UNIVERSITY

Department of OF TRENTO - Italy

Information Engineering '
and Computer Science
DISI - Via Sommarive, 14 - 38123 POVO, Trento - Italy
http://disi.unitn.it

Automated Parameter Configuration
for an SMT Solver

Duy Tin Truong
November 2010

Technical Report # DISI-10-057 Truong Duy Tin

UNIVERSITA DEGLI STUDI DI TRENTO
Facolt di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

Tesi dal Titolo

Automated Parameter Configuration
for an SMT Solver

Relatore:
Roberto Sebastiani

Laureando:
Duy Tin Truong

Anno Accademico 2009/2010

Contents

2
2
I2__ SMT Techniques and MathSAT 7
2.1 1azySMTIinMathSAT v v e 7
MLMMT ----------- 7
212 lazySMT=SAT+7-Salvers 8
213 MathSAT 9
[2.2 SMT Techniques Implemented in Math$SAT 9
[2.2.1 Conceptofthesection 9

[2.2.16 Random DeCiSians v oo oo 18
2217 Restart 18

CONTENTS

2.2.18 Staticlearnifg 19
2.2.19 Splitting of Equalities 19
[2.2.20 Theory Combination 20
[2.2.21 Propagation of Toplevel Information 02
3__ParamiLS 21
3.1 __An Automatic Configuration Scenario 21
3.2 The ParamlLS Framewdrk 21
3.3 TheBasiclLSAlgorithin 23
3.4 _The FocusedILS AlgoritAm 25
BB Usade 26
N . 26
- le 28

4.1.1 Exoerlmental setbp 34
4.1.2 Experimentalreshlt 34
4.2 Two runs of Basic ParamIl Susing RAE 37
4.2.1 Experimentalsetupo 37
42,2 Experimentalreshlt 37

4.3 _Summary of two Basic ParamlLS runs using DAE and RAE . . . 40

442 Experimentalreshilt 41
4.5 Focused Paramll S with DAEand RAE 43
45.1 Experimentalsetup 43
452 Experimentalreshlt 43
.71 Fxperimental sethp 46
|4.7.2 Experimental reshlt 46

. i ining Ma diou 49
181 FExperimental SetUP © o o 49
4.8.2 Experimentalresblt 49

4.9 DAE Focused ParamlL S with different training times 52

CONTENTS

CONTENTS

| e of fhe Eive Theores onffe SMIE Benchmak &

3

94
94
A . 98
/ xperimentalsetup 98
/ ainingResult 98
(7.4 estingResuwlt 98
[7.5__QEUFLRA with Focused ParamILS usingDAE 102
i 0 102
. 102
ingResUlt.o 102
26 _Summaly 106
8 Conclusiom 109
9 List of Acronyms 111

Chapter 1

Introduction

In this thesis, we use an Automatic Configuration Framewornplemented in
ParamIL3 to find the most suitable techniques for a set of populartbssolved
by Satisfiability Modulo Theories (SMT). The techniquestta investigate are
the most effective techniques of interest for the lazy SMd aich have been
proposed in various communities and implemented irMaghSATtool.

The ultimate goal of this thesis is to provide the guidelialbsut the choice of
optimized techniques for solving popular theories usingi'SM

1.1 Satisfiability Modulo Theories and MathSAT

Satisfiability Modulo Theories (SMT9 the problem of deciding the satisfiability
of a first-order formula with respect to some decidable firster theory7 (SMT'(T)).
These problems are typically not handled adequately bylatdrautomated the-
orem provers. SMT is being recognized as increasingly itambddue to its ap-
plications in many domains in different communities, intgadar in formal veri-
fication.

Typical SMT(/") problems require testing the satisfiability of formulas ehi
are Boolean combinations of atomic propositions and at@rpressions irv-
, SO that heavy Boolean reasoning must be efficiently condbuwigh expres-
sive theory-specific reasoning. The dominating approa@®Ma (/'), calledlazy
approach is based on the integration of a SAT solver (widely used isaalm
ern conflict-driven DPLL solver) and of a decision procedaipée to handle sets
of atomic constraints if7 (7 -solver), handling respectively the Boolean and the
theory-specific components of reasoning.

An amount of papers with novel and very efficient techniquesoptimizing
the integration of DPLL and -solver has been published in the last years, and
some very efficient SMT tools are now available. Howeves till very difficult

1

CHAPTER 1. INTRODUCTION

to decide which technique is the most suitable one for a thewsreven harder,
which combination of techniques is the best choice for arthed@herefore, in
this thesis, we us®lathSAT one of the efficient SMT tools, which implements
most of these techniques to compare the effectiveness lufitpees on different
theories.

1.2 Automatic Configuration Framework

The identification of performance-optimizing parametdtilsgs is an important
part of the development and application of algorithms. Wguae start with
some parameter configuration, and then modify a single peteamif the result
is improved after tuning, we keep this new result. We repiatjbb until some
termination criteria is satisfied. This approach is veryemgive in term of human
time and the performance is also very poor. Fortunatelylkrutter and Holger
H. Hoos has proposdéaramILS an automatic configuration framework, to solve
this problem automatically and effectively. Experimentshoany algorithms like
SAPS, SPEAR, CPLEX with different benchmarks Graph cotuy(iGent et.el,
1999), Quasigroup completion (Gomes and Selman, 1997) het proved that
the configurations found by ParamILS outperform the defeaitfigurations in
all cases, especially faster than 50 times for some spexsaisc Therefore, in this
thesis, we use ParamiLS to search for the best possible ooatiigns of MathSAT
on different theories.

1.3 Summary of Contributions

The main contribution of this thesis is a comprehensiveystilithe most effective
SMT techniques by mean of the MathSAT and ParamILS tool. Huksides an
empirical analysis approach to study the characteristitiseoMathSAT configu-
ration scenario, two experimental groups on eight and fieeriles to determine
the best possible configurations for MathSAT on the SMT-CGNIP9 and SMT-
LIB benchmark. Here, we describe these in more detail:

¢ We do many experiments on one theory to determine the mdab$eisce-
nario for MathSAT before starting experiments on a set obties. The
main parameters in a scenario are the ParamiILS strategic@d3ocused),
the timeout of ParamILS (tunerTimeout), the timeout of edMdthSAT
run(cutofttime), the effect of ParamILS random seeds, the determinfsm
MathSAT.

e Then, we start ParamILS on eight theories using the SMT-CQA69

2

1.3. SUMMARY OF CONTRIBUTIONS

benchmark. In these experiments, we use the same dataddileCOMP
2009 for training and testing phases in order to check whhaetieecan have
better configurations than the default configurations aedctnfigurations
used in SMT-COMP 2009 (smt-comp configurations, these cordtgpns
can bechangedaccording to different problem classes based on a statis-
tics module in MathSAT). In three of five cases, the numberesbtests of
the optimized configurations increases significantly comgavith the smt-
comp configurations. In two other cases, although the nurobsolved
tests are equal to the number of tests solved by the smt-comigara-
tions, the mean runtime is reduced approximatehhblf and bya factor
of eight In addition, in training and testing phases, we also obdais of
MathSAT bugs on three theories and report them to the Math8am.

Next, we use the benchmark selection tool of SMT-COMP 200£xtcact
from the SMT-LIB benchmark different training and testirggakets for five
successfully tested theories (no errors found in trainimg) @sting phases
for these theories in Chapter 5) to find general optimizedn8AT con-
figurations. In all cases, the number of tests solved by thienoged con-
figurations is much larger than the number of tests solvedhbydefault
configurations.

Part |

BACKGROUND AND STATE OF
THE ART

Chapter 2
SMT Techniques and MathSAT

The description in this chapter is mostly taken from [4].

2.1 Lazy SMT in MathSAT

2.1.1 Satisfiability Modulo Theories - SMT

Satisfiability Modulo Theories is the problem of deciding thatisfiability of a
first-order formula with respect to some decidable firsteoteory7 (SMT(T)).
Examples of theories of interest are thos&qtiality and Uninterpreted Functions
(EUF), Linear Arithmetic(L.A), both over the real§£.A(Q)) and the integers
(LA(Z)), its subclasses dbifference Logic(DL) and Unit-Two-Variable-Per-
Inequality (UTVPI), the theories obit-vectors(BV), of arrays (AR) and of
lists (LZ). These problems are typically not handled adequately mdsta au-
tomated theorem provers - like, e.g., those based on resokdlculus - because
the latter cannot satisfactorily deal with the theory-sfpemnterpreted symbols
(i.e., constants, functions, predicates).

SMT is being recognized as increasingly important due tapiglications in
many domains in different communities, ranging from reseyianning[95] and
temporal reasoning [19] to formal verification, the lattecluding verification of
pipelines and of circuits at Register-Transfer Level (RT39,[75,[33], of proof
obligations in software systenis [76,/52], of compiler optiations [29], of real-
time embedded systenis [23] 45] 22].

An amount of papers with novel and very efficient techniquesSMT has
been published in the last years, and some very efficient Sl aire now avail-
able (e.g., Ariol[81], BarcelLogic¢ [72], CVCLIite/CVC3 [RSNLSAT [67], haR-
Vey [76], MathSAT [34], Sateen [64], SDSAT [63] Simplify [R6T SAT++ [20],
UCLID [B5], Yices [47], Verifun [51], Zapatd [24]), Z3 [43]An amount of bench-

7

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

marks, mostly derived from verification problems, is avalgaat the SMT-LIB
official page[[77] 78]. A workshop devoted to SMT and an offic@npetition on
SMT tools are run yearly.

For a complete survey, please refer [4] and [12].

2.1.2 Lazy SMT = SAT +7-Solvers

All applications mentioned above require testing the Sabdity of formulas
which are (possibly-big) Boolean combinations of atommgasitions and atomic
expressions in some theoffy , so that heavy Boolean reasoning must be effi-
ciently combined with expressive theory-specific reasgnin

On the one hand, in the last decade we have witnessed an sivaeragvance
in the efficiency of propositional satisfiability technigeSAT [85,/30/ 69, 58,
149,[48]). As a consequence, some hard real-world problemss len success-
fully solved by encoding them into SAT. SAT solvers are nowiadamental tool
in most formal verification design flows for hardware systebwath for equiva-
lence, property checking, and ATPG [31) 89]; other agayion areas include,
e.g., the verification of safety-critical systems|[88] 32hd Al planning in its
classical formulation[[63], and in its extensions to nomed®ainistic do-mains
[40,/59]. Plain Boolean logic, however, is not expressiveugyh for representing
many other real-world problems (including, e.g., the veaifion of pipelined mi-
croprocessors, of real-time and hybrid control systemd the analysis of proof
obligations in software verification); in other cases, sashthe verification of
RTL designs or assembly-level code, even if Boolean logexj@essive enough
to encode the verification problem, it does not seem to be thst gifective level
of abstraction (e.g., words in the data path are typicaéigtied as collections of
unrelated Boolean variables).

On the other hand, decision procedures for much more expeesscidable
logics have been conceived and implemented in differentconities, like, e.g.,
automated theorem proving, operational research, kn@&legpresentation and
reasoning, Al planning, CSP, formal verification. In pautar, since the pioneer-
ing work of Nelson and Oppen [0, 171,173, 74] and Shostak [[&B, &ficient
procedures have been conceived and implemented which Brdcabheck the
consistency of sets/conjunctions of atomic expressiodgaidable F.O. theories.
(We call these procedures, Theory Solversjesolvers.) To this extent, most
effort has been concentrated in producihgsolvers of increasing expressiveness
and efficiency and, in particular, in combining them in thestredficient way (e.g.,
[70,(71,[73[74, 83,84, 50, 28,180]). These procedures, henveeal only with
conjunctions of atomic constraints, and thus cannot hath@iéBoolean compo-
nent of reasoning.

In the last ten years new techniques for efficiently integtgaSAT solvers

8

2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

with logic- specific or theory-specific decision procedunase been proposed
in different communities and domains, producing big perfance improvements
when applied (see, e.g., [57,161] 19} 95,[45/27(21|, 93, 64134/ 82]). Most
such systems have been implemented on top of SAT technigsesl lon variants
of the DPLL algorithm[[42], 41, 85, 30, 69, 58,149, 48].

In particular, the dominating approach to SMT)(which underlies most
state-of-the-art SMTY) tools, is based on the integration of a SAT solver and
one (or more)7 -solver(s), respectively handling the Boolean and the rheo
specific components of reasoning: the SAT solver enumetatdsassignments
which satisfy the Boolean abstraction of the input formuwéjlst the 7-solver
checks the consistency ih of the set of literals corresponding to the assign-
ments enumerated. This approach is caléey, in contraposition to the eager ap-
proach to SMT T), consisting on encoding an SMT formula into an equivaientl
satisfiable Boolean formula, and on feeding the result to & SAver (see, e.g.,
[94,[38,[92] 91| 79]). All the most extensive empirical ewdions performed in
the last years [584, 44, 72, 35,126,/ 86] 87] confirm the fact thatently all the
most efficient SMT tools are based on the lazy approach.

2.1.3 MathSAT

MathSAT is a DPLL-based decision procedure for the SMT mobfor various
theories, including those of Equality and Uninterpreteddtion (EUF), Differ-
ence Logics (DL), Linear Arithmetic over the Reals (LA(R))daLinear Arith-
metic over the Integers (LA(Z)). MathSAT is based on the apph of integrating
a state-of-the-art SAT solver with a hierarchy of dedicatelyers for the differ-
ent theories, and implements several optimization teclesg MathSat pioneers
a lazy and layered approach, where propositional reasasitightly integrated
with solvers of increasing expressive power, in such a way itore expensive
layers are called less frequently. MathSAT has been appliédferent real-world
application domains, ranging from formal verification ofimite state systems
(e.g. timed and hybrid systems) to planning with resouregsivalence checking
and model checking of RTL hardware designs. For more dgti@§se visit the
MathSAT websiténttp://mathsat4.disi.unitn.it/

2.2 SMT Techniques Implemented in MathSAT

2.2.1 Concept of the section

Before presenting SMT techniques in detail, we presentdhewing basic con-
cepts that are used throughout this section.

9

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

Let X be a first-order signature containing function and predicmbols

with their arities, and” be a set of variables. A 0-ary function symhas called
a constant A O-ary predicate symbol A is calledBoolean atom A Y-term is
either a variable i/ or it is built by applying function symbols il to >-terms.
If t1,...,t, areX-terms andP is a predicate symbol, thef(¢, ..., t,,) is aX-atom.
A Y-literal is either a&:-atom (a positive literal) or its negation (a negative blgr
The set ofE-atoms and:-literals occurring inp are denoted byltoms(y) and
Lits(yp) respectively.

Given a decidable first-order thedfy, we call atheory solver fof7", T-solver,
any tool able to decide the satisfiabilityThof sets/conjunctions of ground atomic
formulas and their negationgheory literals or7-literals - in the languag§™.

We will often use the prefix7-" to denote "in the theory/ ™ e.g., we call a
"T-formula” a formula in (the signature of) , "7-model” a model in7 , and
so on. We also use the bijective functigi2 B ("Theory-to-Boolean”) and its
inverseB2T := T2B~! ("Boolean-to-Theory”), s.t. 728 maps Boolean atoms
into themselves and non-Boolegnatoms into fresh Boolean atoms - so that
two atom instances ip are mapped into the same Boolean atom iff they are
syntactically identical - and distributes with sets and Baa connectives.

For the combination of theories, we use the concepttefface equalitieghat
is, equalities between variables appearing in atoms dafreifft theoriesifterface
variableg.

2.2.2 Integration of DPLL and 7 -Solver

Several procedures exploiting the integration schema haeea proposed in
different communities and domains (see, elg.] [57,95[1952,/54)36]). In
this integration schem&,-DPLL is a variant of the DPLL procedure, modified to
work as an enumerator of truth assignments, whbsmtisfiability is checked by
a‘T-solver.

Proceduréll represents the schemabf@PLL procedure based on a modern
DPLL engine. The inpup andu are a7 -formula and a reference to an (initially
empty) set of7 -literals respectively. The DPLL solver embedded7irDPLL
reasons on and update8 andx?, and7-DPLL maintains some data structure
encoding the set Litg() and the bijective mappin@25/527 on literals.

T -preprocesssimplifies p into a simpler formula, and updatesif it is the
case, so that to preserve tfiesatisfiability of o A u. If this process produces
some conflict, thery -DPLL returns Unsat.7 -preprocess combines most or all
the Boolean preprocessing steps with some theory-depereleriting steps on
the 7 -literals of .

T -decide next_branch implements the key non-deterministic step in DPLL,
for which many heuristic criteria have been conceived. Side heuristics like

10

2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

Procedure 1SatValue7-DPLL (7 -formulay, T-assignment &)
1: if (T-preprocesss, ;1) == Conflict)then
. return Unsat;

2:

3: end if

4 P = T2B(p); pP = T2B(n);
5. while (1) do

6: T-decidenextbranch{?, u?)
7: while (1) do

8 status =7 -deducef?, i)
9 if (status == Sathhen

10: = B2T (uP)

11: return Sat

12: else if(status == Conflictjhen
13: blevel =7 -analyzeconflict(y?,)
14: if (blevel == 0)then

15: return Unsat

16: else

17: T-backtrack(blevely?, 1i?)
18: end if

19: else

20: break

21: end if

22: end while
23: end while

MOMS and Jeroslow- Wang [62] used to select a new literal ah daanching
point, picking the literal occurring most often in the mirahsize clauses (see,
e.g., [60]). The heuristic implemented in SATZ [66] seleatsandidate set of
literals, performs Boolean Constraint Propagation (B&Rposes the one lead-
ing to the smallest clause set; this maximizes the effecBCGR, but introduces
big overheads. When formulas derive from the encoding ofesspecific prob-
lem, it is sometimes useful to allow the encoder to providéheoDPLL solver
a list of "privileged” variables on which to branch first (e.@ction variables
in SAT-based plannind [56], primary inputs in bounded mactedcking [90]).
Modern conflict-driven DPLL solvers adopt evolutions of ¥8IDS heuristic
[69,158,[49], in which decision literals are selected actwydo a score which
is updated only at the end of a branch, and which privilegegbkes occurring
in recently-learned clauses; this makgsdecidenextbranch state-independent
(and thus much faster, because there is no need to recomgplirscores at each
decision) and allows it to take into account search histehich makes search

11

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

more effective and robust. In addition;-decidenextbranch takes into consider-
ation also the semantics 1h of the literals to select.

T -deduceiteratively deduces Boolean literdfswhich derive propositionally
from the current assignment (i.e., s¢? A u? =, [?) and updates” and p”
accordingly, until one of the following facts happens:

(i) w* propositionally violates? (u? A ¢? =,1). If so, T-deduce return€on-
flict.

(if) p» propositionally satisfieg?(1” =, ¢). If so, T-deduce invoke$ -solver
onB27 (uP): if the latter returnsSat then7-deduce returnSat otherwise,
T -deduce return€onflict

(i) no more literals can be deduced. If s@-deduce returnéJnknown A
slightly more elaborated version @deduce can invokg-solver on327 (u?)
also at this intermediate stage:7itsolver returndJnsat then7-deduce re-
turnsConflict

T-analyze conflict: if the conflict produced by/ -deduce is caused by a
Boolean failure (case (i) above), théhranalyzeconflict produces a Boolean
conflict setn? and the corresponding value of blevel; if instead the caniic
caused by & -inconsistency revealed bjy-solver (case (ii) or (iii) above), then
T -analyzeconflict produces as a conflict set the Boolean abstractfoof the
theory conflict set) produced by7-solver (i.e.,n” := T2B(n)), or computes
a mixed Boolean+theory conflict set by a backward-travess#ihe implication
graph starting from the conflicting clausg 25(u). If T-solver is not able to re-
turn a theory conflict set, the whole assignmemhay be used, after removing all
Boolean literals fromu. Once the conflict sef” and blevel have been computed,
T-backtrack adds the clausen? to ¢? and backtracks up to blevel.

2.2.3 Adaptive Early Pruning

In its simplest form, Early Pruning (EP) is based on the eiogliobservation that
most assignments which are enumeratedb®PLL, and which are found Un-
sat by7 -solver, are such that thejr-unsatisfiability is caused by much smaller
subsets. Thus, if th@-unsatisfiability of an assignmennt is detected during
its construction, then this prevents checking fheatisfiability of all the up to
2latoms(@)l-Iul total truth assignments which extendHowever, as EP may cause
useless calls t@ -solver, the benefits of the pruning effect may be partly ¢tewun
balanced by the overhead introduced by the extra EP calls [4]
A standard solution for this problem, adopted by several Sddlvers, is

to use incomplete but fast-solvers for EP calls, performing the complete but

12

2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

potentially-expensive check only when absolutely neggsga. when a truth
assignment which propositionally satisfies the input fdemsifound). This tech-
nique is usually called Weak (or Approximate) Early Pruning

In MathSAT, a different approach, which we call Adaptive IgdPruning
(AEP), isimplemented. The main idea of AEP is that of cotitiglthe frequency
of EP calls, by adapting the rate at whighsolvers are invoked according to
some measure of the usefulness of EP: the more EP callslmatetto pruning the
search by detecting -conflicts or7-deductions, the more frequentfy-solvers
are invoked|[5].

