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Abstract— This paper investigates different batch mode adgeening techniques for the
classification of remofesensing (RS) images with support vector machiB&\s). This is done
by generalizing to multiclass problems techniquesnéd for binary classifiers. The investigated
techniques exploit different query functions, whigie based on the evaluation of two criteria:
uncertainty and diversity. The uncertainty critarics associated to the confidence of the
supervised algorithm in correctly classifying thansidered sample, while the diversity criterion
aims at selecting a set of unlabeled samples tlgatag more diverse (distant one another) as
possible, thus reducing the redundancy among tleeted samples. The combination of the two
criteria results in the selection of the potenyiatiost informative set of samples at each iteration
of the active learning process. Moreover, we prepasiovel query function that is based on a

kernel clustering technique for assessing the dityeof samples and a new strategy for selecting
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the most informative representative sample fromhedaster. The investigated and proposed
techniques are theoretically and experimentally mamed with state-of-the-art methods adopted
for RS applications. This is accomplished by coasiy VHR multispectral and hyperspectral
images. By this comparison we observed that thpga®d method resulted in better accuracy with
respect to other investigated and state-of-thensthods on both the considered data sets.
Furthermore, we derived some guidelines on thegdesif active learning systems for the

classification of different types of RS images.

Index Terms —Active learning, query functions, image classificabn, hyperspectral

images, very high resolution images, support vectanachines, remote sensing.

l. INTRODUCTION

Land cover classification from RS images is gemgrperformed by using supervised
classification techniques, which require the avmliy of labeled samples for training the
supervised algorithm. The amount and the qualitthefavailable training samples are crucial for
obtaining accurate classification maps. Howevee tollection of labeled samples is time
consuming and costly, and the available trainingas are often not enough for an adequate
learning of the classifier. A possible approachatress this problem is to exploit unlabeled
samples in the learning of the classification athan according to semisupervised or transductive
classification procedure. The semisupervised agbrées been widely investigated in the recent
years in the RS community [1]-[5]. A different appch to both enrich the information given as
input to the supervised classifier and improvedtatistic of the classes is to iteratively expamal t
original training set according to a process tlegfuires an interaction between the user and the
automatic recognition system. This approach is knamthe machine learning community as
active learning (AL) and, although marginally calesied in the RS community, can result very
useful for different applications. The AL processonducted according to an iterative process. At
each iteration, the most informative unlabeled dampre chosen for a manual labeling and the
supervised algorithm is retrained with the addtidabeled samples. In this way, the unnecessary
and redundant labeling of non informative sampéeavioided, greatly reducing the labeling cost
and time. Moreover, AL allows one to reduce the potational complexity of the training phase.

In this paper we focus our attention on AL methods.



In RS classification problems, the collection didéed samples for the initial training set and
the labeling of queried samples can be derivedrdaugp to: 1) in situ ground surveys (which are
associate to high cost and require time), or 2)genghotointerpretation (which is cheap and fast).
The choice of the labeling strategy depends orctmesidered problem and image. For example,
we can reasonably suppose that for the classificaif very high resolution (VHR) images, the
labeling of samples can be easily carried out bgtghterpretation. Indeed, the metric or sub-
metric resolution of VHR images allows a human eipe identify and label the objects on the
ground and the different land-cover types on thsisbaf the inspection of real or false color
compositions. On the contrary, when medium (or lae$olution multispectral images and
hyperspectral data are considered, ground survegsuaually required. Medium and low
resolution images do not usually allow one to redog the objects on the ground, and the land-
cover classes of the pixels (which may be assatitdedifferent materials) cannot usually be
recognized with high reliability by a human expétyperspectral data, thanks to a dense sampling
of the spectral signature, allows one charactegizeveral different land-cover classes (e.g.,
associated to different arboreal species) thatatame recognized by a visual analysis of different
false color compositions. Thus, depending on bbth type of classification problem and the
considered type of data, the cost and time assattatthe labeling process significantly changes.
These different scenarios require the definitiordiffierent AL schemes: we expect that in cases
where photointerpretation is possible, severahitens of the labeling step may be carried out;
whereas in cases where ground truth surveys aessaiy, only few iterations (e.g., two or three)
of the AL process are possible.

Most of the previous studies in AL have focusedsetecting the single most informative
sample at each iteration, by assessing its unogrtf]-[12]. This can be inefficient, since the
classifier has to be retrained for each new labedaohple. Moreover, this approach is not
appropriate for RS image classification tasks far abovementioned reasons (both in the case of
photointerpretation and ground surveys for samgdbeling). Thus, in this paper we focus on batch
mode active learning, where a batchtot1 unlabeled samples is queried at each iteratior. Th
problem with such an approach is that by seledigsamples of the batch on the basis of the
uncertainty only, some of the selected samplesdcbal similar to each other, and thus do not
provide additional information for the model updatiwith respect to other samples in the batch.
The key issue of batch mode AL is to select sesaaiples with little redundancy, so that they can
provide the highest possible information to thessifer. Thus, the query function adopted for
selecting the batch of the most informative samplesuld take into account two main criteria: 1)

uncertainty, and 2) diversity of samples [13]-[1Bhe uncertainty criterion is associated to the



confidence of the supervised algorithm in correctlyssifying the considered sample, while the
diversity criterion aims at selecting a set of eled samples that are as more diverse (distant one
another) as possible, thus reducing the redundamong the selected samples. The combination
of the two criteria results in the selection of gaentially most informative set of samples atreac
iteration of the AL process.

The aim of this paper is to investigate differerit fechniques proposed in the machine
learning literature and to properly generalize thtamthe classification of RS images with
multiclass problem addressed by support vector mash(SVMs). The investigated techniques
use different query functions with different stigitss to assess the uncertainty and diversity
criteria in the multiclass case. Moreover, we pg#pa novel query function that is based on a
kernel clustering technique for assessing the dityeof samples and a new strategy for selecting
the most informative representative sample fromheeaster. The investigated and proposed
techniques are theoretically and experimentally garad among them and with other AL
algorithms proposed in the RS literature in thessifécation of VHR images and hyperspectral
data. On the basis of this comparison some guielelare derived on the use of AL techniques for
the classification of different types of RS images.

The rest of this paper is organized as follows.tiBecll reviews the background on AL
methods and their application to RS problems. 8edti presents the investigated batch mode AL
techniqgues and the proposed generalization to clags problems. Section IV presents the
proposed novel query function based on kernel etireg and an original selection of cluster most
informative samples. Section V presents the detsonipof the two considered VHR and
hyperspectral data sets and the design of expetgn8action VI illustrates the results obtained by
the extensive experimental analysis carried outhenconsidered data sets. Finally, Section VIl

draws the conclusion of this work.

Il. BACKGROUND ON ACTIVE LEARNING

A. Active Learning Process

A general active learner can be modeled as a quien(G®, Q, S T, U) [6]. G is a supervised
classifier, which is trained on the labeled trainsetT. Q is a query function used to select the
most informative unlabeled samples from a pdobf unlabeled sample§ is a supervisor who
can assign the true class label to any unlabeletpleaof U. The AL process is an iterative
process, where the supervisBrinteracts with the system by iteratively labelitige most
informative samples selected by the query functipat each iteration. At the initial stage, an

initial training setT of few labeled samples is required for the firsirting of the classifie(G.



After initialization, the query functio is used to select a set of samp¥eom the poolU and
the supervisofS assigns them the true class label. Then, theselai®eied samples are included
into T and the classifie® is retrained using the updated training set. Thsed loop of querying
and retraining continues for some predefined itenat or until a stop criterion is satisfied.

Algorithm 1 gives a description of a general AL qzes.

Algorithm 1: Active Learning procedure

1. Train the classifie with the initial training seT

2. Classify the unlabeled samples of the pdol

Repeat

3. Query a set of samples (with query funct@nfrom the poolJ
4. A label is assigned to the queried samples byupersisorS
5. Add the new labeled samples to the traininglset

6. Retrain the classifier

Until a stopping criteria is satisfied.

