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Introduction. The Hodge decomposition of the space L2(Ω)3 of square sommable vec-
tor fields defined on a domain Ω of the ordinary three–dimensional space is a tool used in
a wide theoretic and applied literature concerning Electromagnetism and Fluid dynam-
ics. In order to obtain an effective Hodge decomposition, suitable also for numerical com-
putations, the classical strategy, which goes back to Helmholtz and which is used nowa-
days as well, is to consider only bounded domains Ω with sufficiently regular boundary,
which contain connected and pairwise disjoint surfaces, called cut surfaces of Ω, whose
complement C in Ω is simply connected (see for example [2, 3, 6, 7, 9, 10, 11, 13]).

The advantage of this situation is that the union of such cut surfaces does not have
singularities, every curl–free vector field in Ω admits potential in C and hence it is
possible to apply standard variational methods to obtain the Hodge decomposition via
scalar potential formulations.

Recently, R. Benedetti, R. Frigerio and the author [5] gave an exhaustive topologi-
cal description of bounded domains, called Helmholtz domains, which admit such cut
surfaces. We proved that the Helmholtz domains are truly special three–dimensional
domains. In fact, their topology is elementary. An evidence of this claim is given, for
example, by the fact that the complement of any non–trivial thickened knot in a box
domain is not a Helmholtz domain. In this way, we realize that the range of application
of the classical strategy is quite limited.

In this paper, we announce several results concerning an effective Hodge decom-
position of L2(Ω)3 valid for every bounded domain Ω with Lipschitz–regular bounda-
ry, where Ω describes a spatial medium formed by a possible inhomogeneous and/or
anisotropic material.

In the contest of Hodge decomposition theorem used in applications, a crucial pro-
blem is to understand the topological natural of the space of harmonic vector fields and
to give explicit bases of such space. In Section 4, we settle completely this problem,
including the affermative solution of Auchmuty–Alexander conjectures (see [4]). Such
a solution is obtained by combining some basic facts of Algebraic Topology with a new
tool, called tubular integral.

In the final version of the paper (which will appear soon), we shall present ap-
plications of our general version of Hodge decomposition theorem to Electrostatic, to
Magnetostatic and to Navier-Stokes equations. Moreover, we will give an explicit algo-
rithm to compute the Hodge decomposition of L2(Ω)3 for every bounded triangulated
domain Ω of R3. Part of the proofs of results presented here will appear in the final
version of the paper as well.
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1 Functional spaces: preliminaries and notations

1.1 Preliminary analytic notions

Lipschitz domains of R3R3R3. Let R3 be the standard 3–dimensional real vector space.
Equip R3 and each of its subsets with the usual euclidean metric and with the usual
euclidean topology. Given a subset S of R3, we denote by S the closure of S in R3, by
int(S) the interior of S in R3 and by ∂S the topological boundary of S in R3, which is
equal to S \ int(S). We call ∂S simply boundary of S in R3. These notions have also a
relative version. We remind the reader that, if A is a subset of S, then the closure of A
in S, the interior of A in S and the boundary of A in S coincide with S ∩A, A \ S \A
and S ∩ A ∩ S \A, respectively. The subset S is said to be bounded if there exists a
positive real number r such that |v|3 ≤ r for each v ∈ S, where |v|3 denotes the usual
euclidean norm (v2

1 + v2
2 + v2

3)1/2 of a vector v = (v1, v2, v3) of R3.
By a domain of R3, we mean a non–empty connected open subset of R3.
Let Ω be a domain of R3. The open subset Ω of R3 is called Lipschitz if either ∂Ω

is empty or ∂Ω is non–empty and each point x of ∂Ω has the following property: there
exist positive constant a, b and c, an open neighborhood U of x in R3, an isometric
homeomorphism Ψ from the pluri–interval Ia,b,c := (−a, a)× (−b, b)× (−c, c) of R3 to
U and a Lipschitz map f : (−a, a)× (−b, b) −→ (−c, c) such that Ψ(0) = x and

Ψ−1(U ∩ Ω) =
{
(y, z, s) ∈ Ia,b,c

∣∣ s > f(y, z)
}
.

In particular, Ψ−1(U ∩ ∂Ω) is equal to {(y, z, s) ∈ Ia,b,c | s = f(y, z)}.
Let A be an open subset of ∂Ω and let ∂̂A be its boundary in ∂Ω, which is equal to

A \ A. We say that A is a Lipschitz open subset of ∂Ω if either ∂̂A is empty or ∂̂A is
non–empty and, for each x ∈ ∂̂A, it is possible to find a, b, c, U , Ψ, f with the preceding
property and, in addition, a Lipschitz map g : (−a, a) −→ (−b, b) such that

Ψ−1(U ∩A) =
{
(y, z, s) ∈ Ia,b,c

∣∣ s = f(y, z), z > g(y)
}
.
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In particular, Ψ−1(U ∩ ∂̂A) is equal to {(y, z, s) ∈ Ia,b,c | s = f(y, z), z = g(y)}.
In order to make the paper more readable, we introduce the notion of Lipschitz

device of R3.

Definition 1.1 Let Ω be a Lipschitz domain of R3 and let A be a Lipschitz open subset
of its boundary. We say that the pair (Ω, A) is a Lipschitz device of R3 if ∂Ω is bounded.
Such a Lipschitz device (Ω, A) is said to be bounded if Ω is bounded. Otherwise, it is
called unbounded.

Basic functional spaces. In what follows, the notions of measurability, integrabi-
lity and of integral are understood in the sense of Lebesgue. Let E be a non–empty
measurable subset of R3. As is usual, for each p ∈ [1,+∞), we denote by Lp(E) the
Banach space of all measurable functions f : E −→ R such that |f |p is integrable, whose
norm is given by ‖f‖Lp(E) := (

∫
E
|f(x)|p dx)1/p. Similarly, we denote by L∞(E) the

vector space of all measurable functions f : E −→ R such that |f(x)| ≤ C for some
constant C and for almost every x ∈ E. This is a Banach space with respect to the
norm given by setting ‖f‖L∞(E) := inf

{
C ∈ R

∣∣ |f(x)| ≤ C for almost every x ∈ E
}
.

Let now p ∈ [1,+∞) or p = ∞. Two functions in Lp(E) are identified if they are equal
almost everywhere on E so, to be precise, Lp(E) consists of “equal almost everywhere”
equivalence classes of functions. However, for simplicity, we abuse notation by confusing
a function with its “equal almost everywhere” equivalence class. We denote by Lp(E)3

the Banach space of all vector fields V = (V1, V2, V3) : E −→ R3 whose components Vi

belong to Lp(E) and whose norm ‖V ‖Lp(E)3 is equal to ‖(V 2
1 + V 2

2 + V 2
3 )1/2‖Lp(E).

Fix a bounded Lipschitz domain Ω of R3. By using the surface measure induced on
∂Ω by Lebesgue one of R2 via Lipschitz charts, one can define the Banach spaces Lp(A)
and Lp(A)3 for each non–empty open subset A of ∂Ω (see [14]).

Now we focus our attention to the case p = 2. The space L2(Ω) is a Hilbert space
with respect to the scalar product which sends (f, g) ∈ L2(Ω)×L2(Ω) into

∫
Ω
fg dx ∈ R.

It follows that L2(Ω)3 is a Hilbert space as well. In fact, given V = (V1, V2, V3) and
W = (W1,W2,W3) in L2(Ω)3, the scalar product (V,W ) between V and W in L2(Ω)3

is given by

(V,W ) :=
∫

Ω

V •W dx,

where V •W :=
∑3

i=1 Vi ·Wi ∈ L1(Ω). As is usual, we denote byH1(Ω) the Hilbert space
of all elements f of L2(Ω) having weak gradient ∇f in L2(Ω)3, whose norm ‖f‖H1(Ω)

is equal to (‖f‖2L2(Ω) + ‖∇f‖2L2(Ω)3)
1/2.

Let C∞(Ω) be the set of all real valued smooth functions on Ω. By the adjective
“smooth”, we always mean “differentiable of class C∞”. We denote by D(Ω) the set of
all functions in C∞(Ω) with compact support and by C∞(Ω) the set of restrictions to
Ω of all functions in C∞(R3).

Let V ∈ L2(Ω)3. We remind the reader that V has weak curl in L2(Ω)3, denoted by
curl(V ), if curl(V ) is a vector field in L2(Ω)3 such that∫

Ω

curl(V ) • Φ dx =
∫

Ω

V • curl(Φ) dx for each Φ ∈ D(Ω)3 := (D(Ω))3.

Moreover, V has weak divergence div(V ) in L2(Ω) if div(V ) is a function in L2(Ω) such
that ∫

Ω

div(V ) · ϕ dx = −
∫

Ω

V • ∇ϕdx for each ϕ ∈ D(Ω).

Let H(curl,Ω) be the vector space of all vector fields V in L2(Ω)3 with weak curl in
L2(Ω)3 and let H(div, P ) be the vector space of all vector fields V in L2(Ω)3 with weak
divergence in L2(Ω). They are Hilbert spaces with respect to the norms

‖V ‖H(curl,Ω) :=
(
‖V ‖2L2(Ω)3 + ‖curl(V )‖2L2(Ω)3

)1/2
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and
‖V ‖H(div,Ω) :=

(
‖V ‖2L2(Ω)3 + ‖div(V )‖2L2(Ω)

)1/2
,

respectively. The vector field V in L2(Ω)3 is said to be curl–free if curl(V ) = 0 and
divergence–free if div(V ) = 0.

We denote by n∂Ω : ∂Ω −→ R3 the element of L∞(∂Ω)3 defined as the unit normal
vector field of ∂Ω, oriented towards R3 \ Ω. This definition is consistent. In fact,
the Alexander duality theorem ensures that the compact Lipschitz surface ∂Ω of R3

is orientable and Ω is one of the connected components of R3 \ ∂Ω. This fact and
Rademacher’s theorem imply the existence and the uniqueness of the mentioned element
n∂Ω of L∞(∂Ω). LetH1/2(∂Ω) be the Hilbert space of traces of functions inH1(Ω) on ∂Ω
(see [14] for a definition) and let H−1/2(∂Ω) be the dual space of H1/2(∂Ω). Identify
the dual space of the Hilbert space H1/2(∂Ω)3 := (H1/2(∂Ω))3 with H−1/2(∂Ω)3 :=
(H−1/2(∂Ω))3 in the natural way. It is well–known that there exist, and are unique,
two continuous linear maps τ∂Ω : H(curl,Ω) −→ H−1/2(∂Ω)3 and ν∂Ω : H(div,Ω) −→
H−1/2(∂Ω) such that, for each V ∈ C∞(Ω)3 := (C∞(Ω))3, τ∂Ω(V ) = V |∂Ω × n∂Ω and
ν∂Ω(V ) = V |∂Ω • n∂Ω, where V |∂Ω indicates the restriction to ∂Ω of any element of
C∞(R3)3 extending V and V |∂Ω×n∂Ω indicates the usual vector product between V |∂Ω

and n∂Ω. If V ∈ H(curl,Ω), then τ∂Ω(V ) is said to be the tangential component of V on
∂Ω and, for convenience, it will be indicated by V × n∂Ω. The following Green formula
holds: ∫

Ω

curl(V ) •W dx =
∫

Ω

V • curl(W ) dx− <V × n∂Ω , W |∂Ω>H1/2(∂Ω)3 (1)

for each V ∈ H(curl,Ω) and for each W ∈ H1(Ω)3, where W |∂Ω denotes the trace of
W on ∂Ω and < · , ·>H1/2(∂Ω)3 denotes the duality pairing between H−1/2(∂Ω)3 and
H1/2(∂Ω)3. If V ∈ H(div,Ω), then ν∂Ω(V ) is called normal component of V on ∂Ω and,
for convenience, it will be denoted by V • n∂Ω. The following Green formula holds as
well: ∫

Ω

div(V ) · u dx = −
∫

Ω

V • ∇u dx+ <V • n∂Ω , u|∂Ω>H1/2(∂Ω) (2)

for each V ∈ H(div,Ω) and for each u ∈ H1(Ω), where u|∂Ω denotes the trace of u on
∂Ω and < · , ·>H1/2(∂Ω) denotes the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω).

Let A be a Lipschitz open subset of ∂Ω. Suppose that A is non–empty. For each
v ∈ L2(A), let ṽ be the element of L2(∂Ω), which coincides with v on A and is constantly
null on (∂Ω) \ A. Indicate by H

1/2
00 (A) the vector subspace of L2(A) consisting of all

functions v such that ṽ ∈ H1/2(∂Ω). Equip H
1/2
00 (A) with the norm ‖v‖

H
1/2
00 (A)

:=
‖ṽ‖H1/2(∂Ω), which makes it a Hilbert space. The reader observes that, if A is a union

of connected components of ∂Ω, then H
1/2
00 (A) coincides with H1/2(A). We denote

by H
−1/2
00 (A) the dual of H1/2

00 (A) and identify the dual space of the Hilbert space
H

1/2
00 (A)3 := (H1/2

00 (A))3 with H−1/2
00 (A)3 := (H−1/2

00 (A))3.
Let θ ∈ H−1/2(∂Ω). The restriction θ|A of θ to A is the element of H−1/2

00 (A) defined
as follows:

<θ|A , v>H
1/2
00 (A)

:=<θ , ṽ>H1/2(∂Ω) for each v ∈ H1/2
00 (A).

Given u ∈ H1(Ω), we indicate by u|A the trace of u on A, which coincides with the
restriction to A of the trace of u on ∂Ω. In this way, we can define:

H1
0,A(Ω) :=

{
u ∈ H1(Ω)

∣∣u|A = 0
}
.

Since Ω is assumed to be non–empty, bounded and Lipschitz, H1
0,∂Ω(Ω) is equal to the

closure H1
0 (Ω) of D(Ω) in H1(Ω).
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In the case in which A is empty, we fix the following conventions: the symbols
H1/2(A), H1/2

00 (A) and H
−1/2
00 (A) indicate the Hilbert space consisting of the null ele-

ment only, θ|A is the null element of H−1/2
00 (A) for each θ ∈ H−1/2(∂Ω), u|A is the null

element of H1/2(A) for each u ∈ H1(Ω) and hence H1
0,A(Ω) is equal to H1(Ω).

Suppose now that A is a, possibly empty, Lipschitz open subset of ∂Ω. Let {A be
the interior of (∂Ω)\A in ∂Ω. The set {A is a Lipschitz open subset of ∂Ω, its boundary
in ∂Ω is equal to the boundary ∂̂A of A in ∂Ω and ∂Ω is the disjoint union of A, of {A
and of ∂̂A. By the trace theorem (see [14]), we have that

H
1/2
00 (A) =

{
u|A ∈ L2(A)

∣∣u ∈ H1
0,{A(Ω)

}
.

The latter equality ensures that∫
Ω

curl(V ) •W dx =
∫

Ω

V • curl(W ) dx− <V × n∂Ω|A , W |A>H
1/2
00 (A)3

for each V ∈ H(curl,Ω) and for each W ∈ H1
0,{A

(Ω)3, where V × n∂Ω|A indicates the
restriction of V × n∂Ω to A and < · , · >

H
1/2
00 (A)3

denotes the duality pairing between

H
−1/2
00 (A)3 and H1/2

00 (A)3. Moreover, it holds:∫
Ω

div(V ) · u dx = −
∫

Ω

V • ∇u dx+ <V • n∂Ω|A , u|A>H
1/2
00 (A)

for each V ∈ H(div,Ω) and for each u ∈ H1
0,{A

(Ω), where V • n∂Ω|A indicates the
restriction of V • n∂Ω to A and < · , · >

H
1/2
00 (A)

denotes the duality pairing between

H
−1/2
00 (A) and H1/2

00 (A). In particular, given V ∈ H(curl,Ω), we have:

V × n∂Ω|A = 0 if and only if
∫
Ω

curl(V ) •W dx =
∫
Ω
V • curl(W ) dx

for each W ∈ H1
0,{A

(Ω)3. Similarly, given V ∈ H(div,Ω), it holds:

V • n∂Ω|A = 0 if and only if
∫
Ω

div(V ) · u dx = −
∫
Ω
V • ∇u dx

for each u ∈ H1
0,{A

(Ω).
Material matrix. Let L∞(Ω)3×3 be the set of all (3× 3)–matrices, whose coefficients
are elements of L∞(Ω). A matrix ω = (ωij)i,j∈{1,2,3} in L∞(Ω)3×3 is said to be uniformly
elliptic if there exists a positive constant C such that∑3

i=1 ωij(x)vivj ≥ C|v|23 (3)

for almost every x ∈ Ω and for each v = (v1, v2, v3) ∈ R3, where |c| denotes the absolute
value of the real number c and, as we have just said, |v|3 = (

∑3
i=1 v

2
i )1/2. It is immediate

to verify that a uniformly elliptic matrix is invertible in L∞(Ω)3×3 and its inverse is
uniformly elliptic too.

Given V ∈ L2(Ω)3, we denote by ω · V , or simply by ωV , the vector field in L2(Ω)3,
which sends x ∈ Ω into the standard product ω(x)V (x) between the 3 × 3 real matrix
ω(x) and the vector V (x) of R3. Given a subset S of L2(Ω)3, we define the subset ω ·S
of L2(Ω)3, denoted by ωS also, as follows

ω · S :=
{
ωV ∈ L2(Ω)3

∣∣V ∈ S
}
.

Given a map L : G −→ K between Hilbert spaces G andK, we say that L is a topological
linear isomorphism if it is both a linear isomorphism and a homeomorphism. If G is
equal to K then we call such a map L topological linear automorphism of G. The map
Lω : L2(Ω)3 −→ L2(Ω)3, which sends V ∈ L2(Ω)3 into ωV ∈ L2(Ω)3, is an example of
topological linear automorphism of L2(Ω)3.
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Definition 1.2 We call material matrix of Ω a matrix in L∞(Ω)3×3, which is both
uniformly elliptic and symmetric.

