UNIVERSITY
OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZIONE

38050 Povo — Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

A CALCULUS OF CONTRACTING PROCESSES

Massimo Bartoletti and Roberto Zunino

October 2009 (submitted), June 2010 (revised)

Technical Report #DISI-09-056

A Calculus of Contracting Processes

Massimo Bartoletti

Dipartimento di Matematica e Informatica, Universita degli Studi di Cagliari

Roberto Zunino

Dipartimento di Ingegneria e Scienza dell’Informazione, Universita degli Studi di Trento

Abstract

We propose a formal theory for contract-based computing. A contract
is an agreement stipulated between two or more parties, which specifies the
duties and the rights of the parties involved therein. We model contracts
as formulae in an intuitionistic logic extended with a “contractual” form
of implication. Decidability holds for our logic: this allows us to mechan-
ically infer the rights and the duties deriving from any set of contracts.
We embed our logic in a core calculus of contracting processes, which
combines features from concurrent constraints and calculi for multiparty
sessions, while subsuming several idioms for concurrency. We then show
how to exploit our calculus as a tool for modelling services, the interaction
of which is driven by contracts.

1 Introduction

Security, trustworthiness and reliability of software systems are crucial issues in
the rising Information Society. As new online services (e-commerce, e-banking,
e-government, etc.) are made available, the number and the criticality of the
problems related to possible misbehaviour of services keeps growing. Neverthe-
less, these problems are hardly dealt with in current practice, especially from
the client point of view.

The typical dynamics of a Web transaction is that a client chooses a ser-
vice provider that she trusts, and then proceeds interacting with it, without
any provable guarantee that she will eventually obtain the required feature.
Standard service infrastructures are focussed on protecting services from unde-
sired interactions, while little effort is devoted to protecting clients. As one can
see, the situation is quite unbalanced: clients have to operate with no concrete
guarantees, and all they can do is to trust the service providers. At best, the
service provider commits himself to respect some “service level agreement”. In
the case this is not honoured, the only thing the client can do is to take legal
steps against the provider. Although this is the normal practice nowadays, it
is highly desirable to reverse this trend. Indeed, both clients and services could
incur relevant expenses due to the needed legal disputes. This is impractical,
especially for transactions dealing with small amounts of money.

We propose to balance this situation, by regulating the interaction among
parties by a suitable contract. A contract subordinates the behaviour promised
by a client (e.g. “I will pay for a service X”) to the behaviour promised by a

service (e.g. “I will provide you with a service Y”), and wvice versa. The crucial
problems are then how to define the concept of contract, how to understand
when a set of contracts gives rise to an agreement among the stipulating parties,
and how to actually enforce this agreement, in an environment — the Internet —
which is by definition open and unreliable.

1.1 An example

To give the intuition about our contracts, suppose there are two kids, Alice and
Bob, who want to play together. Alice has a toy airplane, while Bob has a bike.
Both Alice and Bob wish to play with each other’s toy. Before sharing their
toys, Alice and Bob stipulate the following “gentlemen’s agreement”:

Alice: I will lend my airplane to you, Bob, provided that I borrow your bike.
Bob: I will lend my bike to you, Alice, provided that I borrow your airplane.

From the above two contracts, we want to formally deduce that Alice and
Bob will indeed share their toys, provided that they are real “gentlemen” who
always respect their promises. Let us write a for the atomic proposition “Alice
lends her airplane” and b for “Bob lends his bike”. A (wrong) formalisation of
the above commitments in classical propositional logic could be the following,
using implication —. Alice’s commitment A is represented as b — a and Bob’s
commitment B as a — b. While the above commitments agree with our intu-
ition, they are not enough to deduce that Alice will lend her airplane and Bob
will lend his bike. Formally, it is possible to make true the formula A A B by
assigning false to both propositions a and b.

The failure to represent scenarios like the one above seems related to the
Modus Ponens rule: to deduce b from a — b, we need to prove a. That is,
we could deduce that Bob lends his bike, but only after Alice has lent Bob her
airplane. So, one of the two parties must “take the first step”. In a logic for mu-
tual agreements, we would like to deduce a A b whenever A A B is true, without
requiring any party to take the first step. That is, A and B are contracts, that
once stipulated imply the duties promised by all the involved parties. Notice
that AA B — aAb does not hold neither in classical nor in intuitionistic propo-
sitional calculus IPC [37], where the behaviour of implication strictly adheres
to Modus Ponens.