The query functiorQ is of fundamental importance in AL techniques, vbhiften differ
only in their query functions. Several methods hbagen proposed so far in the machine learning
literature. A probabilistic approach to AL is prased in [7], which is based on the estimation of
the posterior probability density function of thiagses both for obtaining the classification rule
and to estimate the uncertainty of unlabeled sasnptethe two-class case, the query of the most
uncertain samples is obtained by choosing the ssrgbsest to 0.5 (half of them below and half
above this probability value). The query functioogosed in [16] is designed to minimize future
errors, i.e., the method selects the unlabelecpathat, once labeled and added to the training
data, is expected to result in the lowest errotemt samples. This approach is applied to two
regression models (i.e., weighted regression anduna of Gaussians) where an optimal solution
for minimizing future error rates can be obtainadciosed form. Unfortunately, this solution is
intractable to calculate the expected error rate nimst classifiers without specific statistical
models. A statistical learning approach is alsalusg17] for regression problems with multilayer
perceptron. In [18], a method is proposed thatcselthe next example according to an optimal
criterion (which minimizes the expected error ratefuture test samples), but solves the problem
by using a sampling estimation. Two methods foinesting future error rate are presented. In the
first method, the future error rate is estimateddgtloss using the entropy of the posterior class
distribution on the set of unlabeled samples. B ¢bcond method, a 0-1 loss function using the

posterior probability of the most probable clagsd®et of unlabeled samples is used.



Another popular paradigm is given by committee-daaetive learners. The “query by
committee” approach [19]-[21] is a general AL aigom that has theoretical guarantees on the
reduction in prediction error with the number okges. A committee of classifiers using different
hypothesis about parameters is trained to labet afsunknown examples. The algorithm selects
the samples where the disagreement between thsif@des is maximal. In [22], two query
methods are proposed that combine the idea of gogrgommittee and that of boosting and
bagging.

An interesting category of AL approaches, which énayained significant success in
numerous real-world learning tasks, is based oruieeof support vector machines (SVMs) [8]-
[14]. The SVM classifier [23]-[24] is particularhsuited to AL due to its intrinsic high
generalization capabilities and because its claasibn rule can be characterized by a small set of
support vectors that can be easily updated ovaressose learning iterations [12]. One of the most
popular (and effective) query heuristic for act®€M learning is to select the data point closes to
the current separating hyperplane, which is alfermed to as margin sampling (MS). This method
results in the selection of the unlabeled samplén whe lowest confidence, i.e., the maximal
uncertainty on the true information class. The yusrategy proposed in [10] is based on the
splitting of the version space [10],[13]: the powuaich split the current version space into two
halves having equal volumes are selected at eagh a$ they are likely to be the actual support
vectors. Three heuristics for approximating thevaboriterion are described, the simplest among
them selects the point closes to the hyperplana 48]. In [6], an approach is proposed that
estimates the uncertainty level of each samplerdow to the output score of a classifier and
selects only those samples whose outputs are will@nuncertainty range. In [11], the authors
present possible generalizations of the active S\groach to multiclass problems.

It is important to observe that the abovementiomethods consider only the uncertainty of
samples, which is an optimal criterion only for thelection of one sample at each iteration.
Selecting a batch ofi >1 samples exclusively on the basis of the uncestdeg., the distance to
the classification hyperplane) may result in thean of similar (redundant) samples that do not
provide additional information. However, in manyoblems it is necessary to speed up the
learning process by selecting batches of more dn@nsample at each iteration. In order to address
this shortcoming, in [13] an approach is presergsgecially designed to construct batches of
samples by incorporating a diversity measure tlmatsiclers the angles between the induced
classification hyperplanes (more details on thigsrapch are given in the next section). Another
approach to consider the diversity in the querycfiom is the use of clustering [14]-[15]. In [14],
an AL heuristic is presented, which explores thestgring structure of samples and identifies



uncertain samples avoiding redundancy (detail$igfapproach are given in the next section). In
[25]-[26], the authors present a framework for bateode AL that applies the Fisher information
matrix to select a number of informative exampiesutaneously.

Nevertheless, most of the abovementioned approaieedesigned for binary classification
and thus are not suitable for most of the RS diaasion problems. In this paper, we focus on
multiclass SVM-based AL approaches that can seldwtch of samples at each iteration for the
classification of RS images. The next subsectiamviges a discussion and a review on the use of

AL for the classification of RS images.

B. Active learning for the classification of RSalat

Active learning has been applied mainly to texegatization and image retrieval problems.
However, the AL approach can be adopted for treractive classification of RS images by taking
into account the peculiarities of this domain. I8 Broblems, the supervis8ris a human expert
that can derive the land-cover type of the areahenground associated to the selected patterns
according to the two possible strategies identifirethe introduction, i.e., photointerpretation and
ground survey. These strategies are associatedswgtificantly different costs. It is important to
note that the use of photointerpretation or of gbgurveys (and thus the cost) depends on the
considered classification problem, i.e., the typ¢he considered RS image, and the set of land-
cover classes. Moreover, the cost of ground suraés® depends on the considered geographical
area. In [27], the AL problem is formulated considg a spatially dependent label acquisition
costs. In the present work we consider that theliiagp cost mainly depends on the type of the RS
data, which affects the aforementioned labelingtegly. For example, in case of VHR images,
often the labeling of samples can be carried outpbgtointerpretation, while in the case of
medium/low resolution multispectral images and hgpectral data, ground surveys are necessary.
No particular restrictions are usually consideradtie definition of the initial training sdt since
we expect that the AL process can be started up few samples for each class without affecting
the convergence capability (the initial samples a#fact the number of iterations necessary for
obtaining convergence). The pool of unlabeled sampl can be associated to the whole
considered image or to a portion of it (for redgcihe computational time associated to the query
function and/or for considering only the areashs scene accessible for labeling). An important
issue is related to the capability of the querycfion to select batches d¢f>1 samples, which
results to be of fundamental importance for thepéida of AL in real-world RS problems. It is
worth to stress here the importance of the choitehe h value in the design of the AL
classification system, as it affects the numbeitevhtions and thus both the performance and the



cost of the classification system. In general, wpeet that for the classification of VHR images
(where photointerpretation is possible), severaiions of the labeling step may be carried out
and small values fdn can be adopted; whereas in cases where groumdsuinieys are necessary,
only few iterations (e.g., two or three) of the Alrocess are possible and lardgesalues are
necessary.

In the RS domain, AL was applied to the detectibsubsurface targets, such as landmines
and unexploded ordnance in [29]-[30]. Some prelanynworks about the use of AL for RS
classification problems can be found in [12], [832]. The technique proposed in [12] is based on
MS and selects the most uncertain sample for eawdrybSVM in a One-Against-All (OAA)
multiclass architecture (i.e., queryirig= n samples, whera is the number of classes). In [31],
two batch mode AL techniques for multiclass RS sifasation problems are proposed. The first
technique is MS by closest support vector (MS-cS¥jich considers the smallest distance of the
unlabeled samples to tlmehyperplanes (associated to thdinary SVMs in a (OAA) multiclass
architecture) as the uncertainty value. At eachaiten, the most uncertain unlabeled samples,
which do not share the closest SV, are added tdr#ieing set. The second technique, called
entropy query-by bagging (EQB), is based on thecs®in of unlabeled samples according to the
maximum disagreement between a committee of classif The committee is obtained by
bagging: first different training sets (associateddifferent EQB predictors) are drawn with
replacement from the original training data. Thesxh training set is used to train the OAA SVM
architecture to predict the different labels focleainlabeled sample. Finally, the entropy of the
distribution of the different labels associated éach sample is calculated to evaluate the
disagreement among the classifiers on the unlatsglegples. The samples with maximum entropy
(i.e., those with maximum disagreement among thssdiers) are added to the current training
set. In [32], an AL technique is presented, whielests the unlabeled sample that maximizes the
information gain between the a posteriori probapililistribution estimated from the current
training set and the training set obtained by iditlg that sample into it. The information gain is
measured by the Kullback—Leibler (KL) divergencaisTKL-Maximization (KL-Max) technique
can be implemented with any classifier that canmede the posterior class probabilities. However

this technique can be used to select only one saat@ach iteration.

