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Abstract. We expose the main results of a theory of slice regular functions
on a real alternative algebra A, based on a well�known Fueter's construction.
Our general theory includes the theory of slice regular functions of a quater-
nionic or octonionic variable and the theory of slice monogenic functions of a
Cli�ord variable. Our approach permits to extend the range of these function
theories and to obtain new results. In particular, we show that a fundamental
theorem of algebra with multiplicities holds for an ample class of polynomials
with coe�cients in A. We give several examples to illustrate some interesting
aspects of the theory.
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1. Introduction

In this survey paper, we propose a new approach to the concepts of �slice regularity�
for functions of one quaternionic, octonionic or Cli�ord variable which have been
recently introduced by Gentili and Struppa in [17, 18] and by Colombo, Sabadini
and Struppa in [8].

Actually, the starting point for our approach is not new: it dates back to a
paper of Rudolf Fueter [12], in which he proposed a simple method, which is now
known as Fueter's Theorem, to generate quaternionic regular functions (cf. [35] and
[25] for the theory of Fueter regular functions) by means of complex holomorphic
functions. Given a holomorphic �stem function�

F (z) = u(α, β) + i v(α, β) (z = α+ iβ complex, u, v real�valued)
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in the upper complex half�plane, real�valued on R, the formula

f(q) := u (q0, | Im(q)|) +
Im(q)

| Im(q)|
v (q0, | Im(q)|)

(with q = q0 + q1i + q2j + q3k ∈ H, Im(q) = q1i + q2j + q3k) de�nes a function
on H, whose Laplacian is Fueter regular. Fueter's construction was later extended
to higher dimensions by Sce [32], Qian [30] and Sommen [34] in the setting of
octonionic and Cli�ord analysis.

We extend Fueter's construction in order to develop a theory of slice regular
functions on a real alternative algebra A with a �xed antiinvolution. These func-
tions will be obtained by taking A�valued components u, v of the stem function
F . The domains on which slice regular functions can be de�ned are open subsets
of what we call the quadratic cone of the algebra. This cone is the whole algebra
only in the case in which A is a real division algebra (i.e. the complex numbers,
the quaternions H or the octonions O). We refer the reader to the article [22] for
complete proofs of the main results stated in the present paper.

If A is the algebra of quaternions, we get the theory of slice regular (or Cullen
regular) functions of a quaternionic variable introduced by Gentili and Struppa
[17, 18]. If A is the algebra of octonions, we obtain the corresponding theory of
regular functions already considered in [16, 20, 23]. If A is the Cli�ord algebra
Cl0,n = Rn, the quadratic cone is a real algebraic (proper for n ≥ 3) subset of
Rn, containing the subspace of paravectors. By restricting the Cli�ord variables
to the paravectors, we get the theory of slice monogenic functions introduced by
Colombo, Sabadini and Struppa in [8].

In Section 2, we de�ne the normal cone and the quadratic cone of an algebra A
and prove that the quadratic cone is a union of complex planes of A. This property
is the starting point for the extension of Fueter's construction. We compute the
cones for some relevant algebras. In particular, we show that the quadratic cone
can be a semi�algebraic set (e.g. in Cli�ord algebras with non�de�nite signature)
and depends on the antiinvolution chosen in A. We also �nd the dimensions of the
cones.

In Section 3, we introduce complex intrinsic functions with values in the
complexi�ed algebra A⊗RC and use them as stem functions to generate A�valued
(left) slice functions. This approach does not require the holomorphy of the stem
function. Moreover, slice functions can be de�ned also on domains which do not
intersect the real axis of A.

In Section 4, we restrict our attention to slice functions with holomorphic
stem function, what we call (left) slice regular functions on A. These functions
forms a real vector space that is not closed w.r.t. the pointwise product in A. The
pointwise product for stem functions induces a natural product on slice functions
(cf. Section 5), that generalizes the usual product of polynomials and power series.

In Section 6, we recall some properties of the zero set of slice functions. We
restrict our attention to admissible slice regular functions, which preserve many
relevant properties of classical holomorphic functions. We generalize a structure
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theorem for the zero set proved by Pogorui and Shapiro [29] for quaternionic
polynomials and by Gentili and Stoppato [15] for quaternionic power series. A
Remainder Theorem (Theorem 11) gives us the possibility to de�ne a notion of
multiplicity for the zeros of an admissible slice regular function.

