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Antonella Delmestri, Nello Cristianini 

 

Abstract 

 

We present a new automatic learning system for cognate identification. We design a 

linguistic-inspired substitution matrix to align sensibly our training dataset. We introduce a 

PAM-like technique, similar to the one successfully used in biological sequence analysis, in 

order to learn substitution parameters. We propose a novel family of parameterised string 

similarity measures and we apply them together with the PAM-like matrices to the task of 

cognate identification. We train and test our proposal on standard datasets of Indo-European 

languages in orthographic format based on the Latin alphabet, but it could easily be adapted to 

datasets using any other alphabet, including the phonetic alphabet if data was available. We 

compare our system with other models reported in the literature and the results show that our 

method outperforms both orthographic and phonetic approaches formerly presented, 

increasing the accuracy by approximately 5%. 

 

Keywords: Cognate identification, substitution matrices, string similarity measures. 

 

 

1. Introduction 

 

Language is a defining feature that distinguishes modern humans from all the other species, is 

a carrier of culture and plays a key role in communication. The analogy of language evolution 

with species evolution, predicted by Charles Darwin (1859) in his “On the Origin of Species” 

has aroused a growing interest in the scientific community following the extraordinary 

progress of computational molecular biology in the field of genomes. Bioinformatics 

techniques are now applied to the field of natural language processing where they are making 

significant contributions and presenting exciting opportunities for further investigation. 

Natural languages that originate from a common ancestor are genetically related, words are 

the backbone of any natural language and cognates are words sharing the same ancestor and 

etymology. Therefore cognate identification represents the foundation for discovering the 

evolutionary history of languages. However, cognate recognition has proved to be useful not 

only in historical linguistics, but also in very diverse fields of natural language processing. 

Applications that benefit from cognate identification include lexicography (Brew and 

McKelvie 1996), parallel bilingual corpora processing, such as sentence alignment (Melamed 

1999), word alignment (Tiedemann 1999; Kondrak 2005) and lexicon translation (Mann and 

Yarowsky 2001), statistical machine translation (Kondrak et al. 2003), and confusable drug 

name detection (Kondrak and Dorr 2004).  

In historical linguistics, cognates are also called strict or genetic cognates as they derive from 

a “vertical” transmission and they do not include borrowings. Borrowings or loans are words 

borrowed from other languages through a “horizontal” transmission and for this reason do not 

follow the same phonological changes that occur over time. In many disciplines of natural 

language processing, the term cognates or broad cognates has a wider meaning and also 

includes borrowings.  

When relatedness between cognates have to be evaluated, the methodologies applied can be 

either orthographic, where cognates are analysed in their writing form of graphemes, or 

phonetic, where cognates have to be represented in a phonetic notation in order to be 



examined. The orthographic approach relies on the fact that alphabetic character 

correspondences represent in some way sound correspondences, as sound changes leave 

traces in the orthography. However, it does not require any phonetic transcription, whose 

attainment is still a very time consuming and challenging task. On the other hand, in 

evaluating word relatedness, phonetic methods depend on phonetic transcriptions of texts, but 

benefit from the phonetic characteristics and features of phonemes that can be decomposed 

into vectors of phonetic attributes. Even if for the task of cognate identification a phonetic 

approach is supposed to be more accurate than an orthographic one for its understanding of 

phonetic changes, the debate is still open and a comparative evaluation of several recent 

results seems to prove the opposite (Mackay and Kondrak 2005; Kondrak and Sherif 2006; 

Kondrak 2009). 

Another differentiating feature between methods applied to the assessment of word 

relatedness is the capacity to adapt to different contexts, and, based on that, evaluation 

systems can be either static or active. A static system is based on manually designed and 

incorporated knowledge, does not require any supervision and is not able to learn by 

processing data. On the other hand, an active system has the capacity to learn and adjust, but 

may need supervision.  

Several different approaches to the cognate identification problem have been proposed and 

orthographic or phonetic methodologies have been applied as well as learning algorithms or 

manually-designed procedures. In this paper we consider some authoritative methods 

proposed in the literature and compare them with our novel system. 