lll.  INVESTIGATED QUERY FUNCTIONS

In this section we investigate different query fumes Q based on SVM for multiclass RS
classification problems. SVM is a binary classifiathich goal is to divide thel-dimensional

feature space into two subspaces (one for eack)dhsugh a separating hyperplane. Let us
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assume that a training setmade up oN pairs (xi,yi )i:1 is available, where; are the training

samples and, O{+1; -1} are the associated labels. After the trainingfitied decision rule used to

find the membership of a test sample is based ensign of the discrimination function
f (X) =(w X) +b associated to the hyperplane.

f(x)=Y yaKx X)+b (1)

iosv

where SV is the set of support vectors, i.e., th#ing samples associated @0>0. K(LI)l is a
kernel function such that ([1)= gD} that allows one to implicitly project the origindéta into
a higher dimensional feature space without knowihg transformation function)l. The

condition for a function to be a valid kernel iygn by the Mercer’s theorem [28]. In order to
define a multiclass architecture based on diffebemary classifiers, the general approach consists
of defining an ensemble of binary classifiers aachbining them according to some decision rules
[24]. The definition of the ensemble of binary cifiers involves the definition of a set of two-
class problems, each modeled with two groups afsels. The selection of these subsets depends
on the kind of approach adopted to combine the mhke The two most commonly adopted
strategies are th®ne-Against-All(OAA) and One-Against-OngdOAQ) strategies [24]. In this
work we adopt the OAA strategy, which involves agllel architecture made up ofSVMs, one

for each information class. Each SVM solves a ttass problem defined by one information
class against all the others. We refer the read@24f for greater details on SVM in RS.

The investigated AL techniques are based on stdndathods; however, some of them are
presented here with modifications with respecthi driginal version to overcome shortcomings
that would affect their applicability to real RSptems. In particular, the presented techniques are
adapted to classification problems characterized abyyumber of classes >2 (multiclass
problems) and to the inclusion of a batchhot1 samples at each iteration in the training set (for
taking into account RS constraints and limiting &le process to few iterations according to the
analysis presented in the previous sections). hkiestigated query functions are based on the
evaluation of the uncertainty and diversity criieapplied in two consecutive steps. Time> h
most uncertain samples are selected in the unegrtstep and the most diverké h >1) samples
among thesen uncertain samples are chosen in the diversity. Sthp ratiom/ h provides an
indication on the tradeoff between uncertainty dnckrsity. In this section we present different

possible implementations for both steps, focusimghe OAA multiclass architecture.



A. Techniques for Implementing the Uncertainty €2iin with Multiclass SVMs

The uncertainty criterion aims at selecting the @gas that have maximum uncertainty
among all samples in the unlabeled sample pbobince the most uncertain samples have the
lowest probability to be correctly classified, thene the most useful to be included in the training
set. In this paper, we investigate two possiblérapes in the framework of multiclass SVM: a)
binary-level uncertainty (which evaluates uncetiast the level of binary SVM classifiers), and
b) multiclass-level uncertainty (which analysis erainty within the considered OAA

architecture).

Binary-Level Uncertainty (BLU)

The binary-level uncertainty (BLU) technique sepelsa selects a batch of the most
uncertain unlabeled samples from each binary SVMherbasis of the MS query function. In the
technique adopted in [12], only the unlabeled sangdbsest to the hyperplane of each binary
SVM was added to the training set at each iterafiam, h=n). On the contrary, in the
investigated BLU technique, at each iteration thestruncertaing (gq>1) samples are selected
from each binary SVM (instead of a single samgdle)greater detailn binary SVMs are initially
trained with the current training set and the fioral distancef,(x), i =1,...n of each unlabeled

BLU ,,BLU BLU}
)

samplexJU to the hyperplane is obtained. Then, the seg (Jtiamples{xlqi D SR G

i =1,2,...n closest to margin of the corresponding hyperplamesalected for each binary SVM.
Totally p=qn samples are taken. Note thaf”, j=1,2,..q, represents the selectefith

sample from thé-th SVM. Since some unlabeled samples can be séelégt more than one binary
SVM, the redundant samples are removed. Thus, dte¢ humberm of selected samples can

actually be smaller thanp (i.e., m<p). The set of m most uncertain samples

{x2, x2%,...,x2Y is forwarded to the diversity step. Fig. 1 shows tarchitecture of the

m

investigated BLU technique.
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Fig. 1. Multiclass architecture adopted for the Biedhnique

Multiclass-Level Uncertainty (MCLU)
The adopted multiclass-level uncertainty (MCLU) tege selects the most uncertain

samples according to a confidence vak(®), xUOU , which is defined on the basis of their
functional distancé, (x), i =1,...n to then decision boundaries of the binary SVM classifiers
included in the OAA architecture [31], [33]. In shiechnique, the distance of each sam¢dl&J
to each hyperplane is calculated and a set ditance value§ f,(x), f,(x),...f, (x)} is obtained.
Then, the confidence valug(x) can be calculated using different strategies. Hemee consider
two strategies: 1) the minimum distance functmp (x) strategy, which is obtained by taking the
smallest distance to the hyperplanes (as abscdlte) i.e., [31]

Cun () = min {abg 0T} ()

and 2) the difference,, (x) strategy, which considers the difference betweéerfitst largest and

the second largest distance values to the hyperplé@mote that, for theth binary SVM in the

OAA architecture, f,(x) 20 if x belongs ta-th class andf,(x) <0 if x belongs to the rest), i.e,
[33]
fmax = Argmax f; &)

i=1,2,..n

M, = argmax{fjx} )

2max ~ i
702,00 21

Cdiff (X) = frlmax (X) - frzmax(x)

11



The c

‘min

(x) function models a simple strategy that computesctinfidence of a sampletaking

into account the minimum distance to the hyperganaluated on the basis of the most uncertain
binary SVM classifier. Differently, the,, (x) strategy assesses the uncertainty between the two
most likely classes. If this value is high, the géex is assigned ta, .., with high confidence. On

the contrary, ifc,, (x) is small, the decision for, . is not reliable and there is a possible conflict

with the class,,, (i.e., the sampl& is very close to the boundary between class andr,,.. ).
Thus, this sample is considered uncertain andiéstsa by the query function for better modeling
the decision function in the corresponding positdrihe feature space. After that théx) value

of eachxJU is obtained based on one of the two above-merdi@tgtegies, then samples

XY XYY L x MY with lower ¢(x) are selected to be forwarded to the diversity.Stiepe that

*m

x\"“"Y denotes the selectg¢dh most uncertain sample based on the MCLU styatéigy. 2 shows

the architecture of the investigated MCLU technique.

MCLU MCLU
> {70 %3

N1ON
J

L

Fig. 2. Architecture adopted for the MCLU technique

B. Techniques for Implementing the Diversity Cider

The main idea of using diversity in AL is to selecbatch of samplesh(>1) which have
low confidence values (i.e., the most uncertainspnand at the same time are diverse from each
other. In this paper, we consider two diversity moels: 1) the angle based diversity (ABD); and 2)
the clustering based diversity (CBD). Before coesity the multiclass formulation, in the

following we recall their definitions for two-clagsoblems.

Angle Based Diversity (ABD)

12



A possible way for measuring the diversity of umaer samples is to consider the cosine

angle distance. It is a similarity measure betwiaensamples defined in the kernel space by [13]

(%) T, K(x;,x;)
0& x. = =
‘COS( & X ))\ Jeo)lex)| KO x K (%) @
K(x.,x;)

O(x;,x;) = cos (\/K(Xi,xi)K(XJ X))

where ¢}l is a nonlinear mapping function an€l((I)] is the kernel function (see section Il B).

The cosine angle distance in the kernel space eatobstructed using only the kernel function

without considering the direct knowledge of the piag function ¢)l. The angle between two

samples is small (cosine of angle is high) if thesm@ples are close to each other and vice versa.

