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1 Introduction

Let O ⊂ Rn be a bounded smooth domain with regular boundary Γ = ∂O; through-
out the whole paper we fix 2 < p <∞ and T > 0. We consider in O the stochastic
nonlinear diffusion equation

du(t, x) = div a(x,∇u) dt+ b · dw(t, x) in O (1.1)

where a is a differential operator of Leray-Lions type, i.e., a : O × Rn → Rn is a
Carathéodory function satisfying the conditions:

(a1) there exists δ > 0 such that a(x, ξ) ·ξ ≥ δ|ξ|p for a.e. x ∈ O and for all ξ ∈ Rn,

(a2) there exist σ > 0 and ρ ∈ Lq(O) such that |a(x, ξ)| ≤ σ(ρ(x) + |ξ|p−1) for a.e.
x ∈ O and for all ξ ∈ Rn, where q = p/(p− 1),

(a3) for a.e. x ∈ O and for all ξ 6= η ∈ Rn:

(a(x, ξ)− a(x, η)) · (ξ − η) > 0.

∗The research of G. Ziglio was supported by Project NeSt funded by Provincia Autonoma di Trento
(P.A.T.) within Bando unità di ricerca 2006
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Such conditions are classical in the literature, compare [13, §2] or [14, Ch. 2] for a
more general survey. Note that operators such as the p-Laplacian are included in
our model by choosing a(x, ξ) = |ξ|p−2ξ.

When w = 0, equation (1.1) is used as a model of diffusion in several fields, such
as heat propagation in a plasma gas, population dynamics and other examples of
nonlinear diffusive phenomena. Typical derivation of (1.1) comes from nonlinear
version of Darcy’s law

J(t, x) = − 1
µ
k(ρ∇p) ρ∇p

where J(t, x) is the vector flux rate, ρ(t, x) is the density and p(t, x) the pressure of
the fluid. Physically, the above version of Darcy’s law occours when the permeability
is assumed to be depending on the flux; compare the discussion in [18, §A.2].

As opposite to the larger part of the existing literature, we shall not associate
to the nonlinear parabolic stochastic partial differential equation (1.1) standard,
time-homogeneous boundary conditions of Dirichlet or Neumann type.

However, physical systems may be subject to random influences also through the
boundary and this leads to stochastic dynamical boundary conditions. Dynamical
means that they involves a time derivative of the solution on the boundary; namely,
they have the form

dũ(t, ξ) = [−ũ|ũ|p−2(t, ξ)− a(x,∇u) · ν] dt+ b̃ · dw̃(t, ξ) on Γ. (1.2)

Such kind of boundary conditions are already present in the literature, even for
stochastic models, compare for instance [4]; they have a natural derivation in the
description of phisical models with a dynamics on the boundary, such as heat trans-
fer in a solid imbedded in a moving fluid [20, §7.4], surface gravity waves in oceanic
models [8, 10, 16], problems in fluid dynamics [19], phase separation phenomena
[9], etc.

In our model the noise (which represents the influence of a random heating source
in the system) acts both in the domain and on the boundary and is presented as
the temporal generalized derivative of an infinite-dimensional Wiener process taking
values in the space L2(O) × L2(Γ). b and b̃ are linear, trace class operators from
L2(O) and L2(Γ) in themselves, respectively.

There are several different approaches in the literature to solve stochastic partial
differential equations; in this paper, we shall follow the variational approach which
allows a natural analysis of monotone, nonlinear problems. In Section 2 we briefly
describe what is required for this approach to work, whereas we refer to [12, 17] for
a complete survey on the variational approach to SPDEs.

The main result in Section 3, Theorem 5, guarantees the existence and unique-
ness of a variational solution (in the sense of Definition 2) for the equation (1.1)
with boundary conditions (1.2).

In Section 4 we investigate the asymptotic behaviour of the transition semigroup
Pt associated with the system (1.1)-(1.2). Using the approach explained in [3], based
on the well known Krylov-Bogoliubov theorem, we prove existence of invariant
measures (that is, strictly stationary solutions) and also of an ergodic one by means
of the Krein-Milman theorem.
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Finally, under a super-linearity assumption on the Carathéodory function we
show that the invariant measure is actually unique and strongly mixing. Such
results on the strong asymptotic stability provide a fairly complete description of
the asymptotic behaviour of solutions to the problem under study.

We also mention that the study of asymptotic properties for infinite-dimensional
nonlinear SDEs driven by multiplicative Poisson noise has been considered in [15].