The remainder of the paper is organized as follows. Section 2 introduces alignments and 

substitution matrices to the task of word relatedness. Section 3 proposes a new learning 

system, including a linguistic-inspired substitution matrix to align the training dataset, a 

PAM-like technique to produce scoring schemes and a novel family of string similarity 

measures to score the similarity between strings. Section 4 describes the experimental design 

including the datasets and the evaluation methodology used. Section 5 presents the results of 

this study and compares them with others reported in the literature. Finally, Section 6 reports 

the conclusions reached by this investigation and our future plans. 

 

 

2. Word relatedness 

 

Cognate words can be studied by string matching techniques and cognate recognition 

represents a typical inexact string matching problem (Gusfield 1997). By adopting this 

approach to determine the relatedness of two strings, it is possible to either measure their 

distance, evaluating how distant the two strings are from each other, or to measure their 

similarity, calculating instead how similar the two strings are. The distance method leads to a 

minimisation problem because it aims to find the minimum distance between two strings, 

while the similarity method guides towards a maximisation problem as its target is to find the 

maximum similarity between two strings. 

 

2.1 Alignments 

 

The task of calculating the distance or the similarity between two strings is closely related to 

the job of finding an optimal alignment between the two strings: dynamic programming 

algorithms can perform both tasks (Gusfield 1997). Global or local alignment algorithms, 

widely used in biological sequence analysis where strings are generally addressed as 

sequences, usually consist of a scoring system, that reports distances or similarities between 

the characters of the alphabet employed, and a procedure that finds the optimal alignment. 



Even if the small length of the cognate words could make global alignment apparently more 

appropriate, local alignment can be useful in order to focus on the word roots, disregarding 

inflectional and derivational affixes (Kondrak 2000). Local alignment is only appropriate 

under the similarity approach. The dynamic programming algorithm for solving the problem 

of global sequence alignment is known as the Needleman-Wunsch algorithm (Needleman and 

Wunsch 1970), but the more efficient version generally used was introduced by Gotoh (1982). 

The dynamic programming algorithm for solving the problem of local sequence alignment is 

called the Smith-Waterman algorithm (Smith and Waterman 1981), but the more efficient 

version generally used is again the one proposed by Gotoh (1982). 

 

2.2 Substitution matrices 

 

Substitution matrices or scoring matrices are widely used in bioinformatics in the context of 

protein or nucleic acids sequence alignments. The significance of the resulting alignment 

depends greatly on the chosen scoring scheme, which is generally symmetric and whose 

choice must be determined by the type of application (Gusfield 1997). 

Given an alphabet   with    2, each character of   is more or less likely to transform into 

several other characters over time. A substitution matrix  -by-  over   represents the 

rates at which each character of   may change into another character of  . These rates in 

principle can be costs, when they signify distances, or can be scores, when they signify 

similarities. Ideally, substitution matrices should reflect the true probabilities of mutations 

occurring through a period of evolution and should contain values proportional to these 

probabilities. 

There are many different ways to construct a substitution matrix, but the general approach is 

to assemble a large sample of verified pairwise alignments, or multiple sequence alignments, 

and derive the values using a probabilistic model. Ideally, the values in the matrix should 

reveal the phenomena that the alignments try to represent. The target is to assign a rate to the 

alignments that gives a measure of the relative likelihood that the sequences are related as 

opposed to being unrelated (Durbin et al. 1998). To compare these two hypotheses, the log-

odds-ratio is considered, that is the logarithm of the ratio of the probability that the sequences 

are associated as opposed to being random. The choice of the logarithm base is generally not 

important. In the related or match model, aligned pairs of residues occur with a joint 

probability, and the probability for the whole alignment is the product of these joint 

probabilities. In the unrelated or random model, the probability of the two sequences is just 

the product of the probabilities of each character, because the model assumes that each 

character occurs independently. When properly arranged, these log-odds-ratios, that may be 

scaled and rounded, constitute the substitution matrix. Ideally, if the similarity approach is 

adopted, positive and negative scores should indicate respectively conservative and non 

conservative substitutions. Indeed, when two characters are expected to be aligned together in 

related sequences more often than to occur by chance, then the odds-ratio is greater than one 

and the score is positive. It is worth noting that the rates of identical character substitutions 

are inversely proportional to their occurrences because the rarer the character is, the smaller 

the likelihood to find two of them aligned by chance. 

