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Chapter 1

Introduction

In this thesis, we use an Automatic Configuration Framework (implemented in
ParamILS) to find the most suitable techniques for a set of popular theories solved
by Satisfiability Modulo Theories (SMT). The techniques that we investigate are
the most effective techniques of interest for the lazy SMT and which have been
proposed in various communities and implemented in theMathSATtool.

The ultimate goal of this thesis is to provide the guidelinesabout the choice of
optimized techniques for solving popular theories using SMT.

1.1 Satisfiability Modulo Theories and MathSAT

Satisfiability Modulo Theories (SMT)is the problem of deciding the satisfiability
of a first-order formula with respect to some decidable first-order theoryT (SMT (T )).
These problems are typically not handled adequately by standard automated the-
orem provers. SMT is being recognized as increasingly important due to its ap-
plications in many domains in different communities, in particular in formal veri-
fication.

Typical SMT(T ) problems require testing the satisfiability of formulas which
are Boolean combinations of atomic propositions and atomicexpressions inT
, so that heavy Boolean reasoning must be efficiently combined with expres-
sive theory-specific reasoning. The dominating approach toSMT(T ), calledlazy
approach, is based on the integration of a SAT solver (widely used is a mod-
ern conflict-driven DPLL solver) and of a decision procedureable to handle sets
of atomic constraints inT (T -solver), handling respectively the Boolean and the
theory-specific components of reasoning.

An amount of papers with novel and very efficient techniques for optimizing
the integration of DPLL andT -solver has been published in the last years, and
some very efficient SMT tools are now available. However, it is still very difficult
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CHAPTER 1. INTRODUCTION

to decide which technique is the most suitable one for a theory, or even harder,
which combination of techniques is the best choice for a theory. Therefore, in
this thesis, we useMathSAT, one of the efficient SMT tools, which implements
most of these techniques to compare the effectiveness of techniques on different
theories.

1.2 Automatic Configuration Framework

The identification of performance-optimizing parameter settings is an important
part of the development and application of algorithms. Usually, we start with
some parameter configuration, and then modify a single parameter. If the result
is improved after tuning, we keep this new result. We repeat this job until some
termination criteria is satisfied. This approach is very expensive in term of human
time and the performance is also very poor. Fortunately, Frank Hutter and Holger
H. Hoos has proposedParamILS, an automatic configuration framework, to solve
this problem automatically and effectively. Experiments on many algorithms like
SAPS, SPEAR, CPLEX with different benchmarks Graph colouring (Gent et.el,
1999), Quasigroup completion (Gomes and Selman, 1997), etc. has proved that
the configurations found by ParamILS outperform the defaultconfigurations in
all cases, especially faster than 50 times for some special cases. Therefore, in this
thesis, we use ParamILS to search for the best possible configurations of MathSAT
on different theories.

1.3 Summary of Contributions

The main contribution of this thesis is a comprehensive study of the most effective
SMT techniques by mean of the MathSAT and ParamILS tool. Thisincludes an
empirical analysis approach to study the characteristics of the MathSAT configu-
ration scenario, two experimental groups on eight and five theories to determine
the best possible configurations for MathSAT on the SMT-COMP2009 and SMT-
LIB benchmark. Here, we describe these in more detail:

• We do many experiments on one theory to determine the most suitable sce-
nario for MathSAT before starting experiments on a set of theories. The
main parameters in a scenario are the ParamILS strategy (Basic or Focused),
the timeout of ParamILS (tunerTimeout), the timeout of eachMathSAT
run(cutoff time), the effect of ParamILS random seeds, the determinismof
MathSAT.

• Then, we start ParamILS on eight theories using the SMT-COMP2009

2



1.3. SUMMARY OF CONTRIBUTIONS

benchmark. In these experiments, we use the same dataset of SMT-COMP
2009 for training and testing phases in order to check whether we can have
better configurations than the default configurations and the configurations
used in SMT-COMP 2009 (smt-comp configurations, these configurations
can bechangedaccording to different problem classes based on a statis-
tics module in MathSAT). In three of five cases, the number solved tests of
the optimized configurations increases significantly compared with the smt-
comp configurations. In two other cases, although the numberof solved
tests are equal to the number of tests solved by the smt-comp configura-
tions, the mean runtime is reduced approximately byhalf and bya factor
of eight. In addition, in training and testing phases, we also obtainsets of
MathSAT bugs on three theories and report them to the MathSATteam.

• Next, we use the benchmark selection tool of SMT-COMP 2009 toextract
from the SMT-LIB benchmark different training and testing datasets for five
successfully tested theories (no errors found in training and testing phases
for these theories in Chapter 5) to find general optimized MathSAT con-
figurations. In all cases, the number of tests solved by the optimized con-
figurations is much larger than the number of tests solved by the default
configurations.
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Chapter 2

SMT Techniques and MathSAT

The description in this chapter is mostly taken from [4].

2.1 Lazy SMT in MathSAT

2.1.1 Satisfiability Modulo Theories - SMT

Satisfiability Modulo Theories is the problem of deciding the satisfiability of a
first-order formula with respect to some decidable first-order theoryT (SMT (T )).
Examples of theories of interest are those ofEquality and Uninterpreted Functions
(EUF), Linear Arithmetic(LA), both over the reals(LA(Q)) and the integers
(LA(Z)), its subclasses ofDifference Logic(DL) and Unit-Two-Variable-Per-
Inequality(UT VPI), the theories ofbit-vectors(BV), of arrays (AR) and of
lists (LI). These problems are typically not handled adequately by standard au-
tomated theorem provers - like, e.g., those based on resolution calculus - because
the latter cannot satisfactorily deal with the theory-specific interpreted symbols
(i.e., constants, functions, predicates).

SMT is being recognized as increasingly important due to itsapplications in
many domains in different communities, ranging from resource planning [95] and
temporal reasoning [19] to formal verification, the latter including verification of
pipelines and of circuits at Register-Transfer Level (RTL)[39, 75, 33], of proof
obligations in software systems [76, 52], of compiler optimizations [29], of real-
time embedded systems [23, 45, 22].

An amount of papers with novel and very efficient techniques for SMT has
been published in the last years, and some very efficient SMT tools are now avail-
able (e.g., Ario [81], BarceLogic [72], CVCLite/CVC3 [25],DLSAT [67], haR-
Vey [76], MathSAT [34], Sateen [64], SDSAT [53] Simplify [46], TSAT++ [20],
UCLID [65], Yices [47], Verifun [51], Zapato [24]), Z3 [43].An amount of bench-
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CHAPTER 2. SMT TECHNIQUES AND MATHSAT

marks, mostly derived from verification problems, is available at the SMT-LIB
official page [77, 78]. A workshop devoted to SMT and an official competition on
SMT tools are run yearly.

For a complete survey, please refer [4] and [12].

2.1.2 Lazy SMT = SAT +T -Solvers

All applications mentioned above require testing the satisfiability of formulas
which are (possibly-big) Boolean combinations of atomic propositions and atomic
expressions in some theoryT , so that heavy Boolean reasoning must be effi-
ciently combined with expressive theory-specific reasoning.

On the one hand, in the last decade we have witnessed an impressive advance
in the efficiency of propositional satisfiability techniques, SAT [85, 30, 69, 58,
49, 48]). As a consequence, some hard real-world problems have been success-
fully solved by encoding them into SAT. SAT solvers are now a fundamental tool
in most formal verification design flows for hardware systems, both for equiva-
lence, property checking, and ATPG [31, 68, 89]; other application areas include,
e.g., the verification of safety-critical systems [88, 32],and AI planning in its
classical formulation [63], and in its extensions to non-deterministic do-mains
[40, 59]. Plain Boolean logic, however, is not expressive enough for representing
many other real-world problems (including, e.g., the verification of pipelined mi-
croprocessors, of real-time and hybrid control systems, and the analysis of proof
obligations in software verification); in other cases, suchas the verification of
RTL designs or assembly-level code, even if Boolean logic isexpressive enough
to encode the verification problem, it does not seem to be the most effective level
of abstraction (e.g., words in the data path are typically treated as collections of
unrelated Boolean variables).

On the other hand, decision procedures for much more expressive decidable
logics have been conceived and implemented in different communities, like, e.g.,
automated theorem proving, operational research, knowledge representation and
reasoning, AI planning, CSP, formal verification. In particular, since the pioneer-
ing work of Nelson and Oppen [70, 71, 73, 74] and Shostak [83, 84], efficient
procedures have been conceived and implemented which are able to check the
consistency of sets/conjunctions of atomic expressions indecidable F.O. theories.
(We call these procedures, Theory Solvers orT -solvers.) To this extent, most
effort has been concentrated in producingT -solvers of increasing expressiveness
and efficiency and, in particular, in combining them in the most efficient way (e.g.,
[70, 71, 73, 74, 83, 84, 50, 28, 80]). These procedures, however, deal only with
conjunctions of atomic constraints, and thus cannot handlethe Boolean compo-
nent of reasoning.

In the last ten years new techniques for efficiently integrating SAT solvers

8



2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

with logic- specific or theory-specific decision procedureshave been proposed
in different communities and domains, producing big performance improvements
when applied (see, e.g., [57, 61, 19, 95, 45, 27, 21, 93, 67, 51, 54, 34, 82]). Most
such systems have been implemented on top of SAT techniques based on variants
of the DPLL algorithm [42, 41, 85, 30, 69, 58, 49, 48].

In particular, the dominating approach to SMT (T ), which underlies most
state-of-the-art SMT (T ) tools, is based on the integration of a SAT solver and
one (or more)T -solver(s), respectively handling the Boolean and the theory-
specific components of reasoning: the SAT solver enumeratestruth assignments
which satisfy the Boolean abstraction of the input formula,whilst theT -solver
checks the consistency inT of the set of literals corresponding to the assign-
ments enumerated. This approach is calledlazy, in contraposition to the eager ap-
proach to SMT (T ), consisting on encoding an SMT formula into an equivalently-
satisfiable Boolean formula, and on feeding the result to a SAT solver (see, e.g.,
[94, 38, 92, 91, 79]). All the most extensive empirical evaluations performed in
the last years [54, 44, 72, 35, 26, 86, 87] confirm the fact thatcurrently all the
most efficient SMT tools are based on the lazy approach.

2.1.3 MathSAT

MathSAT is a DPLL-based decision procedure for the SMT problem for various
theories, including those of Equality and Uninterpreted Function (EUF), Differ-
ence Logics (DL), Linear Arithmetic over the Reals (LA(R)) and Linear Arith-
metic over the Integers (LA(Z)). MathSAT is based on the approach of integrating
a state-of-the-art SAT solver with a hierarchy of dedicatedsolvers for the differ-
ent theories, and implements several optimization techniques. MathSat pioneers
a lazy and layered approach, where propositional reasoningis tightly integrated
with solvers of increasing expressive power, in such a way that more expensive
layers are called less frequently. MathSAT has been appliedin different real-world
application domains, ranging from formal verification of infinite state systems
(e.g. timed and hybrid systems) to planning with resources,equivalence checking
and model checking of RTL hardware designs. For more detail,please visit the
MathSAT websitehttp://mathsat4.disi.unitn.it/.

2.2 SMT Techniques Implemented in MathSAT

2.2.1 Concept of the section

Before presenting SMT techniques in detail, we present the following basic con-
cepts that are used throughout this section.

9



CHAPTER 2. SMT TECHNIQUES AND MATHSAT

Let Σ be a first-order signature containing function and predicate symbols
with their arities, andν be a set of variables. A 0-ary function symbolc is called
a constant. A 0-ary predicate symbol A is called aBoolean atom. A Σ-term is
either a variable inν or it is built by applying function symbols inΣ to Σ-terms.
If t1, ..., tn areΣ-terms andP is a predicate symbol, thenP (t1, ..., tn) is aΣ-atom.
A Σ-literal is either aΣ-atom (a positive literal) or its negation (a negative literal).
The set ofΣ-atoms andΣ-literals occurring inϕ are denoted byAtoms(ϕ) and
Lits(ϕ) respectively.

Given a decidable first-order theoryT , we call atheory solver forT , T -solver,
any tool able to decide the satisfiability inT of sets/conjunctions of ground atomic
formulas and their negations -theory literals orT -literals - in the languageT .

We will often use the prefix ”T -” to denote ”in the theoryT ”: e.g., we call a
”T -formula” a formula in (the signature of)T , ”T -model” a model inT , and
so on. We also use the bijective functionT 2B (”Theory-to-Boolean”) and its
inverseB2T := T 2B−1 (”Boolean-to-Theory”), s.t.T 2B maps Boolean atoms
into themselves and non-BooleanT -atoms into fresh Boolean atoms - so that
two atom instances inϕ are mapped into the same Boolean atom iff they are
syntactically identical - and distributes with sets and Boolean connectives.

For the combination of theories, we use the concept ofinterface equalities, that
is, equalities between variables appearing in atoms of different theories (interface
variables).

2.2.2 Integration of DPLL and T -Solver

Several procedures exploiting the integration schema havebeen proposed in
different communities and domains (see, e.g., [57, 95, 19, 21, 51, 54, 36]). In
this integration schema,T -DPLL is a variant of the DPLL procedure, modified to
work as an enumerator of truth assignments, whoseT -satisfiability is checked by
aT -solver.