To model contracts, we then extend IPC with a new form of implication,
which we denote with the symbol —. The resulting logic is called PCL, for
Propositional Contract Logic. For instance, the contract declared by Alice, “I
will lend my airplane to Bob provided that Bob lends his bike to me”, will be
written b — a. This form of, say, contractual implication, is stronger than the
standard implication — of IPC. Actually, b — a implies a not only when b is
true, like IPC implication, but also in the case that a “compatible” contract,
e.g. a — b, holds. In our scenario, this means that Alice will lend her airplane
to Bob, provided that Bob agrees to lend his bike to Alice whenever he borrows
Alice’s airplane, and vice versa. Actually, the following formula is a theorem of
our logic:

(b—-a) A (a—»b) — aAb

In other words, from the “gentlemen’s agreement” stipulated by Alice and Bob,
we can deduce that the two kids will indeed share their toys.

All the above shows how to deduce, from a set of contracts, the rights and the
duties of the involved parties. Yet, it says nothing about the actual dynamics
of these parties, that is how to model their behaviour. To do that, we introduce
a calculus of contracting processes, which embeds our logic for contracts. This
calculus belongs to the family of concurrent constraints calculi [35, 7], with the
peculiarity that in ours the constraints are PCL formulae. A process can assert
a constraint ¢ (a PCL formula) through the primitive tellc. For instance, the
following process models Alice exposing her contract:

(x) tellb(x) — a(x)

Formally, this will add b(z) — a(x) to the set of constraints. The formal param-
eter x will be bound to the identifier of the actual session established between
Alice and Bob. As it happens for sessions centered calculi [38, 13], sessions
are an important aspect also in our calculus, since they allow for distinguishing
among different instantiations of the same contract. The outer (x) is a scope
delimitation for the variable z, similarly to the Fusion calculus [30].

After having exposed her contract, Alice will wait until finding that she has
actually to lend her airplane to Bob. To discover that, Alice uses the primitive
fuse, ¢ as follows:

fuse, a(x)

This is similar to the ask ¢ primitive of concurrent constraints, which probes the
constraints to see whether they entail the constraint c¢. Yet, our fuse has some
crucial peculiarities. Besides probing the constraints to find whether they entail
¢, fuse, c also binds the variable x to an actual session identifier, shared among
all the parties involved in the contract. In other words, fuse, ¢ actually fuses all
the processes agreeing on a given contract.

Summing up, we will model the behaviour of Alice as the following process:

Alice = (z) (tellb(z) — a(x). fuse, a(z). lendAirplane)

where the process lendAirplane (no further specified) models the action of Alice
actually lending her airplane to Bob. The overall behaviour of Alice is then as
follows: (i) issue the contract; (i) wait until discovering the duty of lending the
airplane; (74) finally, lend the airplane.

Dually, we model the behaviour of Bob as the following process in our cal-
culus:

Bob = (y) (tella(y) — b(y). fuse, b(y). lendBike)

A possible interaction of Alice and Bob will then be the following, where n
stands for a fresh session identifier:

Alice | Bob —* (n) (lendAirplane{n/z} | lendBike{n/y})

As expected, the resulting process shows Alice and Bob actually sharing
their toys, in the session identified by n.

2 A Logic for Contracts

We now introduce our theory of contracts. We start in Sect. 2.1 by characterizing
our logic through a set of properties that we would expect to be enjoyed by any

logic for contracts. In Sect. 2.2 we present the syntax of PCL. In Sect. 2.3
we synthesize a minimal set of Hilbert-style axioms for PCL that imply all the
desirable properties, and we show the resulting logic consistent (Theorem 1).
We then propose a sequent calculus for PCL, which is shown to be equivalent
to the Hilbert system (Theorem 2). The hard result is Theorem 3, where we
establish cut elimination for our sequent calculus. Together with the subformula
property (Theorem 4), this paves us the way to state decidability for PCL in
Theorem 5. In Sect. 2.4 we give further details and examples about using the
logic PCL to model a variety of contracts.

2.1 Desirable properties

We now characterize, with the help of some examples, the desirable properties
of any logic for contracts.