 

 

3. A new learning system 

 

In order to study word relatedness, we have decided to choose the similarity approach which 

is the standard in biological sequence analysis and frequently used in natural language 

processing. Similarity allows local alignment, as well as global alignment, to be performed 



and it leads to the maximisation problem of finding the highest scoring alignment of the two 

words. We have developed this new learning system utilising orthographic data based on the 

Latin alphabet, but our proposal may easily be adapted to any alphabetic system, including the 

phonetic alphabet. 

 

3.1 A linguistic-inspired substitution matrix 

 

In order to generate automatically a sensibly aligned training dataset, we have produced a 

linguistic-inspired substitution matrix based on knowledge of orthographic changes in the 

Indo-European languages. We have considered the 26 letters of the Latin alphabet and we 

have prepared a symmetric 26-by-26 matrix that contains a-priori likelihood of transformation 

between each character of the alphabet into another. We have given a value of 2 to all the 

elements of the main diagonal, because it is likely that a character preserves itself. We have 

assigned 0 values to all the character transformations considered “possible”, a score of -3 to 

all the character transformations considered “impossible” and a gap penalty of -1 for insertion 

and deletion (indels), to avoid possible overlaps between two indels and an “impossible” 

match. We have tried to represent in this linguistic-inspired matrix the traces that systematic 

sound changes left in written languages. Vowel shift chains, consonant shift chains including 

Grimm’s and Verner’s laws, Centum-Satem division, rhotacism, assimilation, dissimilation, 

lenition, fortition and L-vocalisation have been considered. We have used this substitution 

matrix to perform global pairwise alignment on cognate pairs by the Needleman-Wunsch 

algorithm (Needleman and Wunsch 1970; Gotoh 1982), which is the standard for global 

sequence alignment. If more than one optimal alignment has been found, one alignment has 

been chosen through an alternate trace back ( |  |  |  |  | ) with 

the aim of assuring a more balanced learning process by avoiding possible bias due to always 

giving priority to the same conditional predicates. 

 

3.2 PAM matrices 

 

We have investigated Point Accepted Mutation (PAM) matrices that have been the standard 

and sole substitution matrices for amino acid alignments up until the advent of BLOSUM 

matrices (Henikoff and Henikoff 1992). The term PAM refers to a family of amino acid 

substitution matrices, developed by Margaret Dayhoff et al. (1968; 1972; 1978), which 

encode and summarise expected evolutionary changes of amino acids. An accepted point 

mutation in a protein is a replacement of one amino acid by another that has been accepted by 

natural selection and passed on to its progeny. The name PAM is also used as a measure unit 

to express the evolutionary divergence between two amino acid sequences. In this way, a 

PAM0 matrix coincides with the identity matrix where each character is considered 

maximally similar to itself, but not able to transform into any other character. The foundation 

of Dayhoff and co-workers approach is to obtain substitution rates from global alignments 

between closely related proteins and then to infer from this data longer evolutionary 

divergences. A mutation probability matrix is calculated from comparisons of sequences with 

no more than 1% divergence and all the PAM matrices are extrapolated from it. This 

approach assumes that the frequencies of the amino acids remain constant over time and that 

the mutational process causing replacements in an interval of 1 PAM unit operate the same for 

longer periods (Gusfield 1997). 

 

 

 



3.3 PAM-like matrices 

 

Due to the lack of supervised and organised databases of cognate words and to the small 

length of words compared with the length of biological sequences, we have been forced to 

differentiate partially our method, from the one Margaret Dayhoff and co-workers used to 

create the PAM matrices for biological sequence analysis. Their starting point was to identify 

a group of protein families where each pair of sequences showed amino acid diversity up to 

15% and from them they built hypothetical phylogenetic trees with the parsimony method 

(Dayhoff and Eck 1968). The group of cognate families showing up to 15% of identity that 

we have been able to extract from our dataset has been completely useless because it was 

composed of a few families of nearly identical words where the only mismatches were due to 

indels. Increasing the identity threshold up to 25% or 35% has not produced any substantial 

improvement. For example, the cognate words Italian fiore and French fleur, that are clearly 

closely related, present a diversity of 80% as 4 letters out of 5 are different. We have decided 

to use the whole dataset available and due to the small size of the cognate families we have 

compared the cognate words with each other and not with their hypothetical ancestors. We 

have then followed the Dayhoff method to produce a family of PAM-like matrices based on a 

non symmetric matrix M of mutation probabilities. Firstly, a matrix A of accepted point 

mutation has been calculated ignoring the evolutionary direction meaning that A(i,j) and 