Suppose that ω is a material matrix of Ω. Consider the bilinear form Bω : L2(Ω)3×
L2(Ω)3 −→ R defined by Bω(V,W ) :=

∫
Ω
(ωV ) • W dx. Thanks to condition (3), it

follows immediately that Bω is a scalar product on L2(Ω)3, which makes it a Hilbert
space whose norm is equivalent to the usual one. Finally, we define 13×3 as the element
of L∞(Ω)3×3, which is constantly equal to the 3 × 3 identity matrix. Evidently, 13×3

is a material matrix of Ω with ellipticity constant equal to 1. We call 13×3 homoge-
neous/isotropic material matrix of Ω.

1.2 Special functional spaces: notations and terminology

We make the following assumptions:

. (Ω, A) is a bounded Lipschitz device of R3.

. Γ is the boundary of Ω in R3, {A is the (possibly empty) Lipschitz open subset of
Γ equal to the interior of Γ \ A in Γ, Ω is the closure of Ω in R3 and the element
n of L∞(Γ)3 is the unit normal vector field of Γ, oriented towards R3 \ Ω.

. ω is a material matrix of Ω; that is, a uniformly elliptic symmetric matrix in
L∞(Ω)3×3.

. Lω−1 : L2(Ω)3 −→ L2(Ω)3 is the topological linear automorphism, which sends
V ∈ L2(Ω)3 into ω−1V ∈ L2(Ω)3.

. (· , ·)ω : L2(Ω)3 ×L2(Ω)3 −→ R is the scalar product of L2(Ω)3 defined by setting
(V,W )ω :=

∫
Ω
(ωV ) •W dx.

. 13×3 is the homogeneous/isotropic material matrix of Ω.

We need the following definition.

Definition 1.3 Let X be a vector subspace of L2(Ω)3. We define the ω–orthogonal
X⊥ω of X in L2(Ω)3 by setting

X⊥ω :=
{
V ∈ L2(Ω)3

∣∣ (V,W )ω = 0 for each W ∈ X
}
.

Given another vector subspace Y of L2(Ω)3, we say that X and Y are ω–orthogonal
if (V,W )ω = 0 for each V ∈ X and for each W ∈ Y . If {Xi}k

i=1 is a finite family of
vector subspaces of L2(Ω)3, then we write the equality

X = X1

⊥
⊕ω X2

⊥
⊕ω · · ·

⊥
⊕ω Xk

meaning that X is the direct sum of the Xi’s and the Xi’s are mutually ω–orthogonal.

If ω = 13×3, then we write X⊥ in place of X⊥ω , X = X1

⊥
⊕ X2

⊥
⊕ · · ·

⊥
⊕ Xk in

place of X = X1

⊥
⊕ω X2

⊥
⊕ω · · ·

⊥
⊕ω Xk and we use the term “ orthogonal” in place of

“13×3–orthogonal” also.

We need the following vector subspaces of L2(Ω)3 as well (see [10]):

. H(curl 0,Ω) :=
{
V ∈ H(curl,Ω)

∣∣ curl(V ) = 0
}
;

. H0,A(curl,Ω) :=
{
V ∈ H(curl,Ω)

∣∣V × n|A = 0
}
;

. H0,A(curl 0,Ω) :=
{
V ∈ H(curl 0,Ω)

∣∣V × n|A = 0
}
;
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. H(div,Ω;ω) :=
{
V ∈ L2(Ω)3

∣∣ωV ∈ H(div,Ω)
}
;

. H(div 0,Ω;ω) :=
{
V ∈ H(div,Ω;ω)

∣∣ div(ωV ) = 0
}
;

. H0,A(div,Ω;ω) :=
{
V ∈ H(div,Ω;ω)

∣∣ (ωV ) • n|A = 0
}
;

. H0,A(div 0,Ω;ω) :=
{
V ∈ H(div 0,Ω;ω)

∣∣ (ωV ) • n|A = 0
}
;

. H(div 0,Ω) := H(div 0,Ω;13×3),H0,A(div,Ω) := H0,A(div,Ω;13×3),H0,A(div 0,Ω) :=
H0,A(div 0,Ω;13×3).

The reader observes that it hold:

. Lω−1(H(div,Ω)) = H(div,Ω;ω), Lω−1(H(div 0,Ω)) = H(div 0,Ω;ω), Lω−1(H0,A(div,Ω)) =
H0,A(div,Ω;ω), Lω−1(H0,A(div 0,Ω)) = H0,A(div 0,Ω;ω).

Given a vector field V in L2(Ω)3, we say that:

. V is normal to A if V ∈ H0,A(curl,Ω);

. V is ω–tangent to A if V ∈ H0,A(div,Ω;ω) and V is tangent to A if V ∈
H0,A(div,Ω) or, equivalently, if it is 13×3–tangent to A.

Morever, we define:

. grad(H1
0,A(Ω)) :=

{
∇u ∈ L2(Ω)3

∣∣u ∈ H1
0,A(Ω)

}
;

. curl(H0,A(curl,Ω)) :=
{
curl(V ) ∈ L2(Ω)3

∣∣V ∈ H0,A(curl,Ω)
}
.

In the case in which A is empty, we have:

. H0,∅(curl,Ω) = H(curl,Ω),H0,∅(curl 0,Ω) = H(curl 0,Ω),H0,∅(div,Ω;ω) = H(div,Ω;ω),
H0,∅(div 0,Ω;ω) = H(div 0,Ω;ω), H0,∅(div,Ω) = H(div,Ω), H0,∅(div 0,Ω) =
H(div 0,Ω).

We recall also that H1
0,∅(Ω) = H1(Ω) and hence it hold:

. grad(H1(Ω)) :=
{
∇u ∈ L2(Ω)3

∣∣u ∈ H1(Ω)
}
;

. curl(H(curl,Ω)) :=
{
curl(V ) ∈ L2(Ω)3

∣∣V ∈ H(curl,Ω)
}
.

Given a real vector space M and one of its vector subspaces N , we denote by M/N
(or sometimes by M

N ) the quotient vector space of M modulo N (see Subsection 2.3
below also).

By elementary considerations, it is easy to see that grad(H1
0,A(Ω)) ⊂ H0,A(curl 0,Ω)

and curl(H0,A(curl,Ω)) ⊂ H0,A(div 0,Ω). The interpretation of gradient, curl and di-
vergence operators as differential operators between forms of suitable degrees suggests
to give the following definition.

Definition 1.4 We call first de Rham cohomology vector space of (Ω, A), denoted
by H1

DR(Ω, A), and second de Rham cohomology vector space of (Ω, A), denoted by
H2

DR(Ω, A), the following quotient vector spaces:

H1
DR(Ω, A) :=

H0,A(curl 0,Ω)
grad(H1

0,A(Ω))
and H2

DR(Ω, A) :=
H0,A(div 0,Ω)

curl(H0,A(curl,Ω))
.

For simplicity, if A is empty, we use also the symbols H1
DR(Ω) and H2

DR(Ω) in place
of H1

DR(Ω, A) and H2
DR(Ω, A), respectively. In other words, we define:

H1
DR(Ω) :=

H(curl 0,Ω)
grad(H1(Ω))

and H2
DR(Ω) :=

H(div 0,Ω)
curl(H(curl,Ω))

.
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Given a vector field V of L2(Ω)3, we say that:

. V is a gradient vector field of Ω or, simply, a gradient if V ∈ grad(H1(Ω));

. V is a primary vector field of Ω if curl(V ) = 0, but V 6∈ grad(H1(Ω)); that is, if
it belongs to H(curl 0,Ω) \ grad(H1(Ω)).

Let us specify the meaning we give to the notion of ω–harmonic vector field.

Definition 1.5 Given a vector field V in L2(Ω)3, we say that V is ω–harmonic if
curl(V ) = 0 and div(ωV ) = 0; that is, if V ∈ H(curl 0,Ω) ∩H(div 0,Ω;ω).

A 13×3–harmonic vector field of Ω is simply called harmonic.
We denote by H(Ω, A;ω) the vector subspace of L2(Ω)3 consisting of all ω–harmonic

vector fields of Ω normal to A and ω–tangent to {A. In other words, we define:

H(Ω, A;ω) := H0,A(curl 0,Ω) ∩H0,{A(div 0,Ω;ω).

Moreover, we denote by Hgrad(Ω, A;ω) the vector subspace of L2(Ω)3 consisting of
all gradient ω–harmonic vector fields of Ω normal to A and ω–tangent to {A. In other
words, we define:

Hgrad(Ω, A;ω) := H(Ω, A;ω) ∩ grad(H1(Ω)).

If A is empty and/or ω is equal to 13×3, then A and/or ω can be omitted from the
preceding notations. In fact, we define:

. H(Ω;ω) := H(Ω, ∅;ω), H(Ω, A) := H(Ω, A;13×3), H(Ω) := H(Ω, ∅;13×3);

. Hgrad(Ω;ω) := Hgrad(Ω, ∅;ω), Hgrad(Ω, A) := Hgrad(Ω, A;13×3), Hgrad(Ω) :=
Hgrad(Ω, ∅;13×3).

The reader observes that a vector field V in L2(Ω)3 is a ω–harmonic vector field of
Ω normal to A and ω–tangent to {A if and only if it belongs to H(curl,Ω)∩H(div,Ω;ω)
and satisfies the following system:

curl(V ) = 0
div(ωV ) = 0
V × n|A = 0
(ωV ) • n|{A = 0.

(4)

Remark 1.6 The notions of gradient, primary and harmonic vector field can be re-
peated for smooth vector fields defined on a generic open subset of R3 by using the
standard gradient, curl and divergence. Let (x1, x2, x3) be the coordinates of R3, let O
be a non–empty open subset of R3 and let V = (V1, V2, V3) ∈ C∞(O)3. The vector field
V is said to be: gradient if there exists f ∈ C∞(O) such that ∇f =

(
∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

)
coin-

cides with V on O, primary if curl(V ) =
(

∂V3
∂x2

− ∂V2
∂x3

, ∂V1
∂x3

− ∂V3
∂x1

, ∂V2
∂x1

− ∂V1
∂x2

)
vanishes on O,

but V is not gradient and harmonic if curl(V ) and div(V ) = ∂V1
∂x1

+ ∂V2
∂x2

+ ∂V3
∂x3

vanish on O.
We recall that, if V ∈ C∞(O)3 is harmonic, then it is locally the gradient of harmonic
functions. In particular, it is analytic. The same is true if V ∈ H(curl 0,Ω)∩H(div 0,Ω).

We now introduce some notions, which will prove to be of crucial importance later.
First, we denote by Π : H(Ω, A;ω) −→ H(Ω, A;ω)

/
Hgrad(Ω, A;ω) the natural proje-

ction of H(Ω, A;ω) onto the quotient vector space H(Ω, A;ω)
/
Hgrad(Ω, A;ω).
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Definition 1.7 We call primary dimension ofH(Ω, A;ω), denoted by ρdimH(Ω, A;ω),
the dimension of the real vector space H(Ω, A;ω)

/
Hgrad(Ω, A;ω).

Let p := ρdimH(Ω, A;ω). Suppose that p is finite and non–null; that is, p is a
positive integer. Let V = (V1, . . . , Vp) be a p–uple of primary ω–harmonic vector fields
of Ω normal to A and ω–tangent to {A. We say that V is a primary system ofH(Ω, A;ω)
if the set {Π(V1), . . . ,Π(Vp)} is a vector base of H(Ω, A;ω)

/
Hgrad(Ω, A;ω).

We remark that, if a primary system of H(Ω, A;ω) exists, then the real vector space
H(Ω, A;ω)/Hgrad(Ω, A;ω) must have finite and positive dimension.

2 A new tool: the tubular integral

Throughout this section, we shall make the following assumptions: (Ω, A) is a bounded
Lipschitz device of R3, Γ is the boundary of Ω and {A is the interior of Γ \A in Γ.

2.1 Tubes, tubular integrals and tubular loops

Let (X, d) and (Y, e) be metric spaces and let F : X −→ Y be a Lipschitz map between
them. The Lipschitz constant Lip(F ) of F is the real number defined as follows:

Lip(F ) := inf
{
c ∈ R

∣∣ e(F (x), F (x′)) ≤ c · d(x, x′) for each x, x′ ∈ X
}
.

If F is bijective and both F and F−1 are Lipschitz, then F is called bi–Lipschitz iso-
morphism. We say that F is locally bi–Lipschitz onto its image if, for each x ∈ X, there
exists an open neighborhood U of x in X such that the restriction of F from the metric
subspace U of X to the metric subspace F (U) of Y is a bi–Lipschitz isomorphism.

Indicate by t the coordinate of R and by x = (x1, x2) the coordinates of R2. Let B
be the open ball of R2 centered at the origin with radius equal to 1/

√
π and hence with

area equal to 1, and let D be its closure in R2. Identify R × R2 with R3 and consider
I ×D as a metric subspace of R3. We denote by I the closed interval [0, 1] of R. Given
t ∈ R and x = (x1, x2) ∈ R2, |t| is the absolute value of t and |(t, x)|3 is the usual norm
(t2 + x2

1 + x2
2)

1/2 of (t, x) in R3. Let E be a non–empty measurable subset of R3 with
finite measure meas(E).

Definition 2.1 We call tube of E a map T : I × D −→ E from I × D to E, which
is locally bi–Lipschitz onto its image. If T is a tube, then we define the subsets DT ,
DT,0 and DT,1 of Image(T ) by setting DT := T ((0, 1) × B), DT,0 := T ({0} × B) and
DT,1 := T ({1} × B).

The reader observes that every map T : I × D −→ E, which can be extended
to a local C 1–diffeomorphism from an open neighborhood of I × D in R3 to an open
neighborhood of Image(T ) in R3, is a tube of E.

Let T : I ×D −→ E be a tube. By the theorem of invariance of domain (see [12, p.
82]), the set DT is open in R3 and hence it is a domain of R3. Moreover, thanks to the
fact that I × D is a compact convex subset of R3, it follows that T is a Lipschitz map.
In this way, we have that

∂T

∂t
∈ L∞(I × D)3 and

∥∥∥∥∂T∂t
∥∥∥∥

L∞(I×D)3
≤ Lip(T ), (5)

where ∂T/∂t indicates the weak partial derivative, with respect to the first coordinate
t of R3, of the map T , viewed as a Lipschitz map from I × D to R3.

Theorem-Definition 2.2 Let T : I × D −→ E be a tube of E and let V ∈ L2(E)3.
The following assertions hold:
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(1) The composition V ◦T : I ×D −→ R3 is a well–defined vector field in L2(I ×D)3.
In this way, we can define the tubular integral

∫
T
V of V along T by setting∫

T

V :=
∫

I×D
(V ◦ T )(s, x) • ∂T

∂t
(s, x) ds dx.

(2) There exists a positive constant CT , depending only on T and on meas(E), such
that ∣∣∣∣∫

T

V

∣∣∣∣ ≤ CT ‖V ‖L2(E)3 .

In other words, the linear functional
∫

T
: L2(E)3 −→ R, which sends V ∈ L2(E)3

into
∫

T
V ∈ R, is continuous.

Remark 2.3 The notion of tubular integral given above extends to the case in which
the vector field V : E −→ R3 is solely locally integrable; that is, for each x ∈ E, there
exists an open neighborhood U of x in R3 such that the restriction of V to E ∩ U is
integrable. However, we do not need such an extended notion here.

Definition 2.4 Let T : I × D −→ E be a tube of E. We say that T is a regular tube
of E if the following hold:

(1) T is a homeomorphism onto its image or, equivalently, T is injective.

(2) The domain DT is Lipschitz.

(3) DT,0 and DT,1 are Lipschitz open subsets of ∂DT .

Suppose that T is such a regular tube. Given a function f in H1(DT ), we define the
functions fT,0 in H1/2(DT,0) and fT,1 in H1/2(DT,1) as the restrictions of f to DT,0

and to DT,1, respectively.

Let us introduce the notion of tubular loop.

Definition 2.5 A tube T : I×D −→ E is said to be a tubular loop if T (0, p) = T (1, p)
for each p ∈ D.

The reader observes that, if T is a tubular loop, then the setsDT,0 andDT,1 coincide.
Let S1 be the standard circle {(x1, x2) ∈ R2 |x2

1 + x2
2 = 1} of R2. Given a tubular

loop T : I×D −→ E, we denote by T̃ : S1×D −→ E the unique map from S1×D to E
such that T (t, x) = T̃

(
(cos(2πt), sin(2πt)), x

)
for each (t, x) ∈ I × D. Evidently, such a

map T̃ is continuous.

Definition 2.6 A tubular loop T : I × D −→ E is said to be regular if the associated
map T̃ : S1 × D −→ E has the following properties:

(1) T̃ is a homeomorphism onto its image or, equivalently, T̃ is injective.

(2) The open subset T̃ (S1 × B) = T
(
[0, 1]× B

)
of R3 is Lipschitz.

(3) There exists δ0 ∈ (0, 1) such that ∆0 := T
(
(0, δ0) × B)

)
is a Lipschitz domain of

R3 and DT,0 is a Lipschitz open subset ∂∆0. Similarly, there exists δ1 ∈ (0, 1)
such that ∆1 := T

(
(δ1, 1) × B)

)
is a Lipschitz domain of R3 and DT,0 = DT,1 is

a Lipschitz open subset ∂∆1.
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Suppose that T is such a regular tubular loop, and let δ0, ∆0, δ1 and ∆1 be as above.
Let g be a function in H1(DT ). Indicate by g0 ∈ H1/2(∂∆0) the trace of g|∆0 on ∂∆0 and
by g1 ∈ H1/2(∂∆1) the trace of g|∆1 on ∂∆1. We define the functions gT,0 ∈ H1/2(DT,0)
and gT,1 ∈ H1/2(DT,0) as the restrictions of g0 and of g1 to DT,0, respectively. More-
over, we call jump function of g along T the function [g]T ∈ H1/2(DT,0) defined by
[g]T := gT,1 − gT,0.

Remark 2.7 (1) A tubular loop is a tube of a particular kind. On the contrary, a
regular tubular loop is not injective, so it is never a regular tube. In this way, the
notions of regular tube and of regular tubular loop are distinct.