Polynomials with right coe�cients in A are slice regular functions on the
quadratic cone. We obtain a version of the fundamental theorem of algebra for
slice regular admissible polynomials. This theorem was proved for quaternionic
polynomials by Eilenberg and Niven [10, 28] and for octonionic polynomials by
Jou [26]. See also [11, pp. 308�] for a topological proof of the theorem valid for a
class of real algebras including C, H and O, and [36], [31] and [21] for other proofs.
Gordon and Motzkin [24] proved, for polynomials on a (associative) division ring,
that the number of conjugacy classes containing zeros of p cannot be greater than
the degree m of p. This estimate was improved on H by Pogorui and Shapiro [29]:
if p has s spherical zeros and l non�spherical zeros, then 2s + l ≤ m. Gentili and
Struppa [19] showed that, using the right de�nition of multiplicity, the number
of zeros of p equals the degree of the polynomial. In [23], this strong form was
generalized to the octonions. Recently, Colombo, Sabadini and Struppa [8, 9] and
Yang and Qian [37] proved some results on the structure of the set of zeros of a
polynomial with paravector coe�cients in a Cli�ord algebra.

We obtain a strong form of the fundamental theorem of algebra (Theorem 14),
which contains and generalizes the above results. We show that the sum of the mul-
tiplicities of the zeros of a slice regular admissible polynomial is equal to its degree.
The last section contains several examples that illustrate the relevance of the qua-
dratic cone and of the condition of admissibility for the algebraic and topological
properties of the zero set of a polynomial. We see that the quadratic cone is suf-
�ciently large to contain the �right� number of (isolated or spherical) zeros, and
su�ciently small to exclude �wild� sets of zeros of the polynomial. Outside the
quadratic cone, an admissible polynomial can have in�nite non�spherical zeros. If
the polynomial is not admissible, its zero set loses its regular structure.

2. The quadratic cone of a real alternative algebra

Let A be a �nite�dimensional alternative real algebra with a unity, of dimension
d > 1. We will identify the �eld of real numbers with the subalgebra of A generated
by the unity. In a real algebra, we can consider the imaginary space consisting of
all non�real elements whose square is real.

De�nition 1. Let Im(A) := {x ∈ A | x2 ∈ R, x /∈ R \ {0}}. The elements of Im(A)
are called purely imaginary elements of A.

In general, the imaginary space Im(A) is not a vector subspace of A. In what
follows, we will assume that on A an antiinvolution is �xed. It is a linear map
x 7→ xc of A into A satisfying the following properties:

(xc)c = x ∀x ∈ A, (xy)c = ycxc ∀x, y ∈ A, xc = x for every real x.
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De�nition 2. For every element x of A, the trace of x is t(x) := x + xc ∈ A and
the (squared) norm of x is n(x) := xxc ∈ A.

De�nition 3. We call normal cone of the algebra A the subset

NA := {0} ∪ {x ∈ A | n(x) = n(xc) ∈ R \ {0}},

and quadratic cone of A the set

QA := R ∪ {x ∈ A | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x)2}.

We also set SA := {J ∈ QA | J2 = −1} ⊆ Im(A). Elements of SA will be
called square roots of −1 in the algebra A. For every J ∈ SA, we will denote by
CJ := 〈1, J〉 ' C the subalgebra of A generated by J .

Proposition 1. Let A be an alternative real algebra with a �xed antiinvolution
x 7→ xc. The following statements hold.

(1) Every x ∈ QA satis�es the real quadratic equation x2 − x t(x) + n(x) = 0.
(2) x ∈ QA is equivalent to xc ∈ QA. Moreover, QA ⊆ NA.

(3) Every nonzero x ∈ NA is invertible: x−1 = n(x)
−1
xc.

(4) Jc = −J for every J ∈ SA, i.e. t(J) = 0, n(J) = 1.
(5) QA = A if and only if A is isomorphic to one of the division algebras C,H

or O with the usual conjugation mapping.
(6) For every x ∈ QA, there exist uniquely determined elements x0 ∈ R, y ∈

Im(A) ∩QA, with t(y) = 0, such that x = x0 + y.
(7) QA =

⋃
J∈SA CJ and CI ∩ CJ = R for every I, J ∈ SA, I 6= ±J .

Using the notation of the above proposition, for every x ∈ QA, we set
Re(x) := x0 = x+xc

2 , Im(x) := y = x−xc

2 .
As shown by the examples below, the quadratic cone QA needs not be a

subalgebra or a subspace of A.

Examples 1. (1) Let A be the algebra H of the quaternions or the algebra O of
the octonions. Let xc = x̄ be the usual conjugation mapping. Then Im(A) is a
subspace, A = R ⊕ Im(A) and QH = NH = H, QO = NO = O. In these cases, SH
is a two-dimensional sphere and SO is a six-dimensional sphere.