Procedure 1 represents the schema of aT -DPLL procedure based on a modern
DPLL engine. The inputϕ andµ are aT -formula and a reference to an (initially
empty) set ofT -literals respectively. The DPLL solver embedded inT -DPLL
reasons on and updatesϕp andµp, andT -DPLL maintains some data structure
encoding the set Lits(ϕ) and the bijective mappingT 2B/B2T on literals.
T -preprocesssimplifiesϕ into a simpler formula, and updatesµ if it is the

case, so that to preserve theT -satisfiability ofϕ ∧ µ. If this process produces
some conflict, thenT -DPLL returns Unsat.T -preprocess combines most or all
the Boolean preprocessing steps with some theory-dependent rewriting steps on
theT -literals ofϕ.
T -decide next branch implements the key non-deterministic step in DPLL,

for which many heuristic criteria have been conceived. Old-style heuristics like

10



2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

Procedure 1SatValueT -DPLL (T -formulaϕ, T -assignment &µ)
1: if (T -preprocess(ϕ, µ) == Conflict) then
2: return Unsat;
3: end if
4: ϕp = T 2B(ϕ); µp = T 2B(µ);
5: while (1) do
6: T -decidenext branch(ϕp, µp)
7: while (1) do
8: status =T -deduce(ϕp, µp)
9: if (status == Sat)then

10: µ = B2T (µp)
11: return Sat
12: else if(status == Conflict)then
13: blevel =T -analyzeconflict(ϕp, µp)
14: if (blevel == 0)then
15: return Unsat
16: else
17: T -backtrack(blevel,ϕp, µp)
18: end if
19: else
20: break
21: end if
22: end while
23: end while

MOMS and Jeroslow- Wang [62] used to select a new literal at each branching
point, picking the literal occurring most often in the minimal-size clauses (see,
e.g., [60]). The heuristic implemented in SATZ [66] selectsa candidate set of
literals, performs Boolean Constraint Propagation (BCP),chooses the one lead-
ing to the smallest clause set; this maximizes the effects ofBCP, but introduces
big overheads. When formulas derive from the encoding of some specific prob-
lem, it is sometimes useful to allow the encoder to provide tothe DPLL solver
a list of ”privileged” variables on which to branch first (e.g., action variables
in SAT-based planning [56], primary inputs in bounded modelchecking [90]).
Modern conflict-driven DPLL solvers adopt evolutions of theVSIDS heuristic
[69, 58, 49], in which decision literals are selected according to a score which
is updated only at the end of a branch, and which privileges variables occurring
in recently-learned clauses; this makesT -decidenext branch state-independent
(and thus much faster, because there is no need to recomputing the scores at each
decision) and allows it to take into account search history,which makes search
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more effective and robust. In addition,T -decidenext branch takes into consider-
ation also the semantics inT of the literals to select.
T -deduceiteratively deduces Boolean literalslp which derive propositionally

from the current assignment (i.e., s.t.ϕp ∧ µp |=p lp) and updatesϕp andµp

accordingly, until one of the following facts happens:

(i) µp propositionally violatesϕp (µp ∧ϕp |=p⊥). If so,T -deduce returnsCon-
flict.

(ii) µp propositionally satisfiesϕp(µp |=p ϕ
p). If so,T -deduce invokesT -solver

onB2T (µp): if the latter returnsSat, thenT -deduce returnsSat; otherwise,
T -deduce returnsConflict.

(iii) no more literals can be deduced. If so,T -deduce returnsUnknown. A
slightly more elaborated version ofT -deduce can invokeT -solver onB2T (µp)
also at this intermediate stage: ifT -solver returnsUnsat, thenT -deduce re-
turnsConflict.

T -analyzeconflict: if the conflict produced byT -deduce is caused by a
Boolean failure (case (i) above), thenT -analyzeconflict produces a Boolean
conflict setηp and the corresponding value of blevel; if instead the conflict is
caused by aT -inconsistency revealed byT -solver (case (ii) or (iii) above), then
T -analyzeconflict produces as a conflict set the Boolean abstractionηp of the
theory conflict setη produced byT -solver (i.e.,ηp := T 2B(η)), or computes
a mixed Boolean+theory conflict set by a backward-traversalof the implication
graph starting from the conflicting clause¬T 2B(µ). If T -solver is not able to re-
turn a theory conflict set, the whole assignmentµ may be used, after removing all
Boolean literals fromµ. Once the conflict setηp and blevel have been computed,
T -backtrack adds the clause¬ηp toϕp and backtracks up to blevel.

2.2.3 Adaptive Early Pruning

In its simplest form, Early Pruning (EP) is based on the empirical observation that
most assignments which are enumerated byT -DPLL, and which are found Un-
sat byT -solver, are such that theirT -unsatisfiability is caused by much smaller
subsets. Thus, if theT -unsatisfiability of an assignmentµ is detected during
its construction, then this prevents checking theT -satisfiability of all the up to
2|Atoms(φ)|−|µ| total truth assignments which extendµ. However, as EP may cause
useless calls toT -solver, the benefits of the pruning effect may be partly counter-
balanced by the overhead introduced by the extra EP calls [4].

A standard solution for this problem, adopted by several SMTsolvers, is
to use incomplete but fastT -solvers for EP calls, performing the complete but

12
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potentially-expensive check only when absolutely necessary (i.e. when a truth
assignment which propositionally satisfies the input formula is found). This tech-
nique is usually called Weak (or Approximate) Early Pruning.

In MathSAT, a different approach, which we call Adaptive Early Pruning
(AEP), is implemented. The main idea of AEP is that of controlling the frequency
of EP calls, by adapting the rate at whichT -solvers are invoked according to
some measure of the usefulness of EP: the more EP calls contribute to pruning the
search by detectingT -conflicts orT -deductions, the more frequentlyT -solvers
are invoked [5].

In MathSAT, the parameter of this technique isaep. We experiment on the
following values:{yes: enable, no: disable}.

2.2.4 T -propagation

T -propagation was introduced in its simplest form (plunging, see [4]) by [19]
for DL; [21] proposed an improved technique for LA; however,T -propagation
showed its full potential in [93, 54, 72], where it was applied aggressively.

As discussed in [4], for some theories it is possible to implementT -solver so
that a call toT -solver(µ) returning Sat can also perform one or more deduction(s)
in the formη �T l, s.t. η ⊆ µ and l is a literal on a not-yet-assigned atom in
φ. If this is the case, thenT -solver can returnl to T -DPLL, so thatT ∈B(l) is
unit-propagated. This may induce new literals to be assigned, new calls toT -
solver, new assignments deduced, and so on, possibly causing a beneficial loop
betweenT -propagation and unit-propagation. Notice thatT -solver can return the
deduction(s) performedη �T l to T -DPLL, which can add the deduction clause
T 2B(η → l) to ϕp, either temporarily and permanently. The deduction clause
will be used for the future Boolean search, with benefits analogous to those of
T -learning (see [4]).

In MathSAT, the parameter of this technique isdeduction. This parameter is
used to set the deduction level of theories and we experimenton the following
values:{0,1,2,3}.

2.2.5 Dual Rail Encoding

We would like to reduce the number of literals sent to the bit-vector theory solver,
since each theory solver call is potentially very expensive. One way to do this
is to have the boolean enumerator enumerate minimal models.In [13], Roorda
and Claessen uses a technique based on a dual-rail encoding which gives minimal
models for the SAT problem, and the same technique lifts intoSMT.

In a dual rail encoding of a formula, each propositional atomP is replaced by
two fresh atomsP ⊺ andP⊥. These are used to encode a three valued semantics of
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P ⊺ P τ Meaning
False False No value
False True False
True False True
True True Illegal

Table 2.1: Three value logic semantic of dual rail encoding

propositional logic according to table 2.1. To translate a formula in CNF to dual
rail, all positive literals A are replaced withA⊺, and all negative literals¬A are
replace withA⊥. To rule out the illegal value, for every atom A the clause{¬A⊺,
¬A⊥} is added to the CNF.

To see why this encoding would help in enumerating minimal models, we can
notice that in DPLL, if the decision heuristic always assigns false to decision vari-
ables, then any modelµ for a set of clausesΓ has the minimal number of positive
literals. This means that it is not possible to negate any of the positive literals in
µ and still haveµ |= Γ. We say that such a model is (positive) sign-minimal. The
reverse is true if the decision heuristic always assigns true to decision variables,
and we call such models negative sign-minimal. See [6] for the full proof.

In MathSAT, the parameter of this technique isdual rail . We experiment on
the following values:

• off: disables dual rail encoding.

• circuit: ensures enumerating minimal models for the original formula.

• cnf: a ”lighter” version that introduces less clauses, but only ensures that the
enumerated models are minimal w.r.t. the CNF-conversion ofthe original
problem (i.e., they might not be minimal for the original formula).

2.2.6 Dynamic Ackermann Expansion

When the theoryT solved is combination of many theories, and one of the theo-
riesTi is EUF , one further approach to theSMT (T1∪T2) problem is to eliminate
uninterpreted function symbols by means of Ackermanns expansion [18] so that
to obtain anSMT (T ) problem with only one theory. The method works by re-
placing every function application occurring in the input formulaϕ with a fresh
variable and then adding toϕ all the needed functional congruence constraints.
The new formulaϕ′ obtained is equisatisfiable withϕ, and contains no uninter-
preted function symbols.

However, the traditional congruence-closure algorithm misses the propagation
rule f(x) 6= f(y)  x 6= y which has a dramatic performance benefit on many
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problems. An approach calledDynamic Ackermannizationis proposed to cope
with this problem [10].

In MathSAT, the parameter of this technique isdyn ack. We experiment on
the following values:{yes: enable, no: disable}.

Besides, this parameter is used together with two followingparameters:

• dyn ack limit Maximum number of clauses added by dynamic Ackermann’s
expansion. We experiment this parameter only on the value of0 which
means unlimited.

• dyn ack thresholdNumber of times a congruence must be used before acti-
vating its dynamic Ackermann’s expansion. We experiment this parameter
on the following values:{0, 10,50}.

2.2.7 Boolean Conflict Clause Minimization

LetC andC ′ be clauses,⊗x the resolution operator on variable x. IfC⊗xC
′ ⊆ C

thenC is said to be self-subsumed byC ′ w.r.t. x. In effect,C ′ is used to remove
x (or x) fromC by the fact thatC is subsumed byC ⊗x C

′. A particularly useful
and simple place to apply self-subsumption is in the conflictclause generation.
The following 5-line algorithm can easily be added to any clause recording SAT
solver [11]:

strengthenCC(Clause C) - C is the conflict clause

for eachp ∈ C do
if (reason(p̄) \ {p} ⊆ C) then

mark p
end if
remove all marked literals in C

end for

By reason(p) we denote the clause that became unit and propagatedp =
True.

In MathSAT, the parameter of this technique isexpensiveccmin. We experi-
ment on the following values:{yes: enable, no: disable}.

2.2.8 Learned Clauses Deleting

In theT -learning technique (see [4]), when a conflict setη is found, the clause
T 2B(¬η) is added in conjunction toϕp. Since then,T -DPLL will never again
generate any branch containingη. In fact, as soon as|η| − 1 literals in η are
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assigned to true, the remaining literal will be immediatelyassigned to false by
unit-propagation onT 2B(¬η). However,T -learning must be used with some
care, because it may cause an explosion in size ofϕ. To avoid this, one has to
introduce techniques for discarding learned clauses when necessary [30].

In MathSAT, the parameter of this technique isfrequentreducedb. We exper-
iment on the following values:{yes: aggressively delete learned clause that are
consider unrelevant, no: not delete aggressively}.

2.2.9 Ghost Filtering

In Lazy SMT, when DPLL decides the next branch, it may select also literals
which occur only in clauses which have already been satisfied(which we call
”ghost literals”). The technique ’Ghost Filter’ prevents DPLL from splitting branches
on the ghost literals.

In MathSAT, the parameter of this technique isghostfilter. We experiment on
the following values:{yes: enable, no: disable}.

2.2.10 Increase The Initial Weight of Boolean Variables

Increase the initial weight of non-theory atoms which were not introduced by the
cnf conversion in the splitting heuristic. It means that theoriginal non-theory
atoms have the highest score, and the introduced variables have the lowest score.

In MathSAT, the parameter of this technique isibliwi . We experiment on the
following values:{yes: enable, no: disable}.

2.2.11 Threshold for Lazy Explanation of Implications

MathSAT can learn only the clauses whose length less thann (which is called
threshold for lazy explanation of implications) and other clauses in the conflict set
on demand.

In MathSAT, the parameter of this technique isimpl expl threshold. We ex-
periment on the following values:{0: learn all clauses, 1}.

2.2.12 Incremental Theory Solvers

MathSAT can introduce and handle new atoms during search.
In MathSAT, the parameter of this technique isincr tsolvers. We experiment

on the following values:{yes: enable this feature, no: disable this feature}.
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2.2.13 Mixed Boolean+Theory Conflict Clauses

In the online approach to integrate SAT andT -solver [4], whenT -DPLL reaches
the status ofConflict, it will call T -analyze-conflictto analyze the failure. If
conflict produced byT -deduceis caused by a Boolean failure, thenT -analyze-
conflictproduces a Boolean conflict setηp and the corresponding value ofblevel,
as described in [4] if instead the conflict is caused by aT -inconsistencyrevealed
by T -solver, thenT -analyze-conflictproduces as a conflict set the Boolean ab-
stractionηp of the theory conflict setη produced byT -solver(i.e.,ηp := T2B(η)),
or computes a mixed Boolean+theory conflict set by a backward-traversal of the
implication graph starting from the conflicting clause¬T 2B(η) (see [4]). IfT -
solver is not able to return a theory conflict set, the whole assignment µ may
be used, after removing all Boolean literals fromµ. Once the conflict setηp

andblevelhave been computed,T -backtrackbehaves analogously tobacktrack
in DPLL: it adds the clause¬ηp to ϕp and backtracks up toblevel.

In MathSAT, the parameter of this technique ismixedcs. We experiment on
the following values:{yes: enable. no: disable}.

2.2.14 Permanent Theory Lemmas

If S = {l1, ..., ln} is a set of literals inT , we call (T )-conflict setany subsetη
of S which is inconsistent inT . We call¬η a T -lemma [9]. (Notice that¬η
is a T -valid clause.) TheseT -lemma can be deleted to avoid explosion when
necessary.

In MathSAT, the parameter of this technique ispermanenttheory lemmas. We
experiment on the following values:{yes: never delete theory lemmas, no: delete
when necessary}.

2.2.15 Pure Literal Filtering

This technique, which we call pure-literal filtering, was implicitly proposed by
[95] and then generalized by [55, 21, 35].

The idea is that, if we have non-BooleanT -atoms occurring only positively
[resp. negatively] in the input formula, we can safely drop every negative [resp.
positive] occurrence of them from the assignment to be checked by T -solver.
Moreover, if bothT -propagation and pure-literal filtering are implemented, then
the filtered literals must be dropped not only from the assignment, but also from
the list of literals which can beT -deduced byT -solver, so that to avoid theT -
propagation of literals which have been filtered away.

We notice first that pure-literal filtering has the same two benefits described
for reduction to prime implicants [4]. Moreover, this technique is particularly
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useful in some situations. For instance, in DL(Z) and LA(Z) many solvers cannot
efficiently handle disequalities (e.g.,(x1 − x2 6= 3)), so that they are forced to
split them into the disjunction of strict inequalities(x1−x2 > 3)∨ (x1−x2 < 3).
(This is done either off-line, by rewriting all equalities [resp. disequalities] into a
conjunction of inequalities [resp. a disjunction of strictinequalities], or on-line,
at each call to T -solver.) This causes an enlargement of the search, because the
two disjuncts must be investigated separately.