As shown in the Sect. 1, a characterizing property of contractual implication
is that of allowing two dual contracting parties to “handshake”, so to make their
agreement effective. This is resumed by the following handshaking property:

Fp—q)AN(g—-p) — pAg (1)

A generalisation of the above property to the case of n contracting parties
is also desirable. It is a sort of “circular” handshaking, where the (i + 1)-th
party, in order to promise some duty p;+1, relies on a promise p; made by the
i-th party (in a circular fashion, the first party relies on the promise of the last
one). In the case of n parties, we would expect the following:

F(pr = p2) A A(Dne1 = Pu) A (P > p1) — P1A-ADy (2)

As a concrete example, consider an e-commerce scenario where a Buyer can
buy items from a Seller, and pay them through a credit card. To mediate the
interaction between the Buyer and the Seller, there is a Bank which manages
payments. The contracts issued by the three parties could then be:

Buyer: I will click “pay” provided that the Seller will ship my item
Seller: I will ship your item provided that I get the money
Bank: I will transfer money to the Seller provided that the Buyer clicks “pay”.

Let the atomic propositions ship, clickpay, and pay denote respectively the
facts “Seller ships item”, “Buyer clicks pay”, and “Bank transfers money”. The
above contracts can then be modelled as:

Buyer = ship — clickpay Bank = clickpay — pay Seller = pay — ship
Then, by the handshaking property (2), we obtain a successful transaction:
F Buyer A\ Bank A Seller — pay A ship

Note that, in the special case that n equals 1, the above “circular” hand-
shaking property turns into a particularly simple form:

Fp—p) — »p (3)

Intuitively, (3) can be interpreted as the fact that promising p provided that p,
implies p (actually, also the converse holds, so that promise is equivalent to p).
It also follows from (1) when p = q.

Another generalisation of the toy-exchange scenario of Sect. 1 to the case
of n kids is also desirable. It is a sort of “greedy” handshaking property, because
now a party promises p; only provided that all the other parties promise their
duties, i.e. p1,...,Pi—1,Pit1,---,Pn- Lhe greedy handshaking can be stated as:

l_/\iel..n((pl/\---/\pi—l/\pi-i—l/\---/\pn)_”pi) — p1A-Apn (4)

So far, we have devised some characterizing properties of handshakings. We
will now focus on further logical properties of contractual implication. As shown
by (1), a contract p — ¢ becomes effective, i.e. implies the promise ¢, when it
is matched by a dual contract ¢ — p. Even more directly, p — ¢ should be
effective also in the case that the premise p is already true:

FpA(p—q) — q (5)

In other words, contractual implication should be stronger than standard impli-
cation, i.e. we expect that the following is a theorem of any logic for contracts:

Fp—>q) — (-9 (6)

On the other hand, we do not want that also the converse holds, since this
would equate the two forms of implication: that is, I/ (p — ¢) — (p — q).

We want contractual implication to share with standard implication a num-
ber of properties. We discuss some of them below. First, a contract that
promises true (written T) is always satisfied, regardless of the precondition.
So, we expect the following tautology:

Fp—T (7)

However, differently from standard implication, we do not want that a con-
tract with a false precondition (written L) always holds, i.e. ¥ L — p. To see
why, assume that 1 — p is a tautology, for all p. Then, it would also be the
case for p = 1, and so by (3) we would deduce a contradiction: (L — 1) — L.

Another property of implication that we want to preserve is transitivity:

Fp—=>a AN(@—>r) — (p—>r) (8)

Back to our previous example, transitivity would allow the promise of the
Buyer (ship — clickpay) and the promise of the Bank (clickpay — pay) to be
combined in the promise ship — pay.

Contractual implication should also enjoy a stronger form of transitivity. We
illustrate it with the help of an example. Suppose an air-flight customer who
wants to book a flight. To do that, she issues the following contract:

Customer : bookFlight — pay

This contract states that the customer promises to pay the required amount,
provided that she obtains a flight reservation. Suppose now that an airline
company starts a special offer, in the form of a free drink for each customer:

AirLine : pay — bookFlight A freeDrink

Of course, the two contracts should give rise to an agreement, because the airline
company is promising a better service than the one required by the customer
contract. To achieve that, we expect to be able to “weaken” the contract of the
airline company, to make it match the contract issued by the customer:

F AirLine — (pay — bookFlight)

Alternatively, one could make the two contracts match by making stronger the
precondition required by the customer, that is:

F Customer — (bookFlight A freeDrink — pay)

More in general, we want the following two properties hold for any logic for
contracts. They say that the promise in a contract can be arbitrarily weak-
ened (9), while the precondition can be arbitrarily strengthened (10).