Clustering Based Diversity (CBD)

Clustering techniques evaluate the distributiorthef samples in a feature space and group
the similar samples into the same clusters. In,[thY standar#-means clustering [34] was used
in the diversity step of binary SVM AL techniquehd aim of using clustering in the diversity step
is to consider the distribution of uncertain sarapd&d select the cluster prototypes as they are
more sparse in the feature space (i.e., distantamo¢her). Since the samples within the same
cluster are correlated and provide similar infoiorgta representative sample is selected for each
cluster. In [14], the sample that is closest to toeresponding cluster center (called medoid

sample) is chosen as representative sample.

C. Proposed combination of Uncertainty and Divegrsiechniques generalized to Multiclass
Problems

In this paper, each uncertainty technique is caedbiwith one of the (binary) diversity
techniques presented in the previous section.drutitertainty step, the most uncertain samples
are selected using either MCLU or BLU. In the dsirstep, the most diverde< m samples are
chosen based on either ABD or CBD generalized # rttulticlass case. Here, four possible
combinations are investigated: 1) MCLU with ABD fd¢ed by MCLU-ABD), 2) BLU with
ABD (denoted by BLU-ABD), 3) MCLU with CBD (denotday MCLU-CBD), and 4) BLU with
CBD (denoted by BLU-CBD).

13



Combination of Uncertainty with ABD for MulticlaS8/Ms (MCLU-ABD and BLU-ABD)

In the binary AL algorithm presented in [13], thecertainty and ABD criteria are combined
based on a weighting parameterOn the basis of this combination, a new sampladkided in
the selected batck according to the following optimization problem:

t=argminf A|f & }+ (-1) max K% (5)
il /X ' iox \/K(Xi,Xi)K(Xj X )

where | denotes the indices of unlabeled examples whatentie to the classification hyperplane
is less than onel / X represents the index of unlabeled samplestbt are not contained K

A provides the tradeoff between uncertainty andrditye andt denotes the index of the unlabeled
sample that will be included in the batch. The mesingle distance between each samplie/of
and the samples includedXnis calculated and the maximum value is taken as thersity value

of the corresponding sample. Then, the sum of tleenainty and diversity values weighted by

is considered to define the combined value. Thaheled sampbe, that minimizes such value is
included inX. This process is repeated until the cardinality(c(fx|) is equal tch. This technique

guarantees that the selected unlabeled sampbksia diverse regarding to their angles to all the
others in the kernel space. Since the initial iz&X is zero, the first sample included ¥is
always the most uncertain sample bf (i.e., closest to the hyperplane). We generalids t
technique to multiclass architectures presentiegMiCLU-ABD and BLU-ABD algorithms.

Algorithm 2: MCLU-ABD

Inputs:

A (weighting parameter that tune the tradeoff betwagcertainty and diversity)
m (number of samples selected on the basis of tineentainty)

h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each samplecJU .

2. Select the set ofm unlabeled samples with lowerc(x) value (most uncertain)

MCLU MCLU MCLU
(X Xy X )

3. Initialize X to the empty set.

4. Include inX the most uncertain sample (the one that has thesixz(x) value).

Repeat

5. Compute the combination of uncertainty and diigrwith the following equation formulated
for the multiclass architecture:
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t=argminjAc & )+ (-1 ) max Ke0x,) (6)
il /X I jox \/K(Xi,Xi)K(Xj ;)

where | denotes the set of indices of most uncertain samples argfx) is calculated as
explained in the MCLU subsection (witt),,(x) or c,, (X) strategy).

6. Include the unlabeled samplén X.

Until |X|=h

7. The supervisoB adds the label to the set of sampled®v=#8% x V=480 | x Mt 283 0 X
and these samples are added to the current traseifig

It is worth noting that the main difference betwd®&h and (6) is that the uncertainty in (6) is

evaluated considering the confidence functagr ) instead of the functional distandgx;) as in

the binary case.

Algorithm 3: BLU-ABD

Inputs:

A (weighting parameter that tune the tradeoff betwessertainty and diversity)

m (number of samples selected on the basis of tineertainty)

h (batch size)

g (number of unlabeled samples selected for eachmbB¥M in the BLU technique)
n (total class number)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select theg mostuncertain samples from each of théinary SVM included in the multiclass
OAA architecture (totallyp = gnsamples are obtained).
BLU BLU XBLU} )

2. Remove the redundant samples and consider tlo¢ se< p patterngx; —, x, ...

3. Computec(x) for the set ofm samples as follows: if one sample is selected byenthan one
binary SVM, c(x) is calculated as explained in the MCLU subsecfiith ¢, (X) or cy, (X)
strategy); otherwise(x) is assigned to the corresponding functional dcstain(x) .

4. Initialize X to the empty set.
5. Include inX the most uncertain sample (the one that has theskc(x) value).

Repeat
6. Compute the combination of uncertainty and diigmwith the equation (6).

7. Include the unlabeled sampjen X.

Until |X| =h

8. The supervisoB adds the label to the set of pattefmg-""®° x>V~ *%° . x> **3 0 X and
these samples are added to the current training set

Combination of Uncertainty with CBf@r Multiclass SVMgMCLU-CBD and BLU-CBD)
The uncertainty and CBD were combined for binaryMS¥AL in [14]. The uncertain

samples are identified according to the MS strateaged on their distance to the hyperplane.
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Then, the standarkd-means clustering is applied in the original featspace to the unlabeled
samples whose distance to the hyperplane (compntéte kernel space) is less than one (i.e.,

those that lie in the margin) and tkeeh clusters are obtained. The medoid sample of elastec
is added tX (i.e., |X| = h), labeled by the supervis&and moved to the current training set. This
algorithm evaluates the distribution of the undartsamples within the margin and selects the

representative of uncertain samples based on sthridmeans clustering. We extend this
technique to multiclass problems. Here we defieeMICLU-CBD and BLU-CBD algorithms.

Algorithm 4: MCLU-CBD

Inputs:

m (number of samples selected on the basis of tineemainty)
h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each sample U .
2. Select the set oh unlabeled samples with lowesfx) (with ¢

'min

(x) or ¢,y (X) strategy) value

(mOSt uncertain{xfcw, Xg/ICLU, .“’XII:ICLU} .

3. Apply thek-means clustering (diversity criterion) to the s&d&lm most uncertain samples with

k=h.
4. Calculate theh cluster medoid samplegx; <tV ~®° x/*-U=C80 | x M “*8 " one for each

cluster.

5. Initialize X to the empty set and includeXrthe set oh patterns
{XMCLU—CBD X MCLU- CBD X MCLU- CBE} D X
1 1 N LIEEEE RAY o}
6. The supervisoB adds the label to the setlpatterns{x;" V=0 x YU B0 [ x M- eBR g X

and these samples are added to the current traseing
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Algorithm 5: BLU-CBD

Inputs:

m (number of samples selected on the basis of tineentainty)

h (batch size)

g (number of unlabeled samples selected for eacinb®BM in the BLU technique)
n (total class number)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select the mostuncertain samples from each of theinary SVMs included in the multiclass
OAA architecture (totallyp = gnsamples are obtained).

BLU XBLU BLU}

1 :

2. Remove the redundant samples and consider tlo¢ 8e< p patterngx 5 aeen X
3. Computec(x) for the set ofm samples as follows: if one sample is selected byerthan one
binary SVM, c(x) is calculated as explained in the MCLU subsecfiwith c_,,(X) or C;, (X)

strategy); otherwise(x) is assigned to the corresponding functional dcstain(x) .
4. Apply thek-means clustering (diversity criterion) to the stédel m most uncertain samples

(k=h).
5. Calculate thé cluster medoid samples; ™"~ x2- 0 . x,>* “*3 | one for each cluster.