In MathSAT, the parameter of this techniqueaisp We experiment on the
following values:{yes: enable, no: disaljle

2.2.4 T-propagation

T -propagation was introduced in its simplest form (plumngisee [[4]) by [[19]
for DL; [21] proposed an improved technique for LA; howeVEr;propagation
showed its full potential in [93, 54, 72], where it was apglaggressively.

As discussed ir 4], for some theories it is possible to imp@at7 -solver so
that a call to7 -solver(:) returning Sat can also perform one or more deduction(s)
in the formn =1 [, s.t. n C p andl is a literal on a not-yet-assigned atom in
¢. If this is the case, thefi-solver can returrd to 7-DPLL, so that7 €B(l) is
unit-propagated. This may induce new literals to be assignew calls to7 -
solver, new assignments deduced, and so on, possibly gaasieneficial loop
between/ -propagation and unit-propagation. Notice tfiasolver can return the
deduction(s) performed F1 [to 7-DPLL, which can add the deduction clause
T2B(n — 1) to ¢, either temporarily and permanently. The deduction clause
will be used for the future Boolean search, with benefits @yalis to those of
T-learning (se€4]).

In MathSAT, the parameter of this techniquededuction This parameter is
used to set the deduction level of theories and we experimenie following
values:{0,1,2,3.

2.2.5 Dual Rail Encoding

We would like to reduce the number of literals sent to thevbittor theory solver,
since each theory solver call is potentially very expensi@ae way to do this
is to have the boolean enumerator enumerate minimal modtel3], Roorda
and Claessen uses a technique based on a dual-rail encduictygives minimal
models for the SAT problem, and the same technique liftsSNd.

In a dual rail encoding of a formula, each propositional afm replaced by
two fresh atoms”™ and P+. These are used to encode a three valued semantics of

13

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

Pt PT Meaning
False| False| No value
False| True | False
True | False| True
True | True | lllegal

Table 2.1: Three value logic semantic of dual rail encoding

propositional logic according to tadle 2.1. To translatemniula in CNF to dual
rail, all positive literals A are replaced withT, and all negative literals:A are
replace withA+. To rule out the illegal value, for every atom A the claysedT,
- At} is added to the CNF.

To see why this encoding would help in enumerating minimadlet®, we can
notice that in DPLL, if the decision heuristic always assifalse to decision vari-
ables, then any modelfor a set of clauseB has the minimal number of positive
literals. This means that it is not possible to negate anyhefdositive literals in
w and still havey = I'. We say that such a model is (positive) sign-minimal. The
reverse is true if the decision heuristic always assigre toudecision variables,
and we call such models negative sign-minimal. Sée [6] ferftt proof.

In MathSAT, the parameter of this techniquedisal rail. We experiment on
the following values:

o Off: disables dual rail encoding.
e circuit: ensures enumerating minimal models for the oagformula.

e cnf: a’lighter” version that introduces less clauses, iy ensures that the
enumerated models are minimal w.r.t. the CNF-conversiam@foriginal
problem (i.e., they might not be minimal for the originaliwula).

2.2.6 Dynamic Ackermann Expansion

When the theory/ solved is combination of many theories, and one of the theo-
ries7; is EUF, one further approach to th&\/ T'(7; UTz) problem is to eliminate
uninterpreted function symbols by means of Ackermannsmsipa [18] so that
to obtain anSMT(T) problem with only one theory. The method works by re-
placing every function application occurring in the inpatrhulay with a fresh
variable and then adding to all the needed functional congruence constraints.
The new formulay’ obtained is equisatisfiable with, and contains no uninter-
preted function symbols.

However, the traditional congruence-closure algorithresas the propagation
rule f(z) # f(y) ~ = # y which has a dramatic performance benefit on many

14

2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

problems. An approach callddynamic Ackermannizatiois proposed to cope
with this problem[[10].

In MathSAT, the parameter of this techniquedignack We experiment on
the following valuesyyes: enable, no: disaljle

Besides, this parameter is used together with two follovpagmeters:

e dynacklimit Maximum number of clauses added by dynamic Ackermann’s
expansion. We experiment this parameter only on the valu@ which
means unlimited.

e dynack thresholdNumber of times a congruence must be used before acti-
vating its dynamic Ackermann’s expansion. We experimeistplarameter
on the following values{0, 10,5G.

2.2.7 Boolean Conflict Clause Minimization

Let C'andC’ be clausesy,. the resolution operator on variable x.(dfx, C" C C
thenC' is said to be self-subsumed By w.r.t. x. In effect,C” is used to remove
x (or x) from C' by the fact that” is subsumed by’ ®, C’. A particularly useful
and simple place to apply self-subsumption is in the condli@uise generation.
The following 5-line algorithm can easily be added to anyskarecording SAT

solver [11]:

strengthenCCZlause @ - C is the conflict clause

for eachp € C' do
if (reason(p) \ {p} C C) then
mark p
end if
remove all marked literals in C
end for

By reason(p) we denote the clause that became unit and propagated
True.

In MathSAT, the parameter of this techniquesigensiveecmin We experi-
ment on the following valuesyes: enable, no: disable

2.2.8 Learned Clauses Deleting

In the T-learning technique (see [4]), when a conflict sgts found, the clause
T2B(—n) is added in conjunction t@?. Since then;7-DPLL will never again
generate any branch containing In fact, as soon ag;| — 1 literals inn are

15

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

assigned to true, the remaining literal will be immediataggigned to false by
unit-propagation or7 23(—n). However, 7 -learning must be used with some
care, because it may cause an explosion in sizg. ofo avoid this, one has to
introduce techniques for discarding learned clauses wheassary [30].

In MathSAT, the parameter of this techniquérexquentreducedb. We exper-
iment on the following values{yes: aggressively delete learned clause that are
consider unrelevant, no: not delete aggressively

2.2.9 Ghost Filtering

In Lazy SMT, when DPLL decides the next branch, it may selés &terals
which occur only in clauses which have already been satigfiduich we call
"ghost literals”). The technique 'Ghost Filter’ preventBDL from splitting branches
on the ghost literals.

In MathSAT, the parameter of this techniqueisostfilter. We experiment on
the following values{yes: enable, no: disabjle

2.2.10 Increase The Initial Weight of Boolean Variables

Increase the initial weight of non-theory atoms which weseintroduced by the
cnf conversion in the splitting heuristic. It means that trginal non-theory
atoms have the highest score, and the introduced variahlesthe lowest score.

In MathSAT, the parameter of this techniquebiwi. We experiment on the
following values:{yes: enable, no: disaljle

2.2.11 Threshold for Lazy Explanation of Implications

MathSAT can learn only the clauses whose length less thémhich is called
threshold for lazy explanation of implicatioyrend other clauses in the conflict set
on demand.

In MathSAT, the parameter of this techniquanspl_explthreshold We ex-
periment on the following valueg0: learn all clauses,}1

2.2.12 Incremental Theory Solvers

MathSAT can introduce and handle new atoms during search.
In MathSAT, the parameter of this techniquernsr_tsolvers We experiment
on the following values{yes: enable this feature, no: disable this feature

16

2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

2.2.13 Mixed Boolean+Theory Conflict Clauses

In the online approach to integrate SAT anesolver [4], whenT-DPLL reaches
the status ofConflict it will call 7-analyze-conflicto analyze the failure. If
conflict produced by/ -deduceis caused by a Boolean failure, th@nranalyze-
conflictproduces a Boolean conflict sgtand the corresponding value lolevel|
as described in [4] if instead the conflict is caused by-mconsistencyevealed
by T-solver, then7-analyze-conflicproduces as a conflict set the Boolean ab-
straction)? of the theory conflict sef produced byr -solver(i.e.,n? := T2B(n)),
or computes a mixed Boolean+theory conflict set by a backwwaxersal of the
implication graph starting from the conflicting claus& 2B(n) (see [4]). IfT-
solveris not able to return a theory conflict set, the whole assigimemay
be used, after removing all Boolean literals frgm Once the conflict set?
andblevelhave been computed;-backtrackbehaves analogously tmacktrack
in DPLL: it adds the clausen? to ¢” and backtracks up tolevel

In MathSAT, the parameter of this techniquemsxedcs We experiment on
the following values{yes: enable. no: disable

2.2.14 Permanent Theory Lemmas

If S = {l,...,1,} is a set of literals ir/", we call (7T)-conflict setany subset,
of S which is inconsistent irf”. We call -n a 7-lemma [9]. (Notice that-
is a T-valid clause.) Thes& -lemma can be deleted to avoid explosion when
necessary.

In MathSAT, the parameter of this techniqu@emanentheorylemmas We
experiment on the following valuegyes: never delete theory lemmas, no: delete
when necessaty

2.2.15 Pure Literal Filtering

This technique, which we call pure-literal filtering, waspinitly proposed by
[95] and then generalized by [55,121] 35].

The idea is that, if we have non-Booledratoms occurring only positively
[resp. negatively] in the input formula, we can safely droprg negative [resp.
positive] occurrence of them from the assignment to be addly 7-solver.
Moreover, if both7-propagation and pure-literal filtering are implementéent
the filtered literals must be dropped not only from the agsigmt, but also from
the list of literals which can b&-deduced by7 -solver, so that to avoid thé-
propagation of literals which have been filtered away.

We notice first that pure-literal filtering has the same twaoddgs described
for reduction to prime implicants [4]. Moreover, this teature is particularly

17

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

useful in some situations. For instance, in DL(Z) and LA(Zny solvers cannot
efficiently handle disequalities (e.dz; — x2 # 3)), so that they are forced to
split them into the disjunction of strict inequalities, — x5 > 3) V (z1 — 25 < 3).
(This is done either off-line, by rewriting all equalitie®fp. disequalities] into a
conjunction of inequalities [resp. a disjunction of stile¢qualities], or on-line,
at each call to T -solver.) This causes an enlargement ofdheels, because the
two disjuncts must be investigated separately.

However, in many problems it is very frequent that many etjeal(t; = t,)
occur with positive polarity only. If so, pure-literal fitieg avoids addingt; #
ty) to up whenT2B((t; = ty)) is assigned to false by-DPLL, so that no splitis
needed[21].

In MathSAT, the parameter of this techniquepigre literal filter. This pa-
rameter may affect negatively theory deduction, but can bergfit for complex
theories. We experiment on the following valdg®s: enable, no: disable

2.2.16 Random Decisions

Perform randomly about 5% of the branching decisions.
In MathSAT, the parameter of this techniqueasdomdecisions We experi-
ment on the following valuesiyes: enable, no: disable

2.2.17 Restart

When searching for a solution, SMT can get stuck in some Inesdn that case,
the solution is to escape from the current branch by restattie whole process.

In MathSAT, the parameter of this techniqueeastart We experiment on the
following values:

e Normal: The restart policies implemented in MiniSat. Thdyodserve
different search parameters like: conflict level (the hedajhthe search tree
(i.e. the number of decisions) when a conflict occurred) aktrvack level
(the height of the search tree to which the solver jumped backsolve
the conflict), length of learned clauses (the length of theeruly learned
clause), and trail size (the total number of assigned visalshen a conflict
occurred (including variables assigned by unit propagdfiover time and,
based on their development, decide whether to perform artestnot [16].

e Quick: Using a small prototype SAT solver, call@tNISAT, which imple-

ments the essentials of a modern clause learning solversahesigned to
facilitate adoption of arbitrary restart policiés [7].

18

2.2. SMT TECHNIQUES IMPLEMENTED IN MATHSAT

e Adaptive: This technique measures the "agility” of the SAdlver as it
traverses the search space, based on the rate of recenplgdflgssign-
ments. The level of agility dynamically determines the agsfrequency.
Low agility enforces frequent restarts, high agility proiks restarts [8].

2.2.18 Static Learning

The technique was proposed by [[19] for a lazy SMT proceduré®fa Similar
such techniques were generalized and used ir [23, 35, 96].

On some specific kind of problems, it is possible to quickledea priori short
and 'obviously7-inconsistent’ assignments b-atoms in Atomsg) (typically
pairs or triplets). Some examples are:

e incompatible value assignments (eg= 0, x = 1),

e congruence constraints (e.gry = y1), (x2 = y2), =(f (1, 72) = f(y1,2))),
e transitivity constraints (e.g(x —y < 2),(y — z < 4),~(x — 2 < 7)),
e equivalence constrainté(= y), (2x — 3z < 3), ~(2y — 3z < 3)).

If so, the clauses obtained by negating the assignments{(e:g= 0) vV —(z =
1)) can be added a priori to the formula before the search stéfttenever all but
one literal in the inconsistent assignment are assignedefation of the remain-
ing literal is assigned deterministically by unit-proptiga, which prevents the
solver generating any assignment which include the instersi one. This tech-
nique may significantly reduce the Boolean search spacehamck the number
of calls to7-solver, producing very relevant speed-ups [19/ 23] 35, 96]

Intuitively, one can think of static learning as suggestngriori some small
and ‘obvious’T -valid lemmas relating sonig-atoms ofp, which drive DPLL in
its Boolean search. Notice that, unlike the extra clausds@th 'per-constraint’
eager approaches [92,179] (sek [4]), the clauses addedtlmyistaning refer only
to atoms which already occur in the original formula, so thatBoolean search
space is not enlarged, and they are not needed for correa@nescompleteness:
rather, they are used only for pruning the Boolean searatespa

In MathSAT, the parameter of this techniquesls This parameter is used to
set the level of static learning. And we experiment on theofahg values:{0:
disable, 1, 2.

2.2.19 Splitting of Equalities

This technique rewrite§r = y) into (z < y) and (y < z) during preprocessing.

19

CHAPTER 2. SMT TECHNIQUES AND MATHSAT

In MathSAT, the parameter of this techniquegit eq We experiment on the
following values{yes: enable, no: disaljle

2.2.20 Theory Combination

In many practical applications of SMT, the thedfyis a combination of two or
more theoried7, ..., 7,. For instance, an atom of the forfitx + 4y) = g(2zy),
that combines uninterpreted function symbols (frébiF) with arithmetic func-
tions (from L.A(Z)), could be used to naturally model in a uniform setting the
abstraction of some functional blocks in an arithmeticuiir¢see e.g.[[37, 33]).

In MathSAT, the parameter of this techniqueéasmb We experiment on the
following values:

¢ off: Do not use theory combination.
e ack: Using Ackermann’s expansion as described in seCiiag 2.

e dtc: Delayed Theory Combination (DTC) is a general apprdacttom-
bining theories in SMT proposed in[14]. With DTC, the sok/éar 7; and
7> do not communicate directly. The integration is performgdte SAT
solver, by augmenting the Boolean search space with up theajpossible
interface equalities, so that each truth assignment on taogimal atoms
and interface equalities is checked for consistency indegetly on both
theories([9].

e decide: Use heuristics to select ack or dtc.

2.2.21 Propagation of Toplevel Information

Use top-level equalities to simplify the formula. Example:= 0) and (y < z)
can be rewritten t¢y < 0).

In MathSAT, the parameter of this techniquesiglevelprop The set of values
that we experiment isfO: disable, 1: standard, 2: aggresgive

20

Chapter 3
ParamILS

Most description in this chapter is extracted fram [3].

3.1 An Automatic Configuration Scenario

The algorithm configuration problem can be informally stieds follows: given
an algorithm, a set of parameters for the algorithm and afsepot data, find pa-
rameter values under which the algorithm achieves the lossiigle performance
on the input data.

To avoid potential confusion between algorithms whoseguerénce is opti-
mized and algorithms used for carrying out that optimizatesk, we refer to the
former as target algorithms and to the latter as configurgtiocedures (or simply
configurators). The setup is illustrated as in Fiduré 3.4 ahtomatic configura-
tion scenario includes an algorithm to be configured andlacabn of instances.
A configuration procedure executes the target algorithrh gfiecified parameter
settings on some or all of the instances, receives infoomabout the perfor-
mance of these runs, and uses this information to decidet aldwat subsequent
parameter configurations to evaluate.

3.2 The ParamlILS Framework

This section describes an iterated local search framewali&dcParamlILS. To
start with, we fix the other two dimensions, using an unvayyienchmark set of
instances and fixed cutoff times for the evaluation of eacharpater configuration.
Thus, the stochastic optimization problem of algorithmfmguration reduces to
a simple optimization problem, namely to find the parametsfiguration that
yields the lowest mean runtime on the given benchmark setn,Tin Section 3]3

21

CHAPTER 3. PARAMILS

Parameter domains

& starting values

. Configuration scenario ‘
Calls with & Problem
b M 1 3 . y
C f“. different = t instances
onfigurator > aree .
parameter g Solves
A . algorithm
' seftings

Returns solution cost

Figure 3.1: An Automated Configuration Scenario

and3.4, we address the question of how many runs should fmEmped for each
configuration.
Consider the following manual parameter optimization pesc

1. begin with some initial parameter configuration;

2. experiment with modifications to single parameter valaesepting new
configurations whenever they result in improved perforneanc

3. repeat step 2 until no single-parameter change yields\provement.

This widely used procedure corresponds to a manually-éeddacal search
in parameter configuration space. Specifically, it corragigdo an iterative first
improvement procedure with a search space consisting pbalible configura-
tions, an objective function that quantifies the perforneaachieved by the target
algorithm with a given configuration, and a neighbourhoddtien based on the
modification of one single parameter value at a time (i.eoree*exchange” neigh-
bourhood).

Viewing this manual procedure as a local search algorithadisantageous
because it suggests the automation of the procedure as sviedl mprovement
by drawing on ideas from the stochastic local search comiywukor example,
note that the procedure stops as soon as it reaches a losalap{a parameter
configuration that cannot be improved by modifying a singleameter value). A
more sophisticated approach is to employ iterated locathdaX] to search for
performance-optimizing parameter configurations. ILS jg@minent stochastic
local search method that builds a chain of local optima byiieg through a main
loop consisting of

1. a solution perturbation to escape from local optima,

2. asubsidiary local search procedure and

22

3.3. THE BASICILS ALGORITHM

3. an acceptance criterion to decide whether to keep ortrejeewly obtained
candidate solution.

ParamlILS (given in pseudocode as Procedlre 2 and Algorittamé&work 8
) is an ILS method that searches parameter configuratioresgacses a com-
bination of default and random settings for initializati@mploys iterative first
improvement as a subsidiary local search procedure, usgsdarfumber (s) of
random moves for perturbation, and always accepts bettegoally-good pa-
rameter configurations, but re-initializes the search atoan with probability
DPrestart- FUrthermore, it is based on a one-exchange neighbourhloatis, we
always consider changing only one parameter at a time. Ra&udeals with
conditional parameters by excluding all configurationsrfrihe neighbour- hood
of a configuratiord that differ only in a conditional parameter that is not relet
iné.

Procedure 2lterativeFirstimprovemeni]
1: repeat
2. 0«0,
3. for #” € Nbh(#') in randomized ordedo
4 if better(0”,0") then
5: 0 < 0" break;
6: end if
7
8:
9:

end for
until ¢’ = 6;
return 0;

3.3 The BasiclLS Algorithm

In order to turn ParamILS as specified in Algorithm Framew@rkto an exe-
cutable configuration procedure, it is necessary to instEnthe function better
that determines which of two parameter settings should &eped. We will ulti-
mately present several different ways of doing this. Heeegescribe the simplest
approach, which we call BasiclLS. Specifically, we use th@tBasicI LS(N) to
refer to a ParamlILS algorithm in which the functiriter(6,, 65) is implemented
as shown in Proceduté 4: simply comparing estimate®f the cost statistics
c(61) andc(6,) that are based oN runs each.

Because BasicParamlLS is simple, when benchmark instameegery het-
erogeneous or when the user can identify a rather smallésgmtative” subset

23

CHAPTER 3. PARAMILS

Algorithm Framework 3 ParamILS(6y, 7, prestart, S)
Outline of iterated local search in parameter conguratpacs; the specic vari-
ants of ParamILS we studBasicILS(N) andFocusedILS are derived from this
framework by instantiating proceduleetter (which compare9,¢’ € ©). Ba-
siclLS(N)usesbettery (see Procedurd 4), whilocusedILSusesbetterp,. (see
Procedurél6). The neighbourhodydh(6) of a configuratior is the set of all con-
figurations that differ fron® in one parameter, excluding configurations differing
in a conditional parameter that is not relevanfin

1: Input: Initial configurationd, € ©, algorithm parameters p,csiq-¢, ands.