As it is known from the general theory, we can modify equations (1.1) and (1.2)
by adding Lipschitz nonlinear operators (which may be (t, ω)-dependent) acting
both in the deterministic and the stochastic terms (which implies the case of non-
constant diffusion coefficients). In this case, it is possible to reformulate our results
about existence of the solution and ergodic properties.

2 The variational approach to stochastic equations

In this section we shall introduce essential conditions in order to solve stochastic
evolution equations in infinite dimensional Hilbert spaces of the form

dX(t) = A(t,X(t)) dt+B(t,X(t)) dW (t)

where, in general, A and B are unbounded nonlinear operators in suitable Banach
spaces, which may depend also on the elementary outcome ω in a non-anticipating
fashion.

According to the problem (1.1) under consideration, we consider only the case
of operators A and B independent of t ∈ [0, T ] and ω ∈ Ω. Therefore we are dealing
with a SPDE of the following type{

dX(t) = A(X(t)) dt+B dW (t)
X(0) = x0 ∈ H

(2.1)

where H is a separable Hilbert space endowed with inner product 〈·, ·〉H and norm
| · |H , while W (t) is a cylindrical Wiener process taking values in H.

The basic idea which makes this approach work is to construct/find a functional
setting in order to the coefficients A and B of (2.1) satisfy certain monotonicity
assumptions (see Hypothesis 1 below). In particular we need to find a reflexive
Banach space V (endowed with norm ‖ · ‖V ) continuously and densely embedded
into H so that we get a so called Gelfand triple, i.e. a triple of spaces (V,H, V ∗)
such that

V ↪→ H(≡ H∗) ↪→ V ∗

where H is identified with its dual H∗ via the Riesz isomorphism. Furthermore,
in order to investigate the ergodic properties of the infinite-dimensional stochastic
differential equation, we shall assume that V ↪→ H is compact. Let us stress the
fact that the space V has to be chosen carefully so that A : V → V ∗ satisfies the
relevant monotonicity conditions stated below.

We let L2(H) denote the space of Hilbert-Schmidt operators from H to itself,
endowed with the norm ‖G‖2HS = Tr(GG?). Then we require that B ∈ L2(H).
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Hypothesis 1 The operator A satisfies the following conditions.

(H1) A is hemicontinuous: for all u, v, x ∈ V the map

R 3 λ→ V ∗〈A(u+ λv), x〉V

is continuous.

(H2) A is weakly monotonic: there exists c ∈ R such that for all u, v ∈ V it holds

V ∗〈A(u)−A(v), u− v〉V ≤ c|u− v|2H ;

(H3) A is coercive: there exists α > 1, c1 ∈]0,∞[, c2 ∈ R such that for all v ∈ V :

V ∗〈A(v), v〉V ≤ −c1‖v‖αV + c2|v|2H ;

(H4) A is bounded from V into V ∗: there exists c3 ∈ [0,∞[ and c4 ∈ R such that
for all v ∈ V :

‖A(v)‖V ∗ ≤ c4 + c3‖v‖α−1
V ,

where α is as in (H3).

Remark 1 (H1)-(H2) imply that A is demicontinuous, i.e.,

{vn} ⊂ V, vn → v strongly in V =⇒ A(vn) ⇀ A(v) weakly in V ∗.

For a detailed proof see [17, Remark 4.1.1].
Under the hypotheses above, it is possible to formulate an existence and unique-

ness result for solutions of variational type.
Definition 2 A continuous H-valued, (Ft)-adapted process {X(t), t ∈ [0, T ]} is a
variational solution of (2.1) if there exists a dt ⊗ P-version X̂ of X such that X̂
belongs to Lα([0, T ]× Ω;V ) ∩ L2([0, T ]× Ω;H) with α as in (H3) and P-a.s.

X(t) = x0 +
∫ t

0

A(X̄(s)) ds+
∫ t

0

B dW (s), t ∈ [0, T ] (2.2)

where X̄ is a V -valued progressively measurable dt⊗ P-version of X̂.
Theorem 3 Let A satisfy (H1) − (H4) and B ∈ L2(H); let x0 ∈ L2(Ω,F0,P;H)
and T ∈ [0,∞) be fixed. Then there exists a unique variational solution {X(t), t ∈
[0, T ]} of (2.1) and it holds, further, that

E sup
t∈[0,T ]

|X(t)|2H <∞.