6. Initialize X to the empty set and includeXrthe set oh patterns
{XBLU—CBD X BLU- CBD X BLU- CBE} D X
1 1 A2 1
7. The supervisoB adds the label to the setlpatterns{xt~8° xStV=B0 | x B30 X and
these samples are added to the current training set

IV. PROPOSEDNOVEL QUERY FUNCTION

Clustering is an effective way to select the magtide samples considering the distribution
of uncertain samples in the diversity step of theerg function. In the previous section we
generalized the CBD technique presented in [14jhto multiclass case. However, some other
limitations can compromise its application: 1) gtandardk-means clustering is applied to the
original feature space and not in the kernel spaoere the SVM separating hyperplane operates,
and 2) the medoid sample of each cluster is selaatéhe diversity step as the corresponding
cluster representative sample (even if “more infative” samples in that cluster could be
selected).

To overcome these problems, we propose a novelyquerction that is based on the
combination of a standard uncertainty criterion foulticlass problems and a novel Enhanced
CBD (ECBD) technique. In the proposed query functiMCLU is used with the difference

C, (X) strategy in the uncertainty step to select tienost uncertain samples. The proposed

ECBD technique, unlike the standard CBD, workshe kernel space by applying the kerkel
means clustering [35], [36] to thra samples obtained in the uncertainty step to séthech<m

most diverse patterns. The kertkeieans clustering iteratively divides thesamples intdk=h
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clusters C,,C,,...G,) in the kernel space. At the first iteration, imitclustersC,,C,,...C, are
constructed assigning initial cluster labels tohesample [35]. In next iterations, a pseudo centre
is chosen as the cluster center (the cluster ceittethe kernel space(4), (1), ..9(4,) can

not be expressed explicitly). Then the distanceaah sample from all cluster centers in the kernel

space is computed and each sample is assigneck tonetirest cluster. The Euclidean distance

betweeng(x;) and¢(y,), v=1,2,...h, is calculated as [35], [36]:

D2((x,), A14,)) = %) ~ s, )|

=K(X;, %)=

2

ﬁiﬂmxxj),q 2D

éi““xi )G KO X, )+

IC1|2 iid(ga(xj),cv)d(ﬂxl ),.C KX, X,)

\

ﬂxi)_

(7)

where 5((p(x].),Cv) shows the indicator function. Thé((p(xj),Cv):l only if x; is assigned to

C,, otherwise 5(¢(xj),Cv):0. The |C,| denotes the total number of samplesGp and is

calculated asC,| =25(¢(xj),cv). As mentioned beforeg(l)] is a nonlinear mapping function
j=1

from the original feature space to a higher dimemasi space an& (LI} is the kernel function. The
kernelk-means algorithm can be summarized as follows [35]:

1. The initial value ofd(¢(x),C,), i =1,2,..m, v=1,2,...), is assigned ant initial clusters
{C..C,,..G} are obtained.

2. Thenx; is assigned to the closest cluster.

5(¢(xi),cv):{1 D" @& )P <D’ 0k )k ) D Fv -
0 otherwise
3. The sample that is closesiupis selected as the pseudo cemtyef C, .

,7v = arg mInD @(Xi) 7¢(uv )) (9)

x; OC,

4. The algorithm is iterated until converge, whistachieved when samples do not change clusters

anymore.
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After C,,C,,...G, are obtained, unlike in the standard CBD technitjue most informative

(i.e., uncertain) sample is selected as the reptatiee sample of each cluster. This sample is

defined as
XCACLU—ECBD =arg min{Cdiﬁ Q(iMCLU )} v=1,2,.h (10)
#{x )oc,
where x!"“*V"5°®® represents the-th sample selected using the proposed query fumdfiCLU-

ECBD and is the most uncertain sample of ¥kt cluster (i.e., the sample that has minimum

4y (X) in thev-th cluster). Totallyh samples are selected, one for each cluster, (&)g

In order to better understand the difference ingbkection of the representative sample of
each cluster between the query function presemed4] (which selects the medoid sample as
cluster representative) and the proposed quengtiuméwhich selects the most uncertain sample
of each cluster), Fig. 3 presents a qualitativergda. Note that, for simplicity, the example is

presented for binary SVM in order to visualize twnfidence valuec,, (x) as the functional

distance (MS is used instead of MCLU). The uncersamples are firstly selected based on MS
for both techniques, and then the diversity steppglied. The query function presented in [14]
selects medoid sample of each cluster (reportdalua in the figure), which however is not in

agreement with the idea to select the most uncegaimple in the cluster. On the contrary, the
proposed query function considers the most uncesainple of each cluster (reported in red in the
figure). This is a small difference with respectthe algorithmic implementation but a relevant

difference from a theoretical viewpoint and for gibe implications on results.

(b)

Fig. 3. Comparison between the samples selectéd)lifie CBD technique presented in [14],
and (b) the proposed ECBD technique.
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The proposed MCLU-ECBD algorithm can be summarezéllows:

Algorithm 6: Proposed MCLU-ECBD

Inputs:

m (the number of samples selected on the basis wfitheertainty)
h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each samplecdJU .

2. Select the set ofm unlabeled samples with lowerc(x) value (most uncertain)

MCLU MCLU MCLU
(X Xy X )

3. Apply the kernelk-means clustering (diversity criterion) to the sédel m most uncertain
samples witlk=h.

4. Select the representative samglg*""5*" v=1,2... ,h (i.e., the most uncertain sample) of
each cluster according to (10).

5. Initialize X to the empty set and includeXnthe set of sampleg/“"* *“*°0 X , v=1,2,... ,h.

6. The superviso8 adds the label to the set of sampi§™""**°* 01X, v=1,2,... ,h, and these
samples are added to the current training set.

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS
A. Data set description

Two data sets were used in the experiments. Tisé daita set is a hyperspectral image
acquired on a forest area on the Mount Bondondenltalian Alps (near the city of Trento) on
September 2007. This image consistd©13x 104¢ pixels and 63 bands with a spatial resolution
of 1 m. The available labeled data (4545 samples)evecollected during a ground survey in
summer 2007. The reader is referred to [37] foaggredetails on this dataset. The samples were
randomly divided to derive a validation &ebf 455 samples (which is used for model selectian)
test setTS of 2272 samples (which is used for accuracy assms3, and a pooP of 1818
samples. The 4 % of the samples of each classaadomly chosen fronP as initial training
samples and the rest are considered as unlabetgulesa The land cover classes and the related
number of samples used in the experiments are shoWwable 1.

The second data set is a Quickbird multispectradgen acquired on the city of Pavia
(northern Italy) on June 23, 2002. This image idekithe four pan-sharpened multispectral bands
and the panchromatic channel with a spatial resoiutf 0.7 m. The image size 1024x 102«
pixels. The reader is referred to [38] for greatetails on this dataset. The available labeled data

(6784 samples) were collected by photointerpretatithese samples were randomly divided to

20



derive a validation se¥ of 457 samples, a test SEf of 4502 samples and a paddlof 1825
samples. According to [38], Test pixels were cd#dcon both homogeneous ard&s and edge
areasTS of each class. The 4 % of the samples of each midsre randomly selected as initial
training samples, and the rest are considered labeled samples. Table 2 shows the land cover

classes and the related number of samples ushd experiments.

