1. By standard estimates on trajectories we obtain the existence
of C1 > 0 such that

‖ y0(·)− y1(·) ‖C0([0,τ ])≤ C1 ‖ x0 − x1 ‖Rn . (4.18)
Then, by Lipschitz continuity of Semiplay operator (3.8) and of the
function gj , we also get the existence of C2 > 0 such that

‖ w0(·)− w1(·) ‖C0([0,τ ])≤ C2 ‖ (x0, w0)− (x1, w1) ‖Rn×Rm , (4.19)

from which we conclude. ut

4.2 Continuity and DPP
Theorem 4.4. Let us suppose that (4.13), (4.15) and (4.16) hold.
Then the value function (4.17) is bounded and continuous in Ω× [0, T ],
for every T > 0.
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Proof. Note that Ψ is linear and hence uniformly continuous and
bounded in Ω. The proof then standardly follows from the de�nition
of V and from Proposition 4.3. ut

Also the proof of the following crucial theorem follows from stan-
dard arguments, in particular recalling the semigroup property of the
Semiplay operator (3.9).

Theorem 4.5 (DPP:Dynamic Programming Principle). Let us
suppose that (4.13), (4.15), and (4.16) hold. Then, ∀(x,w0) ∈ Ω,
∀t > 0 and for every τ ∈]0, t], we have

V (x,w0, t) = inf
α∈A

V (y(x,w0)(τ, α), w(x,w0)(τ ; α), t− τ). (4.20)

4.3 The discontinuous H-J equation
For every (x, w) ∈ Ω, (p, q) ∈ Rn×Rm, we de�ne the following Hamil-
tonian:

H(y, w, p, q) =

sup
a∈A



−f(y, a) · p +

m∑

j=1

qjχ(gj(y), wj)(Dgj(y) · f(y, a))−





(4.21)

where χ is the characteristic function of the bisector of �rst quadrant
in the (gj , wj)-plane. Then H is discontinuous in Ω × Rn × Rm. We
consider the following Hamilton-Jacobi equation in Ω×]0, +∞[

ut(x,w, t) + H(x,w, Dxu(x,w, t), Dwu(x,w, t)) = 0, (4.22)

where ut indicate the derivative with respect to time, while Dxu and
Dwu are the gradients of u with respect to y and w. We denote
the lower semicontinuous and upper semicontinuous envelopes of H
respectively by H∗ and H∗. Simple calculations show that (recall that
the positive and the negative part of r ∈ R are respectively r+ =
max(r, 0) and r− = max(−r, 0) )
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H∗(x,w, p, q) =

sup
a∈A



−f(x, a) · p−

m∑

j=1

q−j χ(gj(x), wj)(Dgj(x) · f(x, a))−



 ,

H∗(x,w, p, q) =

sup
a∈A



−f(x, a) · p +

m∑

j=1

q+
j χ(gj(x), wj)(Dgj(x) · f(x, a))−



 .

Theorem 4.6. Let (4.13), (4.15), (4.16) hold. Then the value func-
tion V is a continuous and bounded viscosity solution in Ω×]0, +∞[ of
the Hamilton-Jacobi equation (4.22), that is

Vt(x, w, t) + H(x, w,DyV (x,w, t), DwV (x,w, t)) = 0. (4.23)

Proof. The continuity and the boundness come from Theorem 4.4;
so it remains to prove that V is a viscosity subsolution and super-
soution of (4.23).

Take ϕ ∈ C1(Ω×]0,+∞[) such that V −ϕ has a local maximum in
(x,w0, t) ∈ Ω×]0, +∞[. Let us �x ε > 0 and take aε ∈ A such that

−Dyϕ(x,w0, t) · f(x, aε)−
m∑

j=1

(
∂ϕ

∂wj
(x,w0, t)

)−
χ(gj(x), (w0)j)·

·(Dgj(x) · f(x, aε))− ≥ H∗(x,w0, Dxϕ(x,w0, t), Dwϕ(x,w0, t)) + ε.

We denote the trajectory starting from (x,w0) and corresponding to
the constant control α ≡ aε simply by (y(·), w(·)). For τ > 0 su�-
ciently small, by the maximality of (x, w0, t), by DPP, and recalling
that Ω is invariant for the trajectories� we get

ϕ(x,w0, t)− ϕ(y(τ), w(τ), t− τ)
≤ V (x,w0, t)− V (y(τ), w(τ), t− τ) ≤ 0.