Fp—q) AN (g—d) = (p—~d) 9)
F@ —p)Ap>q) — ' —q) (10)

Note that the properties (8), (9), (10) cover three of the four possible cases
of transitivity properties which mix standard and contractual implication. Ob-
serve, instead, that the fourth case would make standard and contractual im-
plications equivalent, so it is not a desirable property.

Another property that should hold is that, if a promise ¢ is already true,
then it is also true any contract which promises g:

Fqg — (p—~q) (11)

Of course, we do not want the converse to hold: it is not always the case
that a contract implies its promise: I/ (p — q) — ¢.

2.2 Syntax

The syntax of PCL extends that of IPC. It includes the standard logic connec-
tives =, A, V, — and the contractual implication connective —». We assume a de-
numerable set {p,q,r,s, ...} of prime (atomic) formulae. Arbitrary PCL formulae
are denoted with the letters p, ¢, r, s, ... (note that the font differs from that used
for prime formulae). The precedence of IPC operators is the following, from
highest to lowest: —, A,V,—. We stipulate that — has the same precedence
as —.

Definition 1. The formulae of PCL are inductively defined as:
pu=L [T lp|[-wplpVvp|pAp|p—=p|p—>p

We let p < q be syntactic sugar for (p — q) A\ (¢ — p).

2.3 Axiomatization

We now present an Hilbert-style axiomatization for PCL.

Definition 2. The proof system of PCL comprises all the axioms of IPC, the
Modus Ponens rule [Cut], and the following additional azioms.

T—->T [ZERO]
(p—>p)—p [F1x]
W —=p—-0pPr9—G—q¢) =0 —+q) [PREPOST]

The above axioms are actually a subset of the properties discussed in Sect. 2.1.
The axiom Zero is a subcase of (7), the axiom Fix is just (3), while the axiom
PrePosT combines (9) and (10). As expected, this set of axioms is actually sound
and complete w.r.t. all the properties marked as desirable in Sect. 2.1.

Lemma 1. The properties (1)—(11) are theorems of PCL. Also, we have:

p>q@N(g—>1)—=(p—>(gnT))
p—(qAr)—=@—>qNp—>T1)
p>qV(p—>r)—(p—>I(qgVr)

= (
(
(
(p—>q)— ((g—p)—q

',
',
l_

We present below some of the most significant results about our logic. For a
more comprehensive account, including detailed proofs of all our results, see [4].

Theorem 1. PCL is consistent, i.e. I/ L.

As expected, the following formulae are not tautologies of PCL :

¥ (—q — (p—>aq V(p—q) —q
VLl—p ¥ ((g—p)—q —(@—q

Note that if we augment our logic with the axiom of excluded middle, then
(p = q) < g becomes a theorem, so making contractual implication trivial. For
this reason we use IPC, instead of classical logic, as the basis of PCL .

Another main result about PCL is its decidability. To prove that, we have
devised a Gentzen-style sequent calculus, which is equivalent to the Hilbert-style
axiomatisation. In particular, we have extended the sequent calculus for IPC
presented in [32] with rules for the contractual implication connective —».

Definition 3. The sequent calclus of PCL includes all the rules for IPC [4],
and the following additional rules.

Fip—gqrtp I''p—gqabtp

I'tgq r For r Fb
—— [ZERO] P [Fix] P4 [PREPOST]

I'Fp—>gq Tip—>»qtr I''p—»qta—>0>

We now establish the equivalence between the two logical systems of PCL.
In the following theorem, we denote with -z provability in the Hilbert-style
system, while ¢ is used for Gentzen-style provability.

Theorem 2. For all PCL formulae p, we have that: g p < 0 g p.

Our sequent calculus enjoys cut elimination. The proof is non-trivial, since
the rules for — are not dual, unlike e.g. left /right rules for A. Nevertheless, the
structural approach of [32] can be adapted. Full details about proofs are in [4].

Theorem 3 (Cut Elimination). If p is provable in PCL, then there exists a
proof of p which does not use the Cur rule.

The consistency result can be extended to negation-free formulae. This will
be useful in Sect. 3, where we will define our calculus.

Lemma 2. If p is free from {L, -}, then t/p — L.

The subformula property holds in PCL. Cut-free proofs only involve subfor-
mulae of the sequent at hand.

Theorem 4 (Subformula Property). If D is a cut-free proof of T & p, the
formulae occurring in D are subformulae of those occurring in T' and p.

Decidability then follows from theorems 3 and 4.
Theorem 5. The logic PCL is decidable.