Moreover, the solution is a Markov process.
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3 The existence and uniqueness result

In this section we show that the model of stochastic nonlinear diffusion with dynam-
ical boundary conditions introduced in Section 1 enters in the general framework
outlined in Section 2.

We consider the problem
du(t, x) = div a(x,∇u) dt+ bdw(t, x) in O
u(t, ξ) = ũ(t, ξ) when restricted to Γ

dũ(t, ξ) = [−ũ(t, ξ) |ũ(t, ξ)|p−2 − a(ξ,∇u) · ν] dt+ b̃dw̃(t, ξ) on Γ
u(0, x) = u0(x), ũ(0, ξ) = ũ0(ξ).

(3.1)

3.1 Functional setting

Given a bounded domain O ⊂ Rn sufficiently regular (see e.g. [1, Remark 7.45]) we
introduce the standard Sobolev spaces W 1,p(O) for 1 < p < ∞, which will result
the right choice as the functional space of functions defined on O.

Further, we define the fractional order Sobolev spaces of functions on the bound-
ary Γ = ∂O

W 1−1/p,p(Γ) =
{
u ∈ Lp(Γ)

∣∣∣ ∫
Γ

∫
Γ

|u(x)− u(y)|p

|x− y|p+N−2
dσ(x) dσ(y) < +∞

}
where dσ denotes the surface measure on ∂O. The following result of compactness
of the injection will be useful later:

W 1−1/p,p(Γ) ↪→ Lp(Γ) compactly for all p > 1. (3.2)

For a smooth domain O we define an operator trace, L : W 1,p(O)→ Lp(Γ) such
that for any u ∈ C(Ō) ∩W 1,p(O), Lu(ξ) = u(ξ) on Γ is well defined.

It holds that the trace of functions in W 1,p(O) are more regular than just Lp(Γ).
Actually it holds that

L(W 1,p(O)) = W 1−1/p,p(Γ), (3.3)

see [7, Proposition 3.31] or [1, Theorem 7.39], and denoting ũ := Lu it holds

‖ũ‖W 1−1/p,p(Γ) ≤ K ‖u‖W 1,p(O)

for some constant K independent of u.
For a characterization of W 1−1/p,p(Γ) as the Besov space B1−1/p;p,p(Γ), i.e. as

the intermediate space between Lp(Γ) and W 1,p(Γ), we refer to [1, §7.6,§7.30,§7.38].
Let us start introducing as the ”pivot” space the separable product Hilbert space

H = {ū := (u, ũ) ∈ L2(O)× L2(Γ)}

endowed with the natural inner product

〈ū, v̄〉H = 〈u, v〉L2(O) + 〈ũ, ṽ〉L2(Γ)
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for ū = (u, ũ), v̄ = (v, ṽ) ∈ H and norm | · |H . We shall identify H with its dual
H∗ via the Riesz isomorphism. Then, for p > 2 we introduce the product Banach
space

V = {v̄ := (v, ṽ) ∈W 1,p(O)×W 1−1/p,p(Γ) | v = ṽ on Γ}

endowed with the norm (equivalent to that one in W 1,p(O) thanks to the previous
estimate on the boundary norm)

‖v̄‖V = ‖v‖Lp(O) + ‖∇v‖Lp(O).

This norm is also equivalent to the following (for details see [11, footnote 4]):

‖v̄‖V = ‖ṽ‖Lp(Γ) + ‖∇v‖Lp(O).

The imbedding V ↪→ H is compact, thanks to the standard Sobolev’s imbedding
theorem [1, Theorem 6.3] and (3.2)-(3.3). Further, V is reflexive since it is isomor-
phic to the reflexive Banach space W 1,p(O) by the map V 3 (u, ũ)→ u ∈W 1,p(O).

Since C∞(O) is dense inW 1,p(O) (compare [1, Theorem 3.16]) and using Sobolev’s
imbedding theorem, we obtain that the space

W = {ū = (u, ũ) ∈ C∞(O)× C∞(Γ) | u = ũ on Γ}

is dense in V and in H. We let V ∗ be the dual space of V under the dualization

V ∗〈v̄, ū〉V = 〈v̄, ū〉H for all v̄ ∈ H ⊂ V ∗, ū ∈ V

and we fix the Gelfand triple V ⊂ H ⊂ V ∗.

3.2 Monotone operators

In this section, we introduce the matrix operator A : W → W ⊂ H ⊂ V ∗ defined
by

A(ū) :=
(

div a(·,∇u) 0
−ũ|ũ|p−2 −a(·,∇u) · ν

)
∀ ū ∈W.