2. Output: Best parameter configuratiérfound.

3: fori=1,...,rdo

4: 0 <+ randomt € ©

5. if better(0,6,) then

6 00 «— 0

7. endif

8: end for

9: 0,5 « IterativeFirstImprovement(6y)
10: while not TerminationCriterion(glo
11: 0+ O;;
12: [/l ===== Perturbation

13: fori=1,...,sdo
14: 0 < random ¢’ € Nbh(0);

15: end for

16: /[===== Basic local search

17: 0 < Iterative FirstImprovement(0);
18: /[===== AcceptanceCriterion

19: if better(0, 0;) then

20: 015 + 0;

21: endif

22: with probabilityp,csiar: 00,5 < random 0 € 6,
23: end while
24: return overall besy,,,. found;

24

3.4. THE FOCUSEDILS ALGORITHM

Procedure 4bettery (6, 0,)

Procedure used iBasicI LS(N) to compare two parameter configurations. Pro-
cedureobjective(, N) returns the user-defined objective of the target algorithm
with the configuratio on the firstV instances, and keeps track of the incumbent
solution,d;,,.

1: Input: Parameter configuratiafy, parameter configuratiofy.

2: Qutput: True if §; does better than or equal #e on the first/V instances;
false otherwise.

3: Side Effect Adds runs to the global caches of performed algorithm runs
Ry, and Ry, of configurationd; andé,, respectively; potentially updates the
incumbent,,,..

4: ¢y (0s) < objective(fy, N)

¢n(6y) < objective(0y, N)

6: return éN(Ql) < éN(eg)

a

of instances, this approach can find good parameter contiignsavith low com-
putational effort. However, BasiclLS uses a fixed number otINs to evaluate
each configuratiofi. Therefore, this strategy is not flexible in general cases. B
cause if N is large, evaluating a configuration is very expenasnd optimization
process is very slow. On the contrary, if N is small, Param¢a8 suffer a poor
generalisation to independent test runs.

3.4 The FocusedILS Algorithm

FocusedILS is a variant of ParamILS that deals with the grolslof BasicParamILS
by adaptively varying the number of training samples cozr®d from one pa-
rameter configuration to another. We denote the number of available to es-
timate the cost statistie(¢) for a parameter configuratioh by N(#). Having
performed different numbers of runs using different part@meonfigurations, we
face the question of comparing two parameter configuratioasd ¢’ for which
N(f) < N(¢'). One option would be simply to compute the empirical codista
tic based on the available number of runs for each configamatHowever, this
can lead to systematic biases if, for example, the first ntgiga are easier than the
average instance. Instead, we compaend(’ based onV(6) runs on the same
instances and seeds. This approach leads us to a concephofadion and the
domination procedure is presented in Procefllire 5.

Procedurélé shows the procedteé er . used by FocusedParamILS to com-
pare two parameter configurations. This procedure firstieegjone additional
sample for the configurationhaving smalletV(6;), or one run for both configu-

25

CHAPTER 3. PARAMILS

rations if they have the same number of runs. Then, it coemperforming runs

in this way until one configuration dominates the other. Ag gloint it returns true

if #; dominated),, and false otherwise. We also keep track of the total number
of configurations evaluated since the last improving step, (since the last time
betterr,. returned true); we denote this numberiaswWhenevebetter g, (01, 65)
returns true, we perform B “bonus” runs fér and reset B to 0. This mechanism
ensures that we perform many runs with good configuratioms tlhat the error
made in every comparison of two configuratidhsandf, decreases on expecta-
tion.

Procedure 5dominated{;, 65)

if N(Hl) < N(eg) then
return false
end if
return objective(0;, N(0y)) < objective(fy, N(6s))

3.5 Usage

ParamILS[[1| 2] is a tool for parameter optimization. It wefkr any parameter-
ized algorithm whose parameters can be discretized. Phasdarches through
the space of possible parameter configurations, evaluatinfigurations by run-
ning the algorithm to be optimized on a set of benchmark ntss.

What users need to provide for ParamlILS are:

e a parametric algorithm A (executable to be called from thamand line),

¢ all parameters and their possible values (parameters ndeddonfigurable
from the command line), and

e a set of benchmark problems, S.

Users can also choose from a multitude of optimization diyes, reaching
from minimizing average runtime to maximizing median apqmaation qualities.
ParamlILS then executes algorithm A with different combova of parameters
on instances sampled from S, searching for the configur#tiainyields overall
best performance across the benchmark problems. Forgjestad([2].

3.5.1 ParamlILS Configuration

There are a number of configurable parameters the user can set

26

3.5. USAGE

Procedure 6betterp,.(01, 62)

Procedure used in FocusedILS to compare two parameter acetiigns. Proce-
dureobjective(d, N) returns the user-defined objective of the configuratiam
the first N instances, keeps track of the incumbent soluthmwl, updatesi, (a
global cache of algorithm runs performed with parameteffigaration). For
eachd, N(0) = length(Ry). B is a global counter denoting the number of con-
figurations evaluated since the last improvement step.

1: Input: Parameter configuratiafy, parameter configuratiofy.
2. Output: True if 6; dominated),, false otherwise.
3: Side Effect Adds runs to the global caches of performed algorithm mgs
and Ry, ; updates the global countét of bonus runs, and potentially the
incumbent;,,..
if N(6;) < N(6,) then

Gmm — 91, Gmam — 092

if N(@l) = N(HQ) then

B+ B+1

end if
else
10: Opin < 020,00 < 04
11: end if
12: repeat
13: 14 N(Opin) +1
14 ¢i(Omaz) < objective(Opar, i) ' N(Opmin) = N(Oma:), adds a new run

to R@maz .

15: ¢i(Omin) < objective(O,,n, 1) I/ Adds a new run tary, . .
16: until dominates(0y, 6,) or dominates(0s, 6,)
17: if dominates(6,,0-) then
18: /[===== Perform B bonus runs.
19: Cnoy)+B(6h) < objective(6y, N(61) + B) Il Adds B new runs tay, .
200 B+ 0
21: return true
22: else
23: return false
24: end if

©oN TR

27

CHAPTER 3. PARAMILS

e maxEvalsThe number of algorithm executions after which the optiriara
is terminated.

e maxlts The number of ILS iterations after which the optimizationesmi-
nated.

e approach Use basic for BasiclLS, focused for FocusedILS, and randowm f
random search.

e N For BasiclLS, N is the number of runs to perform to evaluatdgrram-
eter configuration. For FocusedILS, it is the maximal numiferuns to
perform to evaluate a parameter configuration.

e userunlogf this parameter is 1 or true, another file ending in -runlaty w
be placed in the output directory. This file will contain then@igurations
and results for every algorithm run performed by ParamIUgr€ are also
several internal parameters that control the heuristi€anmnamILS.

3.5.2 Tuning-scenario file

Tuning-scenario files such as this define a tuning scenanmplaiely, and also
contain some information about where ParamILS should wisteesults, etc.
They can contain the following information:

e algo An algorithm executable or a call to a wrapper script aroumdlgo-
rithm that conforms with the input/output format of Parai8IL

e execdir Directory to executéalgo) from: 'cd (execdii; (algo)’
e deterministic Set to O for randomized algorithms, 1 for deterministic

e run_obj A scalar quantifying how 'good’ a single algorithm executiis,
such as its required runtime. Implemented examples foritisiside run-
time, runlength, approx (approximation quality, i.e.,apfimal quality di-
vided by found quality)), speedup (speedup over a referandane for this
instance - note that for this option the reference needs ttefieed in the
instance seed file as covered in Section 6). Additional ¢bgs for sin-
gle algorithm executions can be defined by modifying funcsogle run
objective in file algaspecifics.rb.

e overall_obj While run obj defines the objective function for a single algo
rithm run, overall obj defines how those single objectives@mbined to
reach a single scalar value to compare two parameter coafigns. Imple-
mented examples include mean, median, q90 (the 90% gyaatilienean

28

3.5. USAGE

(a version of the mean accounting for unsuccessful runal tohtime di-
vided by number of succesful runs), mean1000 (anotheroreddithe mean
accounting for unsuccessful runs: (total runtime of susftésuns + 1000x
runtime of unsuccessful runs) divided by number of runss #ffectively
maximizes the number of successful runs, breaking ties &yuhtime of
successful runs), and geomean (geometric mean, primaag in combi-
nation with runobj = speedup. The empirical statistic of the cost distri-
bution (across multiple instances and seeds) to be mindnggch as the
mean (of the single run objectives).

cutoff_time The time after which a single algorithm execution will bentér
nated unsuccesfully. This is an important parameter: ibska too high,
lots of time will be wasted with unsuccessful runs. If chosem low the
optimization is biased to perform well on easy instanceg.onl

cutoff_length The run length after which a single algorithm execution will
be terminated unsuccessfully. This length can, e.g. beetefinflips for an
SLS algorithm or decisions for a tree search.

tunerTimeout The timeout of the tuner. Validation of the final best found
parameter configuration starts after the timeout.

paramfile Specifies the file with the parameters of the algorithms.
outdir Specifies the directory ParamILS should write its results to
instancefile Specifies the file with a list of training instances.
test.instancefile Specifies the file with a list of test instances.

instance seedfile Specifies the file with a list of training instance/seed pairs
- this and instance file are mutually exclusive.

test instance seed fil&pecifies the file with a list of training instance/seed
pairs - this and test instance file are mutually exclusive.

29

30

Part Il
CONTRIBUTIONS

31

Chapter 4

Determine ParamILS Parameters

The experiments in this Section will clarify which are thesnsuitable ParamILS
parameters for MathSAT. The most important ParamILS patersare:

approach the strategy that ParamlILS uses to find the optimized corafigur
tions for ParamILS. We can set tapproachparameter aBasig Focused
andRandonsearch. Because tiBasic andFocusedsearch are better than
theRandonsearch in all experiments ofl[2], therefore in this thesisonwky
check whetheBasicor Focuseds the fittest one for MathSAT.

deterministic the way ParamILS evaluates the target algorithm (MathSAT,
in this case). Ifdeterministicis set to 1 DAE), then ParamILS will only
evaluate a singléconfiguration, instangepair once (with the seed of -1
for the target algorithm, since the seed is not used by ametestic target
algorithm). Otherwise, thdeterministicparameter is set to RAE), then

a (configuration, instangepair will be evaluated several times, each with a
different seed. This is in order to obtain a more represiegtaicture of the
algorithm’s expected performance on that instance.

cutoff-time the time after which a single algorithm execution will bater
nated unsuccessfully. This is an important parameter Isecdilt is chosen
too high, lots of time will be wasted with unsuccessful rulfist is chosen
too low the optimization is biased to perform well on easyanses only.

tunerTimeout the timeout of the tuner (ParamiLS). The validation of the
final best found parameter configuration starts after tmgaiut.

numRun the random seed for ParamILS.

33

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

4.1 Two runs of Basic ParamILS using DAE

In theory, two runs of ParamILS with the same configuratiothneturn the same
result if the MathSAT runtime on the same test are alwaystgxdte same. Be-
cause MathSAT is not fully deterministic (it can perform sorandom steps) and
even if MathSAT is deterministic we still cannot guaranteat the measurement
of time is always 100% reliable on a general purpose op&yatystem, therefore
we cannot avoid having different results of two ParamILSsrusing the same
configuration. But we still need to check the stability ofé&atLS by considering
whether the result are nearly the same or completely difterf the first case
happens, we will only run ParamILS once on each test caseer@ite, we will
have to run ParamILS many times on each test case and chaobeghresult.
In addition, although ParamILS has two search stratdggsscandFocusedthe
ParamILS stability (when fixing other ParamILS parameterdy depends the
way ParamlILS evaluates each the MathSAT run (DAE and RAE)w&oonly
need to check the ParamlILS stability on Besicapproach usin@AE andRAE

4.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours

Training MathSAT timeout 10s

Testing MathSAT timeout| 1200s

Training set the QELRA of SMT LIB

Testing set Training set

ParamILS Configuration 1 Basic, deterministic=1, N=100
run.obj=runtime, overallbbj=mean
ParamILS Configuration 2 Basic, deterministic=1, N=100
run_obj=runtime, overallbbj=mean

Table 4.1: The experimental setup of Basic ParamILS using DA

4.1.2 Experimental result

Table[4.2 presents the two configurations found by two rurBapémILS. Figure
4.1 and Tablé 4]3 show the MathSAT performance on two cordtgurs found
by two ParamlILS runs. It can be seen that the two configurataoe slightly
different, and the MathSAT performance on these configumatare very similar
to each other.

34

4.1. TWO RUNS OF BASIC PARAMILS USING DAE

Performance comparison

T T T T T T L
10000 F
1000
4
100 +
= 10 E
8
[}
a
1F E
n
01 4
0.01 | E
1 satisfiable +
unsatisfiable +
v error/timeout +
0.001/" PO ISR NN SN SR NS SR S NN S S ST S R
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(a) The first run
Performance comparison
L L L L
10000 F
1000
.
//4j/
100 | o
% 10 _ -]
T
©
[a
1r E
0.1 -
0.01 [E
satisfiable ~ +
unsatisfiable — +
s error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(b) The second run

Figure 4.1: Performance comparison of two runs of BasicrRHr8 with deter-

ministic=1

35

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Configuration| Default | Basic DAE | Basic DAE
Parameter
aep yes yes yes
deduction 2 2 2
dualrail off off off
dyn.ack no no yes
dyn.acklimit 0 0 0
dyn.ack threshold 1 1 50
expensiveccmin yes no yes
frequentreducedb no no yes
ghostfilter no yes yes
ibliwi no yes yes
impl_explthreshold 0 0 0
mixed.cs yes no no
permanentheorylemmas| yes yes yes
pureliteral filter no yes yes
randomdecisions no no no
restarts normal | adaptive | adaptive
sl 2 2 2
spliteq no no no
tcomb off off ack
toplevelprop 1 0 0
tsolver eufla | la euf la

Table 4.2: Experimental result of Basic ParamILS using DAE

Tests solved (Optimized/Default) 501/496
Mean runtime(not include TIMEOUT tests) | 30.639/29.20Z
Optimized compared with Default Result
Better runtime tests/The total number of tests 265/543
Equal runtime tests/The total number of tests 92/543
Worse runtime tests/The total number of tests 186/543

(a) The first run

Tests solved (Optimized/Default) 501/496
Mean runtime(not include TIMEOUT tests) | 25.978/29.999
Optimized compared with Default Result
Better runtime tests/The number of tests 255/543
Equal runtime tests/The number of tests 105/543
Worse runtime tests/The number of tests 183/543

(b) The second run

Table 4.3: Experimental result of Basic ParamILS using DAE

36

4.2. TWO RUNS OF BASIC PARAMILS USING RAE

4.2 Two runs of Basic ParamILS using RAE

The experiments in this section accompanied with the exparis in the previous
section are used to check the stability of ParamILS by cemsid whether the
results of two ParamlILS runs are nearly the same or compldifférent. If the
first case happens, we will only run ParamILS once on eacltésst Otherwise,
we will have to run ParamILS many times on each test case amokelthe best
result.

4.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours

Training MathSAT timeout 10s

Testing MathSAT timeout| 1200s

Training set the QELRA of SMT LIB

Testing set Training set

ParamILS Configuration 1 Basic, deterministic=0, N=100
run_obj=runtime, overallbbj=mean
ParamILS Configuration 2 Basic, deterministic=0, N=100
run_obj=runtime, overalbbj=mean

Table 4.4: Experimental setup of two runs of Basic ParamI&i8gIRAE

4.2.2 Experimental result

Table[4.5 presents two configurations found by two Paramli$s.r Figurd 42
and Tablé 46 show the MathSAT performance on two configumatiound by two
ParamILS runs. It can be seen that the two configurationsliaietlg different,
and the MathSAT performance on these configurations aresieryar to each
other.

37

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Performance comparison

10000 F o S - _‘
1000 . S 4
A o
i
e A
100 | ++f$ i
t;ﬁ#tﬁ’
= 10 A + .
8 ¥
2 S
.
1r E
0.1 | -
0.01 E
satisfiable ~ +
unsatisfiable ~ +
A error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(a) Thefirst run

Performance comparison

10000 [

1000

100

10 |

Default

001 f

satisfiable ~ +
unsatisfiable +
error/timeout +

T T

0001 // ///‘ 1 1 1 1 I
0001 001 01 1 10 100 1000 10000

Optimized
(b) The second run

Figure 4.2: Performance comparison of Two runs of BasicrRHr8 using RAE

38

4.2. TWO RUNS OF BASIC PARAMILS USING RAE

Configuration| Default | Basic RAE| Basic RAE
Parameter
aep yes no no
deduction 2 2 2
dualrail off off off
dyn ack no no no
dyn_ack limit 0 0 0
dyn_ack threshold 1 1 1
expensiveccmin yes yes yes
frequentreducedb no no no
ghostfilter no yes no
ibliwi no yes yes
impl_explLthreshold 0 0 0
mixed cs yes yes yes
permanentheorylemmas| yes yes yes
pureliteral filter no yes no
randomdecisions no yes no
restarts normal | normal adaptive
sl 2 2 2
spliteq no yes yes
tcomb off off off
toplevelprop 1 0 1
tsolver eufla | la la

Table 4.5:

Experimental result of two runs of Basic Paramiisihg RAE

Tests solved (Optimized/Default) 524/496
Mean runtime(not include TIMEOUT tests) | 20.547/29.211
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 36/543
Worse runtime tests/The number of tests 352/543
(a) The first run
Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT test) | 18.321/28.163
Optimized compared with Default Result
Better runtime tests/The number of tests 158/543
Equal runtime tests/The number of tests 55/543
Worse runtime tests/The number of tests 330/543

Table 4.6:

(b) The second run

Experimental result of two runs of Basic Paramiisiig RAE

39

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

4.3 Summary of two Basic ParamILS runs using DAE
and RAE

From the summary result in Takle ¥.7, it can be seen that thbSAT perfor-
mances of configurations found by the two ParamILS runs anestlthe same.
The difference seems not to justify the overhead of runniaaILS several
times. Therefore, from now on, we have decided to run Par&nolhce on each
test case.

Default| Basic DAE 1| Basic DAE 2| Basic RAE 1| Basic RAE 2
Tests solved | 496 501 501 524 523
Mean runtime| 28.163 | 30.639 25.978 20.547 18.321

Table 4.7: The number of solved tests and mean runtime imslegwt include
TIMEOUT tests) of configurations found by Basic ParamILSigdDAE and RAE

40

4.4. BASIC PARAMILS USING DAE AND RAE

4.4 Basic ParamlILS using DAE and RAE

The purpose of the experiments in this section is to checkhvaigorithm evalu-
ation (DAE or RAE) Basic ParamILS uses is better for MathSAT.

4.4.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4

MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4
Training time 48 hours

Training MathSAT timeout 10s

Testing MathSAT timeout| 1200s

Training set the QELRA of SMT LIB

Testing set Training set

ParamILS Configuration 1

Basic, deterministic=1, N=100
run.obj=runtime, overallbbj=mean

1.6)

ParamILS Configuration 2

Basic, deterministic=0, N=100
run_obj=runtime, overallbbj=mean

Table 4.8: Experimental setup of Basic ParamILS using DAEERAE

4.4.2 Experimental result

Tests solved (Optimized/Default) 501/496
Mean runtime(not include TIMEOUT tests) | 30.639/29.202
Optimized compared with Default Result
Better runtime tests/The number of tests 265/543
Equal runtime tests/The number of tests 92/543
Worse runtime tests/The number of tests 186/543

(a) Deterministic

Tests solved (Optimized/Default) 524/496

Mean runtime(not include TIMEOUT tests) | 20.547/29.114

Optimized compared with Default Result

Better runtime tests/The number of tests 155/543

Equal runtime tests/The number of tests 36/543

Worse runtime tests/The number of tests 352/543
(b) Random

Table 4.9: Experimental result of Basic ParamILS using DAE RAE

41

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Performance comparison

L B B B B T
10000 E . e L + 4
1000 B
100 | 4
= 10 | b
S
‘©
o
1r E
0.1 | -
001} T .
o satisfiable ~ +
unsatisfiable +
error/timeout +
0001 - /‘ ‘I 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(a) Deterministic
Performance comparison
T T T T T T T T ¥
10000 £ T R T —"
1000 YA
et JhAf
++ ;
100 } e g ’ E
W
25
= 10 | N + -
S
‘©
la}
1r E
0.1 | -
0.01 E
satisfiable ~ +
, unsatisfiable +
A error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) Random

Figure 4.3: Performance comparison of Basic ParamILS U3/ig and RAE

42

4.4. BASIC PARAMILS USING DAE AND RAE

The experimental results in Talhle 4.9 and Fiduré 4.3 shotBsic ParamILS
using RAE is better in this case, although MathSAT is a det@stic algorithm.
The main reason is that Basic ParamILS evaluates every coafign only once
with the same number of MathSAT runs, and the MathSAT run tithe same
instance on general purpose operating systems can varffenedit runs. There-
fore, RAE is more robust than DAE in the case of Basic Paranbié&use RAE
evaluates a singlé&onfiguration, instangepair many times, each with a different
seed (this helps to obtain a more representative pictureedlgorithm’s expected
performance on that instance).