(2) Fix a regular tubular loop T . Let T̃ , δ0 and δ1 be as in the preceding definition. It
is immediate to verify that the boundary of DT is equal to the union of T̃

(
S1×∂D

)
and

of DT,0 = DT,1, the set T
(
∂((0, δ0)× B)

)
is equal to ∂∆0 and the set T

(
∂((δ1, 1)× B)

)
is equal to ∂∆1. Moreover, DT,0 is a Lipschitz open subset both of ∂∆0 and of ∂∆1.
Finally, the reader observes that the definitions of gT,0, of gT,1 and of [g]T do not depend
on the choise of δ0 and of δ1.

(3) In Definitions 2.1, 2.4, 2.5 and 2.6, the codomain E of the map T is not important
in the sense that one can always view such a map T as a map from I × D to R3 whose
image is contained in E.

2.2 Potential jumps and circulations of curl-free vector fields

Let P be a non–empty subset of R3. A continuous map from I to P is called path of
P . Let γ : I −→ P be a path of P . We say that γ is an embedded smooth path of P if
there exists a positive real number ε and a smooth embedding ψ : (−ε, 1 + ε) −→ R3

such that γ(t) = ψ(t) for each t ∈ I. If γ(0) = γ(1), then the path γ is called loop
of P . Suppose that γ is a loop. We say that γ is an embedded smooth loop of P if there
exists a smooth embedding φ : S1 −→ R3 from S1 to R3, equipped with their natural
structures of smooth manifold, such that γ(t) = φ(cos(2πt), sin(2πt)) for each t ∈ I.

Let λ : I −→ Ω ∪A be a path of Ω ∪A. We say that λ is a path of Ω ∪A modulo A
if {λ(0), λ(1)} ⊂ A. Let us specialize such a notion as follows.

Definition 2.8 Let λ : I −→ Ω∪A be a path of Ω∪A modulo A. A tubular extension of
λ is a tube Λ : I×D −→ Ω∪A such that Λ(t, 0) = λ(t) for each t ∈ I, Λ((0, 1)×D) ⊂ Ω
and Λ({0, 1}×D) ⊂ A. If, in addition, Λ is a regular tube, then Λ is said to be a regular
tubular extension of λ. The path λ is called extendable if it admits a tubular extension
and it is called regularly extendable if it admits a regular tubular extension.

The reader observes that, if a path λ : I −→ Ω ∪ A is extendable, then, in addition to
the condition {λ(0), λ(1)} ⊂ A, we have that λ is Lipschitz and λ((0, 1)) ⊂ Ω.

Lemma 2.9 Every embedded smooth path of Ω∪A modulo A transverse to Γ is regularly
extendable.

Given a Lipschitz path λ of Ω ∪ A modulo A and a continuous vector field W :
Ω∪A −→ R3, one can define the line integral

∫
λ
W of W along λ by the usual formula∫

λ

W =
∫ 1

0

W (λ(s)) • dλ
dt

(s) ds.

In the following results, we extend such a classical notion.

Theorem 2.10 Let λ be an extendable path of Ω ∪ A modulo A. The following state-
ments hold:
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(1) Let W : Ω ∪ A −→ R3 be a continuous vector field whose restriction to Ω belongs
to H0,A(curl 0,Ω). Then, for each tubular extension Λ of λ, we have that∫

Λ

W =
∫

λ

W.

(2) Let V ∈ H0,A(curl 0,Ω) and let Λ′ and Λ′′ be two tubular extensions of λ. Then
we have that ∫

Λ′
V =

∫
Λ′′
V.

Point (2) of the preceding result permits to give the following definition.

Definition 2.11 Given an extendable path λ of Ω∪A modulo A and V ∈ H0,A(curl 0,Ω),
we define the line integral

∫
λ
V of V along λ by setting∫

λ

V :=
∫

Λ

V,

where Λ is any tubular extension of λ. We call the line integral
∫

λ
V just defined

potential jump of V along λ also.

The latter terminology is justified by the following result.

Theorem 2.12 Let λ be a regularly extendable path of Ω ∪ A modulo A and let V ∈
H0,A(curl 0,Ω). Choose a regular tubular extension Λ∗ of λ. Then there exists a unique
function f in H1(DΛ∗) such that ∇f = V , fΛ∗,0 is constantly null and fΛ∗,1 is constantly
equal to

∫
λ
V . In particular, if there exist h ∈ H1(Ω) and d0, d1 ∈ R such that ∇h = V ,

the trace of h on DΛ∗,0 is constantly equal to d0 and the trace of h on DΛ∗,1 is constantly
equal to d1, then

∫
λ
V is equal to d1 − d0.

We now introduce the notion of extendable loop.

Definition 2.13 Let ` : I −→ Ω be a loop. A tubular loop extension of ` is a tubular
extension L : I × D −→ Ω of `, which is also a tubular loop. If, in addition, Λ is a
regular tubular loop, then it is called regular tubular loop extension of `. The loop ` is
said to be extendable if it admits a tubular loop extension and regularly extendable if
it admits a regular tubular loop extension.

Evidently, if a loop of Ω is extendable, that it is Lipschitz as well.

Lemma 2.14 Every embedded smooth loop of R3 is regularly extendable.

We have:

Theorem 2.15 Let ` be an extendable loop of Ω. The following statements hold:

(1) Let W : Ω −→ R3 be a continuous vector field belonging to H(curl 0,Ω). Then,
for each tubular extension L of `, we have that∫

L

W =
∫

`

W.

(2) Let V ∈ H(curl 0,Ω) and let L′ and L′′ be two tubular extensions of λ. Then we
have that ∫

L′
V =

∫
L′′
V.
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By point (2) of this result, we can give the following definition.

Definition 2.16 Given an extendable loop of Ω and V ∈ H(curl 0,Ω), we define the
line integral

∫
λ
V of V along λ by setting∫

`

V :=
∫

L

V,

where L is any tubular loop extension of `. We call such a line integral circulation
∫

`
V

of V along ` also.

As above, the latter terminology is justified by the next result.

Theorem 2.17 Let ` be a regularly extendable loop of Ω and let V ∈ H(curl 0,Ω).
Choose a regular tubular loop extension L∗ of `. Then there exists a unique function g
in H1(DL∗) such that ∇g = V , gL∗,0 is constantly null and gL∗,1 is constantly equal to∫

`
V . In particular, the jump function [g]L∗ of g along L∗ is constantly equal to

∫
`
V .

Moreover, if there exists h ∈ H1(Ω) such that ∇h = V , then
∫

`
V is null.

2.3 Some basic notions of Algebraic Topology

Abelian groups and vector spaces. We briefly recall some basic definitions and
constructions concerning abelian groups and vector spaces over the rational and real
numbers. In order to unify the presentation, we use the notion of module over a ring.

An abelian group is a non–empty set R, equipped with a binary operation + :
R×R −→ R, called addition, such that, for each a, b, c ∈ R, it hold:

. (a+ b) + c = a+ (b+ c);

. there exist an element 0 of R, called null element, such that a+ 0 = 0 + a = a;

. there exists d ∈ R, called additive inverse of a, such that a+ d = d+ a = 0;

. a+ b = b+ a.

The abelian group R is said to be ring if R is equipped with another binary operation
∗ : R×R −→ R, called multiplication, such that, for each a, b, c ∈ R, it hold:

. (a ∗ b) ∗ c = a ∗ (b ∗ c);

. a ∗ (b+ c) = a ∗ b+ a ∗ c and (a+ b) ∗ c = a ∗ c+ b ∗ c.

The ring R is said to be commutative if a ∗ b = b ∗ a for each a, b ∈ R. An element 1
of R is called identity of R if a ∗ 1 = 1 ∗ a = a for each a ∈ R. The null element, the
additive inverse of any element of R and the identity (if it exists) are unique. Given
a, b ∈ R, we denote the additive inverse of a by −a and the element b+ (−a) by b− a.

The set Z of the integers, equipped with the usual addition and multiplication, is
an example of commutative ring with 1.

Suppose that R is commutative and has identity 1. Then R is a field if each element
u of R \ {0} has a multiplicative inverse; that is, there exists v ∈ R such that u ∗ v = 1.

As is usual, we denote by Q the field of rational numbers and by R the field of real
numbers, equipped with the usual additions and multiplications.

Fix a commutative ring R with identity 1. Let M be an abelian group and let
+++ : M ×M −→ M be its addition. M is called R–module or module over R if it is
equipped with the another operation ? : R ×M −→ M , called scalar multiplication,
such that, for each a, b ∈ R and for each x, y ∈M , it hold:

. a ? (x+++ y) = (a ? x) +++ (a ? y);

13



. (a+ b) ? x = (a ? x) +++ (b ? x);

. a ? (b ? x) = (a ∗ b) ? x;

. 1 ? x = x.

For simplicity, given a, b ∈ R and x, y ∈ M , we abuse notation by writing ab, ax and
x + y in place of a ∗ b, a ? x and x+++ y, respectively. A R–module is said to be null if
it consists of the null element only. The ring R is a module over itself if we consider its
multiplication also as a scalar multiplication.

In the case in which R is a field, the notion of R–module becomes more familiar. In
fact, if R is a field, then a R–module is called vector space over R.

The abelian group M has a unique scalar multiplication Z×M 3 (n, x) 7−→ nx ∈M ,
which coincides with the natural one defined as follows: nx is the null element of M if
n = 0, nx is equal to the n–fold sum x+ . . .+x if n > 0 and nx is equal to (−n)(−x) if
n < 0. For this reason, from now on, we will use the term “Z–module” as a sinonimous
of “abelian group”.

Let R denote either the ring Z or the field Q or the field R.
Let M be a R–module; that is, an abelian group if R = Z or a vector space over Q

or over R if R = Q or R = R, respectively. A non–empty subset B = {mj}j∈J of M
is a base of M if, for each element x of M \ {0}, there exist, and are unique, a finite
subset J ′ of J and, for each j ∈ J ′, an element aj of R (depending on x) such that
x =

∑
j∈J′ ajmj . If M admits a base, then M is said to be free. A vector space is

always free in this sense, so M is free if R = Q and R = R. If M is free and B and B′

are two bases of M , then the cardinality of B and of B′ coincide. Such a cardinality
is said to be the rank of M . Usually, if R = Q or R = R, then such a rank is called
dimension of M . For convention, we consider the null abelian group as a free abelian
group of rank zero and we assume that the dimension of the null vector space is zero.

Let K be a set and, for each k ∈ K, let ak be an element of R and let xk be an
element of M . We write the symbol

∑
k∈K akxk understanding that the set K ′ := {k ∈

K | akxk 6= 0} is finite and
∑

k∈K akxk is either the null element of R if K ′ = ∅ or the
element

∑
k∈K′ akxk of M otherwise.

Let us present an important construction. Let S be a non–empty set. Denote by
MS the set of all functions φ : S −→ R such that φ−1(R \ {0}) is finite. Define an
addition and a scalar multiplication on MS in the usual way as follows: if φ, ψ ∈ MS

and a ∈ R, then (φ+ ψ)(σ) := φ(σ) + ψ(σ) and (aφ)(σ) := aφ(σ) for each σ ∈ S. The
set MS , equipped with these two operations, is called free R–module generated by S.
For each σ ∈ S, let φσ be the element of MS such that φσ(σ) = 1 and φσ(ξ) = 0 for
each ξ ∈ S \ {σ}. Evidently, {φσ}σ∈S is a base of MS . In fact, each element φ of MS

is equal to
∑

σ∈S φ(σ)φσ and
∑

σ∈S aσφσ is the null function on S if and only if every
aσ is the null element of R. Usually, for simplicity, one identifies each function φσ with
σ itself and writes a generic element φ of MS as a “finite formal linear combination”
φ =

∑
σ∈S aσσ of elements of S with coefficients in R. We adopt this simplified notation.

The reader observes that, if φ ∈ MS \ {0}, then there exist, and are unique, a positive
integer h, elements {ai}h

i=1 of R \ {0} and elements {σi}h
i=1 of S such that σi 6= σj for

each i, j ∈ {1, . . . , h} with i 6= j and φ =
∑h

i=1 aiσi.
It is worth to give a definition concerning the construction just presented.

Definition 2.18 Let S be a non–empty set, let MS be the free R–module generated by
S and let φ =

∑
σ∈S aσσ be an element of MS. We call coefficients of φ the elements of

the set {aσ ∈ R |σ ∈ S}. Suppose now that φ belongs to MS \ {0}. Let h be a positive
integer and, for each i ∈ {1, . . . , h}, let ai be an element of R and let σi be an element
of S. We say that φ =

∑h
i=1 aiσi is the finite representation of φ in base if ai 6= 0

for each i ∈ {1, . . . , h}, σi 6= σj for each i, j ∈ {1, . . . , h} with i 6= j and φ is equal to∑h
i=1 aiσi.
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Let N be a non–empty subset of the R–module M . Suppose that x − y ∈ N for
each x, y ∈ N and az ∈ N for each a ∈ R and for each z ∈ N . Under these conditions,
the restrictions to N of the addition and of the scalar multiplication of M induce a
structure of R–module on N . The set N , equipped with such a structure, is called
submodule of M . More specifically, a submodule of M is called subgroup of M if R = Z
and vector subspace of M if R = Q or R = R. The submodule N of M defines an
equivalence relation RN on M as follows: xRNy in M if x − y ∈ N . Denote the
quotient set M/RN by M/N (or sometimes by M

N ) and, for each x ∈ M , indicate
the equivalence class corresponding to x in M/N by x + N . The set M/N inherits a
natural structure of R–module from M . Given x, y ∈M and a ∈ R, it suffices to define
(x+N)+(y+N) := (x+y)+N and a(x+N) := ax+N . The set M/N , equipped with
such addition and scalar multiplication, is called quotient R–module of M modulo N .

Let {Mi}k
i=1 be a non–empty finite family of submodules of M . If each element x

of M can be written uniquely as a sum x = x1 + . . .+xk, where xi belongs Mi for each
i ∈ {1, . . . , k}, then M is said to be the direct sum of the Mi’s. In this case, we write
M = M1 ⊕ . . .⊕Mh.

Let P be another R–module. A map ϕ : M −→ P is a module homorphism if, for
each x, y ∈ M and for each a ∈ R, ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(ax) = aϕ(x). As is
usual, the kernel ker(ϕ) of ϕ is defined as ϕ−1(0P ), where 0P is the null element of P .
The reader observes that ker(ϕ) is a submodule of M and the image Image(ϕ) of ϕ
is a submodule of P . If ϕ is a bijective module homomorphism, and hence ϕ−1 is a
module homomorphism as well, then ϕ is called module isomorphism. If there exists an
isomorphism between M and P , then M and P are said to be module isomorphic. More
specifically, in place of the terms “module homomorphism”, “module isomorphism”
and “module isomorphic”, one uses, respectively, the terms “homomorphism”, “isomor-
phism” and “isomorphic” if R = Z and the terms “linear map”, “linear isomorphism”
and “linearly isomorphic” if R = Q or R = R.

Given a submodule N of M , the map π : M −→ M/N , which sends x ∈ M into
x+N ∈M/N , is an example of module homomorphism, which we call natural projection
of M onto M/N .
Singular homology modules. Let q ∈ N. Indicate by e(q)

0 the origin of Rq and by
e(q)
1 , . . . , e(q)

q the vectors of the canonical base of Rq. We have:

e(q)
0 = (0, 0, . . . , 0, 0),
e(q)
1 = (1, 0, . . . , 0, 0),
e(q)
2 = (0, 1, . . . , 0, 0),
...

...
...

e(q)
q = (0, 0, . . . , 0, 1).

The standard geometric q–simplex ∆q is defined as the smallest convex subset of Rq

containing e(q)
0 , e(q)

1 , . . . , e(q)
q . It is immediate to verify that

∆q =
{
(x1, . . . , xq) ∈ Rq

∣∣xi ≥ 0 for each i = 1, . . . , q and
∑q

i=0 xi ≤ 1
}
.

For q ≤ 3, ∆q is very easy to visualize. In fact, ∆0 consists of a single point {0}, ∆1

coincides with the closed interval I = [0, 1] of R, ∆2 is the union of the triangle of R2

with vertices (0, 0), (1, 0), (0, 1) and of its interior, and ∆3 is the tetrahedron of R3 with
vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Fix a non–empty topological space X. The reader reminds that R denotes either Z
or Q or R. A singular q–simplex of X is a continuous map from ∆q to X; that is an
element of the set C 0(∆q, X). In this way, a singular 0–simplex σ : ∆0 = {0} −→ X can
be identified with the point σ(0) of X and a singular 1–simplex of X is simply a path
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of X. Denote by Sq(X;R) the free R–module generated by the set C 0(∆q, X). The
elements of Sq(X;R) are called singular q–chain of X over R. Thus we can say that
a singular q–chain of X over R is a finite formal linear combination

∑
σ∈C 0(∆q,X) aσσ

of singular q–simplexes σ of X with coefficients aσ in R. For convention, we define
S−1(X;R) as the null R–module.

Definition 2.19 Let c =
∑

σ∈C 0(∆q,X) aσσ be a singular q–chain of X over R and let
Jc := {σ ∈ C 0(∆q, X) | aσ 6= 0}. We define the support |c| of c as follows: |c| = ∅ if c is
null (or, equivalently, if Jc = ∅) and |c| :=

⋃
σ∈Jc

Image(σ) otherwise. If c ∈ S−1(X;R),
then we consider the support |c| of c equal to the empty set.

In the case in which c ∈ Sq(X;R)\{0} and c =
∑h

i=1 aiσi is the finite representation of
c in base, we have that |c| =

⋃h
i=1 |σi|, where |σi| = Image(σi) for each i ∈ {1, . . . , h}.

Let us introduce the boundary operators. We recall that a map from Rq to Rn

is said to be affine if it is the composition of a linear map from Rq to Rn with a
translation of Rn. Evidently, an affine map is continuous. Given points y0, y1, . . . , yq of
Rn, there exists a unique affine map ϕ : Rq −→ Rn, which sends e(q)

i into yi for each
i ∈ {0, 1, . . . , q}. It is given explicitly by the following equation

ϕ(x1, . . . , xq) = y0 +
∑q

i=1 xi(yi − y0).