Given ū := (u, ũ), v̄ := (v, ṽ) ∈W it holds

|V ∗〈A(ū), v̄〉V | =|〈A(ū), v̄〉H |

≤
∣∣∣∣∫
O

div a(x,∇u)v dx−
∫

Γ

(a(·,∇u) · ν)ṽ(ξ) dξ
∣∣∣∣

+
∫

Γ

|ũ(ξ)|p−1|ṽ(ξ)|dξ

=
∣∣∣∣∫
O

a(x,∇u) · ∇v dx
∣∣∣∣+
∫

Γ

|ũ(ξ)|p−1|ṽ(ξ)|dξ

≤
∫
O
|a(x,∇u(x))| |∇v(x)|dx+

∫
Γ

|ũ(ξ)|p−1|ṽ(ξ)|dξ.
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Applying the Leray-Lions conditions on a and Hölder’s inequality we get∫
O
|a(x,∇u(x))| |∇v(x)|dx ≤ σ (‖ρ‖Lq(O) + ‖∇u‖p−1

Lp(O)) ‖∇v‖Lp(O)∫
Γ

|ũ(ξ)|p−1 |ṽ(ξ)|dξ ≤ ‖ũ‖p−1
Lp(Γ) ‖ṽ‖Lp(Γ).

It follows that

|V ∗〈A(ū), v̄〉V | ≤ σ (‖ρ‖Lq(O) + ‖ū‖p−1
V ) ‖v̄‖V

and for all ū ∈W
‖A(ū)‖V ∗ ≤ σ (‖ρ‖Lq(O) + ‖ū‖p−1

V ). (3.4)

Therefore A extends to a bounded nonlinear operator, again denoted by A, defined
on all of V and taking values in V ∗ such that

V ∗〈A(ū), v̄〉V = −
∫
O

a(x,∇u) · ∇v dx−
∫

Γ

ũ(ξ)|ũ(ξ)|p−2ṽ(ξ) dξ (3.5)

for all ū, v̄ ∈ V .
Theorem 4 The operator A satisfies the conditions of Hypothesis 1.

Proof. We divide the proof in four steps.

(H1) (Hemicontinuity): for all ū, v̄, x̄ ∈ V the map

R 3 λ→ V ∗〈A(ū+ λ v̄), x̄〉V

is continuous.

For ū, v̄, w̄ ∈ V , we have to show for λ ∈ R, |λ| ≤ 1, λ→ 0 implies

−
∫
O

(a(x,∇(u+ λv))− a(x,∇u)) · ∇w dx

−
∫

Γ

[
(ũ(ξ) + λṽ(ξ)) |ũ(ξ) + λṽ(ξ)|p−2 − ũ(ξ) |ũ(ξ)|p−2

]
w̃(ξ) dξ −→ 0.

The two integrands converge to zero as λ → 0, dx-a.e. (dξ-a.e. respectively); in
order to apply a dominated convergence theorem, we notice that, as |λ| ≤ 1 and
recalling assumption (a2), the integrands are dominated by

|(a(x,∇(u+ λv)(x))− a(x,∇u(x))) · ∇w(x)|
≤ 2σ (|ρ(x)|+ 2p−1(|∇u(x)|p−1 + |∇v(x)|p−1)) |∇w(x)|

and

|(ũ(ξ) + λṽ(ξ)) |ũ(ξ) + λṽ(ξ)|p−2 − ũ(ξ) |ũ(ξ)|p−2 |w̃(ξ)|
≤ 2p−1 (|ũ(ξ)|p−1 + |ṽ(ξ)|p−1) |w̃(ξ)|;

note that these functions are L1(O) (L1(Γ) respectively) by Hölder’s inequality.
From Lebesgue’s dominated convergence theorem, the claim follows.
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(H2) (Weak monotonicity): there exists c ∈ R such that for all ū, v̄ ∈ V it holds

V ∗〈A(ū)−A(v̄), ū− v̄〉V ≤ c|ū− v̄|2H .

Let ū, v̄ ∈ V ,

V ∗〈A(ū)−A(v̄), ū− v̄〉V = −
∫
O

(a(x,∇u)− a(x,∇v)) · ∇(u− v) dx

−
∫

Γ

(ũ(ξ) |ũ(ξ)|p−2 − ṽ(ξ)|ṽ(ξ)|p−2)(ũ(ξ)− ṽ(ξ)) dξ ≤ 0

since a is monotone (recall assumption (a3)) and the map R 3 t → t |t|p−2 is
increasing for all p > 2.