As a further support to our logic, we have implemented a proof search algo-
rithm, which decides whether any given formula is a tautology or not. Despite
the problem being PSPACE complete [36], the performance of our tool is ac-
ceptable for the examples presented in this paper. Our tool is available at [31].

We now establish some expressiveness results, relating PCL and IPC. More in
detail, we consider whether sound and complete homomorphic encodings exist,
that is, whether — can be regarded as syntactic sugar for some IPC context.

Definition 4. A homomorphic encoding m is a function from PCL formulae
to IPC formulae such that: m is the identity on prime formulas, T, and L; it
acts homomorphically on N, V,—,—; it satisfies m(p — q) = C[m(p), m(q)] for
some fized IPC context C(e,e).

Of course, each homomorphic encoding is uniquely determined by the con-
text C. Several complete encodings exist:

Lemma 3. The following homomorphic encodings are complete, i.e. they satisfy
Fp = Frpc mi(p). Moreover, they are pairwise non-equivalent in IPC.

mo(p — q) = mo(q) mi(p — q) = (m1(q) — mi(p)) — mi(q)
mz(p — q) = 7=(m2(q) — m2(p)) — ma(q) ms(p - q) = =(ms(q) — ms(p)) Vms(q)
ma(p — q) = ((ma(q) — ma(p)) Va) — ma(q)

where a is any prime formula.
However, there can be no sound encodings, so — is not just syntactic sugar.

Theorem 6. If m is a homomorphic encoding of PCL into IPC, then m is not
sound, i.e. there exists a PCL formula p such that \-1pc m(p) and t p.

In [4] we have proved further properties of PCL, including some relations
between PCL and IPC, the modal logic S4, and propositional lax logic. Also, we
have explored there further properties and application scenarios for our logic.

2.4 Examples

Example 1 (Real Estate). We now exploit PCL to model a typical preliminary
contract for a real estate sale in Italy.

Assume a buyer who is interested in buying a new house from a given seller.
Before stipulating the actual purchase contract, the buyer and the seller meet to
stipulate a preliminary sale contract, that fizes the terms and conditions of the
purchase. Typically, this contract will indicate the price and the date when the
deed of sale will take place, and it will outline the obligations for the buyer and
the seller. When the preliminary contract is signed by both parties, the buyer will
pay a part of the sale price. By the Italian laws, if the seller decides not to sell
the house after having signed the preliminary contract and collected the deposit,
she must pay the buyer back twice the sum receiwed. Similarly, if the buyer
changes his mind and decides not to buy the house, he loses the whole deposited
amount. We model the preliminary sale contract as two PCL formulae, one
for the buyer and the other for the seller. The buyer will sign the preliminary
contract (signB), provided that the seller will actually sell her house (sellS), or
she refunds twice the sum received (refundS). Also, the buyer promises that if
he signs the preliminary contract, than either he will pay the stipulated price
(payB), or he will not pay and lose the deposit (refundB).

Buyer = ((sellS V refundS) — signB) A (signB — (payB V (—payB A refundB)))

The seller promises to sign the preliminary contract (signS), provided that either
the buyer promises to pay the stipulated amount, or he promises to lose the
deposit. Also, the seller promises that if she signs the preliminary contract,
then she will either sell her house, or will not sell and refund twice the sum
recetved.

Seller = ((payB V refundB) — signS) A (signS — (sellS V (—sellS A refundS)))

A first consequence is that the two contracts lead to an agreement between
the buyer and the seller, that is both parties will sign the preliminary contract:

F Buyer A Seller — signB A signS (12)

As a second consequence, if one of the parties does not finalize the final deed
of sale, than that party will refund the other:

F Buyer N Seller N —payB — refundB (13)
F Buyer A Seller N —sellS — refundS (14)

Example 2 (Online sale). We now describe a possible online sale between two
parties. In order to buy an item, the buyer has to contact first the bank, to
reserve from his account a specific amount of money for the transaction. When
this happens, that amount is no longer available for anything else. We model
this reservation with the formula lock. Then, the buyer has to make an offer to
the seller: this is modelled with offer. The seller, when provided with an offer,
evaluates it. If she thinks the offer is good, and the money has been reserved, then
she will send the item (send). Otherwise, she cancels the transaction (abort).
When the transaction is aborted, the bank cancels the money reservation, so that
the buyer can use the amount for other transactions (unlock).