A(j,i) were incremented every time character  i was replaced by  j or vice-versa. Then the 

relative mutability m(j) of each character  j has been calculated as the ratio of observed 

changes to the frequency of occurrence. Finally, M has been calculated as follows: 

 

        
             

        
                        (1) 

 

                                    (2) 

 

where M(i,j) contains the probability that character  j mutates to character  i in 1 PAM unit 
and   is a proportionality constant we set to 1. To generate scoring matrices suitable for 

longer periods of time, we have produced matrices M
n
 by multiplying matrix M by itself n 

times that gives the probability that any particular character mutates to another one in n PAM 

units. Each PAMn matrix was obtained by the following log-odds-ratios where f(i) and f(j) 

are the observed frequencies of character  i and  j normalized respectively by the number of 

all mutations. 

 

 PAMn(i, j) =         
            

         
          

       

    
  (3) 

 

We have not scaled the values in the PAM-like matrices and we have left the final scores with 

two decimal numbers to preserve accuracy. Because we have not limited the identity 

percentage within the cognate family considered for the training, ten PAM-like matrices have 

shown to be sufficient for modelling the divergence time of the languages considered.  

 

3.4 A family of parameterised string similarity measures 

 

We have proposed a family of parameterised string similarity measures obtained through 

different normalisations of a generic similarity rating algorithm score. In doing so, our aim 

has been to take into account the similarity of each string with itself in order to eliminate, or at 

least reduce, the bias due to different string length. Indeed, alignments of two identical strings 



do not have a constant rate under the similarity approach because the score depends on the 

length of the string but also on the substitution rates of the characters involved.  

Given two strings, S1 and S2, and a generic similarity rating algorithm AL, we have defined 

the family of string similarity measures reported in Table 1. The similarity measure sim1 

normalises the rate of a similarity scoring algorithm AL applied to calculate the similarity of 

S1 with S2 by the arithmetic mean of the rates given by the same algorithm applied to 

calculate the similarity of each string with itself. The similarity measure sim2 does the same 

but normalises the rate by the weighted arithmetic mean that considers also the length of the 

two strings. The similarity measures sim3 and sim4 employ a normalisation by using the 

geometric mean and the weighted geometric mean respectively, while sim5 and sim6 normalise 

by the harmonic mean and the weighted harmonic mean. The Heronian mean is used to 

normalise the rate in sim7, the root mean square is utilised in sim8 and the contra-harmonic 

mean is employed in sim9. Following the idea of considering the similarity of each string with 

itself in calculating string similarity, other similarity measures may be added to this family.  

We have used these new similarity measures with the Needleman-Wunsch algorithm 

(Needleman and Wunsch 1970; Gotoh 1982) for global alignment and with the Smith-

Waterman algorithm (Smith and Waterman 1981; Gotoh 1982) for local alignment, but the 

new measures may be used with any other similarity rating algorithm. 

 

 String similarity measures Normalised by 

 
Arithmetic Mean  

 
Weighted Arithmetic Mean  

 
Geometric Mean  

 
Weighted Geometric Mean  

 
Harmonic Mean  

 
Weighted Harmonic Mean  

 
Heronian Mean  

 
Root Mean Square  

  

Contraharmonic Mean 

Table 1 - A family of parameterised string similarity measures 

 

 

4. Experimental design 

 

We have designed our experiments with the aim of generating an automatic system able to 

learn meaningful information, such as traces of sound correspondences left in the words 

orthography, and to apply it to the task of cognate identification. 
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4.1 Datasets 

 

In order to develop our system, we have employed a training dataset and a test dataset with no 

intersection in their language sets. 