(H3) (Coercivity): there exist c1 ∈]0,∞[, c2 ∈ R and p > 2 such that for all v̄ ∈ V :

V ∗〈Av̄, v̄〉V ≤ −c1‖v‖pV + c2|v|2H .

By using condition (a1) for the Carathéodory function we have

V ∗〈Aū, ū〉V = −
∫
O

a(x,∇u) · ∇udx−
∫

Γ

|ũ(ξ)|p dξ

≤ −δ
∫
O
|∇u(x)|p dx−

∫
Γ

|ũ(ξ)|p dξ.

It follows from the equivalence of the norms that

V ∗〈Aū, ū〉V ≤ −(1 ∧ δ) ‖u‖pV

and coercivity holds with α = p.

(H4) (Boundedness): there exists c3 ∈ [0,∞[ and c4 ∈ R such that for all v̄ ∈ V :

‖Av̄‖V ∗ ≤ c4 + c3‖v̄‖p−1
V .

It follows immediately from (3.4) for α = p, c3 = σ and c4 = σ‖ρ‖Lq(O). �

3.3 Stochastic forcing

Let (Ω,F ,P) be a probability space with a filtration (Ft). On the Hilbert space H,
we define a standard cylindrical Wiener process W (t) = (w(t), w̃(t)), i.e., formally
we have

W (t) =
2∑
i=1

∞∑
k=1

βik(t) gik

where {g1
k} and {g2

k} are orthonormal basis in L2(O) and L2(Γ) respectively, {βik} is
a (double indices) sequence of independent real valued standard Brownian motions
on (Ω,F ,P) adapted to (Ft).
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Notice that W (t) is not a stochastic process with values in H, since the series
diverges almost surely. However, we further introduce B ∈ L2(H) as the matrix-
operator

B :=
(
b 0
0 b̃

)
(3.6)

Then BW (t) is a Gaussian process with values in H, with covariance operator BB?

in H. For more details, we refer for instance to [6, §2.3.2].

3.4 Existence and uniqueness of the solution

With the aid of the operators A and B introduced in (3.5) and (3.6) we rewrite
system (3.1) as a nonlinear SDE of the form{

dū(t) = A(ū(t)) dt+B dW (t)
ū(0) = ū0.

(3.7)

We shall use the general theory recalled in Section 2 in order to prove the
existence of a solution of (3.7).
Theorem 5 Let ū0 ∈ H, A be given by (3.5) with the Carathéodory function a
satisfying the Leray-Lions conditions (a1)-(a3), B ∈ L2(H) be given by (3.6) and
T ∈ [0,∞) be fixed. Then there exists a unique variational solution {X(t), t ∈
[0, T ]} of (3.7) and it holds, further, that

E sup
t∈[0,T ]

|ū(t)|2H <∞.

Moreover, the solution is a Markov process.
The proof follows from Theorem 3, since by Theorem 4 the operator A satisfies

(H1)–(H4) and we assume B ∈ L2(H).

4 Invariant measures for the stochastic equation

We consider the abstract equation (3.7) under the assumptions introduced in pre-
vious section. We denote by ū(t; ū0) the solution at time t with initial condition ū0

at time t = 0. Let Pt be the transition semigroup defined by

Ptϕ(ū0) = E[ϕ(ū(t; ū0))] (4.1)

for ϕ ∈ Cb(H) the space of bounded and continuous functions on H. We show by
means of the Krylov-Bogoliubov’s theorem (see e.g. [5, Theorem 1.11] for details)
that Pt admits an invariant measure µ, i.e. a Borel probability measure on H such
that ∫

H

Ptϕ(u)µ(du) =
∫
H

ϕ(u)µ(du) ∀ϕ ∈ Cb(H), t > 0.

By the Lebesgue’s dominated convergence theorem this property can be extended
to the space of µ-integrable functions.
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Remark 2 Note that the solution to (3.7) generates a Markovian semigroup Pt on
Bb(H) by the usual prescription (4.1). The continuity of the solution map ensures
that Pt is Feller, i.e. Ptϕ ∈ Cb(H) for any ϕ ∈ Cb(H), for all t ≥ 0, see e.g. [5,
§1.2.5].

Theorem 6 There exists an invariant measure µ for the transition semigroup Pt
associated with (3.7). Moreover, µ is concentrated on V , i.e. µ(V ) = 1.