However, in many problems it is very frequent that many equalities (t1 = t2)
occur with positive polarity only. If so, pure-literal filtering avoids adding(t1 6=
t2) to µ whenT 2B((t1 = t2)) is assigned to false byT -DPLL, so that no split is
needed [21].

In MathSAT, the parameter of this technique ispure literal filter. This pa-
rameter may affect negatively theory deduction, but can be abenefit for complex
theories. We experiment on the following values{yes: enable, no: disable}.

2.2.16 Random Decisions

Perform randomly about 5% of the branching decisions.
In MathSAT, the parameter of this technique israndomdecisions. We experi-

ment on the following values:{yes: enable, no: disable}.

2.2.17 Restart

When searching for a solution, SMT can get stuck in some branches. In that case,
the solution is to escape from the current branch by restarting the whole process.

In MathSAT, the parameter of this technique isrestart. We experiment on the
following values:

• Normal: The restart policies implemented in MiniSat. They all observe
different search parameters like: conflict level (the height of the search tree
(i.e. the number of decisions) when a conflict occurred) or backtrack level
(the height of the search tree to which the solver jumped backto resolve
the conflict), length of learned clauses (the length of the currently learned
clause), and trail size (the total number of assigned variables when a conflict
occurred (including variables assigned by unit propagation)) over time and,
based on their development, decide whether to perform a restart or not [16].

• Quick: Using a small prototype SAT solver, calledTINISAT, which imple-
ments the essentials of a modern clause learning solver and is designed to
facilitate adoption of arbitrary restart policies [7].
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• Adaptive: This technique measures the ”agility” of the SAT solver as it
traverses the search space, based on the rate of recently flipped assign-
ments. The level of agility dynamically determines the restart frequency.
Low agility enforces frequent restarts, high agility prohibits restarts [8].

2.2.18 Static Learning

The technique was proposed by [19] for a lazy SMT procedure for DL. Similar
such techniques were generalized and used in [23, 35, 96].

On some specific kind of problems, it is possible to quickly detect a priori short
and ’obviouslyT -inconsistent’ assignments toT -atoms in Atoms(ϕ) (typically
pairs or triplets). Some examples are:

• incompatible value assignments (e.g.,x = 0, x = 1),

• congruence constraints (e.g.,(x1 = y1), (x2 = y2),¬(f(x1, x2) = f(y1, y2))),

• transitivity constraints (e.g.,(x− y ≤ 2), (y − z ≤ 4),¬(x− z ≤ 7)),

• equivalence constraints ((x = y), (2x− 3z ≤ 3),¬(2y − 3z ≤ 3)).

If so, the clauses obtained by negating the assignments (e.g.,¬(x = 0)∨¬(x =
1)) can be added a priori to the formula before the search starts. Whenever all but
one literal in the inconsistent assignment are assigned, the negation of the remain-
ing literal is assigned deterministically by unit-propagation, which prevents the
solver generating any assignment which include the inconsistent one. This tech-
nique may significantly reduce the Boolean search space, andhence the number
of calls toT -solver, producing very relevant speed-ups [19, 23, 35, 96].

Intuitively, one can think of static learning as suggestinga priori some small
and ‘obvious’T -valid lemmas relating someT -atoms ofφ, which drive DPLL in
its Boolean search. Notice that, unlike the extra clauses added in ’per-constraint’
eager approaches [92, 79] (see [4]), the clauses added by static learning refer only
to atoms which already occur in the original formula, so thatthe Boolean search
space is not enlarged, and they are not needed for correctness and completeness:
rather, they are used only for pruning the Boolean search space.

In MathSAT, the parameter of this technique issl. This parameter is used to
set the level of static learning. And we experiment on the following values:{0:
disable, 1, 2}.

2.2.19 Splitting of Equalities

This technique rewrites(x = y) into (x ≤ y) and (y ≤ x) during preprocessing.
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In MathSAT, the parameter of this technique issplit eq. We experiment on the
following values{yes: enable, no: disable}.

2.2.20 Theory Combination

In many practical applications of SMT, the theoryT is a combination of two or
more theoriesT1, ..., Tn. For instance, an atom of the formf(x + 4y) = g(2xy),
that combines uninterpreted function symbols (fromEUF) with arithmetic func-
tions (fromLA(Z)), could be used to naturally model in a uniform setting the
abstraction of some functional blocks in an arithmetic circuit (see e.g. [37, 33]).

In MathSAT, the parameter of this technique istcomb. We experiment on the
following values:

• off: Do not use theory combination.

• ack: Using Ackermann’s expansion as described in section 2.2.6.

• dtc: Delayed Theory Combination (DTC) is a general approachfor com-
bining theories in SMT proposed in [14]. With DTC, the solvers forT1 and
T2 do not communicate directly. The integration is performed by the SAT
solver, by augmenting the Boolean search space with up to allthe possible
interface equalities, so that each truth assignment on bothoriginal atoms
and interface equalities is checked for consistency independently on both
theories [9].

• decide: Use heuristics to select ack or dtc.

2.2.21 Propagation of Toplevel Information

Use top-level equalities to simplify the formula. Example:(x = 0) and (y ≤ x)
can be rewritten to(y ≤ 0).

In MathSAT, the parameter of this techniques istoplevelprop. The set of values
that we experiment is:{0: disable, 1: standard, 2: aggressive}.
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Chapter 3

ParamILS

Most description in this chapter is extracted from [3].

3.1 An Automatic Configuration Scenario

The algorithm configuration problem can be informally stated as follows: given
an algorithm, a set of parameters for the algorithm and a set of input data, find pa-
rameter values under which the algorithm achieves the best possible performance
on the input data.

To avoid potential confusion between algorithms whose performance is opti-
mized and algorithms used for carrying out that optimization task, we refer to the
former as target algorithms and to the latter as configuration procedures (or simply
configurators). The setup is illustrated as in Figure 3.1, the automatic configura-
tion scenario includes an algorithm to be configured and a collection of instances.
A configuration procedure executes the target algorithm with specified parameter
settings on some or all of the instances, receives information about the perfor-
mance of these runs, and uses this information to decide about what subsequent
parameter configurations to evaluate.

3.2 The ParamILS Framework

This section describes an iterated local search framework called ParamILS. To
start with, we fix the other two dimensions, using an unvarying benchmark set of
instances and fixed cutoff times for the evaluation of each parameter configuration.
Thus, the stochastic optimization problem of algorithm configuration reduces to
a simple optimization problem, namely to find the parameter configuration that
yields the lowest mean runtime on the given benchmark set. Then, in Section 3.3
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Figure 3.1: An Automated Configuration Scenario

and 3.4, we address the question of how many runs should be performed for each
configuration.

Consider the following manual parameter optimization process:

1. begin with some initial parameter configuration;

2. experiment with modifications to single parameter values, accepting new
configurations whenever they result in improved performance;

3. repeat step 2 until no single-parameter change yields an improvement.

This widely used procedure corresponds to a manually-executed local search
in parameter configuration space. Specifically, it corresponds to an iterative first
improvement procedure with a search space consisting of allpossible configura-
tions, an objective function that quantifies the performance achieved by the target
algorithm with a given configuration, and a neighbourhood relation based on the
modification of one single parameter value at a time (i.e., a ”one-exchange” neigh-
bourhood).

Viewing this manual procedure as a local search algorithm isadvantageous
because it suggests the automation of the procedure as well as its improvement
by drawing on ideas from the stochastic local search community. For example,
note that the procedure stops as soon as it reaches a local optimum (a parameter
configuration that cannot be improved by modifying a single parameter value). A
more sophisticated approach is to employ iterated local search [15] to search for
performance-optimizing parameter configurations. ILS is aprominent stochastic
local search method that builds a chain of local optima by iterating through a main
loop consisting of

1. a solution perturbation to escape from local optima,

2. a subsidiary local search procedure and
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3. an acceptance criterion to decide whether to keep or reject a newly obtained
candidate solution.

ParamILS (given in pseudocode as Procedure 2 and Algorithm Framework 3
) is an ILS method that searches parameter configuration space. It uses a com-
bination of default and random settings for initialization, employs iterative first
improvement as a subsidiary local search procedure, uses a fixed number (s) of
random moves for perturbation, and always accepts better orequally-good pa-
rameter configurations, but re-initializes the search at random with probability
prestart. Furthermore, it is based on a one-exchange neighbourhood,that is, we
always consider changing only one parameter at a time. ParamILS deals with
conditional parameters by excluding all configurations from the neighbour- hood
of a configurationθ that differ only in a conditional parameter that is not relevant
in θ.

Procedure 2IterativeFirstImprovement(θ)

1: repeat
2: θ′ ← θ;
3: for θ′′ ∈ Nbh(θ′) in randomized orderdo
4: if better(θ′′, θ′) then
5: θ ← θ′′; break;
6: end if
7: end for
8: until θ′ = θ;
9: return θ;

3.3 The BasicILS Algorithm

In order to turn ParamILS as specified in Algorithm Framework3 into an exe-
cutable configuration procedure, it is necessary to instantiate the function better
that determines which of two parameter settings should be preferred. We will ulti-
mately present several different ways of doing this. Here, we describe the simplest
approach, which we call BasicILS. Specifically, we use the termBasicILS(N) to
refer to a ParamILS algorithm in which the functionbetter(θ1, θ2) is implemented
as shown in Procedure 4: simply comparing estimatesĉN of the cost statistics
c(θ1) andc(θ2) that are based onN runs each.

Because BasicParamILS is simple, when benchmark instancesare very het-
erogeneous or when the user can identify a rather small “representative” subset
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Algorithm Framework 3 ParamILS( θ0, r, prestart, s)
Outline of iterated local search in parameter conguration space; the specic vari-
ants of ParamILS we study,BasicILS(N) andFocusedILS, are derived from this
framework by instantiating procedurebetter (which comparesθ, θ′ ∈ Θ). Ba-
sicILS(N)usesbetterN (see Procedure 4), whileFocusedILSusesbetterFoc (see
Procedure 6). The neighbourhoodNbh(θ) of a configurationθ is the set of all con-
figurations that differ fromθ in one parameter, excluding configurations differing
in a conditional parameter that is not relevant inθ.

1: Input : Initial configurationθ0 ∈ Θ, algorithm parametersr, prestart, ands.
2: Output : Best parameter configurationθ found.
3: for i = 1,...,rdo
4: θ ← random θ ∈ Θ
5: if better(θ, θ0) then
6: θ0 ← θ
7: end if
8: end for
9: θils ← IterativeF irstImprovement(θ0)

10: while not TerminationCriterion()do
11: θ ← θils;
12: // ===== Perturbation
13: for i = 1,...,sdo
14: θ ← random θ′ ∈ Nbh(θ);
15: end for
16: // ===== Basic local search
17: θ ← IterativeF irstImprovement(θ);
18: // ===== AcceptanceCriterion
19: if better(θ, θils) then
20: θils ← θ;
21: end if
22: with probabilityprestart doθils ← random θ ∈ θ;
23: end while
24: return overall bestθinc found;
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Procedure 4betterN (θ1, θ2)
Procedure used inBasicILS(N) to compare two parameter configurations. Pro-
cedureobjective(θ,N) returns the user-defined objective of the target algorithm
with the configurationθ on the firstN instances, and keeps track of the incumbent
solution,θinc

1: Input : Parameter configurationθ1, parameter configurationθ2.
2: Output : True if θ1 does better than or equal toθ2 on the firstN instances;

false otherwise.
3: Side Effect: Adds runs to the global caches of performed algorithm runs

Rθ1 andRθ2 of configurationθ1 andθ2, respectively; potentially updates the
incumbentθinc.

4: ĉN (θ2)← objective(θ2, N)
5: ĉN (θ1)← objective(θ1, N)
6: return ĉN(θ1) ≤ ĉN (θ2)

of instances, this approach can find good parameter configurations with low com-
putational effort. However, BasicILS uses a fixed number of Nruns to evaluate
each configurationθ. Therefore, this strategy is not flexible in general cases. Be-
cause if N is large, evaluating a configuration is very expensive and optimization
process is very slow. On the contrary, if N is small, ParamILScan suffer a poor
generalisation to independent test runs.

3.4 The FocusedILS Algorithm

FocusedILS is a variant of ParamILS that deals with the problems of BasicParamILS
by adaptively varying the number of training samples considered from one pa-
rameter configuration to another. We denote the number of runs available to es-
timate the cost statisticc(θ) for a parameter configurationθ by N(θ). Having
performed different numbers of runs using different parameter configurations, we
face the question of comparing two parameter configurationsθ andθ′ for which
N(θ) ≤ N(θ′). One option would be simply to compute the empirical cost statis-
tic based on the available number of runs for each configuration. However, this
can lead to systematic biases if, for example, the first instances are easier than the
average instance. Instead, we compareθ andθ′ based onN(θ) runs on the same
instances and seeds. This approach leads us to a concept of domination and the
domination procedure is presented in Procedure 5.

Procedure 6 shows the procedurebetterFoc used by FocusedParamILS to com-
pare two parameter configurations. This procedure first acquires one additional
sample for the configurationi having smallerN(θi), or one run for both configu-
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rations if they have the same number of runs. Then, it continues performing runs
in this way until one configuration dominates the other. At this point it returns true
if θ1 dominatesθ2, and false otherwise. We also keep track of the total number
of configurations evaluated since the last improving step (i.e., since the last time
betterFoc returned true); we denote this number asB. WheneverbetterFoc(θ1, θ2)
returns true, we perform B “bonus” runs forθ1 and reset B to 0. This mechanism
ensures that we perform many runs with good configurations, and that the error
made in every comparison of two configurationsθ1 andθ2 decreases on expecta-
tion.

Procedure 5dominates(θ1, θ2)

if N(θ1) < N(θ2) then
return false

end if
return objective(θ1, N(θ2)) ≤ objective(θ2, N(θ2))

3.5 Usage

ParamILS [1, 2] is a tool for parameter optimization. It works for any parameter-
ized algorithm whose parameters can be discretized. ParamILS searches through
the space of possible parameter configurations, evaluatingconfigurations by run-
ning the algorithm to be optimized on a set of benchmark instances.

What users need to provide for ParamILS are:

• a parametric algorithm A (executable to be called from the command line),

• all parameters and their possible values (parameters need to be configurable
from the command line), and

• a set of benchmark problems, S.