(4.24)

Using the regularity of ϕ and gj and recalling that y and wj are ab-
solutely continuous (in particular y is even C1 since the control is
constant), and that wj satis�es (3.10) with u replaced by gj ◦ y, we
have
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ϕ(x,w0, t)− ϕ(y(τ), w(τ), t− τ) =

−
∫ τ

0

d

ds
ϕ(y(s), w(s), t− s) ds = −

(∫ τ

0

(
Dxϕ(x, w0, t) · f(x, aε)+

−
m∑

j=1

∂ϕ

∂wj
(x, w0, t)χ(gj(y(s)), wj(s))(Dgj(x) · f(x, aε))− +

−ϕt(x,w0, t)
)
ds + o(τ) for τ → 0+

(4.25)
In order to handle the discontinuities in (4.25), just arguing on the
signs of the involved factors, we get the following estimate:

∂ϕ

∂wj
(x,w0, t)χ(gj(y(τ)), wj(τ))(Dgj(x) · f(x, aε))−

≥ −
(

∂ϕ

∂wj
(x,w0, t)

)−
χ(gj(x), w0

j )(Dgj(x) · f(x, aε))−.

Hence, by (4.24) and (4.25), we obtain

∫ τ

0
−Dyϕ(x,w0, t) · f(x, aε)−

m∑

j=1

(
∂ϕ

∂wj
(x,w0, t)

)−
·

·χ(gj(x), w0
j )(Dgj(x) · f(x, aε))− ds + (4.26)

+
∫ τ

0
ϕt(x,w0, t) ds ≤ o(τ).

Now, since H∗(x,w0, Dxϕ(x,w0, t), Dwϕ(x,w0, t)) + ε is smaller than
the argument of the �rst integral, then, dividing (4.26) by τ > 0 and
letting τ → 0+, we have

H∗(x,w0, Dxϕ(x,w0, t), Dwϕ(x, w0, t)) + ϕt(x,w0, t) ≤ −ε.

So, as ε → 0+, we conclude that V is a viscosity subsolution of (4.23).
To prove that V is a viscosity supersolution of (4.23), we follow,

as it is standard, in a similar way as the one above, considering a
function ϕ ∈ C1(Ω×]0, +∞[) such that V − ϕ has a local minimum
in (x,w0, t) ∈ Ω×]0, +∞[. Indeed, by DPP, for any ε > 0 and τ > 0
su�ciently small, we �nd a measurable control α such that, using the
corresponding trajectory (y(·), w(·)),
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ϕ(x, w0, t)− ϕ(y(τ), w(τ), t− τ) ≥ −ετ

Hence, we proceed similarly as before, using now the crucial estimate

∂ϕ

∂wj
(x,w0, t)χ(gj(y(τ)), wj(τ))(Dgj(x) · f(x, α(τ)))−

≤
(

∂ϕ

∂wj
(x,w0, t)

)+

χ(gj(x), w0
j )(Dgj(x) · f(x, α(τ)))−.

ut

5 Uniqueness
In order to perform the classical analysis of uniqueness by a compar-
ison result between sub- and supersolutions, the discontinuity of the
Hamiltonian is a serious obstacle. Here, we are going to interpret such
a discontinuity as a suitable boundary condition of Neumann-type, and
then to study uniqueness for a continuous Hamilton-Jacobi equation
with such Neumann conditions.

We de�ne

Γ := {(x,w) ∈ Ω : ∃j = 1, . . . , m such that wj = gj(x) > 0} ⊆ ∂Ω,

and note that Γ is exactly the part of the boundary where the discon-
tinuity of the SP -evolution representation (3.10) may play a role.

By Theorem 4.6 we know that V is a continuous and bounded vis-
cosity solution of (4.23) in Ω×]0, +∞[, with discontinuous Hamiltonian
H given by (4.21). Hence, since χ(gj(x), wj) = 0 out of Γ, we have
that V satis�es in the viscosity sense the following Hamilton-Jacobi
equation

ut(x,w, t)+H(x,w, Dxu(x,w, t), 0) = 0, in
(
Ω \ Γ

)×]0, +∞[. (5.27)

Note that the Hamiltonian (x,w, p, q) 7→ H(x,w, p, 0) is now continu-
ous. To equation (5.27) we must add the following boundary conditions
of Neumann-type, in a viscosity sense as explained in section 3.3,
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i) for subsolutions:
min

{
ut(x,w, t) + H(x,w,Dxu(x,w, t), 0),

min
{

∂u

∂wj
(x,w, t) : wj = gj(x)

}}
< 0,

ii) for supersolutions:
max

{
ut(x,w, t) + H(x,w, Dxu(x, w, t), 0),

max
{

∂u

∂wj
(x,w, t) : wj = gj(x)

}}
> 0.