We now formalize this scenario. The buyer agrees to lock A offer, provided
that either the item is sent, or the money reservation is cancelled. The seller
agrees to evaluate the offer. The bank agrees to cancel the reservation when the
transaction is aborted.

Buyer = (send V unlock) — (lock A offer)
Seller = offer — ((lock — send) V abort)
Bank = (lock A abort) — unlock

Under these assumptions, we can see that either the item is sent, or the
transaction is aborted and the reservation cancelled.

F (Buyer A Seller A Bank) — (send V (abort A unlock))

Example 3 (Dining retailers). Around a table, a group of n cutlery retailers
is about to have dinner. At the center of the table, there is a large dish of food.
Despite the food being delicious, the retailers cannot start eating right now. To
do that, and follow the proper etiquette, each retailer needs to have a complete
cutlery set, consisting of n pieces, each of a different kind. FEach one of the n
retailers owns a distinct set of n piece of cutlery, all of the same kind. The
retailers start discussing about trading their cutlery, so that they can finally eat.

We formalize this scenario as follows. We number the retailers r1,...,7n
together with the kinds of pieces of cutlery, so that r; initially owns n pieces of
kind number i. We then write g; ; for “r; gives a piece (of kind i) to r;”. Since
retailers can use their own cutlery, we assume g;; to be true. Retailer r; can
start eating whenever e; = /\j gj.i- Instead, he provides the cutlery to others
whenever p; = |\ gi,;-

Suppose that r1 commits to a simple exchange with ro: they commit to go 1 —
g1,2 and g1,2 — g2.1, and the exchange takes place since g2 1 Ag1 2 can be derived.
While this seems a fair deal, it actually exposes ry to a risk: if rs,...,r, perform
a similar exchange with ro, then we have go; A gi 2 for all i. In particular, g; 2
holds for all i, so ro can start eating. This is however not necessarily the case
for r1, since rs3 has not committed to any exchange with r1.

A wise retailer would then never agree to a simple exchange go1 — g1,2.
Instead, the retailer r1 could commit to a safer contract:

e1 > pP1=811N821 N Agn1>811N812N - Agin

The idea is simple: ry requires each piece of cutlery, that is, r1 requires to
be able to start eating (e1). When this happens, r1 agrees to provide each other
retailer with a piece of his cutlery (p1). Now, assume each retailer r; commits
to the analogous contract. We then have the desired agreement (proof in [4]).

F /\(ei - pi) — /\ei

3

3 The Calculus

We now define our calculus of contracting processes. It is a variant of Concurrent
Constraints Programming [35], featuring primitives for multi-party synchroniza-
tion via contracts.

10

3.1 Syntax

We use a denumerable set of names, ranged over by n, m, ..., and a denumerable
set of wvariables, ranged over by x,vy,.... Metavariables a,b range over both
names and variables. Intuitively, a name plays the same role as in the w-calculus,
while variables roughly behave as names in the fusion calculus [30]. That is,
distinct names represent distinct concrete objects, each one with its own identity.
Instead, distinct variables can be fused together to some name. A fusion o is a
substitution that maps a set of variables to a single name. We write o = {n/Z}
for the fusion that replaces each variable in & with the name n. Unlike [30], our
calculus can fuse a variable only once.

Constraints are represented as PCL formulae, extended so to allow param-
eters within primes. Note that such extension does not introduce quantifiers,
so leabing PCL a propositional logic: indeed, the prime formula p(a) is still
atomic from the point of view of the logic. We let letters ¢, d range over arbi-
trary PCL formulae, while letters u, v range over {_L, =}-free formulae.

The syntax of our calculus follows.

Definition 5 (Processes). Prefizes and processes are defined as follows:

Tu=T ‘ ask ¢ ‘ tellu ‘ check ¢ ‘ fuse, ¢ ‘ join, ¢ (prefizes)
Pi=u Zm.Pi | P|P | (a)P | X(a) (processes)
iel

Prefixes 7 include 7 (the standard silent operation as in CCS), as well as
tell, ask, and checkas in Concurrent Constraints [35]. The prefix tell u augments
the context with the formula u. The prefix check ¢ checks if ¢ is consistent with
the context. The prefix ask ¢ causes a process to stop until the constraint c is
deducible from the context. Note that, since we only allow negation-free for-
mulae u here, the context will always be consistent, by Lemma 2. The prefixes
fuse, ¢ and join, ¢ drive the fusion of the variable x. The prefix join, ¢ instanti-
ates x to any known name, provided that after the instantiation the constraint ¢
is satisfied. The prefix fuse, ¢ fuses z with any other set of known variables,
provided that, when all the fused variables are instantiated to a fresh name,
the constraint c is satisfied. To avoid unnecessary fusion, the set of variables
is required to be minimal (see Def. 8). To grasp the intuition behind the two
kinds of fusions, think of names as session identifiers. Then, a fuse, ¢ initiates
a new session, while a join, ¢ joins an already initiated session.