Suppose q ≥ 1. Let i ∈ {0, 1, . . . , q}. We indicate by F i
q : ∆q−1 −→ ∆q the restriction

from ∆q−1 to ∆q of the unique affine map from Rq−1 to Rq, which sends e(q−1)
j into e(q)

j

for each j ∈ {0, 1, . . . , q−1} with j < i and e(q−1)
j into e(q)

j+1 for each j ∈ {0, 1, . . . , q−1}
with j ≥ i. It is easy to verify that each map F i

q induces a homeomorphism from
∆q−1 onto its image. Let σ be a singular q–chain of X. The singular (q − 1)–simplex
σ(i) : ∆q−1 −→ X, defined as the composition σ ◦ F i

q , is called ith–face of σ, while the
singular (q − 1)–chain ∂q(σ) in Sq−1(X;R), defined by

∂q(c) :=
∑q

i=0(−1)iσ(i),

is called boundary of σ. The reader observes that, if q = 1, then ∂1(σ) = σ(1) − σ(0).
The latter definition gives a map from C 0(∆q, X) to Sq−1(X;R). Such a map extends
uniquely to a module homomorphism from Sq(X;R) to Sq−1(X;R), denoted by ∂q

again, by setting

∂q

(∑
σ∈C 0(∆q,X) aσσ

)
:=
∑

σ∈C 0(∆q,X) aσ∂q(σ).

If q = 0, then ∂0 : S0(X;R) −→ {0} = S−1(X;R) denotes the null module homomor-
phism. A simple computation ensures that, for each q ∈ N, it holds:

Image(∂q+1) ⊂ ker(∂q) or, equivalently, ∂q ◦ ∂q+1 ≡ 0.

The submodule ker(∂q) of Sq(X;R) is denoted by Zq(X;R) and its elements are called
singular q–cycles of X over R or, simply, q–cycles of X over R. The submodule
Image(∂q+1) of Zq(X;R) is denoted by Bq(X;R) and its elements are called singular
q–boundaries of X over R or, simply, q–boundaries of X over R.

The quotient R–module Zq(X;R)/Bq(X;R) is denoted by Hq(X;R) and it is called
singular q–homology module of X over R. If c is a q–cycle of X over R, then we denote
by [c](X;R) the corresponding element c+Bq(X;R) of Hq(X;R). Given two q–cycles c
and c′ of X over R, c is said to be homologous to c′ in X over R if [c](X;R) = [c′](X;R)

or, equivalently, if there exists a singular (q+1)–chain d of X over R such that c− c′ =
∂q+1(d).

If R = R, then the dimension of Hq(X;R) as a real vector space, denoted by βq(X),
is called qth–Betti number of X. It is well–known that, if X is a Lipschitz domain of R3
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with bounded boundary, then all its Betti numbers are finite. The same is true if X is
equal to the union Ω ∪A, where (Ω, A) is a Lipschitz device of R3.

Let us define the useful notion of augmented 0–homology module. We begin by
defining the module homomorphism ∂]

0 : S0(X;R) −→ R as follows:

∂]
0

(∑
x∈X axx

)
:=
∑

x∈X ax.

It is immediate to see that B0(X;R) = Image(∂1) is contained in ker(∂]
0). In this

way, we can define the augmented 0–homology module H]
0(X;R) of X over R as the

quotient R–module ker(∂]
0)/B0(X;R). If c ∈ ker(∂]

0), then we denote by [c]](X;R) the

corresponding element c+B0(X;R) of H]
0(X;R).

The geometric nature of H]
0(X;R) is described in the following elementary result

(see (10.7) in [12]).

Theorem 2.20 The following statements hold.

(1) If X is path–connected, then H]
0(X;R) is null.

(2) Suppose that X has at least two path–connected components. Let {Xj}j∈J be
the family of all path–connected components of X and, for each j ∈ J , choose a
point xj of Xj and view such a point as a singular 0–simplex of X. Fix j0 ∈ J .
Then H]

0(X;R) is a free R–module, having {[xj − xj0 ]
]
(X;R)}j∈J\{j0} as a base.

In particular, if X has a finite number r of path–connected components, then the
rank of H]

0(X;R) is equal to r − 1.

Let now Y be another topological space and let f : X −→ Y be a continuous
map. Fix q ∈ N. The map f induces a well–defined module homomorphism Hq(f) :
Hq(X;R) −→ Hq(Y ;R) as follows: given any q–cycle c =

∑
σ∈C 0(∆q,X) aσσ of X over

R, we define
Hq(f)([c](X;R)) :=

[∑
σ∈C 0(∆q,X) aσ(f ◦ σ)

]
(Y ;R)

.

The same map f defines also a module homomorphism H]
0(f) : H]

0(X;R) −→ H]
0(Y ;R)

by setting
H]

0(f)
(
[
∑

x∈X axx]
]
(X;R)

)
:=
[∑

x∈X axf(x)
]]
(Y ;R)

.

for each element
∑

x∈X axx of ker(∂]
0). It is an elementary fact that, if f is a homeomor-

phism, then the maps Hq(f) and the map H]
0(f) are module isomorphism (see Section

11 of [12] for a more general result).
Relative singular homology modules. Fix a subset A of the topological space X.
A relative (singular) q–cycle of X over R modulo A is a singular q–chain c of X over R
such that the support of ∂q(c) is contained in A. The submodule of Sq(X;R) consisting
of all relative q–cycles of X over R modulo A is denoted by Zq(X,A;R).

An important case for us is the one of paths. Let γ : I −→ X be a path of X, viewed
as a singular 1–simplex of X. Then γ is a relative 1–cycle of X over R modulo A if and
only if the points γ(0) and γ(1) belong to A.

A relative (singular) q–boundary of X over R modulo A is a singular q–chain c of X
over R, which is homologous to a singular q–chain of X over R having support contained
in A. More explicitly, c is such a relative q–boundary if there exist c′ ∈ Sq(X;R) and
d ∈ Sq+1(X;R) such that |c′| ⊂ A and c− c′ = ∂q+1(d). Applying ∂q to both members
of the latter equation, we infer that ∂q(c) = ∂q(c′) and hence |∂q(c)| ⊂ A. It follows
that every relative q–boundary of X over R modulo A is also a relative q–cycle of X
over R modulo A. We denote by Bq(X,A;R) the submodule of Zq(X,A;R) consisting
of all relative q–boundaries of X over R module A.
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The quotient R–module Zq(X,A;R)/Bq(X,A;R) is denoted by Hq(X,A;R) and is
called relative singular q–homology module of X over R modulo A. If c ∈ Zq(X,A;R),
then we indicate by [c](X,A;R) the corresponding element c+Bq(X,A;R) of Hq(X,A;R).
Given c, c′ ∈ Zq(X,A;R), c is said to be homologous to c′ in X over R modulo A if
[c](X,A;R) = [c′](X,A;R) or, equivalently, if there exist c′′ ∈ Sq(X;R) and d ∈ Sq+1(X;R)
such that |c′′| ⊂ A and c− c′ = c′′ + ∂q+1(d).

The reader observes that, if A = ∅, then Zq(X,A;R) = Zq(X;R), Bq(X,A;R) =
Bq(X;R) and Hq(X,A;R) = Hq(X;R).

Let g : X −→ Y be a continuous map between the topological spaces X and Y , and
let B be a subset of Y . If g(A) is contained in B, then g defines a module homomorphism
Hq(g) : Hq(X,A;R) −→ Hq(Y,B;R) by setting

Hq(g)
(
[
∑

σ∈C 0(∆q,X) aσσ](X,A;R)

)
:=
[∑

σ∈C 0(∆q,X) aσ(g ◦ σ)
]
(Y,B;R)

for each
∑

σ∈C 0(∆q,X) aσσ ∈ Zq(X,A;R).
We conclude this section with a construction of crucial importance for us.
Consider the following finite sequence of module homomorphisms

H1(A;R) i∗−→ H1(X;R) π∗−→ H1(X,A;R) ∂∗−→ H]
0(A;R)

i]−→ H]
0(X;R), (6)

where i∗ and i] are induced by the inclusion map A ↪→ X, π∗ is induced by the identity
map of X (that is, π∗([c](X;R)) = [c](X,A;R) for each c ∈ Z1(X;R)) and ∂∗ is defined as
follows:

∂∗
(
[c](X,A;R)

)
:= [∂1(c)]

]
(A;R)

for each c ∈ Z1(X,A;R). By a direct and elementary verification, it follows that the
sequence (6) is exact; that is, it hold:

Image(i∗) = ker(π∗), Image(π∗) = ker(∂∗) and Image(∂∗) = ker(i]). (7)

The sequence (6) is the final part of the so–called long exact homology sequence of the
topological pair (X,A) over R (see [12, Section 14]).
Regularization of 111-cycles. Let us state two regularization results for 1–cycles.

Lemma 2.21 Let O be a non–empty open subset of R3 and let z ∈ Z1(O;R)\{0}. Then
there exist a positive integer h, embedded smooth loops γ1, . . . , γh of O and elements
α1, . . . , αh of R such that z is homologous to

∑h
i=1 αiγi in O over R and the supports

of the γi’s are pairwise disjoint.

Let X be a non–empty subset of R3. Let z be a 1–cycle of X over Z. We say that
z is a Lipschitz 1–cycle of X over Z if either z is null or z is not null and, denoted
by z =

∑h
i=1 aiγi its finite representation in base, each singular 1–simplex γi of X is

a Lipschitz path of X. We denote by Z(lip)
1 (X; Z) the abelian subgroup of Z1(X; Z)

consisting of all Lipschitz 1–cycles of X over Z. The reader observes that the Lipschitz
loops of X and the finite formal sum of it are elements of Z(lip)

1 (X; Z).

Lemma 2.22 Let O be a non–empty open subset of R3, let z ∈ Z(lip)
1 (O; Z)\{0} and let

r be the number of path–connected components of |z|. Then there exist Lipschitz loops
`1, . . . , `r of O and, for each i ∈ {1, . . . , r}, a sequence {γi,n}n∈N of embedded smooth
loops of O such that

(1) For each W ∈ C 0(O)3,
∫

z
W is equal to

∫Pr
i=1 `i

W .

(2) For each i ∈ {1, . . . , r}, the sequence {γi,n}n∈N converges uniformly to `i on I
and the sequence {dγi,n/dt}n∈N is bounded in L∞(I)3 and it converges to d`i/dt
almost everywhere on I.
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(3) For each n ∈ N,
∑r

i=1 γi,n is homologous to z in O over Z.

(4) For each n ∈ N and for each i, j ∈ {1, . . . , r} with i 6= j, |γi,n| and |γj,n| are
disjoint.

Let us give the proof of the preceding two lemmas.

Proof of Lemmas 2.21 and 2.22. Step I. Let O be a non–empty open subset of R3 and
let z ∈ Z1(O;R)\{0}, let r be the number of path–connected components of |z| and let
C1, . . . , Cr be the path–connected components of |z|. Since the Ci’s are compact and
pairwise disjoint, there exists a positive real number ε with the following property: for
each i, j ∈ {1, . . . , r} with i 6= j and for each (x, y) ∈ Ci × Cj , the open balls B(x, ε)
and B(y, ε) of R3 are disjoint and contained in O. For each i ∈ {1, . . . , r}, define the
path–connected open neighborhood Oi of Ci in O by setting Oi :=

⋃
x∈Ci

B(x, ε). The
Oi’s are pairwise disjoint so z is equal to the sum z1 + . . . + zr, where each zi is a
1–cycle of O whose support is contained in Oi. It is now suffices to show that, for each
i ∈ {1, . . . , r}, Lemma 2.21 and Lemma 2.22 (when R = Z and z ∈ Z(lip)

1 (O; Z) \ {0})
are true with z = zi and O = Oi. This is equivalent to say that it suffices to prove such
lemmas in the special case in which O is path–connected.

Step II. For this reason, in the remainder of this proof, we assume that O is path–
connected. Let z =

∑k
j=1 ajσj be the finite representation of z ∈ Z1(O;R)\{0} in base.

We have:
0 = ∂1(z) =

∑k
j=1 aj(σj(1)− σj(0)) in S1(O;R). (8)

Define Z :=
⋃k

j=1{σj(0), σj(1)} and, for each x ∈ Z, I0,x := {j ∈ {1, . . . , k} |σj(0) = x}
and I1,x := {j ∈ {1, . . . , k} |σj(1) = x}. After collecting terms in the right member of
(8), we obtain

0 =
∑

x∈Z

(∑
j∈I1,x

aj −
∑

j∈I0,x
aj

)
x in S1(O;R). (9)

For each x ∈ Z, define the element ax of R by setting

ax :=
∑

j∈I1,x
aj −

∑
j∈I0,x

aj .

Equation (9) is equivalent to say that ax = 0 for each x ∈ Z. Fix a point x0 of O. For
each x ∈ Z, choose a Lipschitz path ηx of O from x0 to x. For each j ∈ {1, . . . , k},
define the Lipschitz path ηj0 : I −→ O and ηj1 : I −→ O by setting ηj0 := ησj(0) and
ηj1 := ησj(1). We obtain:∑k

j=1 aj(ηj1 − ηj0) =
∑

x∈Z axηx = 0 in S1(O;R).

It follows that z can be written as follows:

z = z −
∑k

j=1 aj(ηj1 − ηj0) =
∑k

j=1 aj(ηj0 + σj − ηj1). (10)

The reader observes that each sum ηj0 + σj − ηj1 is a 1–cycle of O over R. For each
j ∈ {1, . . . , k}, define the loop ξj of O at x0 by setting

ξj := (ηj0 ∗ σj) ∗ η−1
j1 , (11)

where “∗” denotes the usual product between paths. By an elementary construction
(see the first part of the proof of Theorem 12.1 of [12, p. 48]), it follows that each ξj is
homologous to ηj0 + σj − ηj1 in O over R and hence

z is homologous to
∑k

j=1 ajξj in O over R. (12)
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Step III. Let us complete the proof of Lemma 2.21. Fix j ∈ {1, . . . , k}. Let
ξ̃j : S1 −→ R3 be the unique continuous map from S1 to R3 such that ξj(t) =
ξ̃j(cos(2πt), sin(2πt)) for each t ∈ I. Equip the set C 0(S1,R3) of all continuous maps
from S1 to R3 with the topology of uniform convergence and S1 and R3 with their
natural structure of smooth manifold. It is well–known that the subset of C 0(S1,R3)
of all smooth embeddings of S1 into R3 is dense in C 0(S1,R3). In this way, there
exists a smooth embedding γ̃j : S1 −→ R3 arbitrarily close to ξ̃j in C 0(S1,R3).
Composing the γ̃j ’s with translations of R3 along suitable small vectors, we may also
suppose that the |γ̃j |’s are pairwise disjoint. Define F̃j : S1 × I −→ R3 by setting
F̃j(y, t) := ξ̃j(y)+ t(γ̃j(y)− ξ̃j(y)). Choosing γ̃j sufficiently close to ξ̃j , we may suppose
that the image of F̃j is contained in O. Define the embedded smooth loop γj : I −→ O
and the continuous map Fj : I × I −→ O by setting

γj(s) := γ̃j(cos(2πs), sin(2πs))

and
Fj(s, t) := F̃j

(
(cos(2πs), sin(2πs)), t

)
The reader observes that Fj is a homotopy from ξj and γj and Fj(0, t) = Fj(1, t) for
each t ∈ I. Let τj : I −→ O and κj : I −→ O be the paths and let d(j)

1 : ∆2 −→ O and
let d(j)

2 : ∆2 −→ O be the singular 2–simplexes defined as follows:

τj(s) := Fj(0, s) = Fj(1, s), κj(s) := Fj(1− s, s), d(j)
1 (s, t) := Fj(s, t)

and
d(j)
2 (s, t) := Fj(1− t, s+ t).

We have that

∂2(d
(j)
1 + d(j)

2 ) = (ξj + κj − τj) + (τj − γj − κj) = ξj − γj .

It follows that each γj is homologous to ξj in O over R and hence, by (12), z is homolo-
gous to

∑k
j=1 ajγj on O over R, as desired.

Step IV. Let us complete the proof of Lemma 2.22. Suppose R = Z and z ∈
Z(lip)

1 (O; Z) \ {0}. The reader reminds that O is assumed to be path–connected and the
paths ηj0 and ηj1 have been chosen to be Lipschitz. By hypothesis, z is Lipschitz; that
is, each path σj is Lipschitz. By (11), it follows that each ξj is Lipschitz as well. Define
the Lipschitz loop ` of O by setting ` := ξa1

1 ∗ · · · ∗ ξak

k . Given any W ∈ C 0(O)3, it
holds: ∫

z

W =
∑k

j=1
aj

∫
ηj0+σj−ηj1

W =
∑k

j=1
aj

∫
ξj

W =
∫

`

W.

For each t ∈ R, indicate by btc the real number t−max{s ∈ Z | s ≤ t} in [0, 1). Define
the map ` : R −→ R3 by setting `(t) := `(btc). It is evident that ` is Lipschitz,
extends ` and is 1–periodic. Let {ρn : R −→ R}n∈N be a sequence of mollifiers in R
and, for each n ∈ N, define `n : R −→ R3 and `n : I −→ R3 by `n := ρn ∗ ` and
`n := `n|I , respectively. By elementary properties of convolution, we know that each
`n is a 1–periodic smooth map, the sequence {`n}n∈N converges uniformly to ` in I
and the sequence {d`n/dt}n∈N is bounded in L∞(I)3 and converges to d`/dt in L1(I)3.
Extracting a subsequence if needed, we may also suppose that {d`n/dt}n∈N converges to
d`/dt almost everywhere on I. Fix n ∈ N. Let ˜̀n : S1 −→ R3 be the unique smooth map
such that `n(s) = ˜̀

n(cos(2πs), sin(2πs)) for each s ∈ R. Equip the set C 1(S1,R3) of all
maps from S1 to R3 of class C 1 with the C 1–topology. Since the subset of C 1(S1,R3) of
all smooth embeddings of S1 to R3 is dense in C 1(S1,R3), for each n ∈ N, there exists
a smooth embedding γ̃n : S1 −→ R3 arbitrarily close to ˜̀n in C 1(S1,R3). In this way, if
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γn : I −→ R3 is the embedding smooth loop defined by γn(s) := γ̃n(cos(2πs), sin(2πs)),
then we may suppose that

max

{
‖γn − `n‖L∞(I)3 ,

∥∥∥∥dγn

dt
− d`n

dt

∥∥∥∥
L∞(I)3

}
< 2−n.