Users can also choose from a multitude of optimization objectives, reaching
from minimizing average runtime to maximizing median approximation qualities.
ParamILS then executes algorithm A with different combinations of parameters
on instances sampled from S, searching for the configurationthat yields overall
best performance across the benchmark problems. For details, see [2].

3.5.1 ParamILS Configuration

There are a number of configurable parameters the user can set:
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Procedure 6betterFoc(θ1, θ2)
Procedure used in FocusedILS to compare two parameter configurations. Proce-
dureobjective(θ,N) returns the user-defined objective of the configurationθ on
the first N instances, keeps track of the incumbent solution,and updatesRθ (a
global cache of algorithm runs performed with parameter configurationθ). For
eachθ, N(θ) = length(Rθ). B is a global counter denoting the number of con-
figurations evaluated since the last improvement step.

1: Input : Parameter configurationθ1, parameter configurationθ2.
2: Output : True if θ1 dominatesθ2, false otherwise.
3: Side Effect: Adds runs to the global caches of performed algorithm runsRθ1

andRθ2 ; updates the global counterB of bonus runs, and potentially the
incumbentθinc.

4: if N(θ1) ≤ N(θ2) then
5: θmin ← θ1; θmax ← θ2
6: if N(θ1) = N(θ2) then
7: B ← B + 1
8: end if
9: else

10: θmin ← θ2; θmax ← θ1
11: end if
12: repeat
13: i← N(θmin) + 1
14: ĉi(θmax) ← objective(θmax, i) // If N(θmin) = N(θmax), adds a new run

toRθmax
.

15: ĉi(θmin)← objective(θmin, i) // Adds a new run toRθmin
.

16: until dominates(θ1, θ2) or dominates(θ2, θ1)
17: if dominates(θ1, θ2) then
18: // ===== Perform B bonus runs.
19: ĉN(θ1)+B(θ1)← objective(θ1, N(θ1) +B) // Adds B new runs toRθ1 .
20: B ← 0
21: return true
22: else
23: return false
24: end if
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• maxEvalsThe number of algorithm executions after which the optimization
is terminated.

• maxIts The number of ILS iterations after which the optimization istermi-
nated.

• approachUse basic for BasicILS, focused for FocusedILS, and random for
random search.

• N For BasicILS, N is the number of runs to perform to evaluate each param-
eter configuration. For FocusedILS, it is the maximal numberof runs to
perform to evaluate a parameter configuration.

• userunlog If this parameter is 1 or true, another file ending in -runlog will
be placed in the output directory. This file will contain the configurations
and results for every algorithm run performed by ParamILS. There are also
several internal parameters that control the heuristics inParamILS.

3.5.2 Tuning-scenario file

Tuning-scenario files such as this define a tuning scenario completely, and also
contain some information about where ParamILS should writeits results, etc.
They can contain the following information:

• algo An algorithm executable or a call to a wrapper script around an algo-
rithm that conforms with the input/output format of ParamILS.

• execdir Directory to execute〈algo〉 from: ’cd 〈execdir〉; 〈algo〉’

• deterministic Set to 0 for randomized algorithms, 1 for deterministic

• run obj A scalar quantifying how ’good’ a single algorithm execution is,
such as its required runtime. Implemented examples for thisinclude run-
time, runlength, approx (approximation quality, i.e., 1-(optimal quality di-
vided by found quality)), speedup (speedup over a referenceruntime for this
instance - note that for this option the reference needs to bedefined in the
instance seed file as covered in Section 6). Additional objectives for sin-
gle algorithm executions can be defined by modifying function single run
objective in file algospecifics.rb.

• overall obj While run obj defines the objective function for a single algo-
rithm run, overall obj defines how those single objectives are combined to
reach a single scalar value to compare two parameter configurations. Imple-
mented examples include mean, median, q90 (the 90% quantile), adj mean
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(a version of the mean accounting for unsuccessful runs: total runtime di-
vided by number of succesful runs), mean1000 (another version of the mean
accounting for unsuccessful runs: (total runtime of successful runs + 1000x
runtime of unsuccessful runs) divided by number of runs - this effectively
maximizes the number of successful runs, breaking ties by the runtime of
successful runs), and geomean (geometric mean, primarily used in combi-
nation with runobj = speedup. The empirical statistic of the cost distri-
bution (across multiple instances and seeds) to be minimized, such as the
mean (of the single run objectives).

• cutoff time The time after which a single algorithm execution will be termi-
nated unsuccesfully. This is an important parameter: if choosen too high,
lots of time will be wasted with unsuccessful runs. If chosentoo low the
optimization is biased to perform well on easy instances only.

• cutoff length The run length after which a single algorithm execution will
be terminated unsuccessfully. This length can, e.g. be defined in flips for an
SLS algorithm or decisions for a tree search.

• tunerTimeout The timeout of the tuner. Validation of the final best found
parameter configuration starts after the timeout.

• paramfile Specifies the file with the parameters of the algorithms.

• outdir Specifies the directory ParamILS should write its results to.

• instancefile Specifies the file with a list of training instances.

• test instance file Specifies the file with a list of test instances.

• instanceseedfile Specifies the file with a list of training instance/seed pairs
- this and instance file are mutually exclusive.

• test instance seed fileSpecifies the file with a list of training instance/seed
pairs - this and test instance file are mutually exclusive.
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Chapter 4

Determine ParamILS Parameters

The experiments in this Section will clarify which are the most suitable ParamILS
parameters for MathSAT. The most important ParamILS parameters are:

• approach the strategy that ParamILS uses to find the optimized configura-
tions for ParamILS. We can set theapproachparameter asBasic, Focused,
andRandomsearch. Because theBasic, andFocusedsearch are better than
theRandomsearch in all experiments of [2], therefore in this thesis weonly
check whetherBasicor Focusedis the fittest one for MathSAT.

• deterministic the way ParamILS evaluates the target algorithm (MathSAT,
in this case). Ifdeterministicis set to 1 (DAE), then ParamILS will only
evaluate a single〈configuration, instance〉 pair once (with the seed of -1
for the target algorithm, since the seed is not used by a deterministic target
algorithm). Otherwise, thedeterministicparameter is set to 0 (RAE), then
a 〈configuration, instance〉 pair will be evaluated several times, each with a
different seed. This is in order to obtain a more representative picture of the
algorithm’s expected performance on that instance.

• cutoff-time the time after which a single algorithm execution will be termi-
nated unsuccessfully. This is an important parameter because: if it is chosen
too high, lots of time will be wasted with unsuccessful runs.If it is chosen
too low the optimization is biased to perform well on easy instances only.

• tunerTimeout the timeout of the tuner (ParamILS). The validation of the
final best found parameter configuration starts after this timeout.

• numRun the random seed for ParamILS.
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4.1 Two runs of Basic ParamILS using DAE

In theory, two runs of ParamILS with the same configuration will return the same
result if the MathSAT runtime on the same test are always exactly the same. Be-
cause MathSAT is not fully deterministic (it can perform some random steps) and
even if MathSAT is deterministic we still cannot guarantee that the measurement
of time is always 100% reliable on a general purpose operating system, therefore
we cannot avoid having different results of two ParamILS runs using the same
configuration. But we still need to check the stability of ParamILS by considering
whether the result are nearly the same or completely different. If the first case
happens, we will only run ParamILS once on each test case. Otherwise, we will
have to run ParamILS many times on each test case and choose the best result.
In addition, although ParamILS has two search strategiesBasicandFocused, the
ParamILS stability (when fixing other ParamILS parameters)only depends the
way ParamILS evaluates each the MathSAT run (DAE and RAE). So, we only
need to check the ParamILS stability on theBasicapproach usingDAE andRAE.

4.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Training MathSAT timeout 10s
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration 1 Basic, deterministic=1, N=100

run obj=runtime, overallobj=mean
ParamILS Configuration 2 Basic, deterministic=1, N=100

run obj=runtime, overallobj=mean

Table 4.1: The experimental setup of Basic ParamILS using DAE

4.1.2 Experimental result

Table 4.2 presents the two configurations found by two runs ofParamILS. Figure
4.1 and Table 4.3 show the MathSAT performance on two configurations found
by two ParamILS runs. It can be seen that the two configurations are slightly
different, and the MathSAT performance on these configurations are very similar
to each other.

34



4.1. TWO RUNS OF BASIC PARAMILS USING DAE

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100  1000  10000

D
ef

au
lt

Optimized

Performance comparison

satisfiable
unsatisfiable
error/timeout

(a) The first run

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100  1000  10000

D
ef

au
lt

Optimized

Performance comparison

satisfiable
unsatisfiable
error/timeout

(b) The second run

Figure 4.1: Performance comparison of two runs of Basic ParamILS with deter-
ministic=1
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Configuration Default Basic DAE Basic DAE
Parameter
aep yes yes yes
deduction 2 2 2
dual rail off off off
dyn ack no no yes
dyn ack limit 0 0 0
dyn ack threshold 1 1 50
expensiveccmin yes no yes
frequentreducedb no no yes
ghostfilter no yes yes
ibliwi no yes yes
impl expl threshold 0 0 0
mixed cs yes no no
permanenttheory lemmas yes yes yes
pure literal filter no yes yes
randomdecisions no no no
restarts normal adaptive adaptive
sl 2 2 2
split eq no no no
tcomb off off ack
toplevelprop 1 0 0
tsolver euf la la euf la

Table 4.2: Experimental result of Basic ParamILS using DAE

Tests solved (Optimized/Default) 501/496
Mean runtime(not include TIMEOUT tests) 30.639/29.202
Optimized compared with Default Result
Better runtime tests/The total number of tests 265/543
Equal runtime tests/The total number of tests 92/543
Worse runtime tests/The total number of tests 186/543

(a) The first run

Tests solved (Optimized/Default) 501/496
Mean runtime(not include TIMEOUT tests) 25.978/29.999
Optimized compared with Default Result
Better runtime tests/The number of tests 255/543
Equal runtime tests/The number of tests 105/543
Worse runtime tests/The number of tests 183/543

(b) The second run

Table 4.3: Experimental result of Basic ParamILS using DAE
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4.2 Two runs of Basic ParamILS using RAE

The experiments in this section accompanied with the experiments in the previous
section are used to check the stability of ParamILS by considering whether the
results of two ParamILS runs are nearly the same or completely different. If the
first case happens, we will only run ParamILS once on each testcase. Otherwise,
we will have to run ParamILS many times on each test case and choose the best
result.

4.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Training MathSAT timeout 10s
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration 1 Basic, deterministic=0, N=100

run obj=runtime, overallobj=mean
ParamILS Configuration 2 Basic, deterministic=0, N=100

run obj=runtime, overallobj=mean

Table 4.4: Experimental setup of two runs of Basic ParamILS using RAE

4.2.2 Experimental result

Table 4.5 presents two configurations found by two ParamILS runs. Figure 4.2
and Table 4.6 show the MathSAT performance on two configurations found by two
ParamILS runs. It can be seen that the two configurations are slightly different,
and the MathSAT performance on these configurations are verysimilar to each
other.
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Figure 4.2: Performance comparison of Two runs of Basic ParamILS using RAE
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Configuration Default Basic RAE Basic RAE
Parameter
aep yes no no
deduction 2 2 2
dual rail off off off
dyn ack no no no
dyn ack limit 0 0 0
dyn ack threshold 1 1 1
expensiveccmin yes yes yes
frequentreducedb no no no
ghostfilter no yes no
ibliwi no yes yes
impl expl threshold 0 0 0
mixed cs yes yes yes
permanenttheory lemmas yes yes yes
pure literal filter no yes no
randomdecisions no yes no
restarts normal normal adaptive
sl 2 2 2
split eq no yes yes
tcomb off off off
toplevelprop 1 0 1
tsolver euf la la la

Table 4.5: Experimental result of two runs of Basic ParamILSusing RAE

Tests solved (Optimized/Default) 524/496
Mean runtime(not include TIMEOUT tests) 20.547/29.211
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 36/543
Worse runtime tests/The number of tests 352/543

(a) The first run

Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT test) 18.321/28.163
Optimized compared with Default Result
Better runtime tests/The number of tests 158/543
Equal runtime tests/The number of tests 55/543
Worse runtime tests/The number of tests 330/543

(b) The second run

Table 4.6: Experimental result of two runs of Basic ParamILSusing RAE
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4.3 Summary of two Basic ParamILS runs using DAE
and RAE

From the summary result in Table 4.7, it can be seen that the MathSAT perfor-
mances of configurations found by the two ParamILS runs are almost the same.
The difference seems not to justify the overhead of running ParamILS several
times. Therefore, from now on, we have decided to run ParamILS once on each
test case.

Default Basic DAE 1 Basic DAE 2 Basic RAE 1 Basic RAE 2
Tests solved 496 501 501 524 523
Mean runtime 28.163 30.639 25.978 20.547 18.321

Table 4.7: The number of solved tests and mean runtime in second (not include
TIMEOUT tests) of configurations found by Basic ParamILS using DAE and RAE
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4.4 Basic ParamILS using DAE and RAE

The purpose of the experiments in this section is to check which algorithm evalu-
ation (DAE or RAE) Basic ParamILS uses is better for MathSAT.

4.4.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Training MathSAT timeout 10s
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration 1 Basic, deterministic=1, N=100

run obj=runtime, overallobj=mean
ParamILS Configuration 2 Basic, deterministic=0, N=100

run obj=runtime, overallobj=mean

Table 4.8: Experimental setup of Basic ParamILS using DAE and RAE

4.4.2 Experimental result

Tests solved (Optimized/Default) 501/496
Mean runtime(not include TIMEOUT tests) 30.639/29.202
Optimized compared with Default Result
Better runtime tests/The number of tests 265/543
Equal runtime tests/The number of tests 92/543
Worse runtime tests/The number of tests 186/543

(a) Deterministic

Tests solved (Optimized/Default) 524/496
Mean runtime(not include TIMEOUT tests) 20.547/29.114
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 36/543
Worse runtime tests/The number of tests 352/543

(b) Random

Table 4.9: Experimental result of Basic ParamILS using DAE and RAE
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Figure 4.3: Performance comparison of Basic ParamILS usingDAE and RAE
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The experimental results in Table 4.9 and Figure 4.3 show that Basic ParamILS
using RAE is better in this case, although MathSAT is a deterministic algorithm.
The main reason is that Basic ParamILS evaluates every configuration only once
with the same number of MathSAT runs, and the MathSAT run timeof the same
instance on general purpose operating systems can vary in different runs. There-
fore, RAE is more robust than DAE in the case of Basic ParamILSbecause RAE
evaluates a single〈configuration, instance〉 pair many times, each with a different
seed (this helps to obtain a more representative picture of the algorithm’s expected
performance on that instance).
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4.5 Focused ParamILS with DAE and RAE

The purpose of the experiments in this section is to check which algorithm evalu-
ation (DAE or RAE) Focused ParamILS uses is better for MathSAT.