on Γ×]0, +∞[

(5.28)
To understand the reasons of this conditions, let us take, for in-

stance, a subsolution u of (4.23), ϕ ∈ C1(Ω×]0, +∞[), and (x,w, t) ∈
Γ×]0, +∞[ of maximum for u − ϕ in Ω×]0,+∞[. Hence there exists
at least one j ∈ {1, . . . , m} such that wj = gj(x). We assume that
ϕt(x,w, t)+H(x,w, Dxϕ(x,w, t), 0) > 0. Recalling the lower semicon-
tinuous envelope H∗, the following must hold: there exists a ∈ A such
that

−
m∑

j=1

wj=gj(x)

(
∂ϕ

∂wj
(x,w, t)

)−
(Dgj(x) · f(x, a))− < 0,

from which we deduce that at least one of those components of the
gradient Dwϕ(x,w, t) is strictly negative, i.e:

min
{

∂ϕ

∂wj
(x,w, t) : wj = gj(x)

}
< 0.

We similarly obtain the other condition.

Theorem 5.1. Let as assume that (4.13), (4.15) and (4.16) hold. We
consider T ∈]0, +∞[, u, v ∈ C(Ω×[0, T ]) bounded continuous functions
such that they are respectively a viscosity subsolution and supersolution
of (5.27), with boundary Neumann condition (5.28) in the viscosity
sense. Then

sup
Ω×[0,T ]

(u(x,w, t)− v(x,w, t)) ≤ sup
Ω

(u(x, w, 0)− v(x,w, 0)).

Proof. First of all, note that, as it is standard, there exists a
modulus of continuity ω such that, for all (x,w), (y, z) ∈ Ω, p, q ∈ Rn,
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|H(x,w, p, 0)−H(y, z, p, 0)| ≤ ω(‖ x− y ‖‖ p ‖),
|H(x,w, p, 0)−H(x,w, q, 0)| ≤ ω(‖ p− q ‖). (5.29)

Because of the geometry of Ω, there exists a positive de�nite sym-
metric 2 × 2 matrix S such that, for every (x, w) ∈ Γ and for every
j such that wj = gj(x) (here (·)T stays for the transpose, i.e. the
column):

S((gj(x), wj)− (gj(x∗), w∗j ))
T · (0, 1) ≥ 0, ∀(x∗, w∗) ∈ Ω. (5.30)

Fixed ε > 0, η > 0, we de�ne the following function in (Ω× [0, T ])2

Φ((x,w, t), (y, z, s)) = u(x,w, t)− v(y, z, s)− ‖ x− y ‖2 +|t− s|2
2ε

+

−η(t + s)−
m∑

j=1

S(gj(x)− gj(y), wj − zj)T · (gj(x)− gj(y), wj − zj)
2ε

,

Let A := supΩ×{0}(u − v) and we assume by contraddiction that
there exist δ > 0 and (x̃, w̃, t̃) ∈ Ω× [0, T ] such that

(u− v)(x̃, w̃, t̃) = A + δ.

We choose η such that 2ηt̃ ≤ δ
2 , then the following holds

A +
δ

2
≤ A + δ − 2ηt̃ = Φ((x̃, w̃, t̃), (x̃, w̃, t̃)) ≤ sup

(Ω×[0,T ])2
Φ. (5.31)

By the continuity of Φ in the compact (Ω × [0, T ])2, there exist two
points (x,w, t), (y, z, s) ∈ Ω× [0, T ] such that

sup
(Ω×[0,T ])2

Φ = Φ((x,w, t), (y, z, s)). (5.32)

The following estimates are obtained by standard technique (see
for instance Bardi-Capuzzo Dolcetta [3]), just suitably using our as-
sumptions and in particular the positive de�nition of the matrix S

|wj − zj | ≤
√

Cε
‖ x− y ‖2

ε
≤ ‖ x− y ‖2 +|t− s|2

ε
≤ ωu+v(

√
ε)

|wj − zj |2
ε

≤ ωu+v(
√

ε)

(5.33)
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where C is a suitable constant and ωu+v is the modulus of continuity
in Ω for u + v. We also get t, s > 0.

We consider the following C1 functions:

ϕ(x, w, t) = v(y, z, s) +
‖ x− y ‖2 +|t− s|2

2ε
+ η(t + s)+

m∑

j=1

S(gj(x)− gj(y), wj − zj)T · (gj(x)− gj(y), wj − zj)
2ε

,

ψ(y, z, s) = u(x,w, t)− ‖ x− y ‖2 +|t− s|2
2ε

− η(t + s)+

−
m∑

j=1

S(gj(x)− gj(y), wj − zj)T · (gj(x)− gj(y), wj − zj)
2ε

.