It follows that {γn}n∈N converges uniformly to ` on I and the sequence {dγn/dt}n∈N is
bounded in L∞(I)3 and it converges to d`/dt almost everywhere on I. Finally, using
the argument of Step III, we obtain that, up to consider a subsequence of {γn}n∈N if
needed, each γn is homologous to z in O over Z. 2

An immediate by–product of the preceding proof is as follows:

Corollary 2.23 Let z ∈ Z1(R3; Z) and let U be an open neighborhood of |z| in R3.
Then there exists z′ ∈ Z(lip)

1 (R3; Z) and d ∈ S2(R3; Z) such that |z′| ∪ |d| ⊂ U and
z − z′ = ∂2(d).

2.4 Line integrals of curl-free vector fields along relative 1-cycles
and periods of first de Rham cohomology classes

Let us introduce the notion of integral of a vector field in H0,A(curl 0,Ω) along an
extendable relative 1–cycle in Z1(Ω ∪A,A; R). First, we need some preparations.

Definition 2.24 Let z be a relative 1–cycle of Ω ∪ A over R modulo A; that is, an
element of Z1(Ω ∪ A,A; R). We say that z is extendable if there exist extendable
paths λ1, . . . , λr of Ω ∪ A modulo A, extendable loops `1, . . . , `s of Ω and real numbers
α1, . . . , αr, β1, . . . , βs such that

z =
∑r

i=1
αiλi +

∑s

j=1
βj`j . (13)

in Z1(Ω ∪ A,A; R). We denote by Z(ext)
1 (Ω ∪ A,A; R) the vector subspace of Z1(Ω ∪

A,A; R) consisting of all extendable relative 1–cycles of Ω ∪ A over R modulo A. If
z ∈ Z(ext)

1 (Ω ∪ A,A; R) and has the form (13), then, for each V ∈ H0,A(curl 0,Ω), we
define the line integral

∫
z
V of V along z as follows∫

z

V :=
∑r

i=1
αi

∫
λi

V +
∑s

j=1
βj

∫
`j

V.

Lemma 2.25 The following statements hold.

(1) For each z ∈ Z1(Ω∪A,A; R), there exists z′ ∈ Z(ext)
1 (Ω∪A,A; R), which is homolo-

gous to z in Ω ∪A over R modulo A; that is, [z′](Ω∪A,A;R) = [z](Ω∪A,A;R).

(2) Let V ∈ H0,A(curl 0,Ω) and let z′, z′′ ∈ Z(ext)
1 (Ω∪A,A; R) such that z′ is homolo-

gous to z′′ in Ω∪A over R modulo A; that is, [z′](Ω∪A,A;R) = [z′′](Ω∪A,A;R). Then
it holds: ∫

z′
V =

∫
z′′
V.

Thanks to the latter result, we can give the following definition.

Definition 2.26 Given V ∈ H0,A(curl 0,Ω) and z ∈ Z1(Ω∪A,A; R), we define the line
integral

∫
z
V of V along z by setting∫

z

V :=
∫

z′
V,

where z′ is any element of Z(ext)
1 (Ω ∪A,A; R) such that [z′](Ω∪A,A;R) = [z](Ω∪A,A;R).
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In the next result, we present an important situation in which the line integral of a
vector field inH0,A(curl 0,Ω) along a relative 1–cycle in Z1(Ω∪A,A; R) can be computed
directly.

Lemma 2.27 Let W : Ω∪A −→ R3 be a continuous vector field whose restriction to Ω
belongs to H0,A(curl 0,Ω) and let z ∈ Z1(Ω∪A,A; R). Suppose that there exist a positive
integer k and, for each i ∈ {1, . . . , k}, ai ∈ R and a Lipschitz path γi : I −→ Ω∪A such
that z =

∑k
i=1 aiγi. Then it holds∫

z

W =
∑k

i=1
ai

∫
γi

W.

Our next aim is to define the notion of period of first de Rham cohomology classes
in H1

DR(Ω, A) along relative homology classes in H1(Ω ∪A,A; R).

Lemma 2.28 Let V ∈ H0,A(curl 0,Ω), let c ∈ B1(Ω∪A,A; R), let h ∈ H1
0,A(Ω) and let

z ∈ Z1(Ω ∪A,A; R). It hold:∫
c

V = 0 and
∫

z

∇h = 0. (14)

The latter lemma permits to give the following definition.

Definition 2.29 Given V ∈ H0,A(curl 0,Ω) and α ∈ H1(Ω ∪ A,A; R), we denote by∫
α
V the real number defined as follows∫

α

V :=
∫

z

V,

where z is an element of Z1(Ω ∪A,A; R) with [z](Ω∪A,A;R) = α.
We denote by

∫∫∫
(Ω,A;ω) : H(Ω, A;ω) × H1(Ω ∪ A,A; R) −→ R the bilinear pairing

defined as follows ∫∫∫
(Ω,A;ω)(V, α) :=

∫
α

V

for each (V, α) ∈ H(Ω, A;ω)×H1(Ω ∪A,A; R).
Given υ ∈ H1

DR(Ω, A) and α ∈ H1(Ω∪A,A; R), we define the period
∫

α
υ of υ along

α by setting ∫
α

υ :=
∫

α

V,

where V is an element of H0,A(curl 0,Ω) whose de Rham cohomology class V+grad(H1
0,A(Ω))

is equal to υ.
Finally, we denote by

∫∫∫∫∫∫∫∫∫
DR
(Ω,A) : H1

DR(Ω, A)×H1(Ω∪A,A; R) −→ R the bilinear pairing
defined as follows ∫∫∫∫∫∫∫∫∫

DR
(Ω,A)(υ, α) :=

∫
α

υ

for each (υ, α) ∈ H1
DR(Ω, A)×H1(Ω ∪A,A; R).

3 The Hodge decomposition theorem

Throughout this section, we shall make the following assumptions: (Ω, A) is a bounded
Lipschitz device of R3, Γ is the boundary of Ω, {A is the interior of Γ \ A in Γ and ω
is a material matrix of Ω.
Main decomposition. Let us present the main Hodge–type decomposition theorem
contained in this paper. Such a decomposition was proved by P. Fernandes and G.
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Gilardi in the special setting of Helmholtz domains (see [10, p. 968]). However, as we
see in the final version of the paper, their proof works with minor changes in the general
case as well.

Theorem 3.1 The Hilbert space L2(Ω)3 can be expressed as the following direct sum
of mutually ω–orthogonal closed vector subspaces:

L2(Ω)3 = grad(H1
0,A(Ω))

⊥
⊕ω H(Ω, A;ω)

⊥
⊕ω ω

−1curl(H0,{A(curl,Ω)).

Moreover, it hold:

H0,A(curl 0,Ω) = grad(H1
0,A(Ω))

⊥
⊕ω H(Ω, A;ω),

H0,{A(div 0,Ω;ω) = H(Ω, A;ω)
⊥
⊕ω ω

−1curl(H0,{A(curl,Ω)).

This statement is summarized in the following ω–decomposition diagram:

L2(Ω)3

grad(H1
0,A(Ω)) H(Ω, A;ω) ω−1curl(H0,{A(curl,Ω))

H0,A(curl 0,Ω) ω−1curl(H0,{A(curl,Ω))

grad(H1
0,A(Ω)) H0,{A(div 0,Ω;ω)

Five-subspaces decomposition. Let us deduce from Theorem 3.1 a more precise
decomposition. First, we need some preparations.

Definition 3.2 Let D and E be Lipschitz open subsets of Γ. We say that (D,E) is
a curl–gradient boundary pair of Ω if one of the following two equivalent conditions is
satisfied:

H0,D(curl 0,Ω) ⊂ grad(H1
0,E(Ω)), (15)

H0,{E(div 0,Ω) ⊂ curl(H0,{D(curl,Ω)). (16)

In the next result, we give a simple topological characterization of curl–gradient
boundary pairs of Ω.

Lemma 3.3 Let D and E be Lipschitz open subsets of Γ. The following assertions are
equivalent:

(1) (D,E) is a curl–gradient boundary pair of Ω.

(2) E is contained in a connected component of D and the linear map from H1(D; R)
to H1(Ω; R) induced by the inclusion D ↪→ Ω is surjective.

In particular, if (1) holds, then E is contained in D.

Let us give some examples of curl–gradient boundary pairs.

Corollary 3.4 Let D and E be Lipschitz open subsets of Γ. In each of the following
cases, (D,E) is a curl–gradient boundary pair of Ω:

(1) E is contained in a connected component of D and the linear map from H1(D; R)
to H1(Γ; R) induced by the inclusion D ↪→ Γ is surjective.
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(2) E is contained in a connected component of D and Γ \ D is the union of some
connected components of Γ, each of which is homeomorphic to the standard 2–
sphere.

(3) D = Γ and E = ∅.

Let us give another definition.

Definition 3.5 Let (D,E) be a curl–gradient boundary pair of Ω. Given a vector field
V in L2(Ω)3, we say that V is a ω–curly gradient vector field of Ω with respect to (D,E)
if there exist h ∈ H1

0,E(Ω) and Z ∈ H0,{D(curl,Ω) such that V = ∇h and ωV = curl(Z);
that is, V ∈ grad(H1

0,E(Ω)) ∩ ω−1curl(H0,{D(curl,Ω)).
A 13×3–curly gradient vector field of Ω with respect to (D,E) is simply called curly

gradient vector field of Ω with respect to (D,E).
We denote by Hcg(Ω, D,E;ω) the vector subspace of L2(Ω)3 consisting of all ω–curly

gradient vector fields of Ω with respect to (D,E). In other words, we define:

Hcg(Ω, D,E;ω) := grad(H1
0,E(Ω)) ∩ ω−1curl(H0,{D(curl,Ω)).

If ω is equal to 13×3 and/or (D,E) = (Γ, ∅), then, for simplicity, we omit ω and/or
the letters D and E from the symbol Hcg(Ω, D,E;ω). In fact, we define:

. Hcg(Ω, D,E) := Hcg(Ω, D,E;13×3), Hcg(Ω;ω) := Hcg(Ω,Γ, ∅;ω), Hcg(Ω) :=
Hcg(Ω,Γ, ∅;13×3).

Finally, if V ∈ Hcg(Ω;ω), then we call V also ω–curly gradient vector field of Ω.
Similarly, if V ∈ Hcg(Ω), then we call V curly gradient vector field of Ω.

The reader observes that a curly gradient vector field of Ω is an element of L2(Ω)3,
which admit both scalar and vector potential. In fact, we have that

Hcg(Ω) = grad(H1(Ω)) ∩ curl(H(curl,Ω)).

Theorem 3.6 Let (D,E) be a curl–gradient boundary pair of Ω. Then the Hilbert
space L2(Ω)3 can be expressed as the following direct sum of mutually ω–orthogonal
closed vector subspaces:

L2(Ω)3 = L1

⊥
⊕ω L2

⊥
⊕ω L3

⊥
⊕ω L4

⊥
⊕ω L5,

where L1 := grad(H1
0,D(Ω)), L2 := H(Ω, D;ω), L3 := Hcg(Ω, D,E;ω), L4 := H(Ω, E;ω)

and L5 := ω−1curl(H0,{E(curl,Ω)). Moreover, it hold:

H0,E(curl 0,Ω) = L1

⊥
⊕ω L2

⊥
⊕ω L3

⊥
⊕ω L4,

grad(H1
0,E(Ω)) = L1

⊥
⊕ω L2

⊥
⊕ω L3,

H0,D(curl 0,Ω) = L1

⊥
⊕ω L2,

H0,{E(div 0,Ω;ω) = L4

⊥
⊕ω L5,

ω−1curl(H0,{D(curl,Ω)) = L3

⊥
⊕ω L4

⊥
⊕ω L5,

H0,{D(div 0,Ω;ω) = L2

⊥
⊕ω L3

⊥
⊕ω L4

⊥
⊕ω L5.
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This statement is summarized in the following ω–decomposition diagram:

L2(Ω)3

grad(H1
0,D(Ω)) H(Ω, D;ω) Hcg(Ω, D,E;ω) H(Ω, E;ω) ω−1curl(H0,{E(curl,Ω))

H0,E(curl 0,Ω) ω−1curl(H0,{E(curl,Ω))

grad(H1
0,E(Ω)) H0,{E(div 0,Ω;ω)

H0,D(curl 0,Ω) ω−1curl(H0,{D(curl,Ω))

grad(H1
0,D(Ω)) H0,{D(div 0,Ω;ω)

Combining point (3) of Corollary 3.4 with Theorem 3.6, we obtain a simple gener-
alization of the classical five–subspaces Hodge decomposition (see [9, p. 314]).

Corollary 3.7 (classical five-subspaces decomposition) The Hilbert space L2(Ω)3

can be expressed as the following direct sum of mutually ω–orthogonal closed vector sub-
spaces:

L2(Ω)3 = grad(H1
0 (Ω))

⊥
⊕ω H(Ω,Γ;ω)

⊥
⊕ω Hcg(Ω;ω)

⊥
⊕ω H(Ω, ω)

⊥
⊕ω ω

−1curl(H1
0 (Ω)3).

More precisely, the following ω–decomposition diagram holds:

L2(Ω)3

grad(H1
0 (Ω)) H(Ω,Γ;ω) Hcg(Ω;ω) H(Ω;ω) ω−1curl(H1

0 (Ω)3)

H(curl 0,Ω) ω−1curl(H1
0 (Ω)3)

grad(H1(Ω)) H0,Γ(div 0,Ω;ω)

H0,Γ(curl 0,Ω) ω−1curl(H1(Ω)3)

grad(H1
0 (Ω)) H(div 0,Ω;ω)

Principle of vector invariance. In what follows, given two real vector spaces G and
K, we write G ' K if there exists a linear isomorphism between G and K.

As an immediate consequence of the preceding two theorems, we infer the vector
invariance of the (preceding) Hodge decompositions from the material matrix.

Theorem 3.8 The following statements hold:

(1) The linear isomorphism class of the real vector space H(Ω, A;ω) do not depend
on ω. More precisely, for every material matrix ω in L∞(Ω)3×3, we have that

H(Ω, A;ω) ' H1
DR(Ω, A) ' H2

DR(Ω, {A).

In particular, it holds
H(Ω, A;ω) ' H(Ω, A)

and hence H(Ω;ω) ' H(Ω) if A = ∅.

(2) Given a curl–gradient boundary pair (D,E) of Ω, the linear isomorphism class of
the real vector space Hcg(Ω, D,E;ω) does not depend on ω. More precisely, for
every material matrix ω in L∞(Ω)3×3, we have that

Hcg(Ω, D,E;ω) '
grad(H1

0,E(Ω))
H0,D(curl 0,Ω)

'
curl(H0,{D(curl,Ω))
H0,{E(div 0,Ω)

.
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In particular, it holds

Hcg(Ω, D,E;ω) ' Hcg(Ω, D,E) (17)

and hence Hcg(Ω;ω) ' Hcg(Ω) if (D,E) = (Γ, ∅).

Moreover, we obtain:

Corollary 3.9 The following statements are verified:

(1) There exists a linear automorphism Mω : L2(Ω)3 −→ L2(Ω)3, which sends the ω–
decomposition of Theorem 3.1 into the corresponding 13×3–decomposition. More
precisely, Mω can be chosen in such a way that it fixes grad(H1

0,A(Ω)) and it hold:

Mω

(
H(Ω, A;ω)

)
= H(Ω, A),

Mω

(
ω−1curl(H0,{A(curl,Ω))

)
= curl(H0,{A(curl,Ω)).

(2) Given a curl–gradient boundary pair (D,E) of Ω, there exists a linear automor-
phism Nω : L2(Ω)3 −→ L2(Ω)3, which sends the ω–decomposition of Theorem 3.6
(and hence of Corollary 3.7) into the corresponding 13×3–decomposition. More
precisely, Nω can be chosen in such a way that it fixes grad(H1

0,D(Ω)) and it hold:

Nω

(
H(Ω, D;ω)

)
= H(Ω, D),

Nω

(
Hcg(Ω, D,E;ω)

)
= Hcg(Ω, D,E),

Nω

(
H(Ω, E;ω)

)
= H(Ω, E),

Nω

(
ω−1curl(H0,{E(curl,Ω))

)
= curl(H0,{E(curl,Ω)).

Informally, the preceding two results can be rephrased as follows:

Principle of vector invariance. From the vectorial point of view, the (preceding)
Hodge decompositions of the space of square sommable vector fields on a bounded Lips-
chitz three–dimensional domain, describing a certain medium, are independent from the
material matrix of the domain, describing the inhomogeneity/anisotropy of the medium.

4 The summand subspace of harmonic vector fields
and its topological nature

Throughout this section, we shall make the following assumptions: (Ω, A) is a bounded
Lipschitz device of R3, Γ is the boundary of Ω, {A is the interior of Γ \ A in Γ and ω
is a material matrix of Ω.