Processes P include the active constraint u, the summation ZZ ;. P; of
guarded processes, the parallel composition P|P, the scope delimitation (a)P,
and the instantiated constant X (&), where @ is a tuple of names/variables. When
a constraint c is at the top-level of a process, we say it is active. We use a set of
defining equations {X;(Z) = P;},; with the provision that each occurrence of X;
in Py, is guarded, i.e. it is behind some prefix. We shall often use C' = {¢1, ca, ...}
as a process, standing for ¢;|ca|---. We write 0 for the empty sum. Singleton
sums are simply written 7.P. We use + to merge sums:

i€l icJ ielUJ

We stipulate that + binds more tightly than |.

11

Free variables and names of processes are defined as usual: they are free
whenever they occur in a process not under a delimitation. Alpha conversion
and substitutions are defined accordingly. As a special case, we let:

(fusey c){n/x} = (join, c){n/z} = ask c{n/z}

That is, when a variable x is instantiated to a name, the prefixes fuse, ¢ and
join, ¢ can no longer require the fusion of z, so they behave as a plain ask c.
Henceforth, we consider processes up-to alpha-conversion.

3.2 Semantics

We provide our calculus with both a reduction semantics and a labelled tran-
sition semantics. As usual for CCP, the former explains how a process evolves
within the whole context (so, it is not compositional), while the latter also ex-
plains how a process interacts with the environment.

3.2.1 Transition semantics

We now define a labelled transition semantics of processes. The labelled relation
2 is compositional: all the prefixes can be fired by considering the relevant
portion of the system at hand. The only exception is the check ¢ prefix, which
is inherently non-compositional. We deal with check ¢ by layering the reduction
relation ~— over the relation .

We start by introducing in Def. 6 the actions of our semantics, that is the
set of admissible labels of the LTS. The transition relation is presented in Def. 7.

Definition 6. Actions o are as follows, where C' denotes a set of constraints.
a:::T|C|C’FC|C’F5c}C’Fgc}C’lfJ_|(a)a (actions)

The action 7 represents an internal move. The action C' advertises of a
set of active constraints. The action C' F ¢ is a tentative action, generated
by a process attempting to fire an ask ¢ prefix. The set C collects the active
constraints discovered so far. Similarly for C' £ ¢ and fuse, ¢, for C' - ¢ and
join, ¢, as well as for C' I/ L and checke. In the last case, C also includes c.
The delimitation in (a)a is for scope extrusion, as in the labelled semantics of
the m-calculus [34]. We write (@) to denote a set of distinct delimitations,

-,

neglecting their order, e.g. (ab) = (ba). We simply write (@b) for (@ U b).

Definition 7 (Transition relation). The transition relations — are the smallest
relations between processes satisfying the rules in Fig. 1. The last two rules in
Fig. 1 define the reduction relation —-.

Many rules in Fig. 1 are rather standard, so we comment on the most peculiar
ones, only. The overall idea is the following: a tentative action label carries
all the proof obligations needed to fire the corresponding prefix. The Par*
rules allow for exploring the context, and augment the label with the observed
constraints. The Crose* rules check that enough constraints have been collected
so that the proof obligations can be discharged, and transform the label into a 7.
The Tor* rules act on the top-level, only, and define the semantics of check c.