(2) Let A be the real Cli�ord algebra Clp,q = Rp,q, with the conjugation

xc = ([x]0 + [x]1 + [x]2 + [x]3 + [x]4 + · · · )c = [x]0 − [x]1 − [x]2 + [x]3 + [x]4 − · · · ,

where [x]k denotes the k�vector component of x in Rp,q (cf. for example [7, �4.1]
or [25, �3.2]). Let n := p + q. An element x of Rp,q can be represented in the
form x =

∑
K xKeK , with K = (i1, . . . , ik) an increasing multiindex of length k,

0 ≤ k ≤ n, eK = ei1 · · · eik , e∅ = 1, xK ∈ R, x∅ = x0, e1, . . . , en basis elements.
Let Rn := R0,n. In this case, the quadratic cone Qn := QRn

is the real
algebraic (proper for n ≥ 3) subset of Rn de�ned in terms of the euclidean scalar
product x · y by the equations

xK = 0, x · (xeK) = 0 for every eK 6= 1 such that e2
K = 1.
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The subspace of paravectors Rn+1 := {x ∈ Rn | [x]k = 0 for every k > 1} is
contained in Qn. For x ∈ Rn+1, t(x) = 2x0 ∈ R and n(x) = |x|2 ≥ 0 (the
euclidean norm). The (n − 1)�dimensional sphere S = {x = x1e1 + · · ·xnen ∈
Rn+1 | x2

1 + · · · + x2
n = 1} of unit 1�vectors is (properly) contained in SRn

. The
normal cone Nn := NRn

contains also the Cli�ord group Γn and its subgroups
Pin(n) and Spin(n). If n ≥ 3, Im(A) is not a subspace of A.

(3) The case of R3. A direct computation shows that

N3 = {x ∈ R3 | x0x123 + x2x13 − x1x23 − x3x12 = 0}

and the quadratic cone is the 6�dimensional real algebraic set

Q3 = {x ∈ R3 | x123 = 0, x2x13 − x1x23 − x3x12 = 0}.

Finally, SR3
= {x ∈ Q3 | x0 = 0,

∑
i x

2
i +

∑
j,k x

2
jk = 1} ⊂ Im(R3) ∩ Q3 is the

intersection of a 5�sphere with the hypersurface x2x13 − x1x23 − x3x12 = 0.

(4) The case of R4. The normal cone N4 is the 11�dimensional real algebraic
set with equations

x1x1234 + x124x13 − x12x134 − x123x14 = 0, x2x1234 + x124x23 − x12x234 − x123x24 = 0,

x3x1234 + x134x23 − x13x234 − x123x34 = 0, x4x1234 − x14x234 + x134x24 − x124x34 = 0,

x134x2 − x1x234 − x124x3 + x123x4 = 0, x0x1234 − x14x23 + x13x24 − x12x34 = 0,

x0x234 + x3x24 − x2x34 − x23x4 = 0, x0x134 + x3x14 − x1x34 − x13x4 = 0,

x0x124 + x2x14 − x1x24 − x12x4 = 0, x0x123 + x2x13 − x1x23 − x12x3 = 0,

while the quadratic cone Q4 is the 8�dimensional real algebraic set de�ned by

x14x23 − x13x24 + x12x34 = x3x24 − x2x34 − x23x4 = x3x14 − x1x34 − x13x4 = 0,

x2x14 − x1x24 − x12x4 = x2x13 − x1x23 − x12x3 = x123 = x124 = x134 = x234 = x1234 = 0.

(5) Let A = R1,2. Then N1,2 is the 7�dimensional real semi�algebraic set

{x ∈ R1,2|x0x123+x2x13−x1x23−x3x12 = 0, x2
0+x2

2+x2
3+x2

23 6= x2
1+x2

12+x2
13+x2

123}∪{0}

and the quadratic cone Q1,2 is the 6�dimensional real semi�algebraic set

Q1,2 = R ∪ {x ∈ R1,2 | x123 = 0, x2x13 − x1x23 − x3x12 = 0,

x2
2 + x2

3 + x2
23 > x2

1 + x2
12 + x2

13}.

(6) The quadratic cone and the normal cone depend on the antiinvolution
chosen in the algebra. For example, in the Cli�ord algebras Rn, it is possible to
take the reversion x 7→ x∗ in place of the conjugation. The reversion is de�ned by

x∗ = ([x]0 + [x]1 + [x]2 + [x]3 + [x]4 + · · · )∗ = [x]0 + [x]1 − [x]2 − [x]3 + [x]4 − · · · .