43

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

4.5 Focused ParamlILS with DAE and RAE

The purpose of the experiments in this section is to checkhvaigorithm evalu-

ation (DAE or RAE) Focused ParamiILS uses is better for MathSA

4.5.1 Experimental setup

1.6)

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4

MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4
Training time 48 hours

Training MathSAT timeout 10s

Testing MathSAT timeout| 1200s
Training set the QELRA of SMT LIB
Testing set Training set

ParamILS Configuration 1

Focused, deterministic=1, N=543
run_obj=runtime, overallbbj=mean

ParamlILS Configuration 2

Focused, deterministic=0, N=543
run_obj=runtime, overallbbj=mean

Table 4.10: The experimental setup of Focused ParamILSdeiterministic and

random

4.5.2 Experimental result

Tests solved (Optimized/Default) 525/496
Mean runtime(not include TIMEOUT tests) | 24.367/28.903
Optimized compared with Default Result
Better runtime tests/The number of tests 148/543
Equal runtime tests/The number of tests 40/543
Worse runtime tests/The number of tests 355/543
(a) Deterministic
Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT test) | 18.150/28.593
Optimized compared with Default Result
Better runtime tests/The number of tests 165/543
Equal runtime tests/The number of tests 56/543
Worse runtime tests/The number of tests 322/543

Table 4.11;

(b) Random

Experimental result of Focused ParamILS usidg Bnd RAE

44

4.5. FOCUSED PARAMILS WITH DAE AND RAE

Performance comparison

10000 F t = = = A-HbH-

1000 s
100 - j&‘g&
i
S
= 10 -
T
©
[a}
1 7
0.1 4
0.01 E
satisfiable ~ +
unsatisfiable +
Ve error/timeout +
0001 - /‘ 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(a) Deterministic
Performance comparison
L L L B B B G
10000 £ | I R L IA
1000
ey
100 p L E
G
: +
= 10 | b
T
©
[a}
1r E
0.1 | 4
001 A e
R satisfiable +
eyl unsatisfiable +
ey error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) Random

Figure 4.4: Performance comparison of Focused ParamIlfg WBAE and RAE

45

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

The experimental results in Table 4.11 and Figuré 4.4 shaw Focused
ParamILS using DAE is better. This is because although uBisg, a Math-
SAT run is evaluated only once, Focused ParamILS evaluatgs @nfiguration
many times, each with a different number of MathSAT runs.theeowords, eval-
uating a MathSAT run once still guarantees the configurai@uation is precise
by evaluating that configuration many times. Besides, DAESsa lot of time
when evaluating a MathSAT run compared with RAE, and this esdkocused
ParamlILS evaluate a configuration more precisely by tegliagconfiguration on
a large number of instances.

46

4.6. SUMMARY OF BASIC AND FOCUSED PARAMILS USING DAE AND
RAE

4.6 Summary of Basic and Focused ParamILS us-
ing DAE and RAE

From the results in Table 4112, it can be seen that FocusePa® is more
stable than Basic ParamILS, and Focused ParamILS using Dé\kdes us with
the best performance. Therefore, Focused ParamILS usirf iBAhosen for
running on other experiments in this thesis.

Default | Basic DAE | Basic RAE| Focused DAE| Focused RAE
Tests solved 496 501 524 525 523

Table 4.12: The number of tests solved (on 543 tests) of aarafigpns found by
Basic and Focused ParamlILS using DAE and RAE

47

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

4.7 RAE Basic ParamlILS with different MathSAT
timeouts

In order to choose the suitable MathSAT timeout (cutoffe), we base on the
percentage of tests solved by the default (or smt-comp) garaiion using that
MathSAT timeout. The experiments in this section and thd segtion are used
to check whether ParamILS configured with the MathSAT tinteauwhich the
default configuration solves similar percentage of teslishave similar results.

4.7.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Testing MathSAT timeout| 1200s
Training set the QFLRA of SMT LIB
Testing set Training set
ParamILS Configuration | Basic, deterministic=0, N=100
run_obj=runtime, overallbbj=mean
Training MathSAT timeout 5s, 10s, 20s, 40s, 60s

Table 4.13: The experimental setup of Basic ParamILS witferdint MathSAT
timeouts

MathSAT timeout 5s 10s 20s 40s 60s
Percentage of tests solved 79.7%| 82.5% | 85.6% | 88.8% | 90.4%
by the default configuration

Table 4.14: The percentage of tests solved when running $4dathvith different
timeouts on the training set

4.7.2 Experimental result

From the results in Table'4.115 and Figlrel 4.5, except fordintess, other Math-
SAT timeouts have similar performance because the targetitim MathSAT
(using the default configuration) configured with thesenireg timeouts solve ap-
proximately the same percentage of instances in the tiaseh

48

4.7. RAE BASIC PARAMILS WITH DIFFERENT MATHSAT TIMEOUTS

Performance comparison

T T T T T T L
10000 F ‘ P A
1000 E
b4 .]
100 | . s g
ot]
= 10 +/;=¢ ﬁ;/ + + .
5] o
£ A
e s
1F E
n
n
0.1 4
0.01 | E
satisfiable +
unsatisfiable +
S error/timeout +
0.001 MY PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(a) training MathSAT timeout=5s
Performance comparison
T T T T T T ¥
10000 E == | ==t e = b] s
1000 Py
A
AT
A
100 | ﬁ‘ g g
W
b
= 10 | N + -
T
©
[a
1r E
0.1 | 4
0.01 [E
satisfiable ~ +
unsatisfiable +
ey error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(b) training MathSAT timeout=10s

Figure 4.5: Performance comparison of Basic ParamILS wiiferént training
MathSAT timeouts

49

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Performance comparison

T T T T T
10000 FE =+ = ==
1000 +
jrr“?f +
+ v
+ s
100 | M Sk g
v LA
= 10 | E
8
[}
[a}
1F E
0.1 | 4
0.01 | E
satisfiable +
unsatisfiable +
S error/timeout +
0.001 SRS PR 2ol Lol RS E— IS — ru -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(c) training MathSAT timeout=20s
Performance comparison
T T T T T T A
10000 + 4
1000 b
100 -.
= 10 -
8
]
[a}

0.1

0.01 E
satisfiable ~ +
unsatisfiable — +
ey error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(d) training MathSAT timeout=40s

Figure 4.5: Performance comparison of Basic ParamILS wiiferént training

MathSAT timeouts

50

4.7. RAE BASIC PARAMILS WITH DIFFERENT MATHSAT TIMEOUTS

Performance comparison

T T T T T 7
10000 F A
1000 + P
+F o+ s f /]
7 //+ +
j;br + L /I//4 1
100 F * T .
+ i]
+ 4 S
oy T 44
= 10 F I i
3 e
‘© %;«if%
s} A L
1r E
0.1 | -
001 F I £
Y satisfiable ~ +
s unsatisfiable +
ey error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(e) training MathSAT timeout=60s

Figure 4.5: Performance comparison of Basic ParamlILS wiiferént training
MathSAT timeouts

51

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Tests solved (Optimized/Default) 500/496
Mean runtime(not include TIMEOUT tests) | 29.194/28.274
Optimized compared with Default Result
Better runtime tests/The number of tests 280/543
Equal runtime tests/The number of tests 97/543
Worse runtime tests/The number of tests 166/543
(a) training MathSAT timeout=5s
Tests solved (Optimized/Default) 524/496
Mean runtime(not include TIMEOUT tests) | 20.547/29.211
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 36/543
Worse runtime tests/The number of tests 352/543
(b) training MathSAT timeout=10s
Tests solved (Optimized/Default) 520/496
Mean runtime(not include TIMEOUT tests) | 23.137/30.939
Optimized compared with Default Result
Better runtime tests/The number of tests 123/543
Equal runtime tests/The number of tests 34/543
Worse runtime tests/The number of tests 386/543
(c) training MathSAT timeout=20s
Tests solved (Optimized/Default) 521/496
Mean runtime(not include TIMEOUT tests) | 22.308/31.18§
Optimized compared with Default Result
Better runtime tests/The number of tests 120/543
Equal runtime tests/The number of tests 49/543
Worse runtime tests/The number of tests 374/543
(d) training MathSAT timeout=40s
Tests solved (Optimized/Default) 521/495
Mean runtime(not include TIMEOUT tests) | 21.072/30.121
Optimized compared with Default Result
Better runtime tests/The number of tests 132/543
Equal runtime tests/The number of tests 47/543
Worse runtime tests/The number of tests 364/543

(e) training MathSAT timeout=60s

Table 4.15: Experimental result of RAE Basic ParamILS witffedent training
MathSAT timeouts

52

4.8. DAE FOCUSED PARAMILS WITH DIFFERENT TRAINING MATHSAT
TIMEOUTS

4.8 DAE Focused ParamlLS with different training
MathSAT timeouts

In order to choose the suitable MathSAT timeout (cuttofie), we base on the
percentage of tests solved by the default (or smt-comp) garaiion using that
MathSAT timeout. The experiments in this section and theiptes section are
used to check whether ParamILS configured with the MathSA&diuts in which

the default configuration solves similar percentage otesti have similar re-

sults.

4.8.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Training time 48 hours
Testing MathSAT timeout| 1200s
Training set the QELRA of SMT LIB
Testing set Training set
ParamlILS Configuration | Focused, deterministic=1, N=543
run_.obj=runtime, overallobj=mean
Training MathSAT timeout 5s, 10s, 20s, 40s, 60s

Table 4.16: The experimental setup of DAE Focused Paramlli® different
timeouts

MathSAT timeout 5s 10s 20s 40s 60s
Percentage os tests solved 79.7%| 82.5% | 85.6% | 88.8% | 90.4%
by the default configuration

Table 4.17: The percentage of tests solved and mean runtimae manning Math-
SAT with different MathSAT timeouts on the training set

4.8.2 Experimental result

From the results in Table 4.18 and Figlrel 4.6, except fonitngiMathSAT time-
out=5s, other training MathSAT timeouts have similar perfance because the
target algorithm MathSAT (using the default configuratioaipfigured with these
training MathSAT timeouts solve approximately the same@etage of instances
in the training set.

53

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Performance comparison

T T T T T T L
10000 F
1000
+ ’ 1
4.7 -
A 1
100 */;gf#/ e
= 10 E
I}
©
a
1F E
n
0.1 4
001 | 7] -
N satisfiable +
unsatisfiable +
v error/timeout +
0.001 SRS PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(a) timeout=5s
Performance comparison
T T T T T T A
10000 E I I o= b - — A A
1000 b
oF
"
F o
100 F o Iﬁ 4
P
Wt
4-4 s ++/{r%$f’/ +
(—% 10 | + ’f:;/ﬁr/* 1
< AR G
[a
1r E
0.1 -
0.01 E
satisfiable ~ +
unsatisfiable +
ey error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(b) timeout=10s

Figure 4.6: Performance comparison of DAE Focused Paramilit!s different
MathSAT timeouts

54

4.8. DAE FOCUSED PARAMILS WITH DIFFERENT TRAINING MATHSAT
TIMEOUTS

Performance comparison

T T T T T T L

10000 F P R e

1000

100

10 |

Default

satisfiable +
unsatisfiable +
elrror/timeolut +

0.001 //.// P L PR il L il h n n n
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) timeout=20s

Performance comparison

10000 [

1000

100

10 |

Default

0.01

4

satisfiable
unsatisfiable +
elrror/timeolut

+

0.001 // . ' ' 1 1 1 1
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(d) timeout=40s

Figure 4.6: Performance comparison of DAE Focused Paramilit!s different
MathSAT timeouts

55

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Performance comparison

10000 E T _‘
1000 e]
+++ + /,i'#/ur /]
e
A
100 | Ul Qfﬁ# 9
e
Iy
JF
s wf A]
T e
8 i
1F E
0.1 | -
0.01 | J

satisfiable ~ +
unsatisfiable ~ +
error/timeout +

T T

0001 // //‘ 1 1 1 1
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(e) timeout=60s

Figure 4.6: Performance comparison of DAE Focused Paramilit!s different
MathSAT timeouts

56

4.8. DAE FOCUSED PARAMILS WITH DIFFERENT TRAINING MATHSAT

TIMEOUTS
Tests solved (Optimized/Default) 496/495
Mean runtime(not include TIMEOUT tests) | 28.651s/28.633s
Optimized compared with Default Result
Better runtime tests/The number of tests 275/543
Equal runtime tests/The number of tests 102/543
Worse runtime tests/The number of tests 166/543
(a) timeout=5s
Tests solved (Optimized/Default) 523/495
Mean runtime(not include TIMEOUT tests) | 19.407s/28.953s
Optimized compared with Default Result
Better runtime tests/The number of tests 182/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 311/543
(b) timeout=10s
Tests solved (Optimized/Default) 519/495
Mean runtime(not include TIMEOUT tests) | 21.957s/30.743s
Optimized compared with Default Result
Better runtime tests/The number of tests 129/543
Equal runtime tests/The number of tests 56/543
Worse runtime tests/The number of tests 358/543
(c) timeout=20s
Tests solved (Optimized/Default) 520/496
Mean runtime(not include TIMEOUT tests) | 19.954s/30.789s
Optimized compared with Default Result
Better runtime tests/The number of tests 155/543
Equal runtime tests/The number of tests 59/543
Worse runtime tests/The number of tests 329/543
(d) timeout=40s
Tests solved (Optimized/Default) 522/496
Mean runtime(not include TIMEOUT tests) | 18.814s/30.496s
Optimized compared with Default Result
Better runtime tests/The number of tests 166/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 327/543

(e) timeout=60s

Table 4.18: Performance comparison of DAE Focused ParamitiSdifferent
training MathSAT timeouts

57

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

4.9 DAE Focused ParamlLS with different training
times

ParamlILS configured with the MathSAT timeout of 60s convergighin 48 hours

(by considering the ParamlILS log file). The experiments is slection are used
to check whether we can get the over-training situation Ipaeding the training
time to 72 hours.

4.9.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)

Training MathSAT timeout 60s

Testing MathSAT timeout| 1200s

Training set the QELRA of SMT LIB

Testing set Training set

ParamILS Configuration | Focused, deterministic=1, N=543
run_obj=runtime, overallbbj=mean
Training time 1 48 hours

Training time 2 72 hours

Table 4.19: The experimental setup of DAE Focused Paramlli® different
training times

4.9.2 Experimental result

The results in Table4.20 and Figurel4.7 show that we can get\br-training
situation. Therefore, if the MathSAT timeout is less tharequal to 60s, we
should not train ParamILS more than 48 hours.

58

4.9. DAE FOCUSED PARAMILS WITH DIFFERENT TRAINING TIMES

Performance comparison

10000 F

1000 +¢ 44
A
4

100

% 10 -
8
[}
a
1 E
0.1 1
0.01 E
satisfiable +
unsatisfiable +
v error/timeout +
0.001 ST PR 2ol il RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(a) Training time = 48hours
Performance comparison
T T T T T
10000 E ===t == | =
1000 | 1,
3
+ %
+ Ve
100 | ¥ LATE o
,Qﬁf%
Fg 5
= /4’ v
= 10 | /ﬁk#// + —
g Fid
]
[a]
1r E
0.1 -
0.01 [E
satisfiable ~ +
unsatisfiable — +
error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(b) Training time = 72hours

Figure 4.7: Performance comparison of Focused ParamIli&;rdmistic=1 with
different training times

59

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Tests solved (Optimized/Default) 522/496
Mean runtime(not include TIMEOUT tests) | 18.814s/30.496s
Optimized compared with Default Result
Better runtime tests/The number of tests 166/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 327/543
(a) Training time = 48hours
Tests solved (Optimized/Default) 519/495
Mean runtime(not include TIMEOUT tests) | 19.442s/27.8505
Optimized compared with Default Result
Better runtime tests/The number of tests 167/543
Equal runtime tests/The number of tests 51/543
Worse runtime tests/The number of tests 325/543

(b) Training time = 72 hours

Table 4.20: Performance comparison of DAE Focused ParamiliSdifferent
training times

60

4.10. DAE FOCUSED PARAMILS WITH DIFFERENT NUMRUNS

4.10 DAE Focused ParamlILS with different num-
Runs

Because the ParamILS random behaviour depends on a ranéohmeenRun

therefore we need to check whether ParamILS performandésdifierent ran-
dom seeds are completely different or similar to each othke experiments in
this section are used to verify this property.

4.10.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.5-itp (Jun 24 2009 13:15:40, gmp 4.2.2, gcc 3.4.6)
Tunning time 48 hours

Training MathSAT timeout 10s

Testing MathSAT timeout| 1200s

Training set the QELRA of SMT LIB

Testing set Training set

ParamILS Configuration | Focused, deterministic=1, N=543
run_obj=runtime, overallobj=mean
numRun 1,2,3

Table 4.21: Experimental setup of DAE Focused ParamlLS different num-
Runs

4.10.2 Experimental result

The results in Table'4.22 and Figlirel4.8 show that Paramlis$barly the same
performance on different numRuns. Hence, we fix the numRuanpeter for
other experiments in this thesis.

61

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Table 4.22: Performance comparison of DAE Focused ParamiliSdifferent

numRuns

2

Uy

U7

Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT tests) | 22.373s/30.867
Optimized compared with Default Result
Better runtime tests/The number of tests 180/543
Equal runtime tests/The number of tests 48/543
Worse runtime tests/The number of tests 315/543
(&) numRun 1
Tests solved (Optimized/Default) 523/496
Mean runtime(not include TIMEOUT tests) | 18.165s/28.200
Optimized compared with Default Result
Better runtime tests/The number of tests 186/543
Equal runtime tests/The number of tests 52/543
Worse runtime tests/The number of tests 305/543
(b) numRun 2
Tests solved (Optimized/Default) 523/495
Mean runtime(not include TIMEOUT tests) | 19.407s/28.953
Optimized compared with Default Result
Better runtime tests/The number of tests 182/543
Equal runtime tests/The number of tests 50/543
Worse runtime tests/The number of tests 311/543

(c) numRun 3

62

4.10. DAE FOCUSED PARAMILS WITH DIFFERENT NUMRUNS

Performance comparison

T T T T T T
10000 E =~ HHHH
1000 E
100 | -
= 10 E
8
[}
a
1F E
0.1 4
001 -
satisfiable +
unsatisfiable +
S error/timeout +
0.001 Zowl ol PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(&) numRun 1
Performance comparison
T T T T T T
10000 £ + b+
1000 | N
+F
++
Tt oAt
100 # G .
o gt
a2
= 10 L E
(o] -
©
[a
1 7
0.1 -
0.01 E
satisfiable ~ +
unsatisfiable +
ey error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(b) numRun 2

Figure 4.8: Performance comparison of DAE Focused Paramilit!s different
numRuns

63

CHAPTER 4. DETERMINE PARAMILS PARAMETERS

Performance comparison

10000 E | } e Bt _‘
1000 | 4
100 4
s wf -
S
‘©
la}
1F -.
0.1 | -
0.01 & u
¥y satisfiable ~ +
ey unsatisfiable — +
. . . . errorfimeout - _
0.001 +

0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(¢) numRun 3

Figure 4.8: Performance comparison of DAE Focused Paramilit!s different
numRuns

64

4.11. SUMMARY

4,11 Summary

From the experimental results in this section, we conclhd&Focused ParamILS
using DAEs the most suitable configuration of ParamILS for MathSAS fér the
training time,48 hoursis enough for the ParamILS convergence because we ex-
perimented on th®F_LRA one of the most difficult theories in the set of theories
supported by MathSAT, and observed that ParamILS convexgiadch 48 train-

ing hourswith the MathSAT timeouts less than 60s. In order to choogalsle
MathSAT timeouts when training, we run MathSAT with the defgor smtcomp)
configuration on the training dataset in advance and chduséhtee MathSAT
timeouts (all timeouts have value from 0 to 1200 with step Joihich are less
than 60 seconds and solve similar percentage of tests.