4.5.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Training MathSAT timeout 10s
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration 1 Focused, deterministic=1, N=543

run obj=runtime, overallobj=mean
ParamILS Configuration 2 Focused, deterministic=0, N=543

run obj=runtime, overallobj=mean

Table 4.10: The experimental setup of Focused ParamILS withdeterministic and
random

4.5.2 Experimental result

Tests solved (Optimized/Default) 525/496
Mean runtime(not include TIMEOUT tests) 24.367/28.903
Optimized compared with Default Result
Better runtime tests/The number of tests 148/543
Equal runtime tests/The number of tests 40/543
Worse runtime tests/The number of tests 355/543

(a) Deterministic

Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT test) 18.150/28.593
Optimized compared with Default Result
Better runtime tests/The number of tests 165/543
Equal runtime tests/The number of tests 56/543
Worse runtime tests/The number of tests 322/543

(b) Random

Table 4.11: Experimental result of Focused ParamILS using DAE and RAE
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Figure 4.4: Performance comparison of Focused ParamILS using DAE and RAE
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The experimental results in Table 4.11 and Figure 4.4 show that Focused
ParamILS using DAE is better. This is because although usingDAE, a Math-
SAT run is evaluated only once, Focused ParamILS evaluates each configuration
many times, each with a different number of MathSAT runs. In other words, eval-
uating a MathSAT run once still guarantees the configurationevaluation is precise
by evaluating that configuration many times. Besides, DAE saves a lot of time
when evaluating a MathSAT run compared with RAE, and this makes Focused
ParamILS evaluate a configuration more precisely by testingthat configuration on
a large number of instances.
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4.6 Summary of Basic and Focused ParamILS us-
ing DAE and RAE

From the results in Table 4.12, it can be seen that Focused ParamILS is more
stable than Basic ParamILS, and Focused ParamILS using DAE provides us with
the best performance. Therefore, Focused ParamILS using DAE is chosen for
running on other experiments in this thesis.

Default Basic DAE Basic RAE Focused DAE Focused RAE
Tests solved 496 501 524 525 523

Table 4.12: The number of tests solved (on 543 tests) of configurations found by
Basic and Focused ParamILS using DAE and RAE
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4.7 RAE Basic ParamILS with different MathSAT
timeouts

In order to choose the suitable MathSAT timeout (cutofftime), we base on the
percentage of tests solved by the default (or smt-comp) configuration using that
MathSAT timeout. The experiments in this section and the next section are used
to check whether ParamILS configured with the MathSAT timeouts in which the
default configuration solves similar percentage of tests will have similar results.

4.7.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration Basic, deterministic=0, N=100

run obj=runtime, overallobj=mean
Training MathSAT timeout 5s, 10s, 20s, 40s, 60s

Table 4.13: The experimental setup of Basic ParamILS with different MathSAT
timeouts

MathSAT timeout 5s 10s 20s 40s 60s
Percentage of tests solved 79.7% 82.5% 85.6% 88.8% 90.4%
by the default configuration

Table 4.14: The percentage of tests solved when running MathSAT with different
timeouts on the training set

4.7.2 Experimental result

From the results in Table 4.15 and Figure 4.5, except for timeout=5s, other Math-
SAT timeouts have similar performance because the target algorithm MathSAT
(using the default configuration) configured with these training timeouts solve ap-
proximately the same percentage of instances in the training set.
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Figure 4.5: Performance comparison of Basic ParamILS with different training
MathSAT timeouts
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Figure 4.5: Performance comparison of Basic ParamILS with different training
MathSAT timeouts

50



4.7. RAE BASIC PARAMILS WITH DIFFERENT MATHSAT TIMEOUTS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100  1000  10000

D
ef

au
lt

Optimized

Performance comparison

satisfiable
unsatisfiable
error/timeout

(e) training MathSAT timeout=60s

Figure 4.5: Performance comparison of Basic ParamILS with different training
MathSAT timeouts
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Tests solved (Optimized/Default) 500/496
Mean runtime(not include TIMEOUT tests) 29.194/28.274
Optimized compared with Default Result
Better runtime tests/The number of tests 280/543
Equal runtime tests/The number of tests 97/543
Worse runtime tests/The number of tests 166/543

(a) training MathSAT timeout=5s

Tests solved (Optimized/Default) 524/496
Mean runtime(not include TIMEOUT tests) 20.547/29.211
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 36/543
Worse runtime tests/The number of tests 352/543

(b) training MathSAT timeout=10s

Tests solved (Optimized/Default) 520/496
Mean runtime(not include TIMEOUT tests) 23.137/30.939
Optimized compared with Default Result
Better runtime tests/The number of tests 123/543
Equal runtime tests/The number of tests 34/543
Worse runtime tests/The number of tests 386/543

(c) training MathSAT timeout=20s

Tests solved (Optimized/Default) 521/496
Mean runtime(not include TIMEOUT tests) 22.308/31.188
Optimized compared with Default Result
Better runtime tests/The number of tests 120/543
Equal runtime tests/The number of tests 49/543
Worse runtime tests/The number of tests 374/543

(d) training MathSAT timeout=40s

Tests solved (Optimized/Default) 521/495
Mean runtime(not include TIMEOUT tests) 21.072/30.121
Optimized compared with Default Result
Better runtime tests/The number of tests 132/543
Equal runtime tests/The number of tests 47/543
Worse runtime tests/The number of tests 364/543

(e) training MathSAT timeout=60s

Table 4.15: Experimental result of RAE Basic ParamILS with different training
MathSAT timeouts
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4.8 DAE Focused ParamILS with different training
MathSAT timeouts

In order to choose the suitable MathSAT timeout (cuttofftime), we base on the
percentage of tests solved by the default (or smt-comp) configuration using that
MathSAT timeout. The experiments in this section and the previous section are
used to check whether ParamILS configured with the MathSAT timeouts in which
the default configuration solves similar percentage of tests will have similar re-
sults.

4.8.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=543

run obj=runtime, overallobj=mean
Training MathSAT timeout 5s, 10s, 20s, 40s, 60s

Table 4.16: The experimental setup of DAE Focused ParamILS with different
timeouts

MathSAT timeout 5s 10s 20s 40s 60s
Percentage os tests solved 79.7% 82.5% 85.6% 88.8% 90.4%
by the default configuration

Table 4.17: The percentage of tests solved and mean runtime when running Math-
SAT with different MathSAT timeouts on the training set

4.8.2 Experimental result

From the results in Table 4.18 and Figure 4.6, except for training MathSAT time-
out=5s, other training MathSAT timeouts have similar performance because the
target algorithm MathSAT (using the default configuration)configured with these
training MathSAT timeouts solve approximately the same percentage of instances
in the training set.
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Figure 4.6: Performance comparison of DAE Focused ParamILSwith different
MathSAT timeouts
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Figure 4.6: Performance comparison of DAE Focused ParamILSwith different
MathSAT timeouts
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Figure 4.6: Performance comparison of DAE Focused ParamILSwith different
MathSAT timeouts
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Tests solved (Optimized/Default) 496/495
Mean runtime(not include TIMEOUT tests) 28.651s/28.633s
Optimized compared with Default Result
Better runtime tests/The number of tests 275/543
Equal runtime tests/The number of tests 102/543
Worse runtime tests/The number of tests 166/543

(a) timeout=5s

Tests solved (Optimized/Default) 523/495
Mean runtime(not include TIMEOUT tests) 19.407s/28.953s
Optimized compared with Default Result
Better runtime tests/The number of tests 182/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 311/543

(b) timeout=10s

Tests solved (Optimized/Default) 519/495
Mean runtime(not include TIMEOUT tests) 21.957s/30.743s
Optimized compared with Default Result
Better runtime tests/The number of tests 129/543
Equal runtime tests/The number of tests 56/543
Worse runtime tests/The number of tests 358/543

(c) timeout=20s

Tests solved (Optimized/Default) 520/496
Mean runtime(not include TIMEOUT tests) 19.954s/30.789s
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 59/543
Worse runtime tests/The number of tests 329/543

(d) timeout=40s

Tests solved (Optimized/Default) 522/496
Mean runtime(not include TIMEOUT tests) 18.814s/30.496s
Optimized compared with Default Result
Better runtime tests/The number of tests 166/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 327/543

(e) timeout=60s

Table 4.18: Performance comparison of DAE Focused ParamILSwith different
training MathSAT timeouts
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4.9 DAE Focused ParamILS with different training
times

ParamILS configured with the MathSAT timeout of 60s converges within 48 hours
(by considering the ParamILS log file). The experiments in this section are used
to check whether we can get the over-training situation by expanding the training
time to 72 hours.

4.9.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training MathSAT timeout 60s
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=543

run obj=runtime, overallobj=mean
Training time 1 48 hours
Training time 2 72 hours

Table 4.19: The experimental setup of DAE Focused ParamILS with different
training times

4.9.2 Experimental result

The results in Table 4.20 and Figure 4.7 show that we can get the over-training
situation. Therefore, if the MathSAT timeout is less than orequal to 60s, we
should not train ParamILS more than 48 hours.
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Figure 4.7: Performance comparison of Focused ParamILS, deterministic=1 with
different training times
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Tests solved (Optimized/Default) 522/496
Mean runtime(not include TIMEOUT tests) 18.814s/30.496s
Optimized compared with Default Result
Better runtime tests/The number of tests 166/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 327/543

(a) Training time = 48hours

Tests solved (Optimized/Default) 519/495
Mean runtime(not include TIMEOUT tests) 19.442s/27.850s
Optimized compared with Default Result
Better runtime tests/The number of tests 167/543
Equal runtime tests/The number of tests 51/543
Worse runtime tests/The number of tests 325/543

(b) Training time = 72 hours

Table 4.20: Performance comparison of DAE Focused ParamILSwith different
training times
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4.10 DAE Focused ParamILS with different num-
Runs

Because the ParamILS random behaviour depends on a random seed, numRun,
therefore we need to check whether ParamILS performances with different ran-
dom seeds are completely different or similar to each other.The experiments in
this section are used to verify this property.

4.10.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Tunning time 48 hours
Training MathSAT timeout 10s
Testing MathSAT timeout 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=543

run obj=runtime, overallobj=mean
numRun 1, 2, 3

Table 4.21: Experimental setup of DAE Focused ParamILS withdifferent num-
Runs

4.10.2 Experimental result

The results in Table 4.22 and Figure 4.8 show that ParamILS has nearly the same
performance on different numRuns. Hence, we fix the numRun parameter for
other experiments in this thesis.
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Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT tests) 22.373s/30.867s
Optimized compared with Default Result
Better runtime tests/The number of tests 180/543
Equal runtime tests/The number of tests 48/543
Worse runtime tests/The number of tests 315/543

(a) numRun 1

Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT tests) 18.165s/28.200s
Optimized compared with Default Result
Better runtime tests/The number of tests 186/543
Equal runtime tests/The number of tests 52/543
Worse runtime tests/The number of tests 305/543

(b) numRun 2

Tests solved (Optimized/Default) 523/495
Mean runtime(not include TIMEOUT tests) 19.407s/28.953s
Optimized compared with Default Result
Better runtime tests/The number of tests 182/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 311/543

(c) numRun 3

Table 4.22: Performance comparison of DAE Focused ParamILSwith different
numRuns
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Figure 4.8: Performance comparison of DAE Focused ParamILSwith different
numRuns
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Figure 4.8: Performance comparison of DAE Focused ParamILSwith different
numRuns
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4.11 Summary

From the experimental results in this section, we conclude thatFocused ParamILS
using DAEis the most suitable configuration of ParamILS for MathSAT. As for the
training time,48 hoursis enough for the ParamILS convergence because we ex-
perimented on theQF LRA, one of the most difficult theories in the set of theories
supported by MathSAT, and observed that ParamILS convergedwithin 48 train-
ing hourswith the MathSAT timeouts less than 60s. In order to choose suitable
MathSAT timeouts when training, we run MathSAT with the default (or smtcomp)
configuration on the training dataset in advance and choose the three MathSAT
timeouts (all timeouts have value from 0 to 1200 with step of 5) which are less
than 60 seconds and solve similar percentage of tests.
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Chapter 5

Configuring MathSAT on Five
Theories on the SMT-COMP
Benchmark

This section shows the results of using ParamILS to find the best possible config-
urations for twelve theories implemented by MathSAT on the SMT-COMP 2009
benchmark. The experiments in this section use the same dataset of SMT-COMP
2009 for training and testing because we want to get the best possible MathSAT
configurations for the SMT-COMP 2009. In addition, MathSAT is under heavy
development, therefore these experiments help a lot in revealing MathSAT bugs.

The experiment setup for all tests in this chapter is summarised as follows:
Based on the experimental results in Chapter 4, Focused ParamILS using DAE is
the best strategy for MathSAT. In addition, the training time of 48 hours is enough
for MathSAT to converge with the MathSAT timeouts less than 60 seconds. As
for choosing the training MathSAT timeouts, we run MathSAT with the smt-comp
configuration on the training dataset in advance and choose the three MathSAT
timeouts (all timeouts have value from 0 to 1200 with step 5) which are less than
60 seconds and solve similar percentage of tests.

Notice that the smt-comp configurations areadaptive, i.e. they can be changed
according to different problem classes based on a statistics module in MathSAT.

Before moving to the next sections of experiments, we introduce briefly the
five theories [17] :

• QF IDL : Difference Logic over the integers. In essence, Boolean combi-
nations of inequations of the form(x − y < b) where x and y are integer
variables and b is an integer constant.

• QF LIA : Unquantified linear integer arithmetic. In essence, Boolean com-
binations of inequations between linear polynomials over integer variables.
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These inequations are written in the form(a1.x1 + ... + an.xn ⊲⊳ a0), s.t.
⊲⊳ ∈ {≤, <, 6=,=,≥, >}.

• QF LRA : Unquantified linear real arithmetic. In essence, Boolean combi-
nations of inequations between linear polynomials over real variables.