In R2 ' H, we get the normal and quadratic cones

N ∗2 = {x | x1 = x2 = 0} ∪ {x | x0 = x12 = 0}, Q∗2 = {x ∈ R2 | x1 = x2 = 0} ' C.

Here SA = {±e12}.
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In R3 the normal cone (w.r.t. reversion) is the 5�dimensional real semi�
algebraic set

N ∗3 = R ∪ {x | x2x12 + x3x13 = 0, x1x13 + x2x23 = 0, x1x12 − x23x3 = 0,

x0x1 + x123x23 = 0, x0x2 − x123x13 = 0, x0x3 + x12x123 = 0,

x2
0 + x2

12 + x2
13 + x2

23 6= x2
1 + x2

2 + x2
3 + x2

123}

and the quadratic cone is the 4�dimensional plane

Q∗3 = {x | x1 = x2 = x3 = x123 = 0} = 〈1, e12, e13, e23〉 ' H.

3. Slice functions

Let AC = A⊗R C be the complexi�cation of A. We will use the representation

AC = {w = x+ iy | x, y ∈ A} (i2 = −1).

AC is an alternative complex algebra with a unity w.r.t. the product:

(x+ iy)(x′ + iy′) = xx′ − yy′ + i(xy′ + yx′).

The algebra A can be identi�ed with the real subalgebra A′ := {w = x+iy | y = 0}
of AC. In AC two commuting operators are de�ned: the complex�linear antiinvo-
lution w 7→ wc = (x + iy)c = xc + iyc and the complex conjugation de�ned by
w = x+ iy = x− iy.

De�nition 4. Let D ⊆ C be an open subset. If a function F : D → AC is complex

intrinsic, i.e. it satis�es the condition F (z) = F (z) for every z ∈ D such that
z ∈ D, then F is called an A�stem function on D.

In the preceding de�nition, there is no restriction to assume that D is sym-
metric w.r.t. the real axis, i.e. D = conj(D) := {z ∈ C | z̄ ∈ D}.

Remarks 1. (1) A function F is an A�stem function if and only if the A�valued
components F1, F2 of F = F1 + iF2 form an even�odd pair w.r.t. the imaginary
part of z.

(2) By means of a basis B = {uk}k=1,...,d of A, F can be identi�ed with a
complex intrinsic curve in Cd.

Given an open subset D of C, let ΩD be the relatively open subset of QA

obtained by the action on D of the square roots of −1:

ΩD := {x = α+ βJ ∈ CJ | α, β ∈ R, α+ iβ ∈ D, J ∈ SA}.

Sets of this type will be called circular sets in A.

De�nition 5. Any stem function F : D → AC induces a left slice function f =
I(F ) : ΩD → A. If x = α+ βJ ∈ DJ := ΩD ∩ CJ , we set

f(x) := F1(z) + JF2(z) (z = α+ iβ).
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There is an analogous de�nition for right slice functions when J is placed on
the right of F2(z). In what follows, the term slice functions will always mean left
slice functions. We will denote the real vector space of (left) slice functions on ΩD

by S(ΩD).

Examples 2. Assume A = H or A = O, with the usual conjugation mapping.
(1) For any element a ∈ A, F (z) := zna = Re(zn)a+ i (Im(zn)a) induces the

monomial f(x) = xna ∈ S(A).
(2) By linearity, we get all the standard polynomials p(x) =

∑n
j=0 x

jaj
with right quaternionic or octonionic coe�cients. More generally, every conver-
gent power series

∑
j x

jaj is a slice function on an open ball of A centered in the

origin with (possibly in�nite) radius.
The above examples generalize to standard polynomials in x = I(z) and

xc = I(z̄) with coe�cients in A. The domain of slice polynomial functions or
series must be restricted to subsets of the quadratic cone.

For an element J ∈ SA, let C+
J denote the upper half plane C+

J = {x =
α+ βJ ∈ A | β ≥ 0}.

Proposition 2. Let J,K ∈ SA with J−K invertible. Every slice function f ∈ S(ΩD)
is uniquely determined by its values on the two distinct half planes C+

J and C+
K .

Moreover, the following representation formula holds:

f(x) = (I −K)
(
(J −K)−1f(α+ βJ)

)
− (I − J)

(
(J −K)−1f(α+ βK)

)
(3.1)

for every I ∈ SA and for every x = α+ βI ∈ DI = ΩD ∩ CI .

Representation formulas for quaternionic Cullen regular functions appeared
in [3, 4], and for slice monogenic functions of a Cli�ord variable in [6, 5].

De�nition 6. Let f ∈ S(ΩD) be a slice function.
The spherical value of f in x ∈ ΩD is vsf(x) := 1

2 (f(x) + f(xc)).