65

66

Chapter 5

Configuring MathSAT on Five
Theories on the SMT-COMP
Benchmark

This section shows the results of using ParamILS to find tisé fessible config-
urations for twelve theories implemented by MathSAT on tMETSCOMP 2009
benchmark. The experiments in this section use the samseda@aaSMT-COMP
20009 for training and testing because we want to get the losstille MathSAT
configurations for the SMT-COMP 2009. In addition, MathSATunder heavy
development, therefore these experiments help a lot iratieeMathSAT bugs.

The experiment setup for all tests in this chapter is sunsrdras follows:
Based on the experimental results in Chajpter 4, FocusedRaBausing DAE is
the best strategy for MathSAT. In addition, the trainingdiof 48 hours is enough
for MathSAT to converge with the MathSAT timeouts less th@rms6conds. As
for choosing the training MathSAT timeouts, we run MathSAthvthe smt-comp
configuration on the training dataset in advance and chduséhtee MathSAT
timeouts (all timeouts have value from 0 to 1200 with step Bjcl are less than
60 seconds and solve similar percentage of tests.

Notice that the smt-comp configurations adaptive i.e. they can be changed
according to different problem classes based on a statistoriule in MathSAT.

Before moving to the next sections of experiments, we intoaedoriefly the
five theories[[1]7] :

e QF_IDL : Difference Logic over the integers. In essence, Booleankio
nations of inequations of the forfx — y < b) where x and y are integer
variables and b is an integer constant.

e QF_LIA : Unquantified linear integer arithmetic. In essence, Baoleom-
binations of inequations between linear polynomials onegger variables.

67

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

These inequations are written in the fofm.z; + ... + a,.x, < ap), S.t.
MELS, <, #, =2, >

e QF_LRA: Unquantified linear real arithmetic. In essence, Booleanlu-
nations of inequations between linear polynomials ovdrvaaables.

e QF_UFIDL : Difference Logic over the integers (in essence) but witimun
terpreted sort and function symbols (QF- is described in chaptEt 6). For
example:

UF: (f(w1) = f(w2)) A =(f(22) = f(23))
IDL: (x; —z3 < 1) A(xg—21 <1)

e QF_UFLRA: Unquantified linear real arithmetic with uninterpretedtso
and function symbols.

68

5.1. QFIDL WITH FOCUSED PARAMILS USING DAE

5.1 QF.IDL with Focused ParamILS using DAE

5.1.1 Experimental setup

CPU

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system

Debian 5.0.4

MathSAT version

v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4

1.3)

Training MathSAT timeout 1

35s (the smt-comp configuration solved 75.49% of teg

ts)

Training MathSAT timeout 2

40s (the smt-comp configuration solved 76.47% of tes

ts)

Training MathSAT timeout 3

45s (the smt-comp configuration solved 76.47% of tes

ts)

Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QEIDL of SMT-COMP 2009
Testing set Training set

Focused, deterministic=1, N=102
run_.obj=runtime, overallobj=mean

ParamlILS Configuration

Table 5.1: The experimental setup of QPBL with different training MathSAT
timeouts

5.1.2 Training Result

Table[5.2 shows the default configuration and the optimizedigurations found
by running ParamILS with different MathSAT timeouts. Theld font is used

to show the difference between configurations. It can be desrfor QFIDL,
ghostfilter andincr_solversshould be enabled, whilaixed csandsplit egshould

be disabled. Besides, tlieductionlevel should be 2 instead of 0 as default and
thestatic learning(sl) level should be 1 instead of 2 as default.

5.1.3 Testing Result

Table[5.8 and Figure 8.1 show the performance comparisomeket the opti-
mized, default and adaptive smt-comp configurations. Thaniged configu-
rations solvel4 tests 12 tests, and 13 tests more compared with the adaptive
smt-comp configuration. Moreover, the winner on this theotyhe SMT compe-
tition 2009 can solve onlg6 testdut the best optimized configuration can solve
96 testg(despite the fact that we are using the older version of MAThI8 this
experiment, not the one in the SMT competition 2009). Thaltés a significant
improvement because the smt-comp configuration igdeptiveconfiguration

69

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Configuration| Default | 35s 40s 45s
Parameter
aep yes yes yes yes
deduction 2 0 0 0
dualrall off off off off
dyn.ack no no no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes yes no no
frequentreducedb no no no no
ghostfilter no yes yes yes
ibliwi yes yes yes yes
impl_expLthreshold 0 1 1 0
incr _tsolvers no yes yes yes
mixed_cs yes no no no
permanentheorylemmas| yes yes no yes
pureliteral_filter no no no no
randomdecisions no no no no
restarts normal | adaptive| normal | normal
sl 2 1 1 1
split_eq yes no no no
tcomb off off off off
toplevelprop 1 2 1 1
tsolver di dl di di

Table 5.2: QHEDL configurations found by different training MathSAT tiioiets

70

5.1. QFIDL WITH FOCUSED PARAMILS USING DAE

which is the combination of many a prior chosen configuratiand changed ac-
cording to different problem classes while the optimizedfiguration isfixed for
all tests.

Tests solved (Optimized/Default/SMTCOMP) 96/81/82
Mean runtime (not include TIMEOUT tests) | 14.755s/25.069s/40.349s
Optimized compared with Default Result
Better runtime tests/The number of tests 63/102
Equal runtime tests/The number of tests 21/102
Worse runtime tests/The number of tests 18/102

(a) training MathSAT timeout = 35s

Tests solved (Optimized/Default/SMTCOMP) 94/81/82
Mean runtime(not include TIMEOUT tests) | 22.805s/25.069s/40.349s
Optimized compared with Default Result
Better runtime tests/The number of tests 54/102
Equal runtime tests/The number of tests 30/102
Worse runtime tests/The number of tests 18/102

(b) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 95/81/82
Mean runtime(not include TIMEOUT tests) | 13.165s/25.069s/40.349s
Optimized compared with Default Result
Better runtime tests/The number of tests 58/102
Equal runtime tests/The number of tests 28/102
Worse runtime tests/The number of tests 16/102

(c) training MathSAT timeout = 45s

Table 5.3: Performance comparison of @@L configurations found by different
training MathSAT timeouts

71

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Performance comparison

10000 E b - } _‘
1000 s]
100 F 4
= 10 b Sy .
3 R]
o) ey
o sl
L ey i
A
0.1} AY i
0.01 | & 1* u
¥ satisfiable ~ +
ST unsatisfiable — +
0.001 errorfimeout - _
' 0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 35s

Figure 5.1: Performance comparison of @1 configurations found by different
training MathSAT timeouts

72

5.1. QFIDL WITH FOCUSED PARAMILS USING DAE

Performance comparison

T T T T T T L
10000 F
1000 E
100 | -
= 10 E
8
[}
a
.
1r E
0.1 E
n
0.01 | E
satisfiable +
unsatisfiable +
S error/timeout +
OIOOl/p/w..I...I...I...I...I...I...I.
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 40s
Performance comparison
L L A B B B GV
10000 F
1000
100 |
= 10 |
8
j¥]
[a
l -
0.1
0.01 [
satisfiable ~ +
unsatisfiable +
error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 45s

Figure 5.1: Performance comparison of @1 configurations found by different
training MathSAT timeouts (cont.)

73

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE

SMT-COMP BENCHMARK

5.2 QF.LIA with Focused ParamlILS using DAE

5.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 83.41% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 83.90% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 85.58% of tests)
Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFLIA of SMT-COMP 2009

Testing set Training set

Focused, deterministic=1, N=205
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 5.4: The experimental setup of QFA with different training MathSAT
timeouts

5.2.2 Training Result

Table[5.5 shows the default configuration and the optimizedigurations found
by ParamlILS. For this theory, ParamILS suggestsdleatpure literal filter, and
split eqshould be disabled whilghostfilter, ibliwi, andrandomdecisionshould
be enabled. In addition, theatic learninglevel (sl) should be 0 instead of 2 as
default and using one theory solJaris better to solve this theory than using two
theorieseuf, and laas default.

5.2.3 Testing Result

Table[5.6 and Figure_ 8.2 show the performance comparisomekeet the opti-
mized, default and adaptive smt-comp configuration. Inelmetimized configu-
rations, the optimized configuration found by the MathSAldout of 60 seconds
has the mean runtimeduced by halfcompared with the mean runtime of the
adaptivesmt-comp configuration.

74

5.2. QFELIAWITH FOCUSED PARAMILS USING DAE

Configuration| Default | 50s 55s | 60s
Parameter
aep yes no no no
deduction 2 2 2 2
dualralil off off off off
dyn.ack no no no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes no no yes
frequentreducedb no no yes | yes
ghostfilter no yes yes | yes
ibliwi no yes yes | yes
impl_explthreshold 0 0 0 0
incr _tsolvers no yes yes | yes
mixed.cs yes yes no no
permanentheorylemmas| yes yes yes | no
pure_literal _filter yes no no no
random_decisions no yes yes | yes
restarts normal | normal | quick | quick
sl 2 0 0 0
split_eq yes no no no
tcomb off off off off
toplevelprop 1 0 0 1
tsolver euflaz | laz laz laz

Table 5.5: QFELIA configurations found by different training MathSAT tiroets

75

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Tests solved (Optimized/Default/SMTCOMP) 201/201/202
Mean runtime (not include TIMEOUT tests) | 11.892s/15.495s/26.322s
Optimized compared with Default Result
Better runtime tests/The number of tests 165/205
Equal runtime tests/The number of tests 12/205
Worse runtime tests/The number of tests 28/205

(a) training MathSAT timeout = 50s

Tests solved (Optimized/Default/SMTCOMP) 201/201/202
Mean runtime(not include TIMEOUT tests) | 13.377s/15.495s/26.322s
Optimized compared with Default Result
Better runtime tests/The number of tests 165/205
Equal runtime tests/The number of tests 8/205
Worse runtime tests/The number of tests 32/205

(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 202/201/202
Mean runtime(not include TIMEOUT tests) | 13.850s/15.495s/26.322s
Optimized compared with Default Result
Better runtime tests/The number of tests 164/202
Equal runtime tests/The number of tests 9/202
Worse runtime tests/The number of tests 32/202

(c) training MathSAT timeout = 60s

Table 5.6: Performance comparison of QFA configurations found by different
training MathSAT timeouts

76

5.2. QFELIAWITH FOCUSED PARAMILS USING DAE

Performance comparison

L L L S B S S B S S B S S B R

10000

T
L b

1000

100

Default

satisfiable ~ +
unsatisfiable +
error/timeout +

T T T

0001 // . " 1 1 1 1
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(a) training MathSAT timeout = 50s

Figure 5.2: Performance comparison of QA configurations found by different
training MathSAT timeouts

77

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Performance comparison

T T T T T T R
10000 F ~
1000 g
100 B
% 10 | -
8
[}
[a}
1r E
01} 4
00L | . .
e satisfiable +
7 unsatisfiable +
ey error/timeout +
0.001 Zowl ol PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 55s
Performance comparison
L L B B B N P
10000 F .
1000 | g
e .
100 F 4
= 10 -
T
©
[a}
1F E
0.1 | -
oo1F £
S satisfiable ~ +
s unsatisfiable — +
ey error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 60s

Figure 5.2: Performance comparison of QA configurations found by different
training MathSAT timeouts (cont.)

78

5.3. QFELRA WITH FOCUSED PARAMILS USING DAE

5.3 QF.LRA with Focused ParamILS using DAE

5.3.1 Experimental setup

CPU

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system

Debian 5.0.4

MathSAT version

v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4

1.3)

Training MathSAT timeout 1

40s (the smt-comp configuration solved 85.64 % of tes

5tS)

Training MathSAT timeout 2

45s (the smt-comp configuration solved 86.13% of tes

ts)

Training MathSAT timeout 3

50s (the smt-comp configuration solved 86.63% of teg

ts)

Testing MathSAT timeout

1200s

Training time 48 hours
Training set the QFLRA of SMT-COMP 2009
Testing set Training set

ParamlILS Configuration

Focused, deterministic=1, N=202
run_obj=runtime, overallobj=mean

Table 5.7: The experimental setup of QRA with different training MathSAT

timeouts

5.3.2 Training Result

Table[5.8 shows the default configuration and the optimizedigurations found
by ParamILS. The main difference between the optimized gardtions and the
default configuration is thadure literal filter is disabled (instead of being enabled
as default) andplit eqis enabled (instead of being disabled by default), and only
one theoryla is used in the optimized configurations while the defaultficma-
tion uses two theories solveuf, and la

5.3.3 Testing Result

Table[5.9 and Figure 5.3 show the performance comparisomelet the opti-
mized, default and adaptive smt-comp configurations. Ithmeeen that the first
optimized configuration solvé testmore compared with thadaptive smt-comp
configuration and the other two optimized configurations thasmean runtime
reduced by a factor of around 1édompared with thadaptive smt-componfigu-
ration. If compared with the default configuration, the thoptimized configura-
tions solve7, or 6 tests more

79

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Configuration| Default | 40s | 45s 50s
Parameter
aep yes yes | no no
deduction 2 2 2 2
dualralil off off off off
dyn.ack no no no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes yes | yes no
frequentreducedb no yes | no no
ghostfilter no no no yes
ibliwi no yes | no no
impl_expLthreshold 0 0 0 0
incr_tsolvers no no no no
mixed.cs yes yes |yes yes
permanentheorylemmas| yes yes |yes no
pure_literal _filter yes no no no
randomdecisions no yes | no no
restarts normal | quick | adaptive| normal
sl 2 2 2 1
split_eq no yes |yes yes
tcomb off off off off
toplevelprop 1 1 1 1
tsolver eufla |la la la

Table 5.8: QELRA configurations found by different training MathSAT timgs

80

5.3. QFELRA WITH FOCUSED PARAMILS USING DAE

Tests solved (Optimized/Default/SMTCOMP) 184/177/183
Mean runtime(not include TIMEOUT tests) | 27.641s/35.057s/19.177s
Optimized compared with Default Result
Better runtime tests/The number of tests 68/202
Equal runtime tests/The number of tests 371202
Worse runtime tests/The number of tests 97/202

(a) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 183/177/183
Mean runtime(not include TIMEOUT tests) | 12.988s/35.057s/19.177s
Optimized compared with Default Result
Better runtime tests/The number of tests 76/202
Equal runtime tests/The number of tests 33/202
Worse runtime tests/The number of tests 93/202

(b) training MathSAT timeout = 45s

Tests solved (Optimized/Default/SMTCOMP) 183/177/183
Mean runtime(not include TIMEOUT tests) | 13.155s/35.057s/19.177s
Optimized compared with Default Result
Better runtime tests/The number of tests 78/202
Equal runtime tests/The number of tests 32/202
Worse runtime tests/The number of tests 92/202

(c) training MathSAT timeout = 50s

Table 5.9: Performance comparison of QRA configurations found by different
training MathSAT timeouts

81

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Performance comparison

T T T T T T r—A
10000 F A
1000 L7 ey 4
n s]
+ S
A 1
100 F S 4
+ LSS 1
= 10 | Py .
3 + A% 1
‘© S
[a] +
g
1F S E
R
+ T
AFE
A
0.1 + /gj‘ /# + -
v g
A
001} A% g
| satisfiable +
ey unsatisfiable — +
ey error/timeout +
0001 i " 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 40s

Figure 5.3: Performance comparison of QRA configurations found by differ-
ent training MathSAT timeouts

82

5.3. QFELRA WITH FOCUSED PARAMILS USING DAE

Performance comparison

T T T T T T ¥
10000 F
1000 - s 1 ey £
+ e j‘/ /// B
+ L, // //
A]
100 F corh g
+ S 1
+ ey
= 10 ¥ E
8 /
> .
a
1r E
0.1 4
0.01 E
satisfiable +
unsatisfiable +
S error/timeout +
OIOOl/p/w..I...I...I...I...I...I...I.
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 45s
Performance comparison
T T T T T T ¥
10000 F
1000
100 |
= 10 |
T
©
[a
l -
0.1
0.01 [
satisfiable ~ +
unsatisfiable +
error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 50s

Figure 5.3: Performance comparison of QRA configurations found by differ-
ent training MathSAT timeouts (cont.)

83

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE

SMT-COMP BENCHMARK

5.4 QF.UFIDL with Focused ParamILS using DAE

5.4.1 Experimental setup

CPU

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system

Debian 5.0.4

MathSAT version

v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4

1.3)

Training MathSAT timeout 1

50s (the smt-comp configuration solved 82.67% of teg

ts)

Training MathSAT timeout 2

55s (the smt-comp configuration solved 83.66% of teg

ts)

Training MathSAT timeout 3

60s (the smt-comp configuration solved 84.65% of teg

ts)

Testing MathSAT timeout

1200s

Training time 48 hours
Training set the QFUFIDL of SMT-COMP 2009
Testing set Training set

ParamlILS Configuration

Focused, deterministic=1, N=202

run_obj=runtime, overallobj=mean

Table 5.10: The experimental setup of @FIDL with different training Math-

SAT timeouts

5.4.2 Training Result

Table5.11 shows the default configuration and the optimipedigurations found

by ParamILS. For QRJFIDL, ParamILS suggests usidgductiorof 2 andimpl_expLthreshold

of 0, enablingdyn ackandghostfilter, disablingexpensiveccmin

5.4.3 Testing Result

Table[5. 12 and Figure 8.4 show the performance compariseheobptimized,
default andadaptive smt-componfiguration. Similar to the case of QBL, the
optimized configurations soh&tests moreompared with thadaptive smt-comp
configuration although the optimized configurationsfated for all tests and the
smt-comp configuration can lmbangedaccording to different problem classes.

84

5.4. QRUFIDL WITH FOCUSED PARAMILS USING DAE

Configuration| Default | 50s 55s 60s
Parameter
aep yes yes yes yes
deduction 2 1 1 1
dualrall off off off off
dyn_ack no yes yes yes
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes no no no
frequentreducedb no no yes yes
ghostfilter no yes yes yes
ibliwi yes yes yes yes
impl _expl_threshold 0 1 1 1
incr_tsolvers no no no no
mixed.cs yes yes yes yes
permanentheorylemmas| yes yes yes yes
pureliteral_filter no no no no
randomdecisions no no yes yes
restarts normal normal | normal| normal
sl 2 2 2 2
spliteq yes yes yes yes
tcomb dtc dtc dtc dtc
toplevelprop 1 0 1 1
tsolver dl euf euf| dleuf | dleuf | dleuf

Table 5.11: QRUFIDL configurations found by different training MathSAte-
outs

85

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) | 24.645s/39.063s/33.41%s
Optimized compared with Default Result
Better runtime tests/The number of tests 150/202
Equal runtime tests/The number of tests 25/202
Worse runtime tests/The number of tests 27/202

(a) training MathSAT timeout = 50s

Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) | 28.460s/39.063s/33.41%s
Optimized compared with Default Result
Better runtime tests/The number of tests 140/202
Equal runtime tests/The number of tests 21/202
Worse runtime tests/The number of tests 41/202

(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) | 28.502s/39.063s/33.41%s
Optimized compared with Default Result
Better runtime tests/The number of tests 138/202
Equal runtime tests/The number of tests 22/202
Worse runtime tests/The number of tests 42/202

(c) training MathSAT timeout = 60s

Table 5.12: Performance comparison of QFIDL configurations found by dif-
ferent training MathSAT timeouts

86

5.4. QRUFIDL WITH FOCUSED PARAMILS USING DAE

Performance comparison

T R T L T L T /'/V/'-
10000 [s
1000 -, 4 e
+ &
+ ey
100 4 T e |
+ O+ + 0 3
.t]
r o ﬁz“ﬁ £
% 10 b N t::r * Qr/#//// + .
E S
3 L
4 +¢/%/ 4//
1k AN i
% ﬁ
A s
+ +ﬂ} A
LA
oy
/H}/
001 ./ £
S satisfiable ~ +
P unsatisfiable ~ +
R))) error/timeout - _
0.001 .
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(a) training MathSAT timeout = 50s

Figure 5.4: Performance comparison of QFIDL configurations found by dif-
ferent training MathSAT timeouts

87

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Performance comparison

T T T T T T ¥
10000 F =
1000 E
100 -
= 10 E
8
[}
a
1r E
0.1 4
001} g
1 s satisfiable +
- unsatisfiable +
S error/timeout +
0.001 SRS PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 55s
Performance comparison
T T T T T T r—H
10000 F A
1000 | v 4
* A
Y
100 | 4
= 10 | b
T
©
[a
1F E
0.1 -
0.01 E
satisfiable ~ +
unsatisfiable +
error/timeout +
0001 - /‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 60s

Figure 5.4: Performance comparison of @QFIDL configurations found by dif-
ferent training MathSAT timeouts (cont.)