• QF UFIDL : Difference Logic over the integers (in essence) but with unin-
terpreted sort and function symbols (QFUF is described in chapter 6). For
example:

UF : (f(x1) = f(x2)) ∧ ¬(f(x2) = f(x3))

IDL : (x1 − x3 < 1) ∧ (x3 − x1 < 1)

• QF UFLRA : Unquantified linear real arithmetic with uninterpreted sort
and function symbols.
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5.1 QF IDL with Focused ParamILS using DAE

5.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 35s (the smt-comp configuration solved 75.49% of tests)
Training MathSAT timeout 2 40s (the smt-comp configuration solved 76.47% of tests)
Training MathSAT timeout 3 45s (the smt-comp configuration solved 76.47% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFIDL of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=102

run obj=runtime, overallobj=mean

Table 5.1: The experimental setup of QFIDL with different training MathSAT
timeouts

5.1.2 Training Result

Table 5.2 shows the default configuration and the optimized configurations found
by running ParamILS with different MathSAT timeouts. Thebold font is used
to show the difference between configurations. It can be seenthat for QFIDL,
ghostfilter andincr solversshould be enabled, whilemixedcsandsplit eqshould
be disabled. Besides, thedeductionlevel should be 2 instead of 0 as default and
thestatic learning(sl) level should be 1 instead of 2 as default.

5.1.3 Testing Result

Table 5.3 and Figure 5.1 show the performance comparison between the opti-
mized, default and adaptive smt-comp configurations. The optimized configu-
rations solve14 tests, 12 tests, and 13 tests more compared with the adaptive
smt-comp configuration. Moreover, the winner on this theoryin the SMT compe-
tition 2009 can solve only86 testsbut the best optimized configuration can solve
96 tests(despite the fact that we are using the older version of MathSAT in this
experiment, not the one in the SMT competition 2009). The result is a significant
improvement because the smt-comp configuration is anadaptiveconfiguration
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Configuration Default 35s 40s 45s
Parameter
aep yes yes yes yes
deduction 2 0 0 0
dual rail off off off off
dyn ack no no no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes yes no no
frequentreducedb no no no no
ghost filter no yes yes yes
ibliwi yes yes yes yes
impl expl threshold 0 1 1 0
incr tsolvers no yes yes yes
mixed cs yes no no no
permanenttheory lemmas yes yes no yes
pure literal filter no no no no
randomdecisions no no no no
restarts normal adaptive normal normal
sl 2 1 1 1
split eq yes no no no
tcomb off off off off
toplevelprop 1 2 1 1
tsolver dl dl dl dl

Table 5.2: QFIDL configurations found by different training MathSAT timeouts
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which is the combination of many a prior chosen configurations and changed ac-
cording to different problem classes while the optimized configuration isfixed for
all tests.

Tests solved (Optimized/Default/SMTCOMP) 96/81/82
Mean runtime (not include TIMEOUT tests) 14.755s/25.069s/40.349s
Optimized compared with Default Result
Better runtime tests/The number of tests 63/102
Equal runtime tests/The number of tests 21/102
Worse runtime tests/The number of tests 18/102

(a) training MathSAT timeout = 35s

Tests solved (Optimized/Default/SMTCOMP) 94/81/82
Mean runtime(not include TIMEOUT tests) 22.805s/25.069s/40.349s
Optimized compared with Default Result
Better runtime tests/The number of tests 54/102
Equal runtime tests/The number of tests 30/102
Worse runtime tests/The number of tests 18/102

(b) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 95/81/82
Mean runtime(not include TIMEOUT tests) 13.165s/25.069s/40.349s
Optimized compared with Default Result
Better runtime tests/The number of tests 58/102
Equal runtime tests/The number of tests 28/102
Worse runtime tests/The number of tests 16/102

(c) training MathSAT timeout = 45s

Table 5.3: Performance comparison of QFIDL configurations found by different
training MathSAT timeouts
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Figure 5.1: Performance comparison of QFIDL configurations found by different
training MathSAT timeouts
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Figure 5.1: Performance comparison of QFIDL configurations found by different
training MathSAT timeouts (cont.)
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5.2 QF LIA with Focused ParamILS using DAE

5.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 83.41% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 83.90% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 85.58% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFLIA of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=205

run obj=runtime, overallobj=mean

Table 5.4: The experimental setup of QFLIA with different training MathSAT
timeouts

5.2.2 Training Result

Table 5.5 shows the default configuration and the optimized configurations found
by ParamILS. For this theory, ParamILS suggests thataep, pure literal filter, and
split eqshould be disabled whileghostfilter, ibliwi , andrandomdecisionsshould
be enabled. In addition, thestatic learninglevel (sl) should be 0 instead of 2 as
default and using one theory solverla is better to solve this theory than using two
theorieseuf, and laas default.

5.2.3 Testing Result

Table 5.6 and Figure 5.2 show the performance comparison between the opti-
mized, default and adaptive smt-comp configuration. In three optimized configu-
rations, the optimized configuration found by the MathSAT timeout of 60 seconds
has the mean runtimereduced by halfcompared with the mean runtime of the
adaptivesmt-comp configuration.
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Configuration Default 50s 55s 60s
Parameter
aep yes no no no
deduction 2 2 2 2
dual rail off off off off
dyn ack no no no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes no no yes
frequentreducedb no no yes yes
ghost filter no yes yes yes
ibliwi no yes yes yes
impl expl threshold 0 0 0 0
incr tsolvers no yes yes yes
mixed cs yes yes no no
permanenttheory lemmas yes yes yes no
pure literal filter yes no no no
random decisions no yes yes yes
restarts normal normal quick quick
sl 2 0 0 0
split eq yes no no no
tcomb off off off off
toplevelprop 1 0 0 1
tsolver euf laz laz laz laz

Table 5.5: QFLIA configurations found by different training MathSAT timeouts
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Tests solved (Optimized/Default/SMTCOMP) 201/201/202
Mean runtime (not include TIMEOUT tests) 11.892s/15.495s/26.322s
Optimized compared with Default Result
Better runtime tests/The number of tests 165/205
Equal runtime tests/The number of tests 12/205
Worse runtime tests/The number of tests 28/205

(a) training MathSAT timeout = 50s

Tests solved (Optimized/Default/SMTCOMP) 201/201/202
Mean runtime(not include TIMEOUT tests) 13.377s/15.495s/26.322s
Optimized compared with Default Result
Better runtime tests/The number of tests 165/205
Equal runtime tests/The number of tests 8/205
Worse runtime tests/The number of tests 32/205

(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 202/201/202
Mean runtime(not include TIMEOUT tests) 13.850s/15.495s/26.322s
Optimized compared with Default Result
Better runtime tests/The number of tests 164/202
Equal runtime tests/The number of tests 9/202
Worse runtime tests/The number of tests 32/202

(c) training MathSAT timeout = 60s

Table 5.6: Performance comparison of QFLIA configurations found by different
training MathSAT timeouts
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Figure 5.2: Performance comparison of QFLIA configurations found by different
training MathSAT timeouts
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Figure 5.2: Performance comparison of QFLIA configurations found by different
training MathSAT timeouts (cont.)
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5.3 QF LRA with Focused ParamILS using DAE

5.3.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 40s (the smt-comp configuration solved 85.64 % of tests)
Training MathSAT timeout 2 45s (the smt-comp configuration solved 86.13% of tests)
Training MathSAT timeout 3 50s (the smt-comp configuration solved 86.63% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFLRA of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=202

run obj=runtime, overallobj=mean

Table 5.7: The experimental setup of QFLRA with different training MathSAT
timeouts

5.3.2 Training Result

Table 5.8 shows the default configuration and the optimized configurations found
by ParamILS. The main difference between the optimized configurations and the
default configuration is thatpure literal filter is disabled (instead of being enabled
as default) andsplit eq is enabled (instead of being disabled by default), and only
one theoryla is used in the optimized configurations while the default configura-
tion uses two theories solvereuf, and la.

5.3.3 Testing Result

Table 5.9 and Figure 5.3 show the performance comparison between the opti-
mized, default and adaptive smt-comp configurations. It canbe seen that the first
optimized configuration solve1 testmore compared with theadaptive smt-comp
configuration and the other two optimized configurations hasthe mean runtime
reduced by a factor of around 1.5compared with theadaptive smt-compconfigu-
ration. If compared with the default configuration, the three optimized configura-
tions solve7, or 6 tests more.
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Configuration Default 40s 45s 50s
Parameter
aep yes yes no no
deduction 2 2 2 2
dual rail off off off off
dyn ack no no no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes yes yes no
frequentreducedb no yes no no
ghostfilter no no no yes
ibliwi no yes no no
impl expl threshold 0 0 0 0
incr tsolvers no no no no
mixed cs yes yes yes yes
permanenttheory lemmas yes yes yes no
pure literal filter yes no no no
randomdecisions no yes no no
restarts normal quick adaptive normal
sl 2 2 2 1
split eq no yes yes yes
tcomb off off off off
toplevelprop 1 1 1 1
tsolver euf la la la la

Table 5.8: QFLRA configurations found by different training MathSAT timeouts
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Tests solved (Optimized/Default/SMTCOMP) 184/177/183
Mean runtime(not include TIMEOUT tests) 27.641s/35.057s/19.177s
Optimized compared with Default Result
Better runtime tests/The number of tests 68/202
Equal runtime tests/The number of tests 37/202
Worse runtime tests/The number of tests 97/202

(a) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 183/177/183
Mean runtime(not include TIMEOUT tests) 12.988s/35.057s/19.177s
Optimized compared with Default Result
Better runtime tests/The number of tests 76/202
Equal runtime tests/The number of tests 33/202
Worse runtime tests/The number of tests 93/202

(b) training MathSAT timeout = 45s

Tests solved (Optimized/Default/SMTCOMP) 183/177/183
Mean runtime(not include TIMEOUT tests) 13.155s/35.057s/19.177s
Optimized compared with Default Result
Better runtime tests/The number of tests 78/202
Equal runtime tests/The number of tests 32/202
Worse runtime tests/The number of tests 92/202

(c) training MathSAT timeout = 50s

Table 5.9: Performance comparison of QFLRA configurations found by different
training MathSAT timeouts
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Figure 5.3: Performance comparison of QFLRA configurations found by differ-
ent training MathSAT timeouts (cont.)
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5.4 QF UFIDL with Focused ParamILS using DAE

5.4.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 82.67% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 83.66% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 84.65% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFUFIDL of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=202

run obj=runtime, overallobj=mean

Table 5.10: The experimental setup of QFUFIDL with different training Math-
SAT timeouts

5.4.2 Training Result

Table 5.11 shows the default configuration and the optimizedconfigurations found
by ParamILS. For QFUFIDL, ParamILS suggests usingdeductionof 2 andimpl expl threshold
of 0, enablingdyn ackandghostfilter, disablingexpensiveccmin.

5.4.3 Testing Result

Table 5.12 and Figure 5.4 show the performance comparison ofthe optimized,
default andadaptive smt-compconfiguration. Similar to the case of QFIDL, the
optimized configurations solve3 tests morecompared with theadaptive smt-comp
configuration although the optimized configurations arefixed for all tests and the
smt-comp configuration can bechangedaccording to different problem classes.
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Configuration Default 50s 55s 60s
Parameter
aep yes yes yes yes
deduction 2 1 1 1
dual rail off off off off
dyn ack no yes yes yes
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes no no no
frequentreducedb no no yes yes
ghost filter no yes yes yes
ibliwi yes yes yes yes
impl expl threshold 0 1 1 1
incr tsolvers no no no no
mixed cs yes yes yes yes
permanenttheory lemmas yes yes yes yes
pure literal filter no no no no
randomdecisions no no yes yes
restarts normal normal normal normal
sl 2 2 2 2
split eq yes yes yes yes
tcomb dtc dtc dtc dtc
toplevelprop 1 0 1 1
tsolver dl euf euf dl euf dl euf dl euf

Table 5.11: QFUFIDL configurations found by different training MathSAT time-
outs
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Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) 24.645s/39.063s/33.415s
Optimized compared with Default Result
Better runtime tests/The number of tests 150/202
Equal runtime tests/The number of tests 25/202
Worse runtime tests/The number of tests 27/202

(a) training MathSAT timeout = 50s

Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) 28.460s/39.063s/33.415s
Optimized compared with Default Result
Better runtime tests/The number of tests 140/202
Equal runtime tests/The number of tests 21/202
Worse runtime tests/The number of tests 41/202

(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) 28.502s/39.063s/33.415s
Optimized compared with Default Result
Better runtime tests/The number of tests 138/202
Equal runtime tests/The number of tests 22/202
Worse runtime tests/The number of tests 42/202

(c) training MathSAT timeout = 60s

Table 5.12: Performance comparison of QFUFIDL configurations found by dif-
ferent training MathSAT timeouts
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Figure 5.4: Performance comparison of QFUFIDL configurations found by dif-
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Figure 5.4: Performance comparison of QFUFIDL configurations found by dif-
ferent training MathSAT timeouts (cont.)
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5.5 QF UFLRA with Focused ParamILS using DAE

5.5.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 5s (the smt-comp configuration solved 100% of tests)
Training MathSAT timeout 2 10s (the smt-comp configuration solved 100% of tests)
Training MathSAT timeout 3 15s (the smt-comp configuration solved 100% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFUFLRA of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=200

run obj=runtime, overallobj=mean

Table 5.13: The experimental setup of QFUFLRA with different training Math-
SAT timeouts

5.5.2 Training Result

Table 5.14 shows the default configuration and the optimizedconfigurations found
by ParamILS. For this theory, ParamILS suggest usingdeductionof 1, sl of 2, and
toplevelpropof 1. ParamILS also recommend users to enabledyn ack, incr tsolvers,
and disableexpensiveccmin, pure literal filter.

5.5.3 Testing Result

Table 5.15 and Figure 5.5 show the performance comparison ofthe optimized,
default andadaptive smt-compconfiguration. In all cases, the mean runtime of
the optimized configurations are reduced approximately bya factor of 8anda
factor of 4compared with the mean runtime of theadaptive smt-compand default
configuration, respectively.
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Configuration Default 5s 10s 15s
Parameter
aep yes yes yes yes
deduction 2 1 1 1
dual rail off off off off
dyn ack no yes yes yes
dyn ack limit 0 0 0 0
dyn ack threshold 1 50 1 50
expensiveccmin yes no no no
frequentreducedb no no no yes
ghost filter no yes yes yes
ibliwi no no yes yes
impl expl threshold 0 0 0 0
incr tsolvers no yes yes yes
mixed cs yes yes yes yes
permanenttheory lemmas yes yes yes yes
pure literal filter yes no no no
randomdecisions no no no no
restarts normal normal normal normal
sl 2 0 0 0
split eq no no no no
tcomb dtc dtc dtc dtc
toplevelprop 1 0 0 0
tsolver euf la euf la euf la euf la

Table 5.14: QFUFLRA configurations found by different training MathSAT
timeouts
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Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.056s/0.204s/0.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 190/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 5/200

(a) training MathSAT timeout = 5s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.059s/0.204s/0.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 186/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 9/200

(b) training MathSAT timeout = 10s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.062s/0.204s/0.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 185/200
Equal runtime tests/The number of tests 11/200
Worse runtime tests/The number of tests 4/200

(c) training MathSAT timeout = 15s

Table 5.15: Performance comparison of QFUFLRA configurations found by dif-
ferent training MathSAT timeouts
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Figure 5.5: Performance comparison of QFUFLRA configurations found by dif-
ferent training MathSAT timeouts (cont.)
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5.6 Summary

Table 5.16 summaries the performance comparison of the five theories on the
SMT-COMP benchmark.