The spherical derivative of f in x ∈ ΩD \R is ∂sf(x) := 1
2 Im(x)−1(f(x)− f(xc)).

In this way, we get two A�valued slice functions associated with f , constant
on every �sphere� Sx := {y ∈ QA | y = α+βI, I ∈ SA} (x = α+βJ , J ∈ SA) such
that ∂sf(x) = 0 if and only if f is constant on Sx. In this case, f has value vsf(x)
on Sx. If ΩD ∩R 6= ∅, under mild regularity conditions on F , we get that ∂sf can
be continuously extended as a slice function on ΩD. By de�nition, the following
identity holds for every x ∈ ΩD: f(x) = vsf(x) + Im(x) ∂sf(x).

Proposition 3. Let f = I(F ) ∈ S(ΩD) be a slice function. Then the following
statements hold:

(1) If F ∈ C0(D), then f ∈ C0(ΩD).
(2) If F ∈ C2s+1(D) for a positive integer s, then f is of class Cs(ΩD). As a

consequence, if F ∈ C∞(D), then f is of class C∞(ΩD).
(3) If F ∈ Cω(D), then f is of class Cω(ΩD).
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We will denote by S1(ΩD) := {f = I(F ) ∈ S(ΩD) | F ∈ C1(D)} the real
vector space of slice functions with stem function of class C1.

De�nition 7. Let f = I(F ) ∈ S1(ΩD). We set

∂f

∂x
:= I

(
∂F

∂z

)
,

∂f

∂xc
:= I

(
∂F

∂z̄

)
.

These functions are continuous slice functions on ΩD.

4. Slice regular functions

Left multiplication by i de�nes a complex structure on AC. With respect to this
structure, a C1 function F = F1 + iF2 : D → AC is holomorphic if and only if its
components F1, F2 satisfy the Cauchy�Riemann equations.

De�nition 8. A (left) slice function f ∈ S1(ΩD) is (left) slice regular if its stem
function F is holomorphic. We will denote the real vector space of slice regular func-
tions on ΩD by SR(ΩD) := {f ∈ S1(ΩD) | f = I(F ), F : D → AC holomorphic}.

Polynomials with right coe�cients in A can be considered as slice regular
functions on the quadratic cone. Assume that on A is de�ned a positive scalar
product x · y whose associated norm satis�es an inequality |xy| ≤ C|x||y| (C > 0)
and such that |x|2 = n(x) for every x ∈ QA. In this case we can consider also
convergent power series

∑
k x

kak as slice regular functions on the intersection of
the quadratic cone with a ball centered in the origin. See for example [25, �4.2] for
the quaternionic and Cli�ord algebra cases, where we can take as product x ·y the
euclidean product in R4 or R2n

, respectively.

Proposition 4. Let f = I(F ) ∈ S1(ΩD). Then f is slice regular on ΩD if and only
if the restriction fJ := f |CJ∩ΩD

: DJ = CJ ∩ ΩD → A is holomorphic for every
J ∈ SA with respect to the complex structures de�ned by left multiplication by J .

Proposition 4 implies that if A is the algebra of quaternions or octonions,
and D intersects the real axis, then f is slice regular on ΩD if and only if it is
Cullen regular in the sense introduced by Gentili and Struppa in [17, 18, 20, 16].
If A is the real Cli�ord algebra Rn, slice regularity generalizes the concept of slice
monogenic functions introduced by Colombo, Sabadini and Struppa in [8]. If f =
I(F ) ∈ SR(ΩD), F ∈ C1(D) and D intersects the real axis, then the restriction of
f to the subspace of paravectors is a slice monogenic function. Conversely, every
slice monogenic function is the restriction of a unique slice regular function.

5. Product of slice functions

In general, the pointwise product of two slice functions is not a slice function. How-
ever, pointwise product in the algebra AC of A�stem functions induces a natural
product on slice functions.
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De�nition 9. Let f = I(F ), g = I(G) ∈ S(ΩD). The product of f and g is the slice
function f · g := I(FG) ∈ S(ΩD).

The preceding de�nition is well�posed, since the pointwise product of F and
G is complex intrinsic. The product is distributive and also associative if A is
an associative algebra. If the components F1, F2 of the �rst stem function F are
real�valued, then (f · g)(x) = f(x)g(x) for every x ∈ ΩD. In this case, we will use
also the notation fg in place of f · g.
De�nition 10. A slice function f = I(F ) is called real if the A�valued components
F1, F2 of its stem function are real�valued. Equivalently, f is real if the spherical
value vsf and the spherical derivative ∂sf are real�valued.