Proof. We apply Itô formula (compare [17, Theorem 4.2.5] and [12, Theorem
I.3.1]) to (3.7) to get

E|ū(t; ū0)|2H = |ū0|2H + 2 E
∫ t

0
V ∗〈A(ū(s; ū0)), ū(s; ū0)〉V ds+ t Tr(BB∗)

which, taking into account the coercivity condition (H3), becomes

E|ū(t; ū0)|2H ≤ |ū0|2H − 2c1 E
∫ t

0

‖ū(s; ū0)‖pV ds

+ 2c2 E
∫ t

0

|ū(s; ū0)|2H ds+ t Tr(BB∗). (4.2)

Notice that by the continuous inclusion V ↪→ H there exists a constant k such that
|v̄|H ≤ k‖v̄‖V for all v̄ ∈ V , therefore

E|ū(t; ū0)|2H ≤ |ū0|2H −
2c1
kp

E
∫ t

0

|ū(s; ū0)|pH ds

+ 2 c2 E
∫ t

0

|ū(s; ū0)|2H ds+ t Tr(BB∗).

In the same way we obtain also the differential inequality

d
dt

E|ū(t; ū0)|2H ≤ −
2c1
kp

E|ū(t; ū0)|pH + 2 c2 E|ū(t; ū0)|2H + Tr(BB∗).

Since p > 2 by assumption, it follows that |εx|2 ≤ |εx|p + 1 for any ε > 0 and then
−|x|p ≤ −ε2−p|x|2 + ε−p. This implies that

d
dt

E|ū(t; ū0)|2H ≤ −
2c1

εp−2kp
E|ū(t; ū0)|2H +

2c1
εpkp

+ 2 c2 E|ū(t; ū0)|2H + Tr(BB∗)

= −
(

2c1
εp−2kp

− 2 c2

)
E|ū(t; ū0)|2H +

2c1
εpkp

+ Tr(BB∗).

Choosing a suitable ε > 0 such that γ := 2c1
εp−2kp − 2c2 > 0 we can apply Gronwall’s

lemma and conclude that there exists a constant C independent of t such that

E|ū(t; ū0)|2H ≤ e−γt|ū0|2H + C for all t ≥ 0. (4.3)

Now by (4.2) and (4.3) it follows that

E
∫ t

0

‖ū(s; ū0)‖pV ds ≤ 1
2c1

[(
1 +

2c2
γ

)
|ū0|2H + t (2c2C + Tr(BB∗))

]
. (4.4)
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To apply the Krylov-Bogoliubov’s theorem we have to verify that for some ū0 ∈ H
the set of probability measures (µT )T>0 is tight, where

µT (E) :=
1
T

∫ T

0

πt(ū0, E) dt for all E ∈ B(H) and T > 0,

and πt(ū0, ·) is the law of the random variable ū(t; ū0). We prove tightness for
(µT )T>0 with ū0 = 0 by means of the Prokhorov’s theorem (see [6, §2.1]).

Let us consider the closed balls

B0,n := {v̄ ∈ H : ‖v̄‖V ≤ n}

for n ∈ N, which are bounded in V . Thanks to the compact imbedding V ↪→ H it
results that B0,n is a compact subset of H, then we have to show that

lim
n→+∞

µT (Bc0,n) = 0 uniformly in T > 0.

By Markov’s inequality we get

µT (Bc0,n) =
1
T

∫ T

0

π(t, Bc0,n) dt

=
1
T

∫ T

0

P(‖ū(t; ū0)‖V ≥ n) dt ≤ 1
T

∫ T

0

E‖ū(t; ū0)‖pV
np

dt.

By (4.4) it follows that for n→ +∞

1
T

∫ T

0

π(t, Bc0,n) dt ≤ 1
2c1Tnp

[(
1 +

2c2
γ

)
|ū0|2H + T (2c2C + Tr(BB∗))

]
→ 0

uniformly in T > 0.
Therefore, by the Krylov-Bogoliubov’s theorem there exists a subsequence (Tk)k∈N

such that µTk
⇀ µ weakly, where µ is an invariant measure for Pt.

Next, we show that µ verifies µ(V ) = 1. Let us define the function Θ(x) :=
sup
i∈N

∣∣〈`i, x〉∣∣, where {`i}i∈N is a countable dense subset of BV
∗

1 ∩H in the topology

of H, and BV
∗

1 is the closed unit ball in V ∗. It follows, taking into account [17, Ex.
4.2.3], that Θ : H → [0,∞] is a lower semicontinuous function such that

Θ(x) =

{
‖x‖V , x ∈ V,
+∞, x ∈ H \ V.