88

5.5. QRUFLRA WITH FOCUSED PARAMILS USING DAE

5.5 QF.UFLRAwith Focused ParamlILS using DAE

5.5.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)

Training MathSAT timeout 1

5s (the smt-comp configuration solved 100% of tests)

Training MathSAT timeout 2

10s (the smt-comp configuration solved 100% of tests

Training MathSAT timeout 3

15s (the smt-comp configuration solved 100% of tests

Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFUFLRA of SMT-COMP 2009
Testing set Training set

Focused, deterministic=1, N=200
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 5.13: The experimental setup of @FLRA with different training Math-
SAT timeouts

5.5.2 Training Result

Table5.1# shows the default configuration and the optimipedigurations found
by ParamiILS. For this theory, ParamILS suggest udedyuctionof 1, sl of 2, and
toplevelpropof 1. ParamILS also recommend users to endiieack incr_tsolvers
and disablexpensiveecmin pureliteral filter.

5.5.3 Testing Result

Table[5.15 and Figure 8.5 show the performance comparisdheobptimized,
default andadaptive smt-componfiguration. In all cases, the mean runtime of
the optimized configurations are reduced approximatelya lbgctor of 8anda
factor of 4compared with the mean runtime of thdaptive smt-comand default
configuration, respectively.

89

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Configuration| Default| 5s 10s 15s
Parameter
aep yes yes yes yes
deduction 2 1 1 1
dualrall off off off off
dyn_ack no yes yes yes
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 50 1 50
expensiveccmin yes no no no
frequentreducedb no no no yes
ghostfilter no yes yes yes
ibliwi no no yes yes
impl_expLthreshold 0 0 0 0
incr _tsolvers no yes yes yes
mixed.cs yes yes yes yes
permanentheorylemmas| yes yes yes yes
pure_literal _filter yes no no no
randomdecisions no no no no
restarts normal | normal | normal | normal
sl 2 0 0 0
spliteq no no no no
tcomb dtc dtc dtc dtc
toplevelprop 1 0 0 0
tsolver eufla |eufla |eufla | eufla

Table 5.14: QBEUFLRA configurations found by different training MathSAT
timeouts

90

5.5. QRUFLRA WITH FOCUSED PARAMILS USING DAE

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.056s/0.204s/0.41Qs
Optimized compared with Default Result
Better runtime tests/The number of tests 190/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 5/200

(a) training MathSAT timeout = 5s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.059s/0.204s/0.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 186/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 9/200

(b) training MathSAT timeout = 10s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.062s/0.204s/0.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 185/200
Equal runtime tests/The number of tests 11/200
Worse runtime tests/The number of tests 4/200

(c) training MathSAT timeout = 15s

Table 5.15: Performance comparison of QFLRA configurations found by dif-
ferent training MathSAT timeouts

91

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

Performance comparison

L s e B L A B B BB By

10000

T
L b

1000

100 F 4

+ // // // 1
10 4

Default

satisfiable ~ +
unsatisfiable ~ +

0.001 // // Il Il Il Il I I I
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 5s

Figure 5.5: Performance comparison of QFLRA configurations found by dif-
ferent training MathSAT timeouts

92

5.5. QRUFLRA WITH FOCUSED PARAMILS USING DAE

Performance comparison

T T T T T T L

10000

T
L b

1000

100

Default

satisfiable +
unsatisfiable +

1000

000l Koo v s
0.001 001 0.1 1 10 100

Optimized
(b) training MathSAT timeout = 10s

Performance comparison

L B L E e e e S L B B B B s

10000

T
L b

1000

100 F 4

10 g

Default

oo1f 3
O satisfiable ~ + g
unsatisfiable ~ +

0.001 // // Il Il Il Il I I I
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 15s

Figure 5.5: Performance comparison of QFLRA configurations found by dif-
ferent training MathSAT timeouts (cont.)

93

CHAPTER 5. CONFIGURING MATHSAT ON FIVE THEORIES ON THE
SMT-COMP BENCHMARK

5.6 Summary

Table[5.16 summaries the performance comparison of the Hizeries on the
SMT-COMP benchmark.

In three theories of QEDL, QF_LRA, and QFUFIDL, the number of solved
tests is improved significantly. For example, in the casefefiQL, the optimized
configuration found by ParamlILS solve4 tests moreompared with thadaptive
smt-comp configuration (this configuration can be changedraing to different
problem classes) ant0 tests more&eompared with thevinner of SMT-COMP
2009 on this theory (although we are using the older versidathSAT, not the
new one in the competition).

In two other cases of QEIA, and QF.UFLRA, the number of tests solved by
the optimized configuration is equal to the number of tedigesidby the adaptive
smt-comp configuration. However, the mean runtime is rediaproximately
by half in case of QHELIA and by a factor of eightin case of QRUFLRA.

Tests solved (Optimized/Default/SMTCOMP) 96/81/82
Mean runtime (not include TIMEOUT tests) | 14.755s/25.069s/40.349s
The number of tests 102
(a) QFIDL
Tests solved (Optimized/Default/SMTCOMP) 202/201/202
Mean runtime(not include TIMEOUT tests) | 13.850s/15.495s/26.322s
The number of tests 205
(b) QF.LIA
Tests solved (Optimized/Default/SMTCOMP) 184/177/183
Mean runtime(not include TIMEOUT tests) | 27.641s/35.057s/19.177s
The number of tests 202
(c) QFLRA
Tests solved (Optimized/Default/SMTCOMP) 192/182/189
Mean runtime(not include TIMEOUT tests) | 24.645s/39.063s/33.41%s
The number of tests 202
(d) QF.UFIDL
Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.056s/0.204s/0.410s
The number of tests 200

(e) QFEUFLRA

Table 5.16: Performance Comparison of the five theories enStT-COMP
benchmark

94

Chapter 6

Configuring on Other Theories on
the SMT-COMP Benchmark

This chapter summaries the experimental results on the tiher theories QEJFLIA,

QF._UF, QERDL. In these theories, we found bugs in the testing phasagliue

to the fact that in the training phase, we use not only thedggarameter but also

theinternal parameterswvhich were used by developers and not tested carefully.
Before moving to the next sections of experiments, we intoaedbriefly the

three theories experimented in this chapter:

e QF_UF: Unquantified formulas built over a signature of unintetpdg(i.e.,
free) sort and function symbols. For exampléf (z1) = f(x2)), = (f(x2) =

f(x3))}-

e QF_RDL Difference Logic over the reals. In essence, Boolean coabin
tions of inequations of the forfx — y < b) where x and y are real variables
and b is a rational constant.

e QF_UFLIA : Unquantified linear integer arithmetic with uninterpigktort
and function symbols.

95

CHAPTER 6. CONFIGURING ON OTHER THEORIES ON THE

SMT-COMP BENCHMARK

6.1 QF.UFLIA with Focused ParamILS using DAE

6.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 98.01% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 98.01% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 98.51% of tests)
Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFUFLIA of SMT-COMP 2009

Testing set Training set

Focused, deterministic=1, N=202
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 6.1: The experimental setup of QFFLIA with different training MathSAT
timeouts

6.1.2 Experimental result

Testing bugs:

In testing phase, we found many inconsistent results. Fameie:

bin/mathsat -input=smt -solve -logic=QBFLIA data/QF UFLIA/wisas/xs16_36.smt
returns UNSAT.

bin/mathsat -input=smt -solve -deduction=2 -img{pl threshold=0 -noaep -
dual_rail=off -no_pure.literal filter -randomdecisions -spliteq -naincr_tsolvers
-tsolver=dl -tsolver=laz -dynack -dynack limit=0 -dyn_ack threshold=10 -noexpensiveccmin
-no_frequentreducedb -naghostfilter -no_ibliwi -mixed.cs -permanentheorylemmas
-restarts=adaptive -sI=0 -tcomb=dtc -toplevelprop=2 d&DF UFLIA/wisas/xs16.36.smt
returns SAT.

96

6.2. QRUF WITH FOCUSED PARAMILS USING DAE

6.2 QF.UF with Focused ParamILS using DAE

6.2.1 Experimental setup

CPU

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system

Debian 5.0.4

MathSAT version

v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4

1.3)

Training MathSAT timeout 1

45s (the smt-comp configuration solved 79.00% of tes

ts)

Training MathSAT timeout 2

55s (the smt-comp configuration solved 80.00% of teg

ts)

Training MathSAT timeout 3

60s (the smt-comp configuration solved 81.00% of teg

ts)

Testing MathSAT timeout

1200s

Training time 48 hours
Training set the QFUF of SMT-COMP 2009
Testing set Training set

ParamlILS Configuration

Focused, deterministic=1, N=200

run_obj=runtime, overallobj=mean

Table 6.2: The experimental setup of QF with different training MathSAT

timeouts

6.2.2 Experimental result

Testing bugs:

In testing phase, we found many inconsistent results. Fameie:

bin/mathsat -input=smt -solve -logic=QBF data/QF. UF/QG-classification/qg6/isel_noge!

returns UNSAT.
bin/mathsat -input=smt

-solve -deduction=1 -imgx®pLthreshold=0 -noaep -

dual_rail=circuit -no _pure. literal filter -randomdecisions -ncsplit eq -tsolver=euf
-no_dyn.ack -expensivecmin -frequenteducedb -naghostfilter -ibliwi -mixed.cs
-permanentheorylemmas -restarts=normal -sl=2 -toplevelprop=0 data/QF/QG-
classification/qg6/isacl_nogen013.smt

returns SAT.

97

CHAPTER 6. CONFIGURING ON OTHER THEORIES ON THE

SMT-COMP BENCHMARK

6.3 QF RDL with

Focused ParamILS using DAE

6.3.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 86.85% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 88.00% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 89.14% of tests)
Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFERDL of SMT-COMP 2009

Testing set Training set

Focused, deterministic=1, N=175
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 6.3: The experimental setup of @®DL with different training MathSAT
timeouts

6.3.2 Experimental result

Testing bugs:

In testing phase, we found many inconsistent results of Bl&thon the same
test. For example:

bin/mathsat -input=smt -solve -logic=QRDL data/QERDL/sal/fischer6-mutex-
20.smt
returns UNSAT.

bin/mathsat -input=smt -solve -deduction=0 -img{plLthreshold=0 -aep -
randomdecisions -nasplit_eq -tsolver=euf -tsolver=dl -expensiwemin -frequenteducedb
-ghostfilter -dualrail=off -no_pure.literal filter -ibliwi -no_mixedcs -permanentheorylemmas
-restarts=normal -s|=0 -toplevelprop=2 data/QRDL/sal/fischer9-mutex-20.smt
returns SAT.

98

Chapter 7

More Results of the Five Theories on
the SMT-LIB Benchmark

This section shows the results of using ParamlILS to find tis¢ pessible con-
figurations for the five theories having no bugs (in Chapteorbthe SMT-LIB
benchmark. The experiments in this section dgterent dataset®f SMT-LIB

for training and testing because we want to get the best lpedsiathSAT con-
figurations forgeneral casesFor each theory, a training dataset is extracted from
SMT-LIB by using the benchmark selection tool of SMT-COMRI20 Then,
we remove that training dataset from SMT-LIB, and extraaithaer dataset for
testing.

The experiment setup for all tests in this chapter is sunsedras follows:
Based on the experimental results in Chapter 4, FocusethRz8ausing DAE is
the best strategy for MathSAT. In addition, the trainingdiof 48 hours is enough
for MathSAT to converge with the MathSAT timeouts less th@ms6conds. As
for choosing the training MathSAT timeouts, we run MathSAthvihe smtcomp
configuration on the training dataset in advance and chduséhtee MathSAT
timeouts (all timeouts have value from 0 to 1200 with step Bjcl are less than
60 seconds and solve similar percentage of tests.

Notice that the smt-comp configurations adaptive i.e. they can be changed
according to different problem classes based on a statistoriule in MathSAT.

99

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE

SMT-LIB BENCHMARK

7.1 QF.IDL with Focused ParamILS using DAE

7.1.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 35s (the smt-comp configuration solved 75.49% of tests)
Training MathSAT timeout 2 40s (the smt-comp configuration solved 76.47% of tests)
Training MathSAT timeout 3 45s (the smt-comp configuration solved 76.47% of tests)
Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFEIDL of SMT-LIB

Testing set the QEIDL of SMT-LIB (removed training set)

Focused, deterministic=1, N=102
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 7.1: The experimental setup of QPL with different training MathSAT
timeouts

7.1.2 Training Result

Table[7.2 shows the default configuration and the optiminedigurations found
by ParamILS. For this theory, ParamILS suggest enalsingomdecisionsrestart-
ing adaptivelyand usingoplevelpropof O instead of 2 as default.

7.1.3 Testing Result

Table[7.B and Figurie 7.1 show the performance comparisdreafptimized, de-
fault andadaptive smt-componfigurations. The second optimized configuration
solvesl test morecompared with the default configuration. If compared with th
adaptive smt-componfiguration, only the second optimized configuration eslv
the same number of tests and the mean runtime of this optihcizefiguration is
reduced slightly bya factor of 1.275

100

7.1. QFEIDL WITH FOCUSED PARAMILS USING DAE

Configuration| Default | 35s 40s 45s
Parameter
aep yes yes yes yes
deduction 2 2 2 1
dualrall off off off off
dyn.ack no no no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes yes yes yes
frequentreducedb no no no no
ghostfilter no no no no
ibliwi yes no yes no
impl_explthreshold 0 0 0 0
incr_tsolvers no no no no
mixed.cs yes yes yes yes
permanentheorylemmas| yes yes yes yes
pureliteral_filter no no no no
random_decisions no no yes yes
restarts normal | adaptive | adaptive | quick
sl 2 2 2 2
spliteq yes yes yes yes
tcomb off off off off
toplevelprop 1 2 0 0
tsolver di dl dl di

101

Table 7.2: QHEDL configurations found by different training MathSAT tiioets

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Tests solved (Optimized/Default/SMTCOMP) 94/94/95
Mean runtime (not include TIMEOUT tests) | 1.848s/2.744s/6.41Qs
Optimized compared with Default Result
Better runtime tests/The number of tests 60/100
Equal runtime tests/The number of tests 29/100
Worse runtime tests/The number of tests 11/200

(a) training MathSAT timeout = 35s

Tests solved (Optimized/Default/SMTCOMP) 95/94/95
Mean runtime(not include TIMEOUT tests) | 5.207s/2.744s/6.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 50/100
Equal runtime tests/The number of tests 12/100
Worse runtime tests/The number of tests 38/100

(b) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 94/94/95
Mean runtime(not include TIMEOUT tests) | 1.352s/2.744s/6.410s
Optimized compared with Default Result
Better runtime tests/The number of tests 42/100
Equal runtime tests/The number of tests 14/100
Worse runtime tests/The number of tests 44/100

(c) training MathSAT timeout = 45s

Table 7.3: Performance comparison of @ configurations found by different
training MathSAT timeouts

102

7.1. QFEIDL WITH FOCUSED PARAMILS USING DAE

Performance comparison

L B B B B B G
10000 F A
1000 B
A 1
100 | ///////// -
£ A 1
8 +£Ff
Pt
01 f ’“ﬁ i
//iﬁﬁj’/ 1
S |
001 F 717 £
Y satisfiable ~ +
s unsatisfiable +
error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(a) training MathSAT timeout = 35s

Figure 7.1: Performance comparison of @A configurations found by different
training MathSAT timeouts

103

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Performance comparison

T T T T T T v >
10000 F =
1000 E
100 -
= 10 A]
I} -
© - ey
e S
1k A :
A St
@g L
A N
0.1 // ﬁ 4 -
/#ﬁ‘ "#}
S F A
XA
T -
] o satisfiable +
unsatisfiable +
S error/timeout +
0.001 Zowl ol PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(b) training MathSAT timeout = 40s

Performance comparison

AL L B B B G
10000 F A
1000 B
+// e b
100 | ///////// -
(—‘56‘ 10 | /++/J;/ E
° A
1t St g
//:ﬁ‘/// Ty
P
01 b St -
A
/#}#ﬁ‘
S
i]
001F AL E
i satisfiable | |{
At unsatisfiable +
error/timeout +

0001 i 1 1 1 1 T T T

0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(c) training MathSAT timeout = 45s

Figure 7.1: Performance comparison of @ configurations found by different
training MathSAT timeouts (cont.)

104

7.2. QFELIAWITH FOCUSED PARAMILS USING DAE

7.2 QF.LIA with Focused ParamILS using DAE

7.2.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4

1.3)

Training MathSAT timeout 1

50s (the smt-comp configuration solved 83.41% of teg

ts)

Training MathSAT timeout 2

55s (the smt-comp configuration solved 83.90% of teg

ts)

Training MathSAT timeout 3

60s (the smt-comp configuration solved 85.58% of teg

ts)

Testing MathSAT timeout

1200s

Training time 48 hours
Training set the QFELIA of SMT-LIB
Testing set the QFELIA of SMT-LIB (remove training set)

ParamlILS Configuration

Focused, deterministic=1, N=205

run_obj=runtime, overallobj=mean

Table 7.4: The experimental setup of QFA with different training MathSAT

timeouts

7.2.2 Training Result

Table[Z.5 shows the default configuration and the optimizediguration found
by ParamILS. For QRIA, ParamILS suggest usingipl_explthresholdof 1 in-
stead of Osl of O instead of 2toplevelpropof 1, enablingncr_tsolversand dis-

ablingspliteq

7.2.3 Testing Result

Table[7.6 and Figurle 7.2 of the optimized, default addptive smt-componfig-
urations. Although only in two of three cases, the optimizedfigurations solve
the same number of tests compared with the default and thEieelamt-comp
configurations, the mean runtime of the optimized configonatare reduced ap-
proximately bya factor of 1.35, 3.56ompared with the mean runtime of the
default and smt-comp configuration, respectively.

105

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Configuration| Default | 50s 55s 60s
Parameter
aep yes yes no yes
deduction 2 2 1 2
dualrall off off off off
dyn.ack no no no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes no no yes
frequentreducedb no no no no
ghostfilter no no yes no
ibliwi no yes no no
impl _expl_threshold 0 1 0 1
incr _tsolvers no yes yes yes
mixed_cs yes no yes no
permanentheorylemmas| yes yes yes yes
pureliteral_filter yes yes no yes
randomdecisions no no yes no
restarts normal | normal | normal | normal
sl 2 0 0 0
split_eq yes no no no
tcomb off off off off
toplevelprop 1 1 0 1
tsolver euflaz | laz euflaz | euflaz

Table 7.5: QELIA configurations found by different training MathSAT tiroets

106

7.2. QFELIAWITH FOCUSED PARAMILS USING DAE

Tests solved (Optimized/Default/SMTCOMP) 199/199/199
Mean runtime (not include TIMEOUT tests) | 12.456s/17.369s/44.378s
Optimized compared with Default Result
Better runtime tests/The number of tests 181/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 14/200
(a) training MathSAT timeout = 50s
Tests solved (Optimized/Default/SMTCOMP) 198/199/199|
Mean runtime(not include TIMEOUT tests) | 12.791s/17.369s/44.378s
Optimized compared with Default Result
Better runtime tests/The number of tests 148/200
Equal runtime tests/The number of tests 8/200
Worse runtime tests/The number of tests 44/200
(b) training MathSAT timeout = 55s

Tests solved (Optimized/Default/SMTCOMP) 199/199/199
Mean runtime(not include TIMEOUT tests) | 12.069s/17.369s/44.378s
Optimized compared with Default Result
Better runtime tests/The number of tests 183/200
Equal runtime tests/The number of tests 8/200
Worse runtime tests/The number of tests 9/200

(c) training MathSAT timeout = 60s

Table 7.6: Performance comparison of QA configurations found by different
training MathSAT timeouts

107

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Performance comparison

LI B B B BN L
10000 [A

1000 F B

100

= 10 | b
S
‘©
la}
1F E
0.1 | -
//‘;’ﬁ‘/
0.01 | b &
v satisfiable ~ +
s unsatisfiable — +
error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 50s

Figure 7.2: Performance comparison of QA configurations found by different
training MathSAT timeouts

108

7.2

QFELIA WITH FOCUSED PARAMILS USING DAE

Performance comparison

T T T T T T /V B
10000 F 7
1000 E
100 | -
= 10 E
8
[}
a
1r E
0.1 4
0.01 | E
satisfiable +
unsatisfiable +
S error/timeout +
0_001//..|...|...l...l...l...l...l.
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 55s
Performance comparison
T r T T T T T 1
10000 F 7
1000
100 |
= 10 |
8
j¥]
[a
l -
0.1
0.01 [E
satisfiable ~ +
unsatisfiable +
A error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000
Optimized

(c) training MathSAT timeout = 60s

Figure 7.2: Performance comparison of QA configurations found by different
training MathSAT timeouts (cont.)