Real slice functions are characterized by the following property: for every
J ∈ SA, the image f(CJ ∩ ΩD) is contained in CJ .

Let f(x) =
∑

j x
jaj and g(x) =

∑
k x

kbk be polynomials or convergent power
series with coe�cients aj , bk ∈ A. The usual product of polynomials, where x is
considered to be a commuting variable (cf. for example [27] and [14, 13]), can be
extended to power series (cf. [15, 19] for the quaternionic case) by setting:

(f ∗ g)(x) :=
∑

n x
n
(∑

j+k=n ajbk
)
.

Proposition 5. Let f and g be polynomials or convergent power series. Then the
product f · g coincides with the star product f ∗ g, i.e. I(FG) = I(F ) ∗ I(G).

We now associate to every slice function the normal function, which is useful
when dealing with zero sets. Our de�nition is equivalent to the symmetrization of
quaternionic power series given in [15].

De�nition 11. Let f = I(F ) ∈ S(ΩD). Then also F c(z) := F (z)c = F1(z)
c

+
iF2(z)

c
is an A�stem function. We set f c := I(F c), CN(F ) := FF c = n(F1) −

n(F2) + i t(F1F2
c) and N(f) := f · f c = I(CN(F )) ∈ S(ΩD). The slice function

N(f) will be called the normal function of f .

If f is slice regular, then also f c and N(f) are slice regular. If A is the algebra
of quaternions or octonions, then CN(F ) is complex�valued and then the normal
function N(f) is real. For a general algebra A, this is not true for every slice
function. This is the motivation for the following de�nition.

De�nition 12. A slice function f = I(F ) ∈ S(ΩD) is called admissible if vsf(x) ∈
NA for every x ∈ ΩD and the real vector subspace 〈vsf(x), ∂sf(x)〉 ⊆ NA for every
x ∈ ΩD \ R. Equivalently, 〈F1(z), F2(z)〉 ⊆ NA for every z ∈ D.

If A = H or O, then every slice function is admissible. Moreover, if f is real,
then f c = f , N(f) = f2 and f is admissible. If f is admissible, then CN(F ) is
complex�valued and then N(f) is real.

Example 3. Consider the Cli�ord algebra R3 with the usual conjugation. Its normal
cone contains the subspace R4 of paravectors. Every polynomial p(x) =

∑
n x

nan
with paravectors coe�cients is admissible. The polynomial p(x) = xe23 + e1 is an
example of a non�admissible slice regular function.
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Theorem 6. Let A be associative or A = O. Then N(f · g) = N(f)N(g) for every
admissible f, g ∈ S(ΩD).

Corollary 7. Let A be associative or A = O. Assume that n(x) = n(xc) 6= 0 for
every x ∈ A \ {0} such that n(x) is real. If f and g are admissible slice functions,
then also the product f · g is admissible.

Example 4. Let A = R3. Consider the admissible polynomials f(x) = xe2 + e1,
g(x) = xe3 + e2. Then (f · g)(x) = x2e23 + x(e13 − 1) + e12 is admissible, N(f) =
N(g) = x2 + 1 and N(f · g) = (x2 + 1)2.

6. Zeros of slice functions

The zero set V (f) = {x ∈ ΩD | f(x) = 0} of an admissible slice function f has a
particular structure. For every �xed x ∈ QA, the �sphere� Sx is entirely contained
in V (f) or it contains at most one zero of f . Moreover, if f is not real, there
can be isolated, non�real zeros. These di�erent types of zeros of a slice function
correspond to the existence of zero�divisors in the complexi�ed algebra AC.

Theorem 8 (Structure of V (f)). Let f ∈ S(ΩD) an admissible slice function. Let
x = α + βJ ∈ ΩD and z = α + iβ ∈ D. Then one of the following mutually
exclusive statements holds:

(1) Sx ∩ V (f) = ∅.
(2) Sx ⊆ V (f). In this case x is called a real (if x ∈ R) or spherical (if x /∈ R)

zero of f .
(3) Sx ∩ V (f) consists of a single, non�real point. In this case x is called an

SA�isolated non�real zero of f .

Moreover, a real slice function has no SA�isolated non�real zeros, and for every
admissible slice function f , we have V (N(f)) =

⋃
x∈V (f) Sx.

Theorem 9. Let ΩD be connected. If f is slice regular and admissible on ΩD, and
N(f) does not vanish identically, then CJ ∩

⋃
x∈V (f) Sx is closed and discrete in

DJ = CJ ∩ ΩD for every J ∈ SA. If ΩD ∩ R 6= ∅, then N(f) ≡ 0 if and only if
f ≡ 0.