Recalling that (4.4) implies∫
H

‖x‖pV µTk
(dx) =

1
Tk

∫ Tk

0

E‖ū(s; 0)‖pV ds ≤ 1
2c1

[2c2C + Tr(BB∗)] <∞,
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uniformly with respect to Tk, it holds that∫
H

Θ(x)p µ(dx) = lim
N→∞

lim
M→∞

∫
H

(
sup
i≤N
|〈`i, x〉|p ∧M

)
µ(dx)

= sup
N,M∈N

lim
k→∞

∫
H

(
sup
i≤N
|〈`i, x〉|p ∧M

)
µTk

(dx)

≤ lim inf
k→∞

sup
N,M∈N

∫
H

(
sup
i≤N
|〈`i, x〉|p ∧M

)
µTk

(dx)

= lim inf
k→∞

∫
H

‖x‖pV µTk
(dx) <∞.

Hence Θ <∞ µ-a.e., thus also µ(V ) = 1 since {x ∈ H : Θ(x) <∞} = V . �

We have just proved that there exists an invariant measure µ for Pt, obtained
thanks to Krylov-Bogoliubov’s theorem, which is concentrated on V ; for this, we
have made use of the fact that it is constructed as weak limit of a particular se-
quence of measures. The next theorem asserts that any invariant measure for Pt is
concentrated on V .

Theorem 7 Let µ be an invariant measure for Pt. Then µ satisfies the estimate∫
H

(|x|2H + ‖x‖pV )µ(dx) <∞. (4.5)

Proof. Let µ be an invariant measure for Pt. As a first step, we show that
µ has finite second moment. Let ϕ(x) = |x|2H ; we consider the bounded smooth
approximation of | · |2H defined by:

ϕδ(x) =
|x|2H

1 + δ|x|2H
, δ > 0.

It is ϕδ = gδ ◦ ϕ, where the function gδ(y) = y
1+δ y is such that gδ ∈ C1

b (R+,R).
It holds |Tr(BD2ϕδ(x)B∗)|L(H) ≤ C and ϕδ(x) → ϕ(x) = |x|2H when δ → 0. We
apply Itô’s formula to ϕδ and, by using the coercivity condition (H3) for A, it
follows

E
(

|ū(t, x)|2H
1 + δ |ū(t, x)|2H

)
+ 2 c1 E

(∫ t

0

‖ū(s, x)‖pV
(1 + δ|ū(s, x)|2H)2

ds
)

≤ |x|2H
1 + δ |x|2H

+ 2 c2 E
(∫ t

0

|ū(s, x)|2H
(1 + δ |ū(s, x)|2H)2

ds
)

+ t C.

We apply once more the inequalities |x|2 ≤ εp−2 |x|p+ ε−2 and |x|H ≤ k‖x‖V : then
we have

ε2−p

k2
|x|2H ≤ ‖x‖

p
V + ε−p
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hence

E
(

|ū(t, x)|2H
1 + δ |ū(t, x)|2H

)
+ 2c1

ε2−p

k2
E
(∫ t

0

|ū(s, x)|2H
(1 + δ |ū(s, x)|2H)2

ds
)

≤ |x|2H
1 + δ |x|2H

+ 2 c2 E
(∫ t

0

|ū(s, x)|2H
(1 + δ |ū(s, x)|2H)2

ds
)

+ t (C + 2 c1 ε−p).

At this point, we can integrate with respect to µ on H since all functions are
integrable with respect to µ; using the definition of invariant measure, we obtain,
by choosing t = 1

2 c1
ε2−p

k2

∫
H

|x|2H
(1 + δ |x|2H)2

µ(dx)

≤ 2 c2
∫
H

|x|2H
(1 + δ |x|2H)2

µ(dx) + (C + 2 c1ε−p).

hence

2
(
c1
ε2−p

k2
− c2

) ∫
H

|x|2H
(1 + δ |x|2H)2

µ(dx) ≤ (C + 2c1ε−p)

and we can choose ε large enough and independent of δ such that∫
H

|x|2H
(1 + δ |x|2H)2

µ(dx) < C

uniformly on δ for some constant C > 0. Letting δ → 0, by the Monotone Conver-
gence Theorem we get the first part of (4.5)∫

H

|x|2H µ(dx) <∞. (4.6)

Now we consider the mapping ψ : x ∈ H 7→ ‖x‖pV and we prove that ψ ∈
L1(H;µ).