109

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE

SMT-LIB BENCHMARK

7.3 QF.LRA with Focused ParamILS using DAE

7.3.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 40s (the smt-comp configuration solved 85.64 % of tests)
Training MathSAT timeout 2 45s (the smt-comp configuration solved 86.13% of tests)
Training MathSAT timeout 3 50s (the smt-comp configuration solved 86.63% of tests)
Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFELRA of SMT-LIB

Testing set the QELRA of SMT-LIB (removed training set)

Focused, deterministic=1, N=202
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 7.7: The experimental setup of QRA with different training MathSAT
timeouts

7.3.2 Training Result

Table[7.8 shows the default configuration and the optimizedigurations found
by ParamILS. For QERA, ParamILS suggests disabliagp pure. literal filter,
enablingsplit eqand using only one theory solvi.

7.3.3 Testing Result

Table 7.9 and Figufe 7.3 show the performance comparisdeafitimized, deaf-
ault andadaptive smt-componfiguration. Only the second optimized configura-
tion has the same number of solved tests as the smt-comp eatfan. However,

if compared with the default configuration, the optimizedfigurations solve,

or 7 tests more

110

7.3. QELRA WITH FOCUSED PARAMILS USING DAE

Configuration| Default | 40s 45s 50s
Parameter
aep yes no no no
deduction 2 2 2 2
dualrall off off off off
dyn.ack no no no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes yes yes yes
frequentreducedb no no no yes
ghostfilter no no yes no
ibliwi no no no no
impl_expLthreshold 0 0 0 1
incr_tsolvers no no no no
mixed.cs yes no no no
permanentheorylemmas| yes yes yes yes
pure_literal _filter yes no no yes
randomdecisions no no no no
restarts normal | normal | normal | normal
sl 2 2 2 2
split_eq no yes yes yes
tcomb off off off off
toplevelprop 1 1 1 1
tsolver eufla | la la la

Table 7.8: QELRA configurations found by different training MathSAT tiogs

111

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Tests solved (Optimized/Default/SMTCOMP) 199/193/200
Mean runtime(not include TIMEOUT tests) | 11.099s/31.269s/9.033s
Optimized compared with Default Result
Better runtime tests/The number of tests 88/200
Equal runtime tests/The number of tests 23/200
Worse runtime tests/The number of tests 89/200

(a) training MathSAT timeout = 40s

Tests solved (Optimized/Default/SMTCOMP) 200/193/200
Mean runtime(not include TIMEOUT tests) | 19.759s/31.269s/9.033s
Optimized compared with Default Result
Better runtime tests/The number of tests 90/200
Equal runtime tests/The number of tests 18/200
Worse runtime tests/The number of tests 92/200

(b) training MathSAT timeout = 45s

Tests solved (Optimized/Default/SMTCOMP) 199/193/200
Mean runtime(not include TIMEOUT tests) | 13.799s/31.269s/9.033s
Optimized compared with Default Result
Better runtime tests/The number of tests 65/200
Equal runtime tests/The number of tests 17/200
Worse runtime tests/The number of tests 118/200

(c) training MathSAT timeout = 50s

Table 7.9: Performance comparison of QRA configurations found by different
training MathSAT timeouts

112

7.3. QELRA WITH FOCUSED PARAMILS USING DAE

Performance comparison

10000

T
L b

1000

100

Default

satisfiable ~ +
unsatisfiable — +

0.001 // / ' Il Il Il Il I I I
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 40s

Figure 7.3: Performance comparison of QRA configurations found by differ-
ent training MathSAT timeouts

113

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Performance comparison

T T T T T T ¥
10000 F =
1000 E
4
n
+ 2 4
100 f % .
xS
// j’/+j7/ 1
3 L g ;
= e
8 Y
1 +++ //i/t}j”%
L e]
t/i*/%‘ %4
A
%
0.1 | 4
001 | £
P satisfiable + 1
177" unsatisfiable ~ +
0.001 ////‘. i - PR 2ol Lol PRS- IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 45s
Performance comparison
T T T T T T r—H
10000 [s
1000 b
100 4
= 10 -
IS
©
[a}
1F E
0.1 | 4
001} €
Sy satisfiable +
unsatisfiable +
0001 // //‘ 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 50s

Figure 7.3: Performance comparison of QRA configurations found by differ-
ent training MathSAT timeouts (cont.)

114

7.4. QRUFIDL WITH FOCUSED PARAMILS USING DAE

7.4 QF.UFIDL with Focused ParamILS using DAE

7.4.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

Operating system Debian 5.0.4

MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)
Training MathSAT timeout 1 50s (the smt-comp configuration solved 82.67% of tests)
Training MathSAT timeout 2 55s (the smt-comp configuration solved 83.66% of tests)
Training MathSAT timeout 3 60s (the smt-comp configuration solved 84.65% of tests)
Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFUFIDL of SMT-LIB

Testing set the QRUFIDL of SMT-LIB (removed training)

Focused, deterministic=1, N=202
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 7.10: The experimental setup of @FIDL with different training Math-
SAT timeouts

7.4.2 Training Result

Table[7.11 shows the default configuration and the optimipedigurations found
by ParamILS. The main difference between the optimized gardtions and
the default configuration is that usimpductionof 2 instead of 1, and enabling
ghostfilter instead of disabling as default.

7.4.3 Testing Result

Table[7.12 and Figure 1.4 show the performance compariseheobptimized,
default andadaptive smt-comgonfiguration. There is no optimized configuration
having the number of solved tests greater than the numbests solved by the
smt-comp configuration. However, if compared with the difeanfiguration, the
optimized configurations solVEL, 10, 6 tests more

115

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Configuration| Default | 50s | 55s 60s
Parameter
aep yes yes | ho no
deduction 2 1 1 1
dualralil off off off off
dyn.ack no yes | no no
dyn.acklimit 0 0 0 0
dyn.ack threshold 1 1 1 1
expensiveccmin yes yes | yes no
frequentreducedb no no no yes
ghostfilter no yes | yes yes
ibliwi yes yes | yes yes
impl_expLthreshold 0 1 0 1
incr_tsolvers no no no no
mixed.cs yes yes | no no
permanentheorylemmas| yes yes | yes yes
pureliteral_filter no no no no
randomdecisions no no yes yes
restarts normal | quick | normal| adaptive
sl 2 2 0 1
spliteq yes yes | yes yes
tcomb dtc dtc decide | decide
toplevelprop 1 1 1 0
tsolver eufdl | eufdl|eufdl | eufdl

Table 7.11: QBUFIDL configurations found by different training MathSATte-
outs

116

7.4. QRUFIDL WITH FOCUSED PARAMILS USING DAE

Tests solved (Optimized/Default/SMTCOMP) 198/187/200
Mean runtime(not include TIMEOUT tests) | 23.804s/39.339s/30.264s
Optimized compared with Default Result
Better runtime tests/The number of tests 162/200
Equal runtime tests/The number of tests 11/200
Worse runtime tests/The number of tests 27/200
(a) training MathSAT timeout = 50s
Tests solved (Optimized/Default/SMTCOMP) 197/187/200
Mean runtime(not include TIMEOUT tests) | 26.924s/39.339s/30.264s
Optimized compared with Default Result
Better runtime tests/The number of tests 139/200
Equal runtime tests/The number of tests 71200
Worse runtime tests/The number of tests 54/200
(b) training MathSAT timeout = 55s
Tests solved (Optimized/Default/SMTCOMP) 193/187/200
Mean runtime(not include TIMEOUT tests) | 20.543s/39.339s/30.264s
Optimized compared with Default Result
Better runtime tests/The number of tests 132/200
Equal runtime tests/The number of tests 10/200
Worse runtime tests/The number of tests 58/200

(c) training MathSAT timeout = 60s

Table 7.12: Performance comparison of QFIDL configurations found by dif-
ferent training MathSAT timeouts

117

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Performance comparison

T T T T T T r—H
10000 F fr A
1000 . B
"
Lt
Lo+ //// 7
100 oty prd E
RS w
s LA
+ A
¥ F A
= 10 | + o A _
3 T x
o + +ﬁ& ﬁ%/////
la} 2
1k R L]
v
+tr,ﬁ/+ /T/
0.1 +ﬁ}]
: i -
A]
0.01 | v E
’ satisfiable ~ +
unsatisfiable ~ +
error/timeout +
0001 i 1 1 1 1 T T T
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 50s

Figure 7.4: Performance comparison of QFIDL configurations found by dif-
ferent training MathSAT timeouts

118

7.4. QRUFIDL WITH FOCUSED PARAMILS USING DAE

Performance comparison

T T T T T T ¥
10000 F =
1000 E
100 | -
= 10 E
8
[}
a
1r E
0.1 4
0.01 | E
satisfiable +
unsatisfiable +
S error/timeout +
0.001 Zowl ol PR 2ol Lol RS E— IS — PR -
0.001 0.01 0.1 1 10 100 1000 10000
Optimized
(b) training MathSAT timeout = 55s
Performance comparison
T T T T T T r—H
10000 F A
1000 b
100 | 4
= 10 -
T
©
[a
1F E
0.1 -
0.01 [E
satisfiable ~ +
unsatisfiable +
error/timeout +
0001 i 1 1 1 1 T T T

0.001 0.01 0.1

[

10 100 1000 10000
Optimized

(c) training MathSAT timeout = 60s

Figure 7.4: Performance comparison of @QFIDL configurations found by dif-
ferent training MathSAT timeouts (cont.)

119

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE

SMT-LIB BENCHMARK

7.5 QF.UFLRAwith Focused ParamlILS using DAE

7.5.1 Experimental setup

CPU Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Operating system Debian 5.0.4
MathSAT version v4.2.10-itp (May 12 2010 08:54:51, gmp 4.3.2, gcc 4.4.3)

Training MathSAT timeout 1

5s (the smt-comp configuration solved 100% of tests)

Training MathSAT timeout 2

10s (the smt-comp configuration solved 100% of tests

Training MathSAT timeout 3

15s (the smt-comp configuration solved 100% of tests

Testing MathSAT timeout | 1200s

Training time 48 hours

Training set the QFUFLRA of SMT-LIB

Testing set the QRUFLRA of SMT-LIB (removed training)

Focused, deterministic=1, N=200
run_obj=runtime, overallobj=mean

ParamlILS Configuration

Table 7.13: The experimental setup of QFLRA with different training Math-
SAT timeouts

7.5.2 Training Result

Table[7.14 shows the default configuration and the optimipedigurations found
ParamlILS. For QRUFLRA, ParamILS recommends users to enalyler ack fre-
guentreducedb, ghostfilter, incr_tsolversand disablgure literal filter. ParamILS
also suggests usirpductiorof 1, dyn ack thresholdof 50, or 10slof O, toplevel-
prop of 0.

7.5.3 Testing Result

Table[7.15 and Figure 1.5 show the performance comparisdheobptimized,
default andadaptive smt-componfigurations. It can be seen that in call cases,
the mean runtime of the optimized configurations are redagguioximately by

a factor of 6.678 and 3.376ompared with the mean runtime of the default, and
smt-comp configuration.

120

7.5. QRUFLRA WITH FOCUSED PARAMILS USING DAE

Configuration| Default | 5s 10s 15s
Parameter
aep yes yes yes yes
deduction 2 1 1 1
dualrall off off off off
dyn_ack no yes yes yes
dyn.acklimit 0 0 0 0
dyn_ack threshold 1 50 50 10
expensiveccmin yes yes no yes
frequent_reduce.db no yes yes yes
ghostfilter no yes yes yes
ibliwi no no no no
impl_expLthreshold 0 0 0 0
incr _tsolvers no yes yes yes
mixed.cs yes yes yes yes
permanentheorylemmas| yes yes no yes
pure_literal _filter yes no no no
randomdecisions no no no no
restarts normal | normal | normal | normal
sl 2 0 0 0
spliteq no no no no
tcomb dtc dtc dtc dtc
toplevelprop 1 0 0 0
tsolver eufla |eufla |eufla | eufla

Table 7.14: QBUFLRA configurations found by different training MathSAT
timeouts

121

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.057s/0.374s/0.189s
Optimized compared with Default Result
Better runtime tests/The number of tests 193/200
Equal runtime tests/The number of tests 4/200
Worse runtime tests/The number of tests 3/200

(a) training MathSAT timeout = 5s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.059s/0.374s/0.189s
Optimized compared with Default Result
Better runtime tests/The number of tests 189/200
Equal runtime tests/The number of tests 4/200
Worse runtime tests/The number of tests 71200

(b) training MathSAT timeout = 10s

Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.056s/0.374s/0.189s
Optimized compared with Default Result
Better runtime tests/The number of tests 192/200
Equal runtime tests/The number of tests 5/200
Worse runtime tests/The number of tests 3/200

(c) training MathSAT timeout = 15s

Table 7.15: Performance comparison of QFLRA configurations found by dif-
ferent training MathSAT timeouts

122

7.5. QRUFLRA WITH FOCUSED PARAMILS USING DAE

Performance comparison

L L L S B S S B S S B S S B R

10000

T
L b

1000

Default

satisfiable ~ +
unsatisfiable — +

0.001 // // Il Il Il Il I I I
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(a) training MathSAT timeout = 5s

Figure 7.5: Performance comparison of QIFLRA configurations found by dif-
ferent training MathSAT timeouts

123

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Performance comparison

T T T T T T L

10000

T
L b

1000

100

Default

satisfiable +
unsatisfiable +

1000

000l Koo v s
0.001 001 0.1 1 10 100

Optimized
(b) training MathSAT timeout = 10s

Performance comparison

L s e B L A B B BB By

10000

T
L b

1000

100 F 4

10 | E

Default

0.01

satisfiable ~ +
unsatisfiable ~ +

0.001 // // Il Il Il Il I I I
0.001 0.01 0.1 1 10 100 1000 10000

Optimized
(c) training MathSAT timeout = 15s

Figure 7.5: Performance comparison of QIFLRA configurations found by dif-
ferent training MathSAT timeouts (cont.)

124

7.6. SUMMARY

7.6 Summary

Table[7.16 summaries the performance comparison of the Hizeries on the
SMT-LIB benchmark.

In four theories of QADL, QF_LIA, QF_LRA, and QFUFLRA, the num-
ber of tests solved by the optimized configuration is equahéonumber of tests
solved by theadaptivesmt-comp configuration (this configuration can be changed
according to different problem classes) and is larger tlm@nrnumber of tests
solved by the default configurations. In addition, the maantime is reduced
by a factor 0f1.231in case of QHDL, by a factor of3.677in case of QHLIA,
and by a factor o8.375in case of QEUFLRA. Only in the case of QERA,
the mean runtime of the optimized configuration is incredsed factor 0f2.187
compared with the mean runtime of the adaptive smt-comp gardiion. But
if compared with the default configuration, the optimizedfoguration solves
tests more

In the case of QRJFIDL, the optimized configuration solv@gests lessom-
pared with the adaptive smt-comp configuration. Howevearpihpared with the
default configuration, the optimized configuration sol¥¢édests more

125

CHAPTER 7. MORE RESULTS OF THE FIVE THEORIES ON THE
SMT-LIB BENCHMARK

Tests solved (Optimized/Default/SMTCOMP) 95/94/95
Mean runtime(not include TIMEOUT tests) | 5.207s/2.744s/6.410s
The number of tests 100
(a) QRIDL
Tests solved (Optimized/Default/SMTCOMP) 199/199/199
Mean runtime(not include TIMEOUT tests) | 12.069s/17.369s/44.378s
The number of tests 200
(b) QF.LIA
Tests solved (Optimized/Default/SMTCOMP) 200/193/200
Mean runtime(not include TIMEOUT tests) | 19.759s/31.269s/9.033s
The number of tests 200
(c) QFLRA
Tests solved (Optimized/Default/SMTCOMP) 198/187/200
Mean runtime(not include TIMEOUT tests) | 23.804s/39.339s/30.264s
The number of tests 200
(d) QF.UFIDL
Tests solved (Optimized/Default/SMTCOMP) 200/200/200
Mean runtime(not include TIMEOUT tests) | 0.056s/0.374s/0.189s
The number of tests 200

(e) QFEUFLRA

Table 7.16: Performance Comparison of the five theories @ $MT-LIB bench-
mark

126

Chapter 8

Conclusion

The main contribution of this thesis is a comprehensiveystilithe most effective
SMT techniques. This includes an empirical analysis apgréa study the char-
acteristics of the MathSAT configuration scenario, two expental groups on
eight and five theories to determine the best possible caatigns for MathSAT
on the SMT-COMP 2009 and SMT-LIB benchmark. Here, we desdtiese in
more detalil:

e We have done many experiments on a theory to determine thiesonteble
scenario for MathSAT before starting experiments on a stteries. The
main parameters in a scenario are the ParamiILS strategic@d3ocused),
the timeout of ParamILS (tunnerTimeout), the timeout ofreltathSAT
run(cutofftime), the effect of ParamILS random seeds, the determinfsm
MathSAT. From the experimental results, we have concludetFocused
ParamILS using DAEs the most suitable ParamILS for MathSAT. As for
the training time48 hourss enough for the ParamILS convergence because
we have experimented on tli@gF_LRA one of the most difficult theories
in the set of theories supported by MathSAT, and observadPhiaamILS
converged withimd8 training hourswith the MathSAT timeouts less than
60s. In order to choose suitable MathSAT timeouts whenitrgjrwe have
run MathSAT with the default (or smt-comp) configuration e training
dataset in advance and chosen the three MathSAT timeoultisnfabuts
have value from 0 to 1200 with step 5) which are less than 66rskcand
solve similar percentage of tests.

e Then, we have started ParamlILS on eight theories using the GOMP
2009 benchmark. In these experiments, we have used the saasetof
SMT-COMP 2009 for training and testing phases in order teckheéhether
we could have better configurations than the default cordiguns and the
configurations used in SMT-COMP 2009 (smt-comp configunaticghese

127

CHAPTER 8. CONCLUSION

configurations could behangedaccording to different problem classes
based on a statistics module in MathSAT). In three theorfeQfIDL,
QF.LRA, and QEUFIDL, the number of solved tests is improved signif-
icantly. For example, in the case of QBL, the optimized configuration
found by ParamlILS solveb4 tests moreompared with the adaptive smt-
comp configuration andO tests moreompared with thevinner of SMT-
COMP 2009 on this theory (despite the fact that we are usiegliter ver-
sion of MathSAT, not the new one in the competition). In twhestcases
of QF_LIA, and QFUFLRA, the number of tests solved by the optimized
configuration is equal to the number of tests solved by thetadgasmt-
comp configuration. However, the mean runtime is reducedoxppately
by half in case of QHLIA and by a factor of eightin case of QRUFLRA.
For other three theories, we have encountered some bugstedtery, and
report them to the MathSAT team because we used not only shedt@a-
rameters but alsmternal parameters which are used for developers and not
tested carefully.

e Next, we have used the benchmark selection tool of SMT-COBIEOY 20
extract from the SMT-LIB benchmark different training aegting datasets
for five successfully tested theories (no errors found iming and test-
ing phases for these theories in Chapter 5) to find generahizetd Math-
SAT configurations. In four theories of QBL, QF_LIA, QF_LRA, and
QF.UFLRA, the number of tests solved by the optimized configarais
equal to the number of tests solved by #uaptivesmt-comp configuration
and is larger than the number of tests solved by the defaofigurations.
In addition, the mean runtime is reduced by a factod&31in case of
QF.IDL, by a factor of3.677in case of QHE.IA, and by a factor 0f3.375
in case of QEUFLRA. Only in the case of QERA, the mean runtime of
the optimized configuration is increased by a facta?2.dB7compared with
the mean runtime of the adaptive smt-comp configuration.ifBxmpared
with the default configuration, the optimized configuratgmives7 tests
more In the case of QRJFIDL, the optimized configuration solvéstests
lesscompared with the adaptive smt-comp configuration. Howefleom-
pared with the default configuration, the optimized confagion solvesl1
tests more

128

Chapter 9

List of Acronyms

e RAE Random Algorithm Evaluation (used in ParamILS).

e DAE Deterministic Algorithm Evaluation (used in ParamiLS).