In the quaternionic case, the structure theorem for the zero set of slice regular
functions was proved by Pogorui and Shapiro [29] for polynomials and by Gentili
and Stoppato [15] for power series.

Remark 2. If ΩD does not intersect the real axis, a not identically zero slice regular
function f can have normal function N(f) ≡ 0. For example, let J ∈ SH be �xed.
The admissible slice regular function de�ned on H \ R by f(x) = 1 − IJ for
x ∈ C+

I = {x = α+ βI ∈ A | β ≥ 0} has zero normal function.

Now we state a remainder theorem, which generalizes a result proved by Beck
[1] for quaternionic polynomials and by Serôdio [33] for octonionic polynomials.
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De�nition 13. For any y ∈ QA, the characteristic polynomial of y is the slice
regular function on QA

∆y(x) := N(x− y) = (x− y) · (x− yc) = x2 − x t(y) + n(y).

Proposition 10. The characteristic polynomial ∆y of y ∈ QA is real. Two char-
acteristic polynomials ∆y and ∆y′ coincides if and only if Sy = Sy′ . Moreover,
V (∆y) = Sy.

Theorem 11. Let f ∈ SR(ΩD) be an admissible slice regular function. Let y ∈
V (f) = {x ∈ QA | f(x) = 0}. Then the following statements hold.

(1) If y is a real zero, then there exists an admissible g ∈ SR(ΩD) such that
f(x) = (x− y) g(x).

(2) If y ∈ ΩD \R, then there exists an admissible h ∈ SR(ΩD) and a, b ∈ A such
that 〈a, b〉 ⊆ NA and f(x) = ∆y(x)h(x) + xa+ b. Moreover,
• y is a spherical zero of f if and only if a = b = 0.
• y is an SA�isolated non�real zero of f if and only if a 6= 0 (in this case
y = −ba−1).

If f is real, then g, h are real and a = b = 0.

For every non�real y ∈ V (f), the element a ∈ NA which appears in the
statement of the preceding theorem is the spherical derivative of f at x ∈ Sy.

Corollary 12. Let f ∈ SR(ΩD) be admissible. If Sy contains at least one zero of
f , of whatever type, then ∆y divides N(f).

De�nition 14. Let f ∈ SR(ΩD) be admissible, with N(f) 6≡ 0. Given a non�
negative integer s and an element y of V (f), we say that y is a zero of f of
multiplicity s if ∆s

y | N(f) and ∆s+1
y - N(f). We will denote the integer s, called

multiplicity of y, by mf (y).

In the case of y real, the preceding condition is equivalent to (x− y)s | f and
(x− y)s+1 - f . If y is a spherical zero, then mf (y) ≥ 2. In the case of quaternionic
polynomials, the de�nition is equivalent to the one given in [2] and in [19].

Proposition 13. Let A be associative. Let f, g ∈ S(ΩD). Then V (f) ⊆ V (f · g).

As shown in [33] for octonionic polynomials and in [23] for octonionic power
series, if A is not associative the statement of the proposition is no more true.
However, we can still say something about the location of the zeros of f · g (cf.
[23] for the precise relation linking the zeros of f and g to those of f · g). For the
associative case, see also [27, �16].

Now we focus our attention on the zero set of slice regular admissible poly-
nomials. If p(x) =

∑m
j=0 x

jaj is an admissible polynomial of degree m with coef-
�cients aj ∈ A, then the normal polynomial

N(p)(x) = (p ∗ pc)(x) =
∑

n x
n
(∑

j+k=n aja
c
k

)
has degree 2m and real coe�cients. A su�cient condition for the admissibility of
p is that the real vector subspace 〈a0, . . . , am〉 is contained in NA.
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Theorem 14 (Fundamental Theorem of Algebra with multiplicities). Let p(x) =∑m
j=0 x

jaj be an admissible polynomial of degree m > 0 with coe�cients in A.

Then V (p) = {y ∈ QA | p(y) = 0} is non�empty. More precisely, there are distinct
�spheres� Sx1

, . . . ,Sxt
such that

V (p) ⊆
t⋃

k=1

Sxk
= V (N(p)), V (p) ∩ Sxj

6= ∅ for every j,

and, for any choice of zeros y1 ∈ Sx1 , . . . , yt ∈ Sxt of p, it holds
∑t

k=1mp(yk) = m.

Remark 3. If r denotes the number of real zeros of the polynomial p, i the number
of SA�isolated non�real zeros of p and s the number of �spheres� Sy (y /∈ R)
containing spherical zeros of p, we have that r + i+ 2s ≤ deg(p).