4.1 Preparation of a Lipschitz device of R3R3R3

Systems of primary 111-cycles. We begin by identifying the 1–cycles of Ω over Z with
the 1–cycles of Ω ∪ A over R, whose supports are in Ω and whose coefficients are in Z.
Under this identification, Z1(Ω; Z) and hence Z(lip)

1 (Ω; Z) become subsets of Z1(Ω∪A; R).
Consider the linear map

i∗ : H1(A; R) −→ H1(Ω ∪A; R)

induced by the inclusion map A ↪→ Ω ∪A.
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Definition 4.1 Let z ∈ Z1(Ω ∪ A; R) be a 1–cycle of Ω ∪ A over R. We say that z is
a secondary cycle of (Ω, A) if [z](Ω∪A;R) ∈ Image(i∗) or, equivalently, if there exists a
1–cycle z′ of Ω ∪ A over R such that |z′| ⊂ A and z is homologous to z′ in Ω ∪ A over
R. If [z](Ω∪A;R) 6∈ Image(i∗) and z ∈ Z(lip)

1 (Ω; Z), then we say that z is a primary cycle
of (Ω, A). We call (first) secondary Betti number of (Ω, A), denoted by σβ1(Ω, A), the
dimension of Image(i∗) as vector subspace of H1(Ω∪A; R), and we call (first) primary
Betti number of (Ω, A), denoted by ρβ1(Ω, A), the non–negative integer defined by setting

ρβ1(Ω, A) := β1(Ω ∪A)− σβ1(Ω, A),

which coincides with the dimension of the quotient vector space H1(Ω∪A; R)/Image(i∗).

Lemma 4.2 Let χ∗ : H1(A; R) −→ H1(Ω; R) be the linear map induced by the inclusion
A ↪→ Ω and let %(1)

∗ : H1(Ω; R) −→ H1(Ω, A; R) and %(2)
∗ : H2(Ω, {A; R) −→ H2(Ω,Γ; R)

be the linear maps induced by the identity map of Ω. Then it holds:

σβ1(Ω, A) = dim Image(χ∗), (18)
ρβ1(Ω, A) = dim Image(%(1)

∗ ) = dim Image(ρ(2)
∗ ). (19)

In the remainder of this subsection, we will denote by p the primary Betti number
ρβ1(Ω, A) of the Lipschitz device (Ω, A).

Definition 4.3 A p–uple (z1, . . . , zp) of primary cycles of (Ω, A) is said to be a system
of primary cycles of (Ω, A) if {[z1](Ω∪A;R) + Image(i∗), . . . , [zp](Ω;R) + Image(i∗)} is a
base of H1(Ω ∪ A; R)/Image(i∗) or, equivalently, if, fixed a base K of Image(i∗), then
{[z1](Ω∪A;R), . . . , [zp](Ω∪A;R)} ∪K is a base of H1(Ω ∪A; R).

Systems of jump paths. Let a be a non–negative integer and let Ka be the sub-
set of Za+1 consisting of elements (n0, n1, . . . , na) such that

∑a
i=0 ni = 0. The set

Ka is a free abelian subgroup of Za+1 of rank a. Let v(a)
0 = (1, 0, . . . , 0), v(a)

1 =
(0, 1, . . . , 0), . . . , v(a)

a = (0, . . . , 0, 1) be the elements of the canonical base of Za+1. For
each k, h ∈ {0, 1, . . . , a} with k 6= h, we denote by v(a)(k, h) the element of Ka defined
by v(a)(k, h) := v(a)

h − v(a)

k .

Definition 4.4 We call a–jump an element of Za+1 of the form v(a)(k, h) and system
of a–jumps an ordered base (v(a)(k1, h1), . . . , v(a)(ka, ha)) of Ka formed by a–jumps.

By definition, there do not exist systems of 0–jumps. On the contrary, if a is positive,
then the a–uple Sa = (v(a)(0, 1), . . . , v(a)(0, a)) is always a system of a–jumps. We call
Sa standard system of a–jumps.

It is very easy to characterize systems of a–jumps via Linear Algebra.
Let V := (v(a)(k1, h1), . . . , v(a)(ka, ha)) be an a–uple of a–jumps. We call matrix of

V the (a× a)–matrix MV = (mij)i,j∈{1,...,a} ∈ {−1, 0, 1}a×a defined by

mij :=


1 if i = hj ,

−1 if i = kj ,

0 if i ∈ {1, . . . , a} \ {kj , hj}.
(20)

Lemma 4.5 The a–uple V is a system of a–jumps if and only if the rank of MV is a.
Moreover, if such a rank is a, then the coefficients of its inverse M−1

V in Qa×a belongs
to {−1, 0, 1}; that is, M−1

V ∈ {−1, 0, 1}a×a.

Proof. Let Sa = (v(a)(0, 1), . . . , v(a)(0, a)) be the standard system of a–jumps. Suppose
that V is a system of a–jumps. It is immediate to verify thatMV is the matrix associated
with the change of bases of Ka from V to Sa. It follows that MV is invertible in Za×a. In
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particular, its rank is a, its determinant is either 1 or−1 and henceM−1
V ∈ {−1, 0, 1}a×a.

Suppose now that the rank of MV is a or, equivalently, det(MV) 6= 0. It is easy to prove,
by induction on a, that the determinant of a matrix N in {−1, 0, 1}a×a belongs to
{−1, 0, 1}, provided N satisfies the following property: the components of the columns
of N are either all null or null expect for one component belonging to {−1, 1} or null
except for two components, one equal to 1 and one equal to −1. It follows that detMV
is equal to either 1 or −1 and hence V is an ordered base of Ka. 2

Let us introduce the notion of system of jump paths. Let A0, A1, . . . , Aa be the
connected components of A.

Definition 4.6 Let λ : I −→ Ω ∪ A be a path of Ω ∪ A modulo A; that is, a path of
Ω ∪ A such that {λ(0), λ(1)} ⊂ A. If, in addition, λ((0, 1)) ⊂ Ω and there exist two
different connected components A′ and A′′ of A such that λ(0) ∈ A′ and λ(1) ∈ A′′,
then we call λ jump path of (Ω, A).

Given a jump path λ of (Ω, A), we denote by s(λ) and e(λ) the distinct integers
contained in {0, 1, . . . , a} such that λ(0) ∈ As(λ) and λ(1) ∈ Ae(λ). Let λλλ = (λ1, . . . , λa)
be an a–uple of jump paths of (Ω, A). We define the a–uple Vλλλ of a–jumps, called a–uple
of a–jumps relative to λλλ, by setting Vλλλ :=

(
v(a)(s(λ1), e(λ1)), . . . , v(a)(s(λa), e(λa))

)
and

the matrix Mλλλ of λλλ as the matrix of Vλλλ. We say that λλλ is a system of jump paths of
(Ω, A) if each path λi is regularly extendable and Vλλλ is a system of a–jumps.

We remark that, given an a–uple λλλ = (λ1, . . . , λa) of jump paths of (Ω, A), for each
i, j ∈ {1, . . . , a}, the (i, j)–coefficient λij of Mλλλ is equal to

λij =


1 if i = e(λj),
−1 if i = s(λj),
0 if i ∈ {1, . . . , a} \ {s(λj), e(λj)}.

We have:

Lemma 4.7 Let λλλ = (λ1, . . . , λa) be an a–uple of regularly extendable jump paths of
(Ω, A); that is, each λi is a jump path of (Ω, A) and a regularly extendable path of Ω∪A
modulo A. The following assertions are equivalent:

(1) λλλ is a system of jump paths of (Ω, A).

(2) The matrix Mλλλ of λλλ has rank a.

(3) The set
{
[λj(1)− λj(0)]](A;R)

}
j∈{1,...,a} is a base of the vector space H]

0(A; R).

Proof. The equivalence between (1) and (2) follows immediately from Lemma 4.5. Let
us prove that (1) is equivalent to (3). For each i ∈ {0, 1, . . . , a}, choose a point xi of Ai

and view such a point xi as a singular 0–simplex of A. Define:

A :=
(
[x1 − x0]

]
(A;R), . . . , [xa − x0]

]
(A;R)

)
and

B :=
(
[λ1(1)− λ1(0)]](A;R), . . . , [λa(1)− λa(0)]](A;R)

)
.

By Theorem 2.20, A is an ordered base of H]
0(A; R). Suppose that B is an ordered base

of H]
0(A; R). The matrix Mλλλ coincides with the matrix associated with the change of

bases of H]
0(A; R) from B to A. In particular, the rank of Mλλλ is a and hence Lemma

4.5 ensures that λλλ is a system of jumps paths of (Ω, A). Suppose now that λλλ is such a
system; that is, Vλλλ is a system of a–jumps. By Lemma 4.5, Mλλλ is invertible in Ra×a

and hence B is an ordered base of H]
0(A; R). 2

If a is positive, then systems of jump paths of (Ω, A) always exist.
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Corollary 4.8 Suppose that a is positive. For each i ∈ {0, 1, . . . , a}, choose a point xi

of Ai. Then, for each i ∈ {1, . . . , a}, there exists a smooth embedded path λi of Ω ∪ A
modulo A transverse to Γ such that λi(0) = x0 and λi(1) = xi. The a–uple (λ1, . . . , λa)
turns out to be a system of jump paths of (Ω, A).

The next result describes the relation existing between the relative homology vector
space H1(Ω ∪ A,A; R) and the notions of system of primary cycles and of system of
jump paths of (Ω, A).

Theorem 4.9 Let (Ω, A) be a Lipschitz device of R3, let p = ρβ1(Ω, A) be its primary
Betti number and let A0, A1, . . . , Aa be the connected components of A. Then, if z =
(z1, . . . , zp) is a system of primary cycles of (Ω, A) and λλλ = (λ1, . . . , λa) is a system of
jump paths of (Ω, A), the (p+ a)–uple(

[z1](Ω∪A,A;R), . . . , [zp](Ω∪A,A;R), [λ1](Ω∪A,A;R), . . . , [λa](Ω∪A,A;R)

)
is an ordered base of the vector space H1(Ω ∪ A,A; R), which we call ordered base of
H1(Ω ∪A,A; R) induced by (z,λλλ). In particular, we have:

dimH1(Ω ∪A,A; R) = p+ a.

Proof. Let θi := [zi](Ω∪A;R) for each i ∈ {1, . . . , p} and let τj := [λj ](Ω∪A,A;R) for each
j ∈ {1, . . . , a}. Consider the following portion of the long exact homology sequence of
the topological pair (Ω ∪A,A) over R:

H1(A; R) i∗−→ H1(Ω ∪A; R) π∗−→ H1(Ω ∪A,A; R) ∂∗−→ H]
0(A,R)

i]−→ H]
0(Ω ∪A; R).

By the definition of system of primary cycles of (Ω, A) and by the equality Image(i∗) =
ker(π∗), it follows that {π∗(θi)}p

i=1 is a base of Image(π∗). Since Ω is path–connected,
Ω∪A is path–connected as well and hence H]

0(Ω∪A; R) is null and hence ∂∗ is surjective.
The reader observes that ∂∗(τj) is equal to [λj(1) − λj(0)]]0 for each j ∈ {1, . . . , a}.
Combining the latter fact with Lemma 4.7, we infer that {π∗(θ1), . . . , π∗(θp), τ1, . . . , τa}
is a base of H1(Ω ∪A,A; R). 2

Systems of fundamental vector fields and of their local potentials. Let us
introduce some crucial notions.

Definition 4.10 By a fundamental vector field of (Ω, A), we mean a smooth vector
field B in C∞(Ω)3, having the following two properties:

(1) B is primary; that is, curl(B) = 0 on Ω, but B is not a gradient on Ω.

(2) B is a gradient locally at A. More precisely, there exists g ∈ C∞(Ω) such that,
for some open neighborhood U of A in R3, B = ∇g on U ∩ Ω. We call g local
potential of B at A.

Suppose that p = ρβ1(Ω, A) is positive. Given a p–uple B = (B1, . . . , Bp) of funda-
mental vector fields of (Ω, A), we say that B is a system of fundamental vector fields
of (Ω, A) if there exists a system z = (z1, . . . , zp) of primary cycles of (Ω, A) such that
the rank of the following (p× p)–matrix(∫

zj

Bi

)
i,j∈{1,...,p}

is p. In this situation, we say that B is circulation–nonsingular with respect to z.
Moreover, if

∫
zj
Bi = δij for each i, j ∈ {1, . . . , p}, then we say that B is circulation–

dual to z.
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Definition 4.11 Let B : Ω −→ R3 be a fundamental vector field of (Ω, A), let λλλ =
(λ1, . . . , λa) be a system of jump paths of (Ω, A) and let g be a local potential of B at
A. Denote by g : Ω −→ R the unique continuous extension of g on Ω. We say that
the local potential g of B at A is relative to λλλ if g(λi(1)) − g(λi(0)) =

∫
λi
B for each

i ∈ {1, . . . , a}.

As we see in the next result, local potentials of fundamental vector fields relative to
systems of jump paths always exist.

Lemma 4.12 Given a fundamental vector field B of (Ω, A) and given a system λλλ of
jump paths of (Ω, A), there exists a local potential of B at A relative to λλλ.

Proof. Let B be a fundamental vector field of (Ω, A), let g ∈ C∞(Ω) be a local potential
of B at A and let λλλ be a system of jump paths of (Ω, A). Denote by A0, A1, . . . , Aa the
path–connected components of A. Since A is a Lipschitz open subset of Γ, the closures
Ai of the Ai’s in R3 are pairwise disjoint. In this way, there exists pairwise disjoint open
neighborhoods U0, U1, . . . , Ua of A0, A1, . . . , Aa in R3, respectively. Restricting each Ui

around Ai if needed, we may suppose that the Ui’s are pairwise disjoint as well. Define
αi := g(λi(0)) − g(λi(1)) +

∫
λi
B for each i ∈ {1, . . . , a}, α := (α1, . . . , αa) ∈ Ra and

denote by M t
λλλ the traspose of the matrix Mλλλ of λλλ. Consider the following linear system

M t
λλλ · x = α, (21)

where x = (x1, . . . , xa) ∈ Ra is the variable. Thanks to Definition 4.6 and Lemma 4.7,
Mλλλ has rank a and hence (21) admits a unique solution c = (c1, . . . , ca). Let c0 := 0.
Using a smooth partition of unity of R3 subordinate to the open cover {U1, . . . , Ua,R3 \⋃a

i=1Ai}, one can define easily a smooth function ψ in C∞(R3) such that ψ|Ui
is

constantly equal to ci for each i ∈ {0, 1, . . . , a}. Define f ∈ C∞(Ω) by setting

f := g + ψ|Ω.

The fact that c is a solution of (21) is equivalent to say that

cλi(1) − cλi(0) = g(λi(0))− g(λi(1)) +
∫

λi

B

for each i ∈ {1, . . . , a}. In this way, fixed i ∈ {1, . . . , a}, we have:

f(λi(1))− f(λi(0)) =
(
g(λi(1)) + ψ(λi(1))

)
−
(
g(λi(0)) + ψ(λi(0)

)
=

= g(λi(1))− g(λi(0)) + cλi(1) − cλi(0) =
=
∫

λi
B.

This completes the proof. 2

Let us give the definition of system of local potentials of a system of fundamental
vector field.

Definition 4.13 Suppose that p = ρβ1(Ω, A) is positive. Let B = (B1, . . . , Bp) be a
system of fundamental vector fields of (Ω, A) and, for each i ∈ {1, . . . , p}, let bi be a local
potential of Bi at A. Denote the p–uple (b1, . . . , bp) by b. We say that b is a system of
local potentials of B at A if there exists a system of jump paths λλλ of (Ω, A) such that,
for each i ∈ {1, . . . , p}, the local potential gi of Bi at A is relative to λλλ. Moreover, if b
and λλλ have such a property, then we say that b is a system of local potentials of B at
A relative to λλλ.
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Preparations of a Lipschitz device of R3. Let us introduce the notions of prepa-
ration and of complete preparation of the Lipschitz device (Ω, A) of R3.

Definition 4.14 Given a system B of fundamental vector fields of (Ω, A) and a system
b of local potentials of B at A, we say that JB,bK is a preparation of (Ω, A). Moreover,
given a system z of primary cycles of (Ω, A) and a system λλλ of jump paths of (Ω, A),
we say that JB,b | z,λλλK is a complete preparation of (Ω, A) if B is circulation–dual to
z and the system b of local potentials of B at A is relative to λλλ.

4.2 Existence of preparations

This subsection is devoted to prove the following crucial result.

Theorem 4.15 Every Lipschitz device of R3 admits a complete preparation.

We subdivide the proof into two steps.

Step I. Biot-Savare vector fields, linking number and Alexander duality theo-
rem. The aim of this step is to formulate a particular version of the celebrated Alexan-
der duality theorem in terms of the notion of Biot–Savare vector field generated by
Lipschitz 1–cycle over Z.

First, we define the latter notion.
Let X be a non–empty subset of R3. Identify the 1–cycles of X over Z with the

1–cycles of R3 over Z, whose supports are contained in X. Under this identification,
Z1(X; Z) becomes an abelian subgroup of Z1(R3; Z). Let γ : I −→ X be a Lipschitz
path of R3 and let BS(γ) : R3 \ |γ| −→ R3 be the vector field defined by setting

BS(γ)(y) :=
1
4π

∫ 1

0

dγ

dt
(s)× y − γ(s)

|y − γ(s)|33
ds

for each y ∈ R3 \ |γ| (recall that |γ| = Image(γ) and |(v1, v2, v3)|3 = (v2
1 + v2

2 + v2
3)1/2),

where dγ/dt is the element of L∞(I)3 equal to the weak derivative of the path γ, viewed
as a map from I to R3.

Let us introduce the notion of Biot–Savare vector field generated by a Lipschitz
1–cycle over Z. To the best of our knowledge, this notion does not exist in literature
yet.

Definition 4.16 Let X be a non–empty subset of R3 and let z be a Lipschitz 1–cycle
z of X over Z. We define the Biot–Savare vector field generated by z, denoted by
BS(z) : R3 \ |z| −→ R3, as follows. If z is null, then BS(z) : R3 −→ R3 is the null
vector field. If z is not null and z =

∑h
i=1 aiγi is its finite representation in base, then

BS(z) : R3 \ |z| −→ R3 is given by setting

BS(z)(y) :=
∑h

i=1 ai · BS(γi)(y)

for each y ∈ R3 \ |z| = R3 \
⋃h

i=1 |γi|.