TABLE 1. NUMBER OF SAMPLES OF EACH CLASS IR, V AND TSFOR THETRENTO DATA SET.
Class P V | TS
Fagus Sylvatica 720 180900
Larix Decidua 172 | 43 215
Ostrya Carpinifoliaf 160 | 40| 200
Pinus Nigra 186| 47 232
Pinus Sylvestris 340 85 42b
Quercus Pubescens240 | 60| 300
Total 1818| 455 2272

TABLE 2. NUMBER OF SAMPLES OF EACH CLASS IR, V, TS1AND TS2FOR THEPAVIA DATA SET.
Class P V | TS | TS
Water 58 14| 154 61

Tree areas 111 28 278 118
Grass areas 108 2b 206 1]
Roads 316| 79 402 211
Shadow 230 57| 355 311
Red buildings| 734 1841040| 580

Gray buildings| 191 | 48| 250| 177

White building| 82 | 21| 144| 105
Total 1825| 457 | 2824 | 1678

B. Design of Experiments

In our experiments, without loosing in generalitye adopt an SVM classifier with RBF
kernel. The values fo€ and y parameters are selected performing a grid-seamtehselection
only at the first iteration of the AL process. lede initial experiments revealed that, if a
reasonable number of initial training samples issidered, performing the model selection at each
iteration does not increase significantly the afacsgtion accuracies at the cost of a much higher
computational burden. The MCLU step is implemenagth differentm values, defined on the
basis of the value df (i.e., m=4h, 6h, 10h), with h=5,10,40,100. In the BLU technique, tiyeh
most uncertain samples are selected for each bi&®iM. Thus the total number of selected
samples for all SVMs ig = gn. After removing repetitive patternsp< p samples are obtained.
The value of A used in the MCLU-ABD and the BLU-ABD [for compugin(6)] is varied as
A=0.3,0.5,0.6,0.. The total cluster numbdrfor both kernek-means clustering and stand&rd
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means clustering is fixed te. All the investigated techniques and the propdgkil U-ECBD
technique are compared with the EQB and the MS-&8Yniques presented in [12]. The results
of EQB are obtained fixing the number of EQB préatis to eight and selecting bootstrap samples
containing 75 % ofnitial training patterns. These values have baeggested in [12]. Since the
MS-cSV technique selects diverse uncertain sanmgiesrding to their distance to the SVs, and
can consider at most one sample related to eaclit 8/not possible to definle greater than the
total number of SVs. For this reason we can proWt&cSV results for onl=5,10. Also the
results obtained by the KL-Max technique propose[82] are provided for comparison purposes.
Since the computational complexity of KL-Max implented with SVM is very high, in our
experiments at each iteration an unlabeled sangplehosen from a randomly selected subset
(made up of 100 samples) of the unlabeled datae Nloat the KL-Max technique can be
implemented with any classifier that exploits paste class probabilities for determining the
decision boundaries [32]. In order to implement Kiax technique with SVM, we converted the
outputs of each binary SVM to posterior probal@itexploiting the Platt's method [39].

All experimental results are referred to the averagcuracies obtained in ten trials
according to ten initial randomly selected trainisgts. Results are provided as learning rate

curves, which show the average classification aaguversus the number of training samples used

to train the SVM classifier. In all the experimeritse size of final training S¢T| is fixed to 473

for the Trento data set, and to 472 for the Paata det. The total number of iterations is given by
the ratio between the number of samples to be atid#te initial training set and the pre-defined

value ofh.

VI. EXPERIMENTAL RESULTS

We carried out different kinds of experiments iderto: 1) compare the effectiveness of the
different investigated techniques that we genezdlito the multiclass case in different conditions;
2) assess the effectiveness of the novel ECBD tgubn3) compare the investigated methods and
the proposed MCLU-ECBD technique with the techngjused in the RS literature; and 4)

perform a sensitivity analysis with respect toeliéint parameter settings and strategies.

A. Results: Comparison among Investigated Techsi@eneralized to the Multiclass Case

In the first set of trials, we analyze the effeetiess of the investigated techniques
generalized to multiclass problems. As an exanffitg, 4 compares the overall accuracies versus
the number of initial training samples obtainedthy MCLU-ABD, the MCLU-CBD, the BLU-
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ABD and the BLU-CBD techniques with=5, k=5 andl =0.6. In the MCLU,m=20 samplesire
selected for both data sets. In the Blubs 30and m< 40 samples are chosen for the Trento and

Pavia data sets, respectively. The confidence valaalculated with the,, (x) strategy for both
MCLU and BLU, as preliminary tests pointed out thatfixing the query function, the,, (x)
strategy is more effective than tlg, (x) strategy in case of using MCLU, whether it progide

similar classification performance to tlog,, (x) strategy when using BLU. Fig. 4 shows that the

MCLU-ABD technique is the most effective on botte tbonsidered data sets. Note that similar
behaviors are obtained by using different valuespafameters (i.e.m, h/Aand k). The
effectiveness of the MCLU and BLU techniques focemainty assessment can be analyzed by
comparing the results obtained by combining therth whe same diversity techniques under the
same conditions (i.e., same values for parametérgjn Fig. 4, one can observe that the MCLU
technique is more effective than the BLU in theesgbn of the most uncertain samples on both
data sets (i.e., the average accuracies providedeoMCLU-ABD are higher than those obtained
by the BLU-ABD and a similar behavior is obtainedhathe CBD). This trend is confirmed by
using different values of parameters (ira,, h,Aandk ). The ABD and CBD techniques can be
compared by combining them with the same uncestagthnique under the same conditions (i.e.,
same values for parameters). From Fig. 4, one earthat the ABD technique is more effective
than the CBD technique. The same behavior can lads@bserved by varying the values of

parameters (i.em, h,A andk).
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Fig. 4. Overall classification accuracy obtainedtey MCLU and BLU uncertainty criteria when comhine

with the ABD and CBD diversity techniques in thengaconditions for (a) Trento, and b) Pavia dats. set

The learning curves are reported starting from da88ples and 87 samples for Trento and Pavia d&ta se
respectively, in order to better highlight the dndéferences.

B. Results: Proposed MCLU-ECBD Technique

In the second set of trials, we compare the stan@&D with the proposed ECBD using the

MCLU uncertainty technique with the,, (x) strategy and fixing the same parameter values. As

an example, Fig. 5 shows the results obtained with40,h=10,k= 1( for both data sets. Table

3 (Trento data set) and Table 4 (Pavia data s@)rrehe mean and standard deviation of

classification accuracies obtained on ten trialsswe different iteration numbers and different
training data siz|é'|. From the reported results, one can see that E@8Bnique provides the

selection of more informative samples compared B Gechnique achieving higher accuracies
than the standard CBD algorithm for the same nunobesamples. In addition, it can reach the
convergence in less iterations. These resultslapecanfirmed in other experiments with different

values of parameters (not reported for space @in).
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Fig. 5. Overall classification accuracy obtaingdiee MCLU uncertainty criterion when combined with
the standard CBD and the proposed ECBD diversityrtigues for (a) Trento, and (b) Pavia data sets.

TABLE 3. AVERAGE CLASSIFICATION ACCURACY(CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN
TRIALS FOR DIFFERENT TRAINING DATA SIZE[T| AND ITERATION NUMBERS (ITER. NUM) (TRENTO DATA

SET)

IT|=163 IT|=193 |T|=333
Technique (Iter.Num. 9)| (Iter. Num. 12)| (Iter. Num. 26)
CA std CA std CA std
Proposed MCLU-ECBD | 72.78| 1.20| 74.13 | 1.42 | 78.00 | 1.00
MCLU-CBD 71.55| 1.57] 7288 162 76.47 1.10

TABLE 4. AVERAGE CLASSIFICATION ACCURACY(CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN
TRIALS FOR DIFFERENT ITERATION NUMBERSITER. NUM) AND TRAINING DATA SIZE [T| (PAVIA DATA SET)

T|=102 | [T|=142 | [T]|=172
Technique (Iter.Num. 3)| (Iter. Num. 7)| (Iter. Num. 10)
CA std CA std CA std
Proposed MCLU-ECBL 84.10| 1.66 | 85.66 | 1.29 | 86.23 | 1.09
MCLU-CBD 81.28| 1.77/ 83.74 159 8488 1.36
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C) Results: Comparison among the Proposed AL Tgadesiand Literature Methods

In the third set of trials, we compare the investiggl and proposed techniques with AL
techniques proposed in the RS literature. We coenffag MCLU-ECBD and the MCLU-ABD
techniques with the MS-cSV [31], the EQB [31] ahd KL-Max [32] methods. According to the
accuracies presented in section VA, we presentethdts obtained with the MCLU, which is more
effective than the BLU. Fig. 6 shows the averagrieacies versus the number of training samples
obtained in the case ¢f=5 (h=1 only for KL-Max) for both data sets. For a faomparison, the
highest average accuracy result of each technigugiven in the figure. Note that, since the
MCLU-CBD proved less accurate than the MCLU-ECBIRe(section V B), its results are no
more reported here. For the Trento data set, tjigest accuracies for MCLU-ECBD are obtained
with m=30 (while k=5), whereas the best results for MCLU-ABD are woigtd with A =0.6 and
m=20. For the Pavia data set, the highest accuraciesVfoLU-ECBD are obtained with
m=20(while k=5), whereas the best results for MCLU-ABD are otd with 1=0.6 and
m=20.