7. Examples

The following examples show the relevance of the quadratic cone and of admissi-
bility for the algebraic and topological properties of the zero set of a polynomial.

(1) Every polynomial
∑m

j=0 x
jaj , with paravector coe�cients aj in the Clif-

ford algebra Rn (with conjugation as antiinvolution), has m roots (counted with
their multiplicities) in the quadratic cone Qn. If the coe�cients are real, then it
has at least one root in the paravector space Rn+1, since every �sphere� Sy intersect
Rn+1 (cf. [37, Theorem 3.1]).

(2) In R3, the admissible polynomial p(x) = x2 + xe3 + e2 (cf. [37, Ex. 3])
has two isolated zeros

y1 = 1
2 (1− e2 − e3 + e23), y2 = 1

2 (−1 + e2 − e3 + e23)

in Q3 \ R4. They can be computed by solving the complex equation CN(P ) =
z4 + z2 + 1 = 0 to �nd the two �spheres� Sy1

, Sy2
and then using the Remainder

Theorem (Theorem 11) with ∆y1 = x2 − x+ 1 and ∆y2 = x2 + x+ 1.

(3) In R3, the polynomial p(x) = xe23 + e1 vanishes only at y = e123 /∈ Q3.
Note that p is not admissible: e1, e23 ∈ N3, but e1 + e23 /∈ N3.

(4) An admissible polynomial of degree m, even in the case of non�spherical
zeros, can have more thanm roots in the whole algebra. For example, p(x) = x2−1
has four roots in R3, two in the quadratic cone (x = ±1) and two outside it
(x = ±e123).

(5) Outside the quadratic cone, an admissible polynomial can have in�nite
non�spherical zeros. For example, in R1,2 the polynomial p(x) = x2 − 1 has zeros
±1 in Q1,2, while in R1,2 \ Q1,2 it vanishes on the 4�dimensional set

{x | x0 = x123 = 0, x2x13−x1x23−x3x12 = 0, x2
1 +x2

12 +x2
13−x2

2−x2
3−x2

23 = 1}.

(6) In R3, the admissible polynomial p(x) = x3−1 has zero set V (p) = {1}∪Sy
(y = − 1

2 +
√

3
2 J , J ∈ SR3

) in Q3, while in R3 \ Q3 the polynomial p vanishes on
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the two 2�spheres

S± = {x = 1
4 +x1(e1±e23)+x2(e2±e13)+x3(e3±e12)± 3

4e123 | x2
1 +x2

2 +x2
3 = 3

16}.

(7) In the algebras H,O,R3, the solutions of the equation x
2 = −1 are exactly

the elements of SR3
, i.e. they all belong to the quadratic cone. This is not the case

for other algebras. In R1,2, e
2
123 = −1, but e123 /∈ Q1,2. In R4, the equation x

2 = −1
has many solutions: the square roots of −1 in the �sphere� SR4

, but also in�nite
other points outside the quadratic cone:

x =

4∑
i=1

xiei + x1234e1234, with

4∑
i=1

x2
i − x2

1234 = 1.

(8) The admissibility of a slice function depends on the algebra. For exam-
ple, the polynomial p(x) = x2 + xe1 + 2 is admissible on the algebra R3 (w.r.t.
conjugation), where its zero set is the union of V (p) = {e1,−2e1} ⊆ Q3 and the
subset {− 1

2e1 ± 3
2e23} of R3 \ Q3. The same polynomial is not admissible on the

algebra R1,2, and it has no zeros in Q1,2.

(9) The admissibility depends also on the antiinvolution chosen in the algebra.
For example, in the algebra Rn with the reversion as �xed antiinvolution, a polyno-
mial with paravector coe�cient can be not admissible. For n = 2, p(x) = xe1 +1 is
not admissible, since 〈1, e1〉 6⊆ N ∗2 . This property re�ects in the fact that the unique
zero of p in R2 does not belong to the quadratic cone Q∗2 = {x ∈ R2 | x1 = x2 = 0}.
The same holds in every Rn. Instead, the polynomials with coe�cients in the real
vector subspace of 1�vectors are admissible in Rn (w.r.t. reversion).

(10) The reality of N(p) is not su�cient to get the admissibility of p. For
example, in R3, the polynomial p(x) = x2e123 + x(e1 + e23) + 1 has real normal
function N(p) = (x2 + 1)2, but the spherical derivative ∂sp = t(x)e123 + e1 + e23

has N(∂sp) not real. In particular, ∂sp(J) = e1 + e23 /∈ N3 for every J ∈ SR3 . The
non�admissibility of p is re�ected by the existence of a S1 of distinct zeros on SR3 ,
where p does not vanish identically.
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