Lemma 4.17 The Biot–Savare vector field BS(z) : R3 \ |z| −→ R3 generated by a
Lipschitz 1–cycle z of X over Z is smooth and its curl and divergence vanish; that is,
it is harmonic.

Before proving Lemma 4.17, we need a technical result.
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Lemma 4.18 Let v, w ∈ R3. Define the smooth vector fields Gv : R3 \ {v} −→ R3 and
g(v, w) : R3 \ {v} −→ R3 by setting

Gv(y) :=
y − v

|y − v|33
and g(v, w)(y) := w ×Gv(y)

for each y ∈ R3 \ {v}. Then, for each y ∈ R3 \ {v}, we have that

curl(g(v, w))(y) = −JGy
(v) · w (22)

and
div(g(v, w))(y) = 0. (23)

Proof. For each i ∈ {1, 2, 3}, let G(i)
v : R3 \ {v} −→ R be the ith–component of Gv;

that is, G(i)
v (y) = (yi − vi)|y − v|−3

3 for each y ∈ R3 \ {v}, where v = (v1, v2, v3). Let
y ∈ R3 \ {v}. For each i, j ∈ {1, 2, 3} with i 6= j, we have that

∂G(i)
v

∂yj
(y) = −3(yi − vi)(yj − vj)|y − v|−5

3

and
∂G(i)

v

∂yi
(y) =

(
|y − v|23 − 3(yi − vi)2

)
|y − v|−5

3 .

It follows immediately that

curl(Gv)(y) = 0, div(Gv)(y) = 0 and JGv
(y) = JGy

(v). (24)

By direct computations, one easily obtain that

curl(g(v, w))(y) = div(Gv)(y)− JGv (y) · w and div(g(v, w))(y) = −w • curl(Gv)(y).

Combining the latter equalities with (24), we infer at once (22) and (23). 2

Proof of Lemma 4.17. If z = 0, then BS(z) is null and the lemma is evident. Let z 6= 0
and let z =

∑k
i=1 aiγi be the finite representation of z in base. Fix i ∈ {1, . . . , k} and

y ∈ R3 \ |γi|. The reader observes that it holds:

BS(γi)(y) =
1
4π

∫ 1

0

g(γi(s), γ̇i(s))(y) ds,

where γ̇i denotes the weak derivative dγi/dt of γi and, for each s ∈ I, g(γi(s), γ̇i(s)) is
the smooth vector field of R3 \ {γi(s)} defined as in the statement of Lemma 4.18. By
the theorem of derivation under the sign of integral, the vector field BS(γi) is smooth
and it hold:

curl(BS(γi))(y) =
1
4π

∫ 1

0

curl
(
g(γi(s), γ̇i(s))

)
(y) ds (25)

and

div(BS(γi))(y) =
1
4π

∫ 1

0

div
(
g(γi(s), γ̇i(s))

)
(y) ds. (26)

Equations (23) and (26) imply that div(BS(γi)) is null on whole R3 \ |γi|. On the other
hand, by equation (22), we infer that

curl
(
g(γi(s), γ̇i(s))

)
(y) = −JGy (γi(s)) · γ̇i(s)

for each s ∈ I, where Gy : R3 \ {y} −→ R3 is the smooth vector field defined as in the
statement of Lemma 4.18. It follows immediately that

curl
(
g(γi(s), γ̇i(s))

)
(y) = − d

dt
(Gy ◦ γi)(s)
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for each s ∈ I, where d
dt (Gy ◦ γi) denotes the weak derivative of the Lipschitz path

Gy ◦ γi of R3. Combining the latter equation with (25), we obtain that

curl(BS(γi))(y) =
1
4π
(
Gy(γi(0))−Gy(γi(1))

)
. (27)

We are now in position to complete the proof. Define Z :=
⋃k

j=1{γi(0), γi(1)} and,
for each x ∈ Z, I0,x := {i ∈ {1, . . . , k} | γi(0) = x}, I1,x := {i ∈ {1, . . . , k} | γi(1) = x}
and ax ∈ Z by setting

ax :=
∑

i∈I1,x
ai −

∑
i∈I0,x

ai.

Since z is a 1–cycle of X over Z, we have that

0 = ∂1(z) =
∑k

i=1 ai(γi(1)− γi(0)) =
∑

x∈Z axx in S1(X; Z).

In this way, ax is null for each x ∈ Z. Fix y ∈ R3 \ |z|. By (27), we obtain:

curl(BS(z))(y) =
1
4π

∑k

i=1
ai

(
Gy(γi(0))−Gy(γi(1))

)
=

= − 1
4π

∑
x∈Z

axGy(x).

Since each ax is null, we infer that curl(BS(z)) is null on whole R3 \ |z|. 2

Define the set Z1(R3; Z) ◦ Z1(R3; Z) by

Z1(R3; Z) ◦ Z1(R3; Z) :=
{
(z, w) ∈ Z1(R3; Z)× Z1(R3; Z)

∣∣ |z| ∩ |w| = ∅
}

and its subset Z(lip)
1 (R3; Z) ◦ Z(lip)

1 (R3; Z) by

Z(lip)
1 (R3; Z) ◦ Z(lip)

1 (R3; Z) :=
{
(z, w) ∈ Z1(R3; Z) ◦ Z1(R3; Z)

∣∣ z, w ∈ Z(lip)
1 (R3; Z)

}
.

Given (z, w) and (z′, w′) in Z1(R3,Z) × Z1(R3; Z), we say that (z, w) is homology–
connected to (z′, w′) if there exist d, e ∈ S2(R3; Z) such that ∂2(d) = z−z′, ∂2(e) = w−w′
and (

|z| ∪ |d| ∪ |z′|
)
∩
(
|w| ∪ |e| ∪ |w′|

)
= ∅.

Evidently, if this happens, then (z, w) and (z′, w′) belong to Z1(R3; Z) ◦ Z1(R3; Z).
As an immediate consequence of Corollary 2.23, we obtain:

Lemma 4.19 Each pair (z, w) in Z1(R3; Z)◦Z1(R3; Z) is homology–connected to a pair
of Lipschitz 1–cycles of R3 over Z.

Let us state an important result.

Theorem-Definition 4.20 There exists, and is unique, a function `k from Z1(R3; Z)◦
Z1(R3; Z) to Z with the following two properties:

(1) For each pair (z′, w′) in Z(lip)
1 (R3; Z) ◦ Z(lip)

1 (R3; Z), `k(z′, w′) is equal to the line
integral

∫
z′

BS(w′) of BS(w′) along z′.

(2) If (z, w) is a pair in Z1(R3; Z) ◦ Z1(R3; Z) and (z′, w′) is a pair in Z(lip)
1 (R3; Z) ◦

Z(lip)
1 (R3; Z), homology–connected to (z, w), then `k(z, w) is equal to `k(z′, w′).

Moreover, we have that, given (z, w) ∈ Z1(R3; Z) ◦ Z1(R3; Z), the value `k(z, w) of
such a function at (z, w) coincides with the linking number between the singular 1–cycles
z and w of R3 over Z, classically defined, for example, in Section 73 of [15]. For this
reason, we call `k(z, w) linking number between z and w.
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We collect some properties of the function `k in the next result.

Lemma 4.21 The function `k : Z1(R3; Z) ◦ Z1(R3; Z) −→ Z has the following proper-
ties:

(1) If (z, w) ∈ Z1(R3; Z) ◦ Z1(R3; Z) and a ∈ Z, then

`k(z, w) = `k(w, z) and `k(az, w) = a · `k(z, w) = `k(z, aw).

(2) Let z, z′, w, w′ ∈ Z1(R3,Z) such that (z, w), (z′, w) and (z, w′) belong to Z1(R3; Z)◦
Z1(R3; Z). Then (z+z′, w) and (z, w+w′) belong to Z1(R3; Z)◦Z1(R3; Z) as well,
and it hold:

`k(z + z′, w) = `k(z, w) + `k(z′, w)

and
`k(z, w + w′) = `k(z, w) + `k(z, w′).

(3) Let (z, w) ∈ Z1(R3; Z) ◦ Z1(R3; Z). If z′ ∈ Z1(R3 \ |w|,Z) is homologous to z in
R3 \ |w| over Z, then

`k(z, w) = `k(z′, w).

Similarly, if w′ ∈ Z1(R3 \ |z|,Z) is homologous to w in R3 \ |z| over Z, then

`k(z, w) = `k(z, w′).

Let us prove Theorem–Definition 4.20 and Lemma 4.21 together.

Proof of Theorem–Definition 4.20 and Lemma 4.21. First, we observe that, thanks to
Lemma 4.19, if there exists a function `k : Z1(R3; Z) ◦ Z1(R3; Z) −→ Z with properties
(1) and (2), then it is unique.

Let us prove the existence of such a function. Denote by Lk : Z1(R3; Z)◦Z1(R3; Z) −→
Z the classical function, which sends (z, w) ∈ Z1(R3; Z)◦Z1(R3; Z) into the linking num-
ber between the singular 1–cycles z and w of R3 over Z, defined as in Section 73 of [15].
Since the function Lk has properties (2) of Theorem–Definition 4.20 and (1), (2) and
(3) of Lemma 4.21, it suffices to show that it satisfies (1) of Theorem–Definition 4.20.
Let (z′, w′) ∈ Z(lip)

1 (R3; Z) ◦ Z(lip)
1 (R3; Z).

If either z′ = 0 or w′ = 0, then both Lk(z′, w′) and
∫

z′
BS(w′) are null and hence

equal.
Suppose that z′ 6= 0 and w′ 6= 0. Let P be an open neighborhood of |z′| in R3

whose closure in R3 is disjoint from |w′|. By Lemma 2.22, there exist a positive integer
r, Lipschitz loops `1, . . . , `r of P and, for each i ∈ {1, . . . , r}, a sequence {γi,n}n∈N of
embedded smooth loops of P such that:

(i)
∫

z′
BS(w′) =

∫Pr
i=1 `i

BS(w′).

(ii) For each i ∈ {1, . . . , r}, the sequence {γi,n}n∈N converges uniformly to `i on I
and the sequence {dγi,n/dt}n∈N is bounded in L∞(I)3 and it converges to d`i/dt
almost everywhere on I.

(iii) For each n ∈ N,
∑r

i=1 γi,n is homologous to z′ in P over Z.

By (i), we have that∫
z′

BS(w′) =
∑r

i=1

∫
`i

BS(w′) =
∑r

i=1

∫ 1

0

BS(w′)(`i(s)) •
d`i
dt

(s) ds.
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Moreover, for each i ∈ {1, . . . , r} and for each n ∈ N, it holds:∫
γi,n

BS(w′) =
∫ 1

0

BS(w′)(γi,n(s)) • dγi,n

dt
(s) ds.

In this way, thanks to (ii), we obtain that{∑r

i=1

∫
γi,n

BS(w′)

}
n∈N

−−→
∫

z′
BS(w′). (28)

Let O be an open neighborhood of |w′| in R3 disjoint from P . Let i ∈ {1, . . . , r}, let
n ∈ N and let w′ =

∑c
k=1 bkσk be the finite representation of w′ in base. It hold:∫

γi,n

BS(w′) =
∑c

k=1
bk

∫
γi,n

BS(σk)(γi,n(s)) • dγi,n

dt
(s) ds =

=
1
4π

∑c

k=1
bk

∫ 1

0

(∫ 1

0

dσk

dt
(ξ)× γi,n(s)− σk(ξ)

|γi,n(s)− σk(ξ)|33
dξ

)
• dγi,n

dt
(s) ds =

=
1
4π

∑c

k=1
bk

∫ 1

0

(∫ 1

0

dγi,n

dt
(s)× σk(ξ)− γi,n(s)

|σk(ξ)− γi,n(s)|33
ds

)
• dσk

dt
(ξ) dξ =

=
∑c

k=1
bk

∫
σk

BS(γi,n) =
∫

w′
BS(γi,n).

It follows that ∑r

i=1

∫
γi,n

BS(w′) =
∑r

i=1

∫
w′

BS(γi,n) (29)

for each n ∈ N. Applying Lemma 2.22 to w′, we obtain a positive integer h, Lipschitz
loops L1, . . . , L` of O and, for each j ∈ {1, . . . , h}, a sequence {Γj,m}m∈N of embedded
smooth loops of O such that:

(iv)
∫

w′
BS(γi,n) =

∫Ph
j=1 Lj

BS(γi,n) for each i ∈ {1, . . . , r} and for each n ∈ N.

(v) For each j ∈ {1, . . . , h}, the sequence {Γj,m}m∈N converges uniformly to Lj on I
and the sequence {dΓj,m/dt}m∈N is bounded in L∞(I)3 and it converges to dLj/dt
almost everywhere on I.

(vi) For each m ∈ N,
∑h

j=1 Γj,m is homologous to w′ in O over Z.

By (iv), it follows that∑r

i=1

∫
γi,n

BS(w′) =
∑r

i=1

∫
Ph

j=1 Lj

BS(γi,n) =

=
∑r

i=1

∑h

j=1

∫
Lj

BS(γi,n) =

=
∑r

i=1

∑h

j=1

∫ 1

0

BS(γi,n)(Lj(s)) •
dLj

dt
(s) ds.

From (v), we infer that{∑r

i=1

∑h

j=1

∫
Γj,m

BS(γi,n)

}
m∈N

−−→
∑r

i=1

∫
γi,n

BS(w′) (30)
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for each n ∈ N. In this way, up to extract suitable subsequences of {Γj,m}m∈N for each
j ∈ {1, . . . , h}, (28) and (30) imply that{∑r

i=1

∑h

j=1

∫
Γj,n

BS(γi,n)

}
n∈N

−−→
∫

z′
BS(w′) (31)

Let i ∈ {1, . . . , r}, let j ∈ {1, . . . , h} and let n ∈ N. Since γi,n and Γj,n are embedded
smooth loops of R3 with disjoint supports, the line integral

∫
Γj,n

BS(γi,n) is precisely
the Gauss formula for the linking number Lk(γi,n,Γj,n) (see [16, pp. 132–134]): that is,
we have: ∫

Γj,n

BS(γi,n) = Lk(γi,n,Γj,n).

Bearing in mind (iii), (vi) and the condition P ∩O = ∅, we obtain that∑r

i=1

∑h

j=1

∫
Γj,n

BS(γi,n) =
∑r

i=1

∑h

j=1
Lk(γi,n,Γj,n) = (32)

= Lk(
∑r

i=1 γi,n,
∑h

j=1 Γj,n) = Lk(z′, w′).

By (31) and (32), it follows that Lk(z′, w′) =
∫

z′
BS(w′), as desired. 2

Let P and Q be two disjoint non–empty subsets of R3. Consider Z1(P ; Z) and
Z1(Q; Z) as abelian subgroup of Z1(R3; Z) in the natural way. It follows that, if z ∈
Z1(P ; Z) and w ∈ Z1(Q; Z), then (z, w) ∈ Z1(R3; Z) ◦ Z1(R3; Z) and hence the linking
number `k(z, w) is well–defined. Combining this fact and point (3) of Lemma 4.21, we
obtain:

Corollary 4.22 Let P and Q be two non–empty disjoint subsets P and Q of R3, let
z, z′ ∈ Z1(P ; Z) and let w,w′ ∈ Z1(Q; Z) such that z is homologous to z′ in P over Z
and w is homologous to w′ in Q over Z. Then we have:

`k(z, w) = `k(z′, w′).

The latter result and points (1) and (2) of Lemma 4.21 ensures that the following
definition is consistent.

Definition 4.23 Given two non–empty disjoint subsets P and Q of R3, we define the
bilinear form `kP,Q : H1(P ; Z)×H1(Q; Z) −→ Z by setting

`kP,Q(α, β) := `k(zα, wβ)

for each (α, β) ∈ H1(P ; Z)×H1(Q; Z), where zα is an element of Z1(P ; Z) with [zα](P ;Z) =
α and wβ is an element of Z1(Q; Z) with [wβ ](Q;Z) = β.

We are now in position to present the desired version of the Alexander duality
theorem.

Theorem 4.24 (Alexander duality theorem) Let Ω be a bounded Lipschitz open
subset of R3, let Ω be its closure in R3 and let Ω′ := R3 \ Ω. Then the abelian groups
H1(Ω; Z) and H1(Ω′; Z) are free, isomorphic and their rank is equal to the genus g of ∂Ω.
Furthermore, the bilinear form `kΩ,Ω′ : H1(Ω; Z) ×H1(Ω′; Z) −→ Z is non–degenerate
in the sense that there exist an ordered base (α1, . . . , αg) of H1(Ω; Z) and an ordered
base (α′1, . . . , α

′
g) of H1(Ω′; Z) such that `kΩ,Ω′(αi, α

′
j) = δij for each i, j ∈ {1, . . . , g}.
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Step II. Completing the proof (sketch). We will prove that the Lipschitz device
(Ω, A) of R3 has a preparation. The existence of a complete preparation follows easily.

Thanks to the version of the Alexander duality theorem stated in Theorem 4.24,
there exist ordered bases A = (α1, . . . , αg) of H1(Ω; Z) and A′ = (α′1, . . . , α

′
g) of the

free abelian groups H1(Ω; Z) and H1(Ω′; Z), respectively, such that `kΩ,Ω′(αi, α
′
j) = δij

for each i, j ∈ {1, . . . , g}. Consider the homomorphisms ξ : H1(Ω; Z) −→ H1(Ω; Z) and
ζ : H1(Ω ∪ A; Z) −→ H1(Ω; Z) induced by the inclusion maps Ω ↪→ Ω and Ω ∪ A ↪→ Ω,
respectively. Since Γ = ∂Ω is bi–collared in R3 (see [8, Theorem 3]), ξ and ζ are
isomorphisms. Identify H1(Ω; Z), H1(Ω ∪A; Z) and H1(Ω; Z) via such isomorphisms.