The training dataset for our learning system has been extracted from the Comparative Indo-

European Database by Dyen et al. (1992). This corpus contains 200-word Swadesh lists 

(Swadesh 1952) of universal, non cultural and stable meanings from eighty-four 

contemporary Indo-European speech varieties. In it, each word is presented in orthographic 

format without diacritics, using the 26 letters of the Roman alphabet. The data are grouped by 

meaning and cognateness, which is reported as certain or doubtful. From all the languages 

available, we have considered three Romance languages (Italian, Portuguese and Spanish) and 

three Germanic languages (Dutch, Danish and Swedish) to have a balanced training dataset 

able to learn traces of sound correspondences of most of the language families of which the 

test dataset is made, but contemporarily avoiding any overlap between the languages of the 

training and test datasets. From this group of six languages, we have extracted about 650 

cognate pairs by considering only the word pairs reported by Dyen et al. (1992) as certain 

cognates and only the first cognate pair, if more words were provided for the same meaning in 

the same language. We have corrected a few evident errors. We have then automatically 

aligned these word pairs as described in Section 3.1.  

The test dataset consists of the orthographic form of the 200-word Swadesh lists (Swadesh 

1952) of English, German, French, Latin and Albanian provided by Kessler (2001) enhanced 

with his cognateness information. We have discovered two inconsistencies1 related to the 

cognation of two French - German word pairs, as the author has confirmed. To make our 

results properly comparable with others reported in the literature (Mackay and Kondrak 2005; 

Kondrak and Sherif 2006) where the same test datasets have been used, we have decided not 

to correct the mentioned errors. 

 

4.2 Evaluation methodology 

 

Cognate identification is an excellent method of measuring the ability of a word similarity 

evaluation system. We have examined pairs of words belonging to different languages but 

having the same meaning, for which the cognateness is known information. Ten language 

pairs deriving from the combination of the five languages present in the test dataset have been 

considered. 

We have produced two families of PAM-like matrices, one based on the Roman alphabet and 

one on its extension with gap, as proposed in Section 3.3. The two learning models, trained on 

the 6 language dataset described in Section 4.1, have been named respectively DAY6 and 

DAY6b. 

We have employed these families of PAM-like matrices to align and rate the word pairs of the 

test dataset with the basic sequence alignment algorithms (Needleman and Wunsch 1970; 

Smith and Waterman 1981; Gotoh 1982) and the family of parameterised similarity measures 

proposed in Section 3.4. For the model based on the Roman alphabet, a unary gap penalty has 

been applied in the alignment algorithms. Our aim has been to assign a score to each word 

pair that represents how likely the words are to be cognates. The calculated rates, which are 

relative to each other and do not reflect any universal scale, have then been ordered. When 

more word pairs have showed the same rate, the alphabetic order has been considered as well, 

to avoid random results and make the experiments reproducible. We have expected to find 

                                                 
1 The Latin word folium, meaning “leaf”, is reported to be cognate with the French feuille and the German Blatt, 

but the latter two are not reported as cognates with each other. The same happens to the Latin word collum, 

meaning “neck” with the French cou and German Hals. 



high density of true cognates at the top of the list and low density of true cognates at its 

bottom. To appraise our string similarity system on the task of cognate identification, we have 

not used a score threshold that may be influenced by the type of application, the method used 

and the degree of language relatedness (Kondrak 2009). Instead, we have borrowed from the 

field of Information Retrieval, a measure designed specifically to evaluate rankings, the 11-

point interpolated average precision (Manning and Schütze 1999). For each level of recall 

R{0.0, 0.1, 0.2, …, 1.0}, it calculates the interpolated precision, which is the highest 

precision found for any recall level R' ≥ R, and then it averages these eleven values. This 

measure has also been frequently used by other systems in the field of cognate recognition 

(Mackay and Kondrak 2005; Kondrak and Sherif 2006) with which we wanted to make our 

results properly comparable. For the same reason, we have not distinguished between 

cognates and borrowings. 

 

 

5. Experimental results 

 

We have employed the Needleman-Wunsch algorithm (NW) for global alignment and the 

Smith-Waterman algorithm (SW) for local alignment with the novel family of string 

similarity measures to evaluate the performance of our cognate identification system. For each 

PAM-like matrix and for each similarity measure, we have computed the 11-point 

interpolated average precision for each of the ten language pairs of our test dataset and then 

we have calculated their average, standard deviation, variance and median. The two models 

DAY6 and DAY6b achieve very good results especially when employing local alignment 

with the Smith-Waterman algorithm, even if the difference when using global alignment is 

not significant. DAY6b, that utilises the Roman alphabet extended with gap, achieves the best 

results suggesting that the system is also able to learn appropriate gap penalties. Figure 1 

shows the results produced by the first ten PAM-like matrices of DAY6b, using NW and SW 

respectively. As the identity matrix can be considered as a PAM matrix at 0 evolutionary 

distance, it has been included for completeness. 