In three theories of QFIDL, QF LRA, and QFUFIDL, the number of solved
tests is improved significantly. For example, in the case of QF IDL, the optimized
configuration found by ParamILS solves14 tests morecompared with theadaptive
smt-comp configuration (this configuration can be changed according to different
problem classes) and10 tests morecompared with thewinner of SMT-COMP
2009 on this theory (although we are using the older version of MathSAT, not the
new one in the competition).

In two other cases of QFLIA, and QF UFLRA, the number of tests solved by
the optimized configuration is equal to the number of tests solved by the adaptive
smt-comp configuration. However, the mean runtime is reduced approximately
by half in case of QFLIA and bya factor of eightin case of QFUFLRA.

Tests solved (Optimized/Default/SMTCOMP) 96/81/82
Mean runtime (not include TIMEOUT tests) 14.755s/25.069s/40.349s
The number of tests 102

(a) QF IDL

Tests solved (Optimized/Default/SMTCOMP) 202/201/202
Mean runtime(not include TIMEOUT tests) 13.850s/15.495s/26.322s
The number of tests 205

(b) QF LIA

Tests solved (Optimized/Default/SMTCOMP) 184/177/183
Mean runtime(not include TIMEOUT tests) 27.641s/35.057s/19.177s
The number of tests 202

(c) QF LRA

Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) 24.645s/39.063s/33.415s
The number of tests 202

(d) QF UFIDL

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.056s/0.204s/0.410s
The number of tests 200

(e) QFUFLRA

Table 5.16: Performance Comparison of the five theories on the SMT-COMP
benchmark
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Chapter 6

Configuring on Other Theories on
the SMT-COMP Benchmark

This chapter summaries the experimental results on the three other theories QFUFLIA,
QF UF, QF RDL. In these theories, we found bugs in the testing phase this is due
to the fact that in the training phase, we use not only the tested parameter but also
the internal parameterswhich were used by developers and not tested carefully.

Before moving to the next sections of experiments, we introduce briefly the
three theories experimented in this chapter:

• QF UF: Unquantified formulas built over a signature of uninterpreted (i.e.,
free) sort and function symbols. For example:{(f(x1) = f(x2)),¬(f(x2) =
f(x3))}.

• QF RDL Difference Logic over the reals. In essence, Boolean combina-
tions of inequations of the form(x−y < b) where x and y are real variables
and b is a rational constant.

• QF UFLIA : Unquantified linear integer arithmetic with uninterpreted sort
and function symbols.
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6.1 QF UFLIA with Focused ParamILS using DAE

6.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 98.01% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 98.01% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 98.51% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFUFLIA of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=202

run obj=runtime, overallobj=mean

Table 6.1: The experimental setup of QFUFLIA with different training MathSAT
timeouts

6.1.2 Experimental result

Testing bugs:
In testing phase, we found many inconsistent results. For example:
bin/mathsat -input=smt -solve -logic=QFUFLIA data/QFUFLIA/wisas/xs16 36.smt

returns UNSAT.
bin/mathsat -input=smt -solve -deduction=2 -implexpl threshold=0 -noaep -

dual rail=off -no pure literal filter -randomdecisions -spliteq -noincr tsolvers
-tsolver=dl -tsolver=laz -dynack -dynack limit=0 -dyn ack threshold=10 -noexpensiveccmin
-no frequentreducedb -noghostfilter -no ibliwi -mixed cs -permanenttheory lemmas
-restarts=adaptive -sl=0 -tcomb=dtc -toplevelprop=2 data/QF UFLIA/wisas/xs16 36.smt
returns SAT.

96



6.2. QFUF WITH FOCUSED PARAMILS USING DAE

6.2 QF UF with Focused ParamILS using DAE

6.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 45s (the smt-comp configuration solved 79.00% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 80.00% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 81.00% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFUF of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=200

run obj=runtime, overallobj=mean

Table 6.2: The experimental setup of QFUF with different training MathSAT
timeouts

6.2.2 Experimental result

Testing bugs:
In testing phase, we found many inconsistent results. For example:
bin/mathsat -input=smt -solve -logic=QFUF data/QFUF/QG-classification/qg6/isoicl nogen0

returns UNSAT.
bin/mathsat -input=smt -solve -deduction=1 -implexpl threshold=0 -noaep -

dual rail=circuit -no pure literal filter -randomdecisions -nosplit eq -tsolver=euf
-no dyn ack -expensiveccmin -frequentreducedb -noghostfilter -ibliwi -mixed cs
-permanenttheory lemmas -restarts=normal -sl=2 -toplevelprop=0 data/QFUF/QG-
classification/qg6/isoicl nogen013.smt
returns SAT.
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6.3 QF RDL with Focused ParamILS using DAE

6.3.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 86.85% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 88.00% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 89.14% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFRDL of SMT-COMP 2009
Testing set Training set
ParamILS Configuration Focused, deterministic=1, N=175

run obj=runtime, overallobj=mean

Table 6.3: The experimental setup of QFRDL with different training MathSAT
timeouts

6.3.2 Experimental result

Testing bugs:
In testing phase, we found many inconsistent results of MathSAT on the same

test. For example:
bin/mathsat -input=smt -solve -logic=QFRDL data/QFRDL/sal/fischer6-mutex-

20.smt
returns UNSAT.

bin/mathsat -input=smt -solve -deduction=0 -implexpl threshold=0 -aep -
randomdecisions -nosplit eq -tsolver=euf -tsolver=dl -expensiveccmin -frequentreducedb
-ghostfilter -dual rail=off -no pure literal filter -ibliwi -no mixedcs -permanenttheory lemmas
-restarts=normal -sl=0 -toplevelprop=2 data/QFRDL/sal/fischer9-mutex-20.smt
returns SAT.

98



Chapter 7

More Results of the Five Theories on
the SMT-LIB Benchmark

This section shows the results of using ParamILS to find the best possible con-
figurations for the five theories having no bugs (in Chapter 5)on the SMT-LIB
benchmark. The experiments in this section usedifferent datasetsof SMT-LIB
for training and testing because we want to get the best possible MathSAT con-
figurations forgeneral cases. For each theory, a training dataset is extracted from
SMT-LIB by using the benchmark selection tool of SMT-COMP 2009. Then,
we remove that training dataset from SMT-LIB, and extract another dataset for
testing.

The experiment setup for all tests in this chapter is summarised as follows:
Based on the experimental results in Chapter 4, Focused ParamILS using DAE is
the best strategy for MathSAT. In addition, the training time of 48 hours is enough
for MathSAT to converge with the MathSAT timeouts less than 60 seconds. As
for choosing the training MathSAT timeouts, we run MathSAT with the smtcomp
configuration on the training dataset in advance and choose the three MathSAT
timeouts (all timeouts have value from 0 to 1200 with step 5) which are less than
60 seconds and solve similar percentage of tests.

Notice that the smt-comp configurations areadaptive, i.e. they can be changed
according to different problem classes based on a statistics module in MathSAT.
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7.1 QF IDL with Focused ParamILS using DAE

7.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 35s (the smt-comp configuration solved 75.49% of tests)
Training MathSAT timeout 2 40s (the smt-comp configuration solved 76.47% of tests)
Training MathSAT timeout 3 45s (the smt-comp configuration solved 76.47% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFIDL of SMT-LIB
Testing set the QFIDL of SMT-LIB (removed training set)
ParamILS Configuration Focused, deterministic=1, N=102

run obj=runtime, overallobj=mean

Table 7.1: The experimental setup of QFIDL with different training MathSAT
timeouts

7.1.2 Training Result

Table 7.2 shows the default configuration and the optimized configurations found
by ParamILS. For this theory, ParamILS suggest enablingrandomdecisions, restart-
ing adaptivelyand usingtoplevelpropof 0 instead of 2 as default.

7.1.3 Testing Result

Table 7.3 and Figure 7.1 show the performance comparison of the optimized, de-
fault andadaptive smt-compconfigurations. The second optimized configuration
solves1 test morecompared with the default configuration. If compared with the
adaptive smt-compconfiguration, only the second optimized configuration solves
the same number of tests and the mean runtime of this optimized configuration is
reduced slightly bya factor of 1.275.
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Configuration Default 35s 40s 45s
Parameter
aep yes yes yes yes
deduction 2 2 2 1
dual rail off off off off
dyn ack no no no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes yes yes yes
frequentreducedb no no no no
ghostfilter no no no no
ibliwi yes no yes no
impl expl threshold 0 0 0 0
incr tsolvers no no no no
mixed cs yes yes yes yes
permanenttheory lemmas yes yes yes yes
pure literal filter no no no no
random decisions no no yes yes
restarts normal adaptive adaptive quick
sl 2 2 2 2
split eq yes yes yes yes
tcomb off off off off
toplevelprop 1 2 0 0
tsolver dl dl dl dl

Table 7.2: QFIDL configurations found by different training MathSAT timeouts
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Tests solved (Optimized/Default/SMTCOMP) 94/94/95
Mean runtime (not include TIMEOUT tests) 1.848s/2.744s/6.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 60/100
Equal runtime tests/The number of tests 29/100
Worse runtime tests/The number of tests 11/100

(a) training MathSAT timeout = 35s

Tests solved (Optimized/Default/SMTCOMP) 95/94/95
Mean runtime(not include TIMEOUT tests) 5.207s/2.744s/6.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 50/100
Equal runtime tests/The number of tests 12/100
Worse runtime tests/The number of tests 38/100

(b) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 94/94/95
Mean runtime(not include TIMEOUT tests) 1.352s/2.744s/6.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 42/100
Equal runtime tests/The number of tests 14/100
Worse runtime tests/The number of tests 44/100

(c) training MathSAT timeout = 45s

Table 7.3: Performance comparison of QFIDL configurations found by different
training MathSAT timeouts
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Figure 7.1: Performance comparison of QFIDL configurations found by different
training MathSAT timeouts
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Figure 7.1: Performance comparison of QFIDL configurations found by different
training MathSAT timeouts (cont.)
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7.2 QF LIA with Focused ParamILS using DAE

7.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 83.41% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 83.90% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 85.58% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFLIA of SMT-LIB
Testing set the QFLIA of SMT-LIB (remove training set)
ParamILS Configuration Focused, deterministic=1, N=205

run obj=runtime, overallobj=mean

Table 7.4: The experimental setup of QFLIA with different training MathSAT
timeouts

7.2.2 Training Result

Table 7.5 shows the default configuration and the optimized configuration found
by ParamILS. For QFLIA, ParamILS suggest usingimpl expl thresholdof 1 in-
stead of 0,sl of 0 instead of 2,toplevelpropof 1, enablingincr tsolversand dis-
ablingsplit eq.

7.2.3 Testing Result

Table 7.6 and Figure 7.2 of the optimized, default andadaptive smt-compconfig-
urations. Although only in two of three cases, the optimizedconfigurations solve
the same number of tests compared with the default and the adaptive smt-comp
configurations, the mean runtime of the optimized configurations are reduced ap-
proximately bya factor of 1.35, 3.56compared with the mean runtime of the
default and smt-comp configuration, respectively.
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Configuration Default 50s 55s 60s
Parameter
aep yes yes no yes
deduction 2 2 1 2
dual rail off off off off
dyn ack no no no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes no no yes
frequentreducedb no no no no
ghostfilter no no yes no
ibliwi no yes no no
impl expl threshold 0 1 0 1
incr tsolvers no yes yes yes
mixed cs yes no yes no
permanenttheory lemmas yes yes yes yes
pure literal filter yes yes no yes
randomdecisions no no yes no
restarts normal normal normal normal
sl 2 0 0 0
split eq yes no no no
tcomb off off off off
toplevelprop 1 1 0 1
tsolver euf laz laz euf laz euf laz

Table 7.5: QFLIA configurations found by different training MathSAT timeouts
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Tests solved (Optimized/Default/SMTCOMP) 199/199/199
Mean runtime (not include TIMEOUT tests) 12.456s/17.369s/44.378s
Optimized compared with Default Result
Better runtime tests/The number of tests 181/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 14/200

(a) training MathSAT timeout = 50s

Tests solved (Optimized/Default/SMTCOMP) 198/199/199
Mean runtime(not include TIMEOUT tests) 12.791s/17.369s/44.378s
Optimized compared with Default Result
Better runtime tests/The number of tests 148/200
Equal runtime tests/The number of tests 8/200
Worse runtime tests/The number of tests 44/200

(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 199/199/199
Mean runtime(not include TIMEOUT tests) 12.069s/17.369s/44.378s
Optimized compared with Default Result
Better runtime tests/The number of tests 183/200
Equal runtime tests/The number of tests 8/200
Worse runtime tests/The number of tests 9/200

(c) training MathSAT timeout = 60s

Table 7.6: Performance comparison of QFLIA configurations found by different
training MathSAT timeouts
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Figure 7.2: Performance comparison of QFLIA configurations found by different
training MathSAT timeouts
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Figure 7.2: Performance comparison of QFLIA configurations found by different
training MathSAT timeouts (cont.)
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7.3 QF LRA with Focused ParamILS using DAE

7.3.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 40s (the smt-comp configuration solved 85.64 % of tests)
Training MathSAT timeout 2 45s (the smt-comp configuration solved 86.13% of tests)
Training MathSAT timeout 3 50s (the smt-comp configuration solved 86.63% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFLRA of SMT-LIB
Testing set the QFLRA of SMT-LIB (removed training set)
ParamILS Configuration Focused, deterministic=1, N=202

run obj=runtime, overallobj=mean

Table 7.7: The experimental setup of QFLRA with different training MathSAT
timeouts

7.3.2 Training Result

Table 7.8 shows the default configuration and the optimized configurations found
by ParamILS. For QFLRA, ParamILS suggests disablingaep, pure literal filter,
enablingsplit eqand using only one theory solverla.