Let us note that u−ϕ has a maximum point in (x,w, t), while v−ψ
has a minimum point in (y, z, s). Then we distinguish two cases:
a) (x,w, t), (y, z, s) ∈ (

Ω \ Γ
)×]0, T ],

b) (x,w, t) ∈ Γ×]0, T ] or (y, z, s) ∈ Γ×]0, T ].
a) Since u and v are respectively a viscosity sub- and supersolution of
(5.1), also recalling Lemma 3.5 holds, the following are satis�ed

ϕt(x,w, t) + H(x,w,Dxϕ(x,w, t), 0) ≤ 0
ψt(y, z, s) + H(y, z, Dxψ(y, z, s), 0) ≥ 0.

By just a calculation this means

2η ≤ H(y, z,Dyψ(y, z, s), 0)−H(x,w, Dxϕ(x,w, t), 0) (5.34)

Then, using (5.29), the Lipschitz continuity of gj and Dgj in B, the
estimates (5.33), we get

|H(y, z,Dyψ(y, z, s), 0)−H(x,w, Dxϕ(x,w, t), 0)| → 0 ε → 0+.

So, reconsidering (5.34), we �nd that 2η ≤ 0 which is a contradiction.
b) If (x,w, t) ∈ Γ×]0, T ] or (y, z, s) ∈ Γ×]0, T ] hold, then, by (5.30),
for every j such that wj = gj(x) or zj = gj(y), the following are
respectively satis�ed

S

(
(gj(x), wj)− (gj(y), zj)

2ε

)T

· (0, 1) ≥ 0

S

(
(gj(x), wj)− (gj(y), zj)

2ε

)T

· (0,−1) ≤ 0,
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which, by a direct calculation, respectively means

∂ϕ

∂wj
(x,w, t) ≥ 0

∂ψ

∂wj
(y, z, s) ≤ 0,

from which, by the Neumann conditions (3.3), we obtain

ϕt(x,w, t) + H(x,w,Dxϕ(x,w, t), 0) ≤ 0
ψt(y, z, s) + H(y, z, Dxψ(y, z, s), 0) ≥ 0,

and we conclude as in the previous case. ut

Let us now note that the value function V (4.17) obviously satis�es
the initial condition

V (x, w, 0) = Ψ(x,w) ∀(x,w) ∈ Ω.

Hence, as it is standard, from Theorem 5.1, and from our interpretation
of the discontinuity of the Hamiltonian as Neumann-type boundary
conditions, we obtain the following uniqueness result.

Theorem 5.2. With the same assumptions of Theorem 5.1, the value
function V is the unique continuous and bounded viscosity solution of
the following discontinuous Cauchy problem

{
Vt + H(x,w, DxV, DwV ) = 0 in Ω×]0, +∞[
V (x,w, 0) = Ψ(x,w).

(5.35)

6 Remarks and extensions
Remark 6.1. The viscosity solution approach to the state constraints
problems was �rst studied by Soner [13]. It concerns the case where
the trajectory is constrained to remain inside a closed set, and, in our
setting, this consists of the constraint yx(t) /∈

◦
Tj for every j = 1, . . . , m

(corresponding for instance to the physical interpretation of the tar-
gets as planets). Inserting such a constraint in our optimal visiting
problem, and following Soner [13], we would get an Hamilton-Jacobi
equation satis�ed in a subsolution-way outside of the sets

◦
Tj, and in a

supersolution-way till to the boundary of
◦
Tj, j = 1, . . . , m. Unfortu-

nately when, in order to get the desired comparison result, we try to
perform the suitable penalization technique as in [13], in particular the
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technique for keeping the maxima inside the interior of the set, some
di�culties seem to arise for handling both that penalization technique
from one side and the variables wj with the Neumann conditions from
the other side. However, we did not check the details.

Remark 6.2 Another possible way for formalizing the minimal time
visiting problem may probably be by an in�nite horizon problem, still
subject to the controlled evolution (4.14). In such a case, the objective
would be the minimization of the cost

Jλ(x,w, α) =
∫ +∞

0
e−λt (w1(t) + . . . + wm(t)) dt,

for a suitable λ > 0 This choice is guided by the idea that, to minimize
Jλ, probably it is convenient to send to zero all the components wj as
soon as possible, and this means visiting the target sets. Actually, it
may happen that the minimal cost is achieved with 0 < wj < ε, for
some ε > 0, so the targets are not visited, but we certainly would have
passed close enough to them.

For any �xed discount factor λ > 0 we still perform a similar anal-
ysis as for the Mayer problem, and we characterize the value function
Vλ as the unique viscosity solution of a discontinuous Hamilton-Jacobi
equation (see Benetton [5] for details).

An interesting issue to be studied would be the related ergodic prob-
lem, that is the investigation of the behavior of the sequence of func-
tions λVλ := infα {λJλ(x,w, α)} for λ → 0. Such an analysis may lead
to characterize the possible limit V as the solution of a suitable limit
Hamilton-Jacobi equation, and to recognize the limit V exactly as our
optimal visiting function.
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