 

         
Figure 1 - Averaged 11-point interpolated average precision for DAY6b using NW and SW 

 

The PAM-like matrices PAM4, PAM5, PAM6 and PAM7 produce the higher averaged 11-

point interpolated average precisions for all the family of similarity measures. All the 

similarity measures proposed perform consistently well and outperform the basic algorithms 

on which they are based.  

 

5.1 Related works 

 

Mackay (2004) on the task of cognate identification followed the orthographic approach and 

developed a suite of Pair Hidden Markov Model (PHMM) variations and training algorithms 

based on a model originally presented by Durbin et al. (1998). The training dataset consisted 

of about 120,000 word pairs extracted from the Comparative Indo-European Database by 

Dyen et al. (1992). A development dataset was used to determine several parameters of the 

models. Mackay and Kondrak (2005) tested this system on the dataset proposed by Kessler 



(2001), that also provides word phonetic transcriptions, and they compared it with ALINE 

(Kondrak 2000). This is an algorithm for phonetic sequence alignment which incorporates 

linguistic knowledge. Mackay and Kondrak tested the PHMMs also against the Levenshtein 

distance with Learned Weights (LLW) method, formerly proposed by Mann and Yarowsky 

(2001) in the task of lexicon translation. LLW learned the costs for edit operations from the 

same orthographic training dataset using a stochastic transducer. Mackay and Kondrak 

showed that all the PHMMs outperformed the other methods in terms of 11-point interpolated 

average precision and the one which produced the better results will be called hereinafter, 

simply, PHMM.  

Kondrak and Sherif (2006) working on orthographic data developed four different models of 

a Dynamic Bayesian Net previously proposed by Filali and Bilmes (2005) in the field 

pronunciation classification. In order to train their system on the task of cognate recognition, 

Kondrak and Sherif extracted from the Comparative Indo-European Database by Dyen et al. 

(1992) about 180,000 word pairs. They used them twice to enforce the symmetry of the 

scoring and they built up a development dataset to set-up the parameters of their system. They 

also evaluated a group of other phonetic and orthographic algorithms, including ALINE 

(Kondrak 2000), LLW (Mann and Yarowsky 2001), and PHMM (Mackay and Kondrak 

2005), and tested them on the dataset proposed by Kessler (2001). One of the DBN, called 

hereinafter only DBN, outperformed in terms of 11-point interpolated average precision all 

the other systems including PHMM, but not significantly. 

Kondrak (2009) investigated identification of cognates and recurrent sound correspondences 

testing several phonetic methods on the test dataset provided by Kessler (2001). His best 

result was achieved combining ALINE (Kondrak 2000) with a sound correspondence-based 

method trained using a six languages development dataset. This dataset was extracted from 

the orthographic Comparative Indo-European Database by Dyen et al. (1992) and then 

manually transcribed into a phonetic notation. This system improved the performance of 

ALINE, but did not outperform in terms of 11-point interpolated average precision the 

orthographic PHMM and DBN previously described.  

All the results presented in this section are quite remarkable because they suggest that 

orthographic learning models can outperform systems specifically designed for the task of 

phonetic alignment, like ALINE (Kondrak 2000) and its variations (Kondrak 2009), given 

enough training data.  

 

5.2 Comparison 

 

Both our models, DAY6 and DAY6b, when using global alignment as well as local 

alignment, consistently outperform ALINE (Kondrak 2000), PHMM (Mackay and Kondrak 

2005) and DBN (Kondrak and Sherif 2006) in terms of 11-point interpolated average 

precision in the task of cognate identification. Table 2 shows the proportion of cognate per 

language pair and a comparison of all the systems considered including our best results 

produced by DAY6 and DAY6b when utilising NW and SW. It does not include the method 

proposed by Kondrak (2009) as only the averaged 11-point interpolated average precision, 

0.681, was reported. We have used as a baseline NEDIT, the edit distance with unitary costs 

(Levenshtein 1966; Gusfield 1997) normalised by the length of the longer string. The 11-point 

interpolated average precision achieved by ALINE (Kondrak 2000), PHMM (Mackay and 

Kondrak 2005) and DBN (Kondrak and Sherif 2006) is reported as in the literature.  