By analyzing Fig. 6a (Trento data set) one canmwestnat MCLU-ECBD and MCLU-ABD
results are much better than MS-cSV, EQB, KL-Masuits. The accuracy value at convergence
of the EQB is significantly smaller than those ¢ifier techniques. The KL-Max accuracies are
similar to the MS-cSV accuracies at early iteragioHowever, the accuracy of the KL-Max at
convergence is smaller than those of the MCLU-ECGBID MCLU-ABD, as well as those of other
methods. The results obtained on the Pavia datgeet Fig. 6b) show that the proposed MCLU-
ECBD technique leads to the highest accuracies @stniteration; furthermore, it achieves
convergence in less iterations than the other igabes. The MCLU-ABD method provides
slightly lower accuracy than MCLU-ECBD; howeverrdésults in significantly higher accuracies
than MS-cSV, EQB as well as KL-Max techniques. KlaMaccuracy at convergence is
significantly smaller than those achieved with otteehniques.

For a better comparison, additional experimentsevearried out on both data sets varying
the values of the parameters. In all cases, wereddehat MCLU-ECBD and MCLU-ABD vyield
higher classification accuracies than the othertét¢hniques when smdilvalues are considered,
and that the EQB technique is not effective whdacsiag a small numben of samples. On the
contrary, the accuracies of EQB are close to thafsICLU-ECBD and MCLU-ABD when
relatively highh values are considered. MS-cSV can not be usetiifrh values when small

initial training set are available since the maximaoumber ofh is equal to the total number of
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SVs. KL-Max results can only be provided florl and the related accuracies are smaller than
those of both MCLU-ECBD and MCLU-ABD methods.

Table 5 reports the computational time (in secondgyired by MCLU-ECBD, MCLU-
ABD, MS-cSV, and EQB (for one trial) for differehtvalues, and the computational time taken
from KL-Max (related tch=1) for both data sets. In this case, the valumm&ébr MCLU-ECBD
and MCLU-ABD is fixed to4h for both data sets. It can be noted that MCLU-ECGBI MCLU-
ABD are fast both for small and high valueshofThe computational time of MS-cSV and EQB is
very high in the case of smdilvalues, whereas it decreases by increasing ttadue. The largest
computational time is obtained with KL-Max that widn SVM classifier requires the use of the
Platt algorithm for computing the class posterimhabilities. All the results clearly confirm that
on the two considered data sets the proposed MCCBEE is the most effective technique in

terms of both computational complexity and clasatiion accuracy.
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Fig. 6. Overall classification accuracy obtainedty MCLU-ECBD, MCLU-ABD, MS-cSV,
EQB and KL-Max techniques for (a) Trento, and (ByiB data sets. The learning curves are
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reported starting from 178 samples and 92 samplebrénto and Pavia data sets, respectively, in
order to better highlight the differences.

TABLE 5. EXAMPLES OF COMPUTATIONAL TIME(IN SECONDY TAKEN FROM THEMCLU-ECBD, MCLU-
ABD, MS-cSV, EQBAND KL-M AX TECHNIQUES

. h
Data Set Technique 1 5 10 20 100
Proposed MCLU-ECBD - 10 6 8 12
MCLU-ABD - 10 6 7 10
Trento MS-cSV - 584 | 452 - -
EQB - 300 | 148| 34 12
KL-Max 72401| - - - -
Proposed MCLU-ECBD - 10 6 7 11
MCLU-ABD - 10 5 6 10
Pavia MS-cSV - 384| 193 - -
EQB - 138 | 68 16 6
KL-Max 71380| - - - -

D. Results: Sensitivity Analysis with Respect fte@nt Parameter Settings and Strategies

The aim of the fourth set of trials is to analyle tonsidered AL techniques under different

parameter settings and strategies.

Analysis of the effect of the m value on the Acyucd the MCLU-ABD technique

We analyzed the effect of thea value on the classification accuracy obtained wtita
MCLU-ABD technique (which is the one that exhibitede highest accuracy among the
investigated standard methods that we generalzedulticlass problems). In this technique, the

equation (6) is calculated only for the(m=4h, 6h, 10h) most uncertain samples. The obtained
results are compared to those obtained using beted samples, i.em=|U|. Fig. 7 shows the
behavior of the overall classification accuracysusrthe number of training samples obtained on
both data sets with parameter valhe$,m=20, A =0.6 and using thec, (X) strategy. Results
show that the choicen:|U| produces accuracies close to those obtained usiagih, 6h, 10h

for both data sets. A similar behavior is obserwvedll the experiments carried out with different
combinations of the abovementioned parameter valdatasets

Table 6shows the computational time taken from the MCLUBAB:chnique (for one trial)

when m=4h and m=|U|, while h=5,10,40,100. From the table, one can observettieatalue of

m directly affects the computational time of MCLU-BB small m values decrease the

computational time without resulting in a consideeaoss in classification accuracy.
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Fig. 7. Overall classification accuracy versusnhmber of training samples obtained by the MCLUEAB
with respect to differen values for (a) Trento, and (b) Pavia data sets

TABLE 6. EXAMPLES OF COMPUTATIONAL TIME(IN SECONDY TAKEN FROM THEMCLU-ABD TECHNIQUE

Data Set| m =45 h40 100

ah 10| 6] 7| 10

Trento 5737 36| 35| 35

~ [ 4nh [10] 5] 6] 10
Pavia

Ul |36|35|34| 34

Analysis of the effect of different batch size ealu

We carried out an analysis of the performancediftdrent AL techniques varying the value
of the batch siz& by fixing the query function. As an example, FBgshows the accuracies versus
the number of training samples obtained on botl dats adopting the proposed MCLU-ECBD
guery function. The results are obtained with=4h and k = h. The computational time taken
from the MCLU-ECBD (related to one trial) for difenth values is given in Table 7. From the

table one can observe that the largest learning tarobtained in the case where one sample is
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selected at each iteration. The computational tieeeases by increasing thevalue. From Fig.

8, one can see that for both data sets selectirgl $mvalues results in similar (or better)
classification accuracies compared to those obdasstecting only one sample at each iteration.
On the contrary, high values decrease the classification accuracy witlumcreasing the
computational time if compared to smhllvalues. Another interesting observation is thathmn
Pavia data set, when using snmfaNalues, convergence is achieved with less santpéswhen

using large values. Note that similar behaviorsodtained with the other query functions.
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Fig. 8. Overall classification accuracy versusribeber of training samples obtained by the MCLU-IBCB
technique with differenth values for a) Trento and b) Pavia data sets
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TABLE 7. EXAMPLES OF COMPUTATIONAL TIME (IN SECONDY TAKEN FROM THEMCLU-ECBD TECHNIQUE
WITH RESPECT TO DIFFERENH VALUES

MCLU MCLU-ECBD
Data Set h h
1 10 40 100
Trento 47 6 8 12
Pavia 46 6 7 11

Analysis of the effect of different batch size @allb on the diversity criteria

Finally, we analyze the accuracy obtained by usamly uncertainty criteria and the
combination of uncertainty with diversity criterdar differenth values. As an example, Fig. 9
shows the average accuracy versus the numberimihgssamples obtained by MCLUN(is fixed
to h for a fair comparison) and MCLU-ECBD wittn=4h,h=5,10C andk = h. One can observe

that, as expected, using only the uncertainty rooiteprovides poor accuracies whins small,
whereas the classification performances are saanifly improved by using both uncertainty and
diversity criteria. On the contrary, the choicecoimplex query functions is not justified when a
large batch of samples is added to the trainingasetach iteration (i.e., similar results can be
obtained with and without considering diversityhi§ mainly depends on the intrinsic capability
of a large number of samplésto represent patterns in different positions @& feature space.