Let us define ψN (x) = ‖x‖pV ∧N for N ∈ N; notice that ΨN ∈ Bb(H); then, by
the very definition of invariant measure, Tonelli’s theorem and (4.4) it holds

sup
N∈N

∫
H

ψN (x), µ(dx) = sup
N∈N

∫ 1

0

∫
H

PsψN (x) ds µ(dx)

= sup
N∈N

∫
H

∫ 1

0

E[‖ū(s; 0, x)‖pV ∧N ] ds µ(dx)

≤
∫
H

∫ 1

0

E‖ū(s; 0, x)‖pV ds µ(dx)

≤ C
∫
H

(|x|2H + 1)µ(dx)
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uniformly on N for some constant C > 0. Taking into account (4.6) we get

sup
N∈N

∫
H

ψN (x)µ(dx) ≤ C

and again by means of the Monotone Convergence Theorem∫
H

‖x‖pV µ(dx) <∞.

�

Corollary 8 There exists an ergodic invariant measure for the semigroup Pt.

Proof. This result is based on the well known Krein-Milman theorem (see e.g. [2,
Theorem 7.68]) about the characterization of convex compact sets in locally convex
Hausdorff spaces as closed convex hull of its extreme points. In particular (see e.g.
[2, Theorem 19.25]) it results that for an arbitrary Markov transition semigroup
Pt, the ergodic measures are precisely the extreme points of the (possibly empty)
convex set of its invariant measures.

Now let us denote by P(H) the space of probability measures on H and by
Λ ⊂ P(H) the convex set of all invariant measures for the Markov semigroup Pt.
We have just proved that Λ is nonempty, then we have to show its closure is compact
or equivalently Λ is tight. In such a way the convex hull of extreme points of Λ is not
empty as much as the set of ergodic measures. By previous theorem we conclude
that there exists a constant K independent of µ ∈ Λ such that∫

H

‖x‖pV µ(dx) < K.

By Markov’s inequality

sup
µ∈Λ

µ(Bc0,n) = sup
µ∈Λ

µ{x ∈ H | ‖x‖V > n} ≤ sup
µ∈Λ

1
np

∫
H

‖x‖pV µ(dx) ≤ sup
µ∈Λ

K

np
→ 0

as n→∞. We have thus proved that Λ is tight and has extreme points which are
ergodic invariant measures for Pt. �

In order to prove uniqueness of an invariant measure µ we need an extra super-
linearity assumption on the operator A (see e.g. [3, Hypothesis 1.2]).
Theorem 9 Assume, instead of (H2), that there exist constants c > 0 and ε > 0
such that

V ∗〈A(u)−A(v), u− v〉V ≤ c|u− v|2+ε
H ∀u, v ∈ V. (4.7)

Then the transition semigroup Pt associated with (2.1) has a unique strongly mixing
invariant measure µ such that∣∣∣∣Ptϕ(x)−

∫
H

ϕ(y)µ(dy)
∣∣∣∣ ≤ c‖Dϕ‖∞, t ≥ 0,

for all ϕ ∈ C1
b (H).
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Remark 3 Note that in our case assumption (4.7) reduces to

(a(x, ξ)− a(x, η)) · (ξ − η) ≥ c|ξ − η|2+ε for a.e. x ∈ O and for all ξ 6= η ∈ Rn.

This condition is fulfilled, for instance, in the special case where a(x, ξ) = |ξ|p−2ξ
for p > 2 which means that the internal dynamic is governed by a p-Laplacian.

Proof. We give a sketch of the proof, compare also [3] for details.
Let x, y ∈ H, by Itô’s formula for the square of the norm, (4.7) and Jensen’s

inequality we obtain

d
dt

E |u(t;x)− u(t; y)|2H ≤ −c
(
E |u(s;x)− u(s; y)|2H

)1+ε/2

which implies E |u(t;x)− u(t; y)|2H → 0 as t → ∞. Now let µ be an invariant
measure for Pt, then∣∣∣∣Ptϕ(x)−

∫
H

ϕ(y)µ(dy)
∣∣∣∣ ≤ ‖Dϕ‖∞ ∫

H

E |u(t;x)− u(t; y)|2H µ(dy) ∀ϕ ∈ C1
b (H).

Since C1
b (H) ⊂ L2(H,µ) densely, it holds

lim
t→∞

Ptϕ(x) =
∫
H

ϕ(y)µ(dy), ∀ϕ ∈ L2(H,µ),

i.e. µ is ergodic and strongly mixing. �
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