The abelian group H1(A; Z) is free and of finite rank. Choose an ordered base D =
{δ1, . . . , δh} ofH1(A; Z). Denote by i∗,Z : H1(A; Z) −→ H1(Ω∪A; Z) the homomorphism
induced by the inclusion map i : A ↪→ Ω ∪ A and indicate by MA,D(i∗,Z) = (mij)i,j ∈
Zg×h the matrix associated with the homomorphism i∗,Z with respect to the bases D
of H1(A; Z) and A of H1(Ω ∪A; Z). Evidently, it holds:

mij = `k(δj , α′i)

for each i ∈ {1, . . . , g} and for each j ∈ {1, . . . , h}. Let κ := σβ1(Ω, A) and p :=
ρβ1(Ω, A). Recall that κ+ p = g. By the Universal Coefficient Theorem for Homology,
we know that H1(A; R) is isomorphic to H1(A; Z)⊗ R and H1(Ω ∪A; R) is isomorphic
to H1(Ω ∪ A; Z) ⊗ R. In particular, thanks to such isomorphisms, we can consider
D as an ordered base of H1(A; R) and A as an ordered base of H1(Ω ∪ A; R). Let
i∗ : H1(A; R) −→ H1(Ω ∪ A; R) be the homomorphism induced by i : A ↪→ Ω ∪ A. It
follows that MA,D(i∗,Z) is equal to the matrix associated with the homomorphism i∗
with respect to the bases D of H1(A; R) and A of H1(Ω ∪ A; R) and hence the rank
of MA,D(i∗,Z) is κ. Repeating similar considerations with Q in place of R, one obtains
that, denoting by i∗,Q : H1(A; Q) −→ H1(Ω ∪ A; Q) the homomorphism induced by
i : A ↪→ Ω ∪A, the matrix associated with the homomorphism i∗,Q with respect to the
bases D of H1(A; Q) and A of H1(Ω ∪ A; Q) is equal to MA,D(i∗,Z). Reordering the
components of the ordered bases A and D if needed, we may suppose that

MA,D(i∗,Z) =

(
C D

E F

)

for some C ∈ Zκ×κ with det(C) 6= 0, D ∈ Zκ×(h−κ), E ∈ Zp×κ and F ∈ Zp×(h−κ).
Let υi := i∗,Z(δi) ∈ H1(Ω ∪ A; Z) for each i ∈ {1, . . . , κ} and let θj := ακ+j for each
j ∈ {1, . . . , p}. Viewing the υi’s and the θj ’s as elements of H1(Ω, A; Q) the g–uple
B := (υ1, . . . , υκ, θ1, . . . , θp) is an ordered base of H1(Ω∪A; Q). Moreover, the elements
υ1, . . . , υκ generates Image(i∗,Q) inH1(Ω∪A; Q) and, viewed as elements ofH1(Ω∪A; R),
generates Image(i∗). Define the matrix Q = (q`j)`j in Zκ×p by setting

Q = (q`j)`j := −det(C)(Ct)−1Et

and, for each j ∈ {1, . . . , p}, the element θ′j of H1(Ω′; Z) by setting

θ′j := det(C)α′κ+j +
∑κ

`=1 q`jα
′
`.

It is immediate to verify that

`k(θi, θ
′
j) = det(C)δij for each i, j ∈ {1, . . . , p}, (33)

`k(υi, θ
′
j) = 0 for each (i, j) ∈ {1, . . . , κ} × {1, . . . , p}. (34)

By Lemma 2.21, there exist 1–cycles z1, . . . , zp in Z(lip)
1 (Ω; Z) and 1–cycles z′1, . . . , z

′
p in

Z(lip)
1 (Ω′; Z) such that θi = [zi](Ω∪A;Z) and θ′j = [z′j ](Ω′;Z) for each i, j ∈ {1, . . . , p}.
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For each j ∈ {1, . . . , p}, we define the harmonic vector field Bj : R3 \ |z′j | −→ R3 by
setting

Bj := BS(z′j).

Equation (33) is equivalent to the following one:∫
zi

Bj = det(C)δij for each i, j ∈ {1, . . . , p}. (35)

Thanks to (35), Corollary 4.8 and Lemma 4.12, it remains to show that each Bj

is a fundamental vector field of (Ω, A). Fix j ∈ {1, . . . , p}. As we have just recalled,
Γ is bi–collared in R3; that is, there exists an open neighborhood O of Γ in R3 and
a homeomorphism µ : Γ × (−1, 1) −→ O such that µ(x, 0) = x for each x ∈ Γ and
µ−1(Ω∩O) = Γ× (−1, 0). We may also suppose that O does not intersect |z′j |. Denote
by π : Γ× (−1, 1) −→ Γ the natural projection, choose an open neighborhood W of A
in Γ and define U := µ(W × (−1, 1)). Since the boundary of A in Γ is Lipschitz, it is
possible to choose W and hence U in such a way that

the inclusion map A ↪→ U is a homotopy equivalence. (36)

Thanks to de Rham’s Theorem and to the existence of smooth partitions of unity
subordinate to the open cover {U,R3 \ A} of R3, it suffices to prove that, for each
Lipschitz loop γ of U , the line integral

∫
γ
Bj is null. Let γ be such a loop. By (36),

there exist a loop γ′ of A and a loop γ′′ of Ω ∩ U such that γ is homologous to γ′ and
γ′ is homologous to γ′′ in U over Z. Let η′′ := [γ′′](Ω∪A;Q). It follows that∫

γ

Bj = `k(γ′′, z′j), (37)

η′′ ∈ Image(i∗,Q).

Thanks to the latter fact, there exist integers m,a1, . . . , aκ such that m 6= 0 and

mη′′ =
∑κ

i=1 aiυi in H1(Ω ∪A; Z). (38)

Bearing in mind (37), (38) and (34), we obtain:∫
γ

Bj = `k(γ′′, z′j) = `k(η′′, θ′j) =
1
m
`k(mη′′, θ′j) =

=
1
m

∑κ

i=1
ai`k(υi, θ

′
j) = 0.

This complets the proof.

4.3 Topological nature and explicit bases of H(Ω, A; ω)H(Ω, A; ω)H(Ω, A; ω)

In this crucial subsection, we shall make the followig assumptions: (Ω, A) is a bounded
Lipschitz device of R3, ω is a material matrix of R3, {A0, A1, . . . , Aa} is the family
of the connected components of A and p := ρβ1(Ω, A). Moreover, we shall use the
terminology introduced in Subsections 1.2, 2.4 and 4.1.

The results of this and of the next subsection are (more or less) direct consequences
of results presented above. The detailed proofs will appear in the final version of the
paper.

The following two theorems give an exhaustive description of Hgrad(Ω, A;ω) and of
H(Ω, A;ω).

Theorem 4.25 The following statements hold:
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(1) For each i ∈ {0, 1, . . . , a}, we define the vector field Gi in L2(Ω)3 by setting

Gi := ∇gi,

where gi is a function in H1(Ω) satisfying the following system
div(ω∇gi) = 0

gi =
{

1 on Ai

0 on A \Ai

(ω∇gi) • n|{A = 0.

Then each Gi is a uniquely determined gradient ω–harmonic vector field of Ω
normal to A and ω–tangent to {A, the sum

∑a
i=0Gi is equal to the null vector

field in L2(Ω)3 and Hgrad(Ω, A;ω) is the vector subspace of H(Ω, A;ω) generated
by G0, G1, . . . , Ga. In particular, we have that

dimHgrad(Ω, A;ω) = a

and, if a is positive, then {G1, . . . , Ga} is a base of Hgrad(Ω, A;ω).

(2) Let λλλ = (λ1, . . . , λa) be a system of jump paths of (Ω, A) and let Nλλλ = (nij)i,j ∈
{−1, 0, 1}a×a be the inverse matrix of Mλλλ. For each i ∈ {1, . . . , a}, we define the
vector field G(λλλ)

i in Hgrad(Ω, A;ω) by setting

G(λλλ)
i :=

∑a
k=1 nikGk.

Then the a–uple (G(λλλ)
1 , . . . , G(λλλ)

a ) is the unique ordered base of Hgrad(Ω, A;ω) such
that ∫

λj

G(λλλ)
i = δij

for each i, j ∈ {1, . . . , a}. We call such a base ordered base of Hgrad(Ω, A;ω)
induced by λλλ.

(3) Given V ∈ H(Ω, A;ω), V is a gradient if and only if there exists a system
(z1, . . . , zp) of primary cycles of (Ω, A) such that

∫
zi
V = 0 for each i ∈ {1, . . . , p}.

The following theorem is the deepest result of this paper.

Theorem 4.26 The vector space H(Ω, A;ω) is finite dimensional and it hold:

ρdimH(Ω, A;ω) = p, (39)
dimH(Ω, A;ω) = p+ a = dimH1(Ω ∪A,A; R). (40)

More precisely, the following statements are verified:

(1) p = 0 if and only if H(Ω, A;ω) = Hgrad(Ω, A;ω).

(2) Suppose p positive. Let JB,bK be a preparation of (Ω, A), where B = (B1, . . . , Bp)
and b = (b1, . . . , bp). For each i ∈ {1, . . . , p}, we define the vector field Vi in
L2(Ω)3 by setting

Vi := Bi −∇bi −∇vi,

where vi is a function in H1
0,A(Ω) satisfying the following variational problem

∫
Ω

(ω∇vi) • ∇w dx =
∫

Ω

(ω(Bi −∇bi)) • ∇w dx

for each w ∈ H1
0,A(Ω).

(41)

Then each Vi is a uniquely determined primary ω–harmonic vector field of Ω
normal to A and ω–orthogonal to {A and (V1, . . . , Vp) is a primary system of
H(Ω, A;ω). We call (V1, . . . , Vp) primary system of H(Ω, A;ω) induced by JB,bK.
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(3) Let JB,b | z,λλλK be a complete presentation of (Ω, A) with z = (z1, . . . , zp) and
λλλ = (λ1, . . . , λa), let (V1, . . . , Vp) be the primary system of H(Ω, A;ω) induced by
JB,bK and let (G1, . . . , Ga) be the ordered base of Hgrad(Ω, A;ω) induced by λλλ.
Then the (p+ a)–uple (

V1, . . . , Vp, G1, . . . , Ga

)
is an ordered base of H(Ω, A;ω), called ordered base of H(Ω, A;ω) induced by
JB,b | z,λλλK, having the following properties:∫

zj

Vi = δij ,

∫
λk

Vi = 0,
∫

zj

Gh = 0 and
∫

λk

Gh = δhk

for each i, j ∈ {1, . . . , p} and for each h, k ∈ {1, . . . , a}.

As a consequence, we have:

Corollary 4.27 The bilinear pairing
∫∫∫

(Ω,A;ω) : H(Ω, A;ω) × H1(Ω ∪ A,A; R) −→ R
is non–degenerate. More precisely, if JB,b | z,λλλK is a complete preparation of (Ω, A),
(Π1, . . . ,Πp+a) is an ordered base of H(Ω, A;ω) induced by JB,b | z,λλλK and (α1, . . . , αp+a)
is the ordered base of H1(Ω ∪A,A; R) induced by (z,λλλ), then we have that∫∫∫

(Ω,A;ω)

(
Πi, αj

)
= δij

for each i, j ∈ {1, . . . , p+ a}. In particular, as we just know, it holds

H(Ω, A;ω) ' H1(Ω ∪A,A; R).

Combining Theorem 3.8 with the preceding corollary, we obtain a version of de
Rham theorem. To the best of our knowledge, such a version is new if A is different
from a union of connected components of Γ.

Corollary 4.28 The bilinear pairing
∫∫∫∫∫∫∫∫∫

DR
(Ω,A) : H1

DR(Ω, A) × H1(Ω ∪ A,A; R) −→ R is
non–degenerate. In particular, we have that

H1
DR(Ω, A) ' H1(Ω ∪A,A; R).

In 2006, G. Auchmuty and J. C. Alexander made three conjectures concerning the
Hodge decomposition of L2(Ω)3 in the case in which Ω is a bounded domain of R3 whose
boundary is regular of class C 2 (see the end of Section 10 and the end of Section 12 of
[4]). We reformulate those conjectures in the more general setting of bounded Lipschitz
domains of R3 using our terminology.

Generalized Auchmuty-Alexander conjectures 4.29 Let (Ω, A) be a bounded Lip-
schitz device of R3 and let ω be a material matrix of Ω. The following assertions hold:

(C1) H(Ω, A;ω) has finite dimension.

(C2) The dimension of H(Ω, A;ω) does not depend on ω.

(C3) If a + 1 is the number of connected components of A and %(2)
∗ : H2(Ω, {A; R) −→

H2(Ω,Γ; R) is the linear maps induced by the identity map of Ω, then we have that

dimH(Ω, A;ω) = a+ dim Image(ρ(2)
∗ ).

The affermative solution of conjectures (C1) and (C2) is given in [10] under the
special assumption that Ω is a Helmholtz domain. A direct application of Theorem 4.26
and of Lemma 4.2 furnishes immediately the complete solution.

Corollary 4.30 The three preceding conjectures are true.
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5 The summand subspaces of gradients and of curls

Fix a bounded Lipschitz device (Ω, A) of R3. In this section, our task is to characterize
the vector spaces grad(H1

0,A(Ω)) and curl(H0,A(curl,Ω)) in terms of H(Ω, A, ω) and
of H(Ω, {A,ω). The results presented below have a more or less classic statement.
However, to the best of our knowledge, except for Corollary 5.4, their generality is
completely new. We shall use the terminology introduced in Subsections 1.2, 2.4 and 4.1.

We begin with grad(H1
0,A(Ω)).

Theorem 5.1 Given V ∈ H0,A(curl 0,Ω), the following assertions are equivalent:

(1) V ∈ grad(H1
0,A(Ω)).

(2)
∫

α
V = 0 for each α ∈ H1(Ω ∪A,A; R).

(3) There exists a base {α1, . . . , αk} of H1(Ω ∪A,A; R), for example the one induced
by a system of primary cycles of (Ω, A) and by a system of jump paths of (Ω, A),
such that

∫
αi
V = 0 for each i ∈ {1, . . . , k}.

(4) (V,Z)ω = 0 for each material matrix ω of Ω and for each Z ∈ H(Ω, A;ω).

(5) There exist a material matrix ω of Ω and a base {Π1, . . . ,Πk} of H(Ω, A;ω), for
example the one induced by a complete preparation of (Ω, A), such that (V,Πi)ω =
0 for each i ∈ {1, . . . , k}.

The case A = ∅ is quite interesting.

Corollary 5.2 Given V ∈ H(curl 0,Ω), the following assertions are equivalent:

(1) V is a gradient.

(2)
∫

α
V = 0 for each α ∈ H1(Ω; R).

(3) There exists a base {α1, . . . , αg} of H1(Ω; R) such that
∫

αi
V = 0 for each i ∈

{1, . . . , g}.

(4) (V,Z)ω = 0 for each material matrix ω of Ω and for each Z ∈ H(Ω;ω).

(5) There exist a material matrix ω of Ω and a base {V1, . . . , Vg} of H(Ω;ω) such that
(V, Vi)ω = 0 for each i ∈ {1, . . . , g}.

Let us see some characterizations of curl(H0,A(curl,Ω)).

Theorem 5.3 Let ω be a material matrix of Ω. Given V ∈ H0,A(div 0,Ω;ω), the
following assertions are equivalent:

(1) ωV ∈ curl(H0,A(curl,Ω)); that is, there exists Z ∈ H0,A(curl,Ω) such that ωV =
curl(Z).

(2) (V,Z)ω = 0 for each Z ∈ H(Ω, {A;ω).

(3) There exists a base {W1, . . . ,Wk} of H(Ω, {A;ω), for example the one induced by
a complete preparation of (Ω, {A), such that (V,Wi)ω = 0 for each i ∈ {1, . . . , k}.

(4) Let A∗0, A
∗
1, . . . , A

∗
c be the connected components of {A. Then the fluxes of ωV

through A∗i is null for each i ∈ {1, . . . , c} and there exists a primary system
(W1, . . . ,Wq) of H(Ω, {A;ω) such that (V,Wj)ω = 0 for each j ∈ {1, . . . , q}.

In the case in which ω = 13×3 and A = ∅, we rediscover a well–known result.
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Corollary 5.4 Given V ∈ H(div 0,Ω), the following assertions are equivalent:

(1) V has a vector potential; that is, there exists Z ∈ H(curl,Ω) such that V =
curl(Z).

(2) (V,G) = 0 for each G ∈ H(Ω,Γ) = Hgrad(Ω,Γ).

(3) There exists a base {G1, . . . , Gl} of H(Ω,Γ) = Hgrad(Ω,Γ), for example the one
induced by a system of jump paths of (Ω,Γ), such that (V,Gi) = 0 for each i ∈
{1, . . . , l}.

(4) The fluxes of V through each connected component of Γ is null.

As an immediate consequence of Theorems 5.1 and 5.3, we obtain:

Corollary 5.5 Let (D,E) be a curl–gradient boundary pair of Ω, let D1, . . . , Dd be the
connected components of D and let ω be a material matrix Ω. Given V ∈ H0,E(curl 0,Ω)∩
H0,{D(div 0,Ω;ω), the following statements are equivalent:

(1) V is a ω–curly gradient vector field of Ω with respect to (D,E).

(2) (V,Z)ω = 0 for each Z ∈ H(Ω, D;ω)⊕H(Ω, E;ω).

(3)
∫

α
V = 0 for each α ∈ H1(Ω ∪ E,E; R), the fluxes of ωV through Di is null for

each i ∈ {1, . . . , d} and there exists a primary system (W1, . . . ,W`) of H(Ω, D;ω)
such that (V,Wj)ω = 0 for each j ∈ {1, . . . , `}.

If ω = 13×3 and (D,E) = (Γ, ∅), then this corollary can be rephrased as follows.

Corollary 5.6 Given V ∈ H(curl 0,Ω) ∩ H(div 0,Ω), the following statements are
equivalent:

(1) V is a curly gradient vector field of Ω.

(2) (V,Z) = 0 for each Z ∈ H(Ω,Γ)⊕H(Ω).

(3)
∫

α
V = 0 for each α ∈ H1(Ω; R) and the fluxes of V through each connected

component of Γ is null.
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