Similar behaviors are observed with the other qfiemgtions
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Fig. 9. Overall classification accuracy versusrbeber of training samples for the uncertaintyeciin
and the combination of uncertainty and diversiffecia with differenth values: a) Trento and b) Pavia data
sets

VIl. DiscussiON AND CONCLUSION

In this paper, AL in RS classification problems the®n addressed. Query functions based
on MCLU and BLU in the uncertainty step, and ABDda@BD in the diversity step have been
generalized to multiclass problems and experimgntaimpared on two different RS data sets.
Furthermore, a novel MCLU-ECBD query function hase proposed. This query function is
based on MCLU in the uncertainty step and on thayars of the distribution of most uncertain
samples by means &means clustering in the kernel spab®reover, it selects the batch of
samples at each iteration according to the ideatibtn of the most uncertain sample of each
cluster.

In the experimental analysis we compared the inyatstd and proposed techniques with
state-of-the-art methods adopted in RS applicatitors the classification of both a VHR

multispectral and a hyperspectral image. By thimparison we observed that the proposed
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MCLU-ECBD method resulted in higher accuracy wispect to other state-of-the art methods on
both the VHR and hyperspectral data sets. It was/slthat the proposed query function is more
effective than all the other considered technigne®grms of both computational complexity and
classification accuracies for ahyalue. Thus, it is actually well-suited for applions which rely

on both ground survey and image photointerpretabased labeling of unlabeled data. The
MCLU-ABD method provides slightly lower accuracyaththe MCLU-ECBD; however, it results
in higher accuracies than the MS-cSV, the EQB dbagethe KL-Max techniques. Moreover, we
showed that: 1) the MCLU technique is more effexrtin the selection of the most uncertain

samples for multiclass problems than the BLU teghej 2) thec,, (x) strategy is more precise

than thec

in (X) strategy to assess the confidence value in the M@icbnique; 3) it is possible to
have similar (sometimes better) classification aacies with lower computational complexity
when selecting small batcheslofamples rather than selecting only one sampladt geration;

4) the use of both uncertainty and diversity cidteés necessary whemis small, whereas high
values do not require the use of complex querytfans; 5) the performance of the standard CBD
technique can be significantly improved by adoptthg ECBD technique, thanks to both the
kernelk-means clustering and the selection of the mostitaicn sample of each cluster instead of
the medoid sample. In greater detail, on the lE<sisir experiments we can state that:

1) The proposed novel MCLU-ECBD technique showselent performance in terms of
classification accuracy and computational compyexitimproves the already good performance
of the standard CBD method. It is important to ntitat this technique has a computational
complexity suitable to the selection of batch ompées made up of any desired number of
patterns, thus it is compatible with both photaiptetation and ground survey based labeling of
unlabeled data.

2) The MCLU-ABD technique provides slightly lowelassification accuracies than the
MCLU-ECBD method in most of the cases, with a samdéomputational time. It can be used for
selecting a batch made up of any desired numbdr samples. Thus, also the MCLU-ABD
technique is suitable for both photointerpretatéo ground survey based labeling of unlabeled
data.

3) The MS-cSV technique provides quite good classibn accuracies. However, the

maximum value oh that can be used is equal to the total numbeNsf|SVq (i.e., h<|SVg and

therefore it can not be implemented for anyvalue). In the case of smali values, the

computational complexity of this technique is munigher than that of the other investigated and
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proposed techniques. This complexity decreases whencreases. Therefore, the MS-cSV
technique does not offer any advantage over theogsexd technique.

4) The EQB technique results in poor classificamecuracies with small values bfand
classification accuracies comparable with otherhriegues with high values oh. The
computational complexity of this technique is véngh in case of selecting few samples, and
decreases whilk increases. Although it is possible to select agsiréd number df samples with
the EQB, it is not properly suitable for photoiqeatation applications since its high
computational complexity and poor classificatiomfpanance with smalh values. It is preferable
for ground survey based labeling of unlabeled data.

5) The KL-Max technique is different from the abawentioned techniques since it is only
able to select one sample at each iteration andbeammplemented with any classifier that
estimates a posteriori class probabilities. In experiments we converted the SVM results into
probabilities and results showed that this techamigi not effective with SVM classifiers and
requires very high computational complexity.

We assessed the compatibility of the consideredeshniques with the strategies to label
unlabeled samples by image photointerpretatioraurgd data collection in order to provide some
guidelines to the users under different conditioAs. mentioned before, in the case of VHR
images, in many applications the labeling of unledbe samples can be achieved by
photointerpretation, which is compatible with seléterations of the AL process in which a small
value h of samples are included in the training set athesiep according to an interactive
procedure of labeling carried out by an operatoroQr VHR data set, we observed that batches of
h=5 or 10 samples can give the highest accuraciethelitase of hyperspectral or medium/low
resolution multispectral data, expensive and tioresaming ground surveys are usually necessary
for the labeling process. Under this last conditionly few iterations (two or three) of the AL
process are realistic. Thus, large batches (of bundreds of samples) should be considered. In
this case, we observed that sophisticated quemtibs are not necessary, as with many samples
often an uncertainty criterion is sufficient fortalming good accuracies. As a final remark, we
point out that in real applications, some geogregdhareas may be not accessible for ground
survey (or the process might be too expensive).sTthe definition of the podl should be
carried out carefully, in order to avoid these arees a future development, we consider to extend
the proposed method by including a spatially-depend¢hbeling costs, which takes into account
that traveling to a certain area involves some typeosts (e.g., associated with gas or time) that

should take into account in the selection of baithnlabeled samples [27]. In addition, we plan
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to define hybrid approaches that integrate semisigegl and AL methods in the classification of

RS images.
APPENDIX
TABLE 8. TABLE OF SYMBOLS
Symbol Description Symbol Description
mcLu-ecep | V-th sample selected using
n Total class number Xy ECBD
m Number of unlabeled samples selected at I Set of indices ofm most
the uncertainty step uncertain samples
Total number of unlabeled samples added Set ofh samples selected bvla
h to the training set at each iteration (batch X f np y
size) query function
Number of unlabeled samples selected Indices of unlabeled samples fof
q for each binary SVM in the BLU | /X | that are not contained ¥
technique
Number of total samples selected in the L
o BLU technique (i.e.0 = qn) X Cardinality of sei
Index of an unlabeled sample
u Total number of unlabeled samples t that will be included i
xBLU Selected j-th sample from thé-th SVM 1 Weighting parameter for the
i based on the BLU technique ABD technique
xBLU Selec.tedj—th sample based on the BLU s Supervisor
! technique
MCLU Selectedj-th sample based on the MCLU .
X technique Q Query function
c(x) Confidence value of pattex T Training set
Coin (X) Minimum distance function of patterx U Unlabeled sample pool
Cq (X) | Difference function of patter G Classifier
o Index of the binary SVM with highest TS Test set
output score
Index of the binary SVM with the second L
Fomax highest output score v Validation set
£ (x) Functional distance of pattepn to thei- K Number of Clusters for the
‘ th hyperplane CBD or ECBD techniques
K (LY Kernel function C, v-th cluster
A Nonlinear mapping function M, v-th cluster center
14 Spread of the RBF kernel function oy Indicator function
C SVM penalty parameter n, Pseudo centre afth cluster
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TABLE 9. TABLE OF ACRONYMS

Acronyms Description Acronyms Description
RS Remote Sensing CBD Clustering Based Diversity
AL Active Learning ECBD Enhanced CBD
SVM Support Vector Machine BLU-ABD BLU with ABD
SV Support Vector BLU-CBD BLU with CBD
RBF Radial Basis Function MCLU-ABD MCLU with ABD
OAA One Against All MCLU-CBD MCLU with CBD
MS Margin Sampling MCLU-ECBD MCLU with ECBD
BLU Binary-Level Uncertainty MS-cSV MS by closesigport Vector
MCLU Multiclass-Level Uncertainty EQB Entropy Queby Bagging
ABD Angle Based Diversity KL-Max Kullback-Leibler-&k technique
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