129

130

Bibliography

[1] Frank Hutter, Holger H. Hoos, and Thomas Stutzle. Auatimalgorithm
configuration based on local search. In AAAI, pages 11521ABAI Press,
2007.[26

[2] Diplomarbeit In Englischer Sprache, Von Frank HuttemdaBetreuer Dr.
Thomas Stutzle. Stochastic local search for solving thstpimbable expla-
nation problem in bayesian networks, 2004l [26, 33

[3] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, anddrhas Stutzle.
ParamILS: An Automatic Algorithm Conguration Framewonk.Journal of
Artificial Intelligence Research 36 (2009) 267-306, 2008. 2

[4] Roberto Sebastiani. Lazy Satisability Modulo Theori&SAT, Vol. 3, Num-
ber 3-4, pp. 141-224, 2007} [2,[8]12] 03, [15,[17, 19

[5] Alberto Griggio. An effective SMT engine for Formal Vgation. Ph.D.
Thesis, DISI - University of Trentd, 13

[6] Anders Franzn. Efficient Solving of the Satisfiability ®lao Bit-Vectors
Problem and Some Extensions to SMT. Ph.D. Thesis, DISI - éfsity of
Trento.[1#

[7] Jinbo Huang. The Effect of Restarts on the Efficiency cdu3e Learning.
IJCAI, pp. 2318-2323, 2007118

[8] Armin Biere. Adaptive Restart Strategies for Conflictign SAT Solvers.
SAT, Lecture Notes in Computer Science, Vol. 4996, pp. 288inger,
2008.[19

[9] Alessandro Cimatti, Alberto Griggio and Roberto Selzast Efficient Inter-
polant Generation in Satisfiability Modulo Theories. ACMafisaction on
Computational Logics, TOCL. To appear. Available from TO&tcepted
papers web pagé. 17,120

131

BIBLIOGRAPHY

[10] Dutertre, B., de Moura, L. The Yices SMT Solver.
http://yices.csl.sri.com/tool-paper.pdf (2006) 15

[11] Niklas Sorensson, Niklas Een. Minisat 1.13 system dpson,
http://www.minisat.se/downloads/MiniSal.13 short.pdf[[Ib

[12] Clark Barrett, Roberto Sebastiani, Sanjit Seshiaag@eginelli. Satisfiability
Modulo Theories. Part Il, Chapter 26, The Handbook of Satigfty. 2009.
IOS press[18

[13] Jan-Willem Roorda and Koen Claessen. SAT-Based assistin abstraction
refinement for symbolic trajectory evaluation. In Compuieted Verifica-
tion, pages 175-189, Springer-Verlag, 2006. 13

[14] Bozzano, M., Bruttomsesso, R., Cimatti, A., Junttila, Van Rossum, P.,
Ranise, S., And Sebastiani, R.. Efficient Theory Combimatia Boolean
Search. Information and Computation 204, 10(October)11¥896, 2006.
20

[15] Lourenco, H. R., Martin, O., & Stutzle, T. Iterated &csearch. In F.
Glover & G. Kochenberger (Eds.), Handbook of Metaheurssfjgp. 321-
353). Kluwer Academic Publishers, Norwell, MA, USA, 2002 2

[16] Carsten Sinz and Markus Iser. Problem-Sensitive Relsuristics for the
DPLL Procedure. SAT, Lecture Notes in Computer Science, %684, pp.
356-362, Springer, 2009. 118

[17] http://goedel.cs.uiowa.edu/smtlb/57

[18] W. Ackermann. Solvable Cases of the Decision ProbleanttiNHolland Pub.
Co., Amsterdam, 1954, 14

[19] A. Armando, C. Castellini, and E. Giunchiglia. SAT-leasprocedures for
temporal reasoning. In Proc. European Conference on Rign@P-99,

1999.[T[O I 13,19

[20] A. Armando, C. Castellini, E. Giunchiglia, and M. Magat A SAT-based
Decision Procedure for the Boolean Combination of Diffee@onstraints.
In Proc. SAT04, 200417

[21] G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, dnR. Sebastiani.
A SAT Based Approach for Solving Formulas over Boolean anadear
Mathematical Propositions. In Proc. CADE’2002., volum@®23f LNAL.
Springer, July 200219, 10, 13,11718

132

BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiaerifying In-
dustrial Hybrid Systems with MathSAT. In Proc. BMCO04, voler@9/4 of
ENTCS. Elsevier, 200317

G. Audemard, A. Cimatti, A. Korni lowicz, and R. Sebasti. SAT-Based
Bounded Model Checking for Timed Systems. In Proc. FORTE@#ume
2529 of LNCS. Springer, November 2002[7] 19

T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Awatic Theo-
rem Proving for Predicate Abstraction Refinement. In Pré®/@1, volume
3114 of LNCS. Springer, 2004] 7

C. Barrett and S. Berezin. CVC Lite: A New Implementataf the Cooper-
ating Validity Checker. In Proceedings of the 16th Inteioadl Conference
on Computer Aided Verification (CAV 04), volume 3114 of LNCSpringer,
2004.[T

C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfity Modulo
Theories Competition. In Proc. CAV05, volume 3576 of LNC®riSger,
2005.[9

C. Barrett, D. Dill, and A. Stump. Checking Satisfiatyilof First-Order For-
mulas by Incremental Translation to SAT. In 14th InternagloConference
on Computer-Aided Verification, 2002] 9

C. W. Barrett, D. L. Dill, and A. Stump. A generalizatiasf Shostaks
method for combining decision procedures. In Frontiers @hBining Sys-
tems (FROCOS), LNAI. Springer, April 2002. S. Margheritaglure, Italy.
8

C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, abhdD. Zuck.
TVOC: A Translation Validator for Optimizing Compilers. RProc. CAVO5,
volume 3576 of LNCS. Springer, 2005. 7

R. J. Bayardo and R. C. Schrag. Using CSP Look-Back Tigcies to Solve
Real-World SAT instances. In Proc. AAAI97, pages 203208 AARress,

1997.[8[9[1b

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic mela¢hecking with-
out BDDs. In Proc. CAV99, 1999, 8

A. Boralv. A Fully Automated Approach for Proving SafjeProperties in
Inter- locking Software Using Automatic Theorem-ProvihgProceedings
of the Second International ERCIM Workshop on Formal Meghfud In-
dustrial Critical Systems, 199[7] 8

133

BIBLIOGRAPHY

[33] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzen, Anda, Z. Khasi-
dashvili, A Palti, and R. Sebastiani. Encoding RTL Condstior MathSAT:
a Preliminary Report. In Proc. PDPARO5, volume 144 of ENTEISevier,

2006.T[2D

[34] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttilaydh Rossum, S.
Schulz, and R. Sebastiani. An incremental and Layered Buedor the
Satisfiability of Linear Arithmetic Logic. In Proc. TACASQ%olume 3440
of LNCS. Springer, 2005.]1 7] 9

[35] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttilaydh Rossum, S.
Schulz, and R. Sebastiani. MathSAT: A Tight Integration AT @nd Mathe-
matical Decision Procedure. Journal of Automated Reago@H(1-3), Oc-

tober 20059, 17,19

[36] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, VAn Rossum,
S. Ranise, and R. Sebastiani. Efficient Theory CombinatianBoolean
Search. Information and Computation, 204(10), 2006. 10

[37] R. Brinkmann and R. Drechsler. RTL-datapath verifieatising integer lin-
ear programming. In Proc. ASP-DAC 2002, pages 741-746. |2BE2.[20

[38] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling avetifying Sys-
tems Using a Logic of Counter Arithmetic with Lambda Express and
Uninterpreted Functions. In Proc. CAV02, volume 2404 of LSNGpringer,
2002.[9

[39] J. R. Burch and D. L. Dill. Automatic Verification of Pifieed Micropro-
cessor Control. In Proc. CAV 94, volume 818 of LNCS. Sprind&04.[7

[40] C. Castellini, E. Giunchiglia, and A. Tacchella. SA&ded planning in com-
plex domains: Concurrency, constraints and nondetermindsgtificial In-
telligence, 147(12):85-117, 2003. 8

[41] M. Davis, G. Logemann, and D. Loveland. A machine progfar theorem
proving. Journal of the ACM, 5(7), 1962] 9

[42] M. Davis and H. Puthnam. A computing procedure for quartion theory.
Journal of the ACM, 7:201-215, 1960. 9

[43] L. de Moura and N. Bjrner. System Description: Z3 0.1. In
3rd Int. Competition of Satisfiability Modulo Theories tspl 2007.
http://research.microsoft.com/projects/z3/smtcompdfZ[4

134

BIBLIOGRAPHY

[44] L. de Moura and H. Ruess. An Experimental Evaluation oiukd Decision
Procedures. In Proc. CAV04, volume 3114 of LNCS. Springe042[9

[45] L. de Moura, H. Rue, and M. Sorea. Lazy Theorem ProvingBounded
Model Checking over Infinite Domains. In Proc. of the 18thehniational
Conference on Automated Deduction, volume 2392 of LNCSgepatf38-
455. Springer, July 2002] [7], 9

[46] D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theoreover for program
checking. Journal of the ACM, 52(3):365-473, 200b. 7

[47] B. Dutertre and L. de Moura. A Fast Linear-Arithmetid\&s for DPLL(T).
In Proc. CAVO06, volume 4144 of LNCS. Springer, 2006. 7

[48] N. Een and A. Biere. Effective Preprocessing in SAT Tgb Variable and
Clause Elimination. In proc. SAT05, volume 3569 of LNCS.iSger, 2005.
8,9

[49] N. Een and N. Sorensson. An extensible SAT-solver. ladrit and Appli-
cations of Satisfiability Testing (SAT 2003), volume 2919HCS, pages
502-518. Springer, 2004] B,[0,111

[50] J.C: Filliatre, S. Owre, H. Rue, and N. Shankar. ICSegmnated Canonizer
and Solver. Proc. CAV2001, 2001. 8

[51] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theoremifiydysing Lazy
Proof Explication. In Proc. CAV 2003, LNCS. Springer, 20039,[10

[52] Anders Franzen. Using Satisfiability Modulo Theorieslhductive Verifica-
tion of Lustre Programs. In Proc. BMCO5, volume 144 of ENTEBevier,
2006.[7

[53] M. K. Ganai, M. Talupur, and A. Gupta. SDSAT: Tight intatjon of small
domain encoding and lazy approaches in a separation lolyiersin Proc.
TACASO06, volume 3920 of LNCS. Springer, 2006. 7

[54] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliverasd & Tinelli.
DPLL(T): Fast Decision Procedures. In Proc. CAV04, voluniel8 of
LNCS. Springer, 200419, 10,113

[55] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SA&®:d Decision Proce-
dures for Classical Modal Logics. Journal of Automated Reag). Special
Issue: Satisfiability at the start of the year 2000, 2001. 17

135

BIBLIOGRAPHY

[56] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Acid the Rest Will Fol-
low: Exploiting Determinism in Planning as Satisfiability.Proc. AAAI98,
pages 948-953, 199B8.111

[57] F. Giunchiglia and R. Sebastiani. Building decisiomgedures for modal
logics from propositional decision procedures - the casadysdbf modal K. In
CADE-13, LNAI, New Brunswick, NJ, USA, August 1996. Sprimié&rlag.
9,10

[58] E. Goldberg and Y. Novikov. BerkMin: A Fast and RobustTS3olver. In
Proc. DATE 02, page 142, Washington, DC, USA, 2002. IEEE Qamp
Society[8[B 111

[59] J. Hoffmann and R. |. Brafman. Contingent Planning vieuHstic Forward
Search witn Implicit Belief States. In Proceedings of thigefeéinth Interna-
tional Conference on Automated Planning and SchedulingRI€ 2005),
pages 71-80. AAAI, 2009.]8

[60] John N. Hooker and V. Vinay. Branching Rules for Satlsfity. Journal of
Auto- mated Reasoning, 15(3):359-383, 1998. 11

[61] I. Horrocks and P. F. Patel-Schneider. Optimising poponal modal satis-
fiability for description logic subsumption. In Proc. AISE9olume 1476
of LNAI. Springer, 1998[B

[62] R.G. Jeroslow and J. Wang. Solving Propositional 8abdity Problems.
Annals of Mathematics and Atrtificial Intelligence, 1(1-4§7-187, 1990, 11

[63] H. Kautz, D. McAllester, and B. Selman. Encoding Plam$’ropositional
Logic. In Proc. KR96, 1996.18

[64] H. Kim and F. Somenzi. Finite Instantiations for Intedmfference Logic.
In proc FMCADO6. ACM Press, 2006] 7

[65] S. K. Lahiri and S. A. Seshia. The UCLID Decision Procedun Proc.
CAVO04, volume 3114 of LNCS, 2004] 7

[66] C. M. Li and Anbulagan. Heuristics based on unit propegefor satisfia-
bility problems. In Proceedings of the 15th Internationaihd Conference
on Artificial Intelligence (IJCAI-97), pages 366-371, 1997

[67] M. Mahfoudh, P. Niebert, E. Asarin, and O. Maler. A Shltigility Checker
for Difference Logic. In Proceedings of SAT-02, pages 222,2002[[B

136

BIBLIOGRAPHY

[68] K. McMillan. Applying SAT Methods in Unbounded SymboliModel
Checking. In Proc. CAV 02, volume 2404 of LNCS. Springer, 208

[69] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. MalChaff: En-
gineering an efficient SAT solver. In Design Automation Gaehce, 2001.

8,8,11

[70] C. G. Nelson and D. C. Oppen. Simplification by coop@&mgtiecision pro-
cedures. TOPLAS, 1(2):245-257, 1979. 8

[71] G. Nelson and D. C. Oppen. Fast Decision ProceduresdBas€ongruence
Closure. Journal of the ACM, 27(2):356-364, 19BD. 8

[72] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustivheory Prop-
agation and its Application to Difference Logic. In Proc. \d%, volume
3576 of LNCS. Springer, 2005] [7,[9,113

[73] D. C. Oppen. Complexity, Convexity and CombinationSbkories. Theo-
retical Computer Science, 12:291-302, 1980. 8

[74] D.C. Oppen. Reasoning about Recursively Defined Datactires. Journal
of the ACM, 27(3):403-411, 1980] 8

[75] G. Parthasarathy, M. K. lyer, K.-T. Cheng, and L.-C. \YaAn efficient
finite-domain constraint solver for circuits. In Proc. DACOACM Press,
2004.[7

[76] S. Ranise and D. Deharbe. Light-Weight Theorem ProvargDebugging
and Verifying Units of Code-. In Proc. of the Internationadr@erence on
Software Engineering and Formal Methods SEFMO03. IEEE Cderfoci-
ety Press, 2003] 7

[77] S. Ranise and C. Tinelli. The Satisfiability Modulo Thies Library (SMT-
LIB). http://www.SMT-LIB.org, 2006 B

[78] S. Ranise and C. Tinelli. The SMT-LIB Standard: Versiog. Technical re-
port, Department of Computer Science, The University ofdp2006. Avail-
able at http://www.SMT-LIB.org[18

[79] S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SB&sed Deci-
sion Procedure for Separation Logic with Uninterpretedd&ons. In Proc.
DACO03, 2003 B 19

[80] N. Shankar and Harald Rue. Combining shostak theomeged paper for
Floc02/RTA02, 200218

137

BIBLIOGRAPHY

[81] H. M. Sheini and K. A. Sakallah. A Scalable Method for 8ng Satisfia-
bility of Integer Linear Arithmetic Logic. In Proc. SATO5plume 3569 of
LNCS. Springer, 200517

[82] H. M. Sheini and K. A. Sakallah. From Propositional SAsibility to Satis-
fiability Modulo Theories. Invited lecture. In Proc. SATO&Ilume 4121 of
LNCS. Springer, 2006.]19

[83] R. Shostak. A Pratical Decision Procedure for Arithimetith Function
Symbols. Journal of the ACM, 26(2):351-360, 19[7P. 8

[84] R.E. Shostak. Deciding Combinations of Theories. dalof the ACM,
31:1-12, 198418

[85] J. P. M. Silva and K. A. Sakallah. GRASP - A new Search Aildpon for
Satisfiability. In Proc. ICCAD96, 1996] B 9

[86] SMT-COMPO5: 1st Satisfiability Modulo Theories Comfiet, 2005.
http://www.csl.sri.com/users/demoura/smt-comp/2085/

[87] SMT-COMPO6: 2nd Satisfiability Modulo Theories Comiieh, 2006.
http://www.csl.sri.com/users/demoura/smt-corhp/. 9

[88] G. Stalmarck and M. Saflund. Modelling and Verifying &ras and Soft-
ware in Propositional Logic. Ifac SAFECOMP90, 1990. 8

[89] P. Stephan, R. Brayton, , and A. Sangiovanni-Vincéint€ombinational
Test Generation Using Satisfiability. IEEE Transaction€omputer-Aided
Design of Integrated Circuits and Systems, 15:1167-1198618

[90] O. Strichman. Tuning SAT checkers for Bounded Model ¢kgg. In Proc.
CAV00, volume 1855 of LNCS, pages 480-494. Springer, 200D. 1

[91] O. Strichman. On Solving Presburger and Linear Aritimevith SAT.
In Proc. of Formal Methods in Computer-Aided Design (FMCADO2),
LNCS. Springer, 2004.19

[92] O. Strichman, S. Seshia, and R. Bryant. Deciding séjoaréormulas with
SAT. In Proc. of Computer Aided Verification, (CAV02), LNCSpringer,
2002.[9[19

[93] C. Tinelli. A DPLL-based Calculus for Ground Satisfikittyi Modulo The-
ories. In Proc. JELIA-02, volume 2424 of LNAI, pages 308-3%fringer,
2002.[9[1B

138

BIBLIOGRAPHY

[94] M. N. Velev and R. E. Bryant. Exploiting Positive Equgland Partial Non-
Consistency in the Formal Verification of Pipelined Micropessors. In De-
sign Automation Conference, pages 397-401, 1999. 9

[95] S. Wolfman and D. Weld. The LPSAT Engine and its Applicatto Re-
source Planning. In Proc. IJCAI, 1999.[7[91 A0, 17

[96] Y. Yuand S. Malik. Lemma Learning in SMT on Linear Comsiits. In Proc.
SATO06, volume 4121 of LNCS. Springer, 2006] 19

139

	Introduction
	Satisfiability Modulo Theories and MathSAT
	Automatic Configuration Framework
	Summary of Contributions

	I BACKGROUND AND STATE OF THE ART
	SMT Techniques and MathSAT
	Lazy SMT in MathSAT
	Satisfiability Modulo Theories - SMT
	Lazy SMT = SAT + T -Solvers
	MathSAT

	SMT Techniques Implemented in MathSAT
	Concept of the section
	Integration of DPLL and T -Solver
	Adaptive Early Pruning
	 T -propagation
	Dual Rail Encoding
	Dynamic Ackermann Expansion
	Boolean Conflict Clause Minimization
	Learned Clauses Deleting
	Ghost Filtering
	Increase The Initial Weight of Boolean Variables
	Threshold for Lazy Explanation of Implications
	Incremental Theory Solvers
	Mixed Boolean+Theory Conflict Clauses
	Permanent Theory Lemmas
	Pure Literal Filtering
	Random Decisions
	Restart
	Static Learning
	Splitting of Equalities
	Theory Combination
	Propagation of Toplevel Information

	ParamILS
	An Automatic Configuration Scenario
	The ParamILS Framework
	The BasicILS Algorithm
	The FocusedILS Algorithm
	Usage
	ParamILS Configuration
	Tuning-scenario file

	II CONTRIBUTIONS
	Determine ParamILS Parameters
	Two runs of Basic ParamILS using DAE
	Experimental setup
	Experimental result

	Two runs of Basic ParamILS using RAE
	Experimental setup
	Experimental result

	Summary of two Basic ParamILS runs using DAE and RAE
	Basic ParamILS using DAE and RAE
	Experimental setup
	Experimental result

	Focused ParamILS with DAE and RAE
	Experimental setup
	Experimental result

	Summary of Basic and Focused ParamILS using DAE and RAE
	RAE Basic ParamILS with different MathSAT timeouts
	Experimental setup
	Experimental result

	DAE Focused ParamILS with different training MathSAT timeouts
	Experimental setup
	Experimental result

	DAE Focused ParamILS with different training times
	Experimental setup
	Experimental result

	DAE Focused ParamILS with different numRuns
	Experimental setup
	Experimental result

	Summary

	Configuring MathSAT on Five Theories on the SMT-COMP Benchmark
	QF_IDL with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_LIA with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_LRA with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_UFIDL with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_UFLRA with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	Summary

	Configuring on Other Theories on the SMT-COMP Benchmark
	QF_UFLIA with Focused ParamILS using DAE
	Experimental setup
	Experimental result

	QF_UF with Focused ParamILS using DAE
	Experimental setup
	Experimental result

	QF_RDL with Focused ParamILS using DAE
	Experimental setup
	Experimental result

	More Results of the Five Theories on the SMT-LIB Benchmark
	QF_IDL with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_LIA with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_LRA with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_UFIDL with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	QF_UFLRA with Focused ParamILS using DAE
	Experimental setup
	Training Result
	Testing Result

	Summary

	Conclusion
	List of Acronyms