7.3.3 Testing Result

Table 7.9 and Figure 7.3 show the performance comparison of the optimized, deaf-
ault andadaptive smt-compconfiguration. Only the second optimized configura-
tion has the same number of solved tests as the smt-comp configuration. However,
if compared with the default configuration, the optimized configurations solve6,
or 7 tests more.
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Configuration Default 40s 45s 50s
Parameter
aep yes no no no
deduction 2 2 2 2
dual rail off off off off
dyn ack no no no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes yes yes yes
frequentreducedb no no no yes
ghostfilter no no yes no
ibliwi no no no no
impl expl threshold 0 0 0 1
incr tsolvers no no no no
mixed cs yes no no no
permanenttheory lemmas yes yes yes yes
pure literal filter yes no no yes
randomdecisions no no no no
restarts normal normal normal normal
sl 2 2 2 2
split eq no yes yes yes
tcomb off off off off
toplevelprop 1 1 1 1
tsolver euf la la la la

Table 7.8: QFLRA configurations found by different training MathSAT timeouts
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Tests solved (Optimized/Default/SMTCOMP) 199/193/200
Mean runtime(not include TIMEOUT tests) 11.099s/31.269s/9.033s
Optimized compared with Default Result
Better runtime tests/The number of tests 88/200
Equal runtime tests/The number of tests 23/200
Worse runtime tests/The number of tests 89/200

(a) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 200/193/200
Mean runtime(not include TIMEOUT tests) 19.759s/31.269s/9.033s
Optimized compared with Default Result
Better runtime tests/The number of tests 90/200
Equal runtime tests/The number of tests 18/200
Worse runtime tests/The number of tests 92/200

(b) training MathSAT timeout = 45s

Tests solved (Optimized/Default/SMTCOMP) 199/193/200
Mean runtime(not include TIMEOUT tests) 13.799s/31.269s/9.033s
Optimized compared with Default Result
Better runtime tests/The number of tests 65/200
Equal runtime tests/The number of tests 17/200
Worse runtime tests/The number of tests 118/200

(c) training MathSAT timeout = 50s

Table 7.9: Performance comparison of QFLRA configurations found by different
training MathSAT timeouts
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Figure 7.3: Performance comparison of QFLRA configurations found by differ-
ent training MathSAT timeouts (cont.)
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7.4 QF UFIDL with Focused ParamILS using DAE

7.4.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 82.67% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 83.66% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 84.65% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFUFIDL of SMT-LIB
Testing set the QFUFIDL of SMT-LIB (removed training)
ParamILS Configuration Focused, deterministic=1, N=202

run obj=runtime, overallobj=mean

Table 7.10: The experimental setup of QFUFIDL with different training Math-
SAT timeouts

7.4.2 Training Result

Table 7.11 shows the default configuration and the optimizedconfigurations found
by ParamILS. The main difference between the optimized configurations and
the default configuration is that usingdeductionof 2 instead of 1, and enabling
ghostfilter instead of disabling as default.

7.4.3 Testing Result

Table 7.12 and Figure 7.4 show the performance comparison ofthe optimized,
default andadaptive smt-compconfiguration. There is no optimized configuration
having the number of solved tests greater than the number of tests solved by the
smt-comp configuration. However, if compared with the default configuration, the
optimized configurations solve11, 10, 6 tests more.
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Configuration Default 50s 55s 60s
Parameter
aep yes yes no no
deduction 2 1 1 1
dual rail off off off off
dyn ack no yes no no
dyn ack limit 0 0 0 0
dyn ack threshold 1 1 1 1
expensiveccmin yes yes yes no
frequentreducedb no no no yes
ghost filter no yes yes yes
ibliwi yes yes yes yes
impl expl threshold 0 1 0 1
incr tsolvers no no no no
mixed cs yes yes no no
permanenttheory lemmas yes yes yes yes
pure literal filter no no no no
randomdecisions no no yes yes
restarts normal quick normal adaptive
sl 2 2 0 1
split eq yes yes yes yes
tcomb dtc dtc decide decide
toplevelprop 1 1 1 0
tsolver euf dl euf dl euf dl euf dl

Table 7.11: QFUFIDL configurations found by different training MathSAT time-
outs
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Tests solved (Optimized/Default/SMTCOMP) 198/187/200
Mean runtime(not include TIMEOUT tests) 23.804s/39.339s/30.264s
Optimized compared with Default Result
Better runtime tests/The number of tests 162/200
Equal runtime tests/The number of tests 11/200
Worse runtime tests/The number of tests 27/200

(a) training MathSAT timeout = 50s

Tests solved (Optimized/Default/SMTCOMP) 197/187/200
Mean runtime(not include TIMEOUT tests) 26.924s/39.339s/30.264s
Optimized compared with Default Result
Better runtime tests/The number of tests 139/200
Equal runtime tests/The number of tests 7/200
Worse runtime tests/The number of tests 54/200

(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 193/187/200
Mean runtime(not include TIMEOUT tests) 20.543s/39.339s/30.264s
Optimized compared with Default Result
Better runtime tests/The number of tests 132/200
Equal runtime tests/The number of tests 10/200
Worse runtime tests/The number of tests 58/200

(c) training MathSAT timeout = 60s

Table 7.12: Performance comparison of QFUFIDL configurations found by dif-
ferent training MathSAT timeouts
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Figure 7.4: Performance comparison of QFUFIDL configurations found by dif-
ferent training MathSAT timeouts (cont.)
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7.5 QF UFLRA with Focused ParamILS using DAE

7.5.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 5s (the smt-comp configuration solved 100% of tests)
Training MathSAT timeout 2 10s (the smt-comp configuration solved 100% of tests)
Training MathSAT timeout 3 15s (the smt-comp configuration solved 100% of tests)
Testing MathSAT timeout 1200s
Training time 48 hours
Training set the QFUFLRA of SMT-LIB
Testing set the QFUFLRA of SMT-LIB (removed training)
ParamILS Configuration Focused, deterministic=1, N=200

run obj=runtime, overallobj=mean

Table 7.13: The experimental setup of QFUFLRA with different training Math-
SAT timeouts

7.5.2 Training Result

Table 7.14 shows the default configuration and the optimizedconfigurations found
ParamILS. For QFUFLRA, ParamILS recommends users to enabledyn ack, fre-
quentreducedb, ghostfilter, incr tsolversand disablepure literal filter. ParamILS
also suggests usingdeductionof 1,dyn ack thresholdof 50, or 10,slof 0, toplevel-
propof 0.

7.5.3 Testing Result

Table 7.15 and Figure 7.5 show the performance comparison ofthe optimized,
default andadaptive smt-compconfigurations. It can be seen that in call cases,
the mean runtime of the optimized configurations are reducedapproximately by
a factor of 6.678 and 3.375compared with the mean runtime of the default, and
smt-comp configuration.
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Configuration Default 5s 10s 15s
Parameter
aep yes yes yes yes
deduction 2 1 1 1
dual rail off off off off
dyn ack no yes yes yes
dyn ack limit 0 0 0 0
dyn ack threshold 1 50 50 10
expensiveccmin yes yes no yes
frequent reduce db no yes yes yes
ghost filter no yes yes yes
ibliwi no no no no
impl expl threshold 0 0 0 0
incr tsolvers no yes yes yes
mixed cs yes yes yes yes
permanenttheory lemmas yes yes no yes
pure literal filter yes no no no
randomdecisions no no no no
restarts normal normal normal normal
sl 2 0 0 0
split eq no no no no
tcomb dtc dtc dtc dtc
toplevelprop 1 0 0 0
tsolver euf la euf la euf la euf la

Table 7.14: QFUFLRA configurations found by different training MathSAT
timeouts
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Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.057s/0.374s/0.189s
Optimized compared with Default Result
Better runtime tests/The number of tests 193/200
Equal runtime tests/The number of tests 4/200
Worse runtime tests/The number of tests 3/200

(a) training MathSAT timeout = 5s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.059s/0.374s/0.189s
Optimized compared with Default Result
Better runtime tests/The number of tests 189/200
Equal runtime tests/The number of tests 4/200
Worse runtime tests/The number of tests 7/200

(b) training MathSAT timeout = 10s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.056s/0.374s/0.189s
Optimized compared with Default Result
Better runtime tests/The number of tests 192/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 3/200

(c) training MathSAT timeout = 15s

Table 7.15: Performance comparison of QFUFLRA configurations found by dif-
ferent training MathSAT timeouts
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Figure 7.5: Performance comparison of QFUFLRA configurations found by dif-
ferent training MathSAT timeouts (cont.)

124



7.6. SUMMARY

7.6 Summary

Table 7.16 summaries the performance comparison of the five theories on the
SMT-LIB benchmark.

In four theories of QFIDL, QF LIA, QF LRA, and QFUFLRA, the num-
ber of tests solved by the optimized configuration is equal tothe number of tests
solved by theadaptivesmt-comp configuration (this configuration can be changed
according to different problem classes) and is larger than the number of tests
solved by the default configurations. In addition, the mean runtime is reduced
by a factor of1.231in case of QFIDL, by a factor of3.677 in case of QFLIA,
and by a factor of3.375 in case of QFUFLRA. Only in the case of QFLRA,
the mean runtime of the optimized configuration is increasedby a factor of2.187
compared with the mean runtime of the adaptive smt-comp configuration. But
if compared with the default configuration, the optimized configuration solves7
tests more.

In the case of QFUFIDL, the optimized configuration solves2 tests lesscom-
pared with the adaptive smt-comp configuration. However, ifcompared with the
default configuration, the optimized configuration solves11 tests more.
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Tests solved (Optimized/Default/SMTCOMP) 95/94/95
Mean runtime(not include TIMEOUT tests) 5.207s/2.744s/6.410s
The number of tests 100

(a) QF IDL

Tests solved (Optimized/Default/SMTCOMP) 199/199/199
Mean runtime(not include TIMEOUT tests) 12.069s/17.369s/44.378s
The number of tests 200

(b) QF LIA

Tests solved (Optimized/Default/SMTCOMP) 200/193/200
Mean runtime(not include TIMEOUT tests) 19.759s/31.269s/9.033s
The number of tests 200

(c) QF LRA

Tests solved (Optimized/Default/SMTCOMP) 198/187/200
Mean runtime(not include TIMEOUT tests) 23.804s/39.339s/30.264s
The number of tests 200

(d) QF UFIDL

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) 0.056s/0.374s/0.189s
The number of tests 200

(e) QFUFLRA

Table 7.16: Performance Comparison of the five theories on the SMT-LIB bench-
mark
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Chapter 8

Conclusion

The main contribution of this thesis is a comprehensive study of the most effective
SMT techniques. This includes an empirical analysis approach to study the char-
acteristics of the MathSAT configuration scenario, two experimental groups on
eight and five theories to determine the best possible configurations for MathSAT
on the SMT-COMP 2009 and SMT-LIB benchmark. Here, we describe these in
more detail:

• We have done many experiments on a theory to determine the most suitable
scenario for MathSAT before starting experiments on a set oftheories. The
main parameters in a scenario are the ParamILS strategy (Basic or Focused),
the timeout of ParamILS (tunnerTimeout), the timeout of each MathSAT
run(cutoff time), the effect of ParamILS random seeds, the determinismof
MathSAT. From the experimental results, we have concluded thatFocused
ParamILS using DAEis the most suitable ParamILS for MathSAT. As for
the training time,48 hoursis enough for the ParamILS convergence because
we have experimented on theQF LRA, one of the most difficult theories
in the set of theories supported by MathSAT, and observed that ParamILS
converged within48 training hourswith the MathSAT timeouts less than
60s. In order to choose suitable MathSAT timeouts when training, we have
run MathSAT with the default (or smt-comp) configuration on the training
dataset in advance and chosen the three MathSAT timeouts (all timeouts
have value from 0 to 1200 with step 5) which are less than 60 seconds and
solve similar percentage of tests.

• Then, we have started ParamILS on eight theories using the SMT-COMP
2009 benchmark. In these experiments, we have used the same dataset of
SMT-COMP 2009 for training and testing phases in order to check whether
we could have better configurations than the default configurations and the
configurations used in SMT-COMP 2009 (smt-comp configurations, these
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configurations could bechangedaccording to different problem classes
based on a statistics module in MathSAT). In three theories of QF IDL,
QF LRA, and QFUFIDL, the number of solved tests is improved signif-
icantly. For example, in the case of QFIDL, the optimized configuration
found by ParamILS solves14 tests morecompared with the adaptive smt-
comp configuration and10 tests morecompared with thewinner of SMT-
COMP 2009 on this theory (despite the fact that we are using the older ver-
sion of MathSAT, not the new one in the competition). In two other cases
of QF LIA, and QF UFLRA, the number of tests solved by the optimized
configuration is equal to the number of tests solved by the adaptive smt-
comp configuration. However, the mean runtime is reduced approximately
by half in case of QFLIA and by a factor of eightin case of QFUFLRA.
For other three theories, we have encountered some bugs whentesting, and
report them to the MathSAT team because we used not only the tested pa-
rameters but alsointernalparameters which are used for developers and not
tested carefully.

• Next, we have used the benchmark selection tool of SMT-COMP 2009 to
extract from the SMT-LIB benchmark different training and testing datasets
for five successfully tested theories (no errors found in training and test-
ing phases for these theories in Chapter 5) to find general optimized Math-
SAT configurations. In four theories of QFIDL, QF LIA, QF LRA, and
QF UFLRA, the number of tests solved by the optimized configuration is
equal to the number of tests solved by theadaptivesmt-comp configuration
and is larger than the number of tests solved by the default configurations.
In addition, the mean runtime is reduced by a factor of1.231 in case of
QF IDL, by a factor of3.677 in case of QFLIA, and by a factor of3.375
in case of QFUFLRA. Only in the case of QFLRA, the mean runtime of
the optimized configuration is increased by a factor of2.187compared with
the mean runtime of the adaptive smt-comp configuration. Butif compared
with the default configuration, the optimized configurationsolves7 tests
more. In the case of QFUFIDL, the optimized configuration solves2 tests
lesscompared with the adaptive smt-comp configuration. However, if com-
pared with the default configuration, the optimized configuration solves11
tests more.
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List of Acronyms

• RAE Random Algorithm Evaluation (used in ParamILS).

• DAE Deterministic Algorithm Evaluation (used in ParamILS).
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