DAY6b using local alignment produces an averaged 11-point interpolated average precision 

approximately 5% higher than DBN and PHMM, 18% higher than ALINE and 28% higher 

than NEDIT. Not only the average of the 11-point interpolated average precision of our 

sample is higher, but also the standard deviation and variance are much lower, suggesting that 



our system is also more consistent in its performance across the different language pairs. This 

is confirmed by a higher median which indicates the central tendency. When comparing the 

results produced by PHMM and DBN with each other, it is interesting to observe that while 

the average of the 11-point interpolated average precision of PHMM and DBN are very close, 

DBN’s standard deviation and variance are much lower, showing a better data distribution.  

 

Languages 
Cognate 

proportion 
NEDIT ALINE PHMM DBN 

DAY6 

NW 

DAY6 

SW 

DAY6b 

NW 

DAY6b 

SW 

English German 0.590 0.907 0.912 0.930 0.927 0.932 0.937 0.929 0.934 

French Latin 0.560 0.921 0.862 0.934 0.923 0.927 0.930 0.921 0.924 

English Latin 0.290 0.703 0.732 0.803 0.822 0.826 0.833 0.823 0.826 

German Latin 0.290 0.591 0.705 0.730 0.772 0.741 0.759 0.770 0.772 

English French 0.275 0.659 0.623 0.812 0.802 0.811 0.815 0.836 0.830 

French German 0.245 0.498 0.534 0.734 0.645 0.763 0.776 0.796 0.788 

Albanian Latin 0.195 0.561 0.630 0.680 0.676 0.685 0.683 0.690 0.721 

Albanian French 0.165 0.499 0.610 0.653 0.658 0.636 0.607 0.607 0.625 

Albanian German 0.125 0.207 0.369 0.379 0.420 0.508 0.519 0.553 0.552 

Albanian English 0.100 0.289 0.302 0.382 0.446 0.463 0.487 0.503 0.518 

Average 0.284 0.584 0.628 0.704 0.709 0.729 0.735 0.743 0.749 

Standard deviation 0.168 0.231 0.193 0.194 0.176 0.159 0.158 0.149 0.144 

Variance 0.260 0.054 0.037 0.038 0.031 0.025 0.025 0.022 0.021 

Median 0.284 0.576 0.627 0.732 0.724 0.752 0.768 0.783 0.780 

Table 2 - 11-point interpolated average precision of several methods 

 

We have used the same source for the training dataset and the same test dataset that Kondrak 

and co-workers have used in the design of PHMM (Mackay and Kondrak 2005) and DBN 

(Kondrak and Sherif 2006). However, there are several aspects that differentiate considerably 

our learning approach, including the dimension of the training dataset used, its quality and its 

meaningfulness. In fact we have employed less than 1% of the data they utilised and we have 

considered only word pairs reported by Dyen et al. (1992) as certain cognates. Moreover, we 

have automatically aligned the cognate pairs from which the system has to learn, using a 

substitution matrix that incorporates some linguistic knowledge in an attempt to generate a 

meaningful training dataset. It is also worth noting that our system accommodates quite well 

the Albanian language that makes the test dataset challenging. In fact Albanian constitutes its 

own branch in the Indo-European language family and it is not part of the language families 

with which our system has been trained.  

 

 

6. Conclusion 

 

We have developed a learning system for the task of cognate identification and we have 

shown its superior performance when compared with the best phonetic and orthographic 

systems previously proposed in the literature. Our results reinforce the hypothesis that 

orthographic learning systems may recognise traces of sound correspondences left in the 

words orthography and can perform better than phonetic static models. This idea is very 

encouraging considering that phonetic transcriptions are very difficult to produce and 

frequently performed by hand with the consequent loss of time and the possible lack of 

accuracy and uniformity. Our PAM-like matrices, together with our new family of similarity 

measures, may help to identify distant relationships between languages, where controversies 

still exist, and to analyse less studied language families. 

Our future objective is to continue investigating substitution matrices for the tasks of cognate 

recognition and word similarity. In particular, we would like to study the influence of the 



training dataset dimension on our system performance. Another step forward would be to 

apply our methodology to the investigation of language evolution. 
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