12

7.P 5 P [Tay] aske.P 2 p [AsK] tellu.P = u|P [TeLy

FC JC
checkc.P debrl, P [Cueck] fuse;c.P W_—I> P [Fuse] join,c.P W_—I> P [JoN]
{u} 0
U —— u [CONSTR] > miP = Y, mi.P; [IpLeSuwm]
P (@¢C P Q (! o' P (@c P Q (b)(C"re) Q'
@)U [PARCONSTR] (@) (CU0'Fe) [PARASK]
PlQ D), prgy PlQ BT, prigy
— s 1_F — s r_J
P (@c P Q (b)(C'Fy¢) , p (@c P Q (b)(C'F3e) Ql
(@b)(CuC’FE) [PARFUSE] (@b)(CUC'F]e) [PARION
P (t_i)c P/ Q (b)(C/VJ_) / P L} P/
— - [PARCHECK] — [PARTAU]
P|Q (ab)(CUC }7”-) P/|Q/ P|Q — P |Q
TP = P’ P{i/z} = P/
”—a [Sum] # if X(Z) = P [Drr
> mi.Pi — P’ X(a) = P’
PP PP
(a)P = (a)P ()P —— P’
p) proope
p [CLOSEASK]
P = (a)P’
Tnd Te
IOy e A o={n/z}
pe [CLOSEJOIN]
P 5 (na@)(P'o)
s F
p WO b {n/zy} nfresh CFlcc
pe [CLOSEFUSE]
P — (na)(P'o)
PP p), pr
——— [TorTau] [ToPCHECK]|
P— P P— (@)P ClL

Figure 1: The transition system for our calculus. Symmetric rules for +, | are
omitted. The rules Par* have the following no-capture side condition: @ is fresh
inb,C, c,z,Q’, while b is fresh in C, P'.

The rules for prefixes simply generate the corresponding tentative actions.
The rule TeL adds a constraint to the environment, thus making it active.
Active constraints can then signal their presence through the Constr rule: each
constraint generates its own singleton. A sum of guarded processes » m.P

13

can instead signal that it is mot a constraint, by generating the empty set of
constraints through IpLeSum.

An advertised constraint is used to augment the tentative actions through
the Par* rules. The rule ParConsTr merges the sets of constraints advertised by
two parallel processes. The rule ParAsk allows for augmenting the constraints
C in the tentative action C' - ¢ generated by an Ask, by also accounting for
the set of constraints advertised by the parallel process. Similarly for the rules
ParFuUsE, ParJoiN, ParCueck. The rule ParTau simply propagates 7 actions of
parallel processes. The Par* rules also merge the set of delimitations; variable
and name captures are avoided through a side condition.

The rules DeL and Open handle delimitation. As usual, when a is not men-
tioned in an action, we can propagate the action across a delimitation (a) by
using Der. The rule Oren instead allows for scope extrusion. Note that Oren
has no side conditions: all the checks needed for scope extrusion are already
handled by the Par* rules.

The Crose* rules are the crucial ones, since they provide the mechanism
to finalize the actions generated by ask, join, and fuse. The rule CroseAsk is
the simplest: if the collected constraints C entail ¢, the ask prefix can indeed
fire. In that case, a silent action 7 is generated, and the delimitations (@) can
be brought back to the process level, stopping the scope extrusion. The rule
CroseJoiv is similar to CroseAsk, except it also instantiates the variable x to a
name n. To this purpose, we apply a substitution o = {?/=} to the constraints
C, ¢ before testing for entailment. If that holds, we apply o to the residual
process P’ as well. Of course, we need to ensure that all the occurrences of x
are substituted: this is done by requiring x to be present in the delimitations
of the action in the premise, hence requiring the whole scope of x is at hand.
Further, we constrain n in the same fashion, so that = can only be instantiated
to an existing name. The rule CroseFuse acts similarly, yet it cannot instantiate
x to an existing name; rather, the name n here is a fresh one, introduced in the
process through a delimitation. Note that CLoseFuse may fuse several variables
together, since n substitutes for the whole set xy. The set ¥ of the variables to
be fused with z is chosen according to the local minimal fusion relation C' ¢ ¢,
to be defined in a while (Def. 8).

Summing up, the LTS first generates tentative actions, and then converts
them to 7 when enough constraints are discovered (rules Crose*). Then, the 7
action can be propagated towards the top level (rule ParTav). A prefix check ¢
cannot be handled in the same fashion, since it requires to check the consistency
of ¢ with respect to all the active constraints. To this aim, we use the reduction
relation —, layered over the — relation. The reduction — only includes internal
moves — (rule TorTau) and successful check moves (rule TorCurck). This
effectively discards tentative actions, filtering for the successful ones, only. Note
that »— is only applied to the top level.

Definition 8 (Local Minimal Fusion). A fusion ¢ = {n/Z} is local minimal
for C, ¢, written C Flo¢ ¢, iff:
Ic'cC : (Clotco AN BBCZ : C'{"a} b c{n/a})

=

We now briefly discuss the motivations behind this definition. First, we
consider a subset C” of C' (locality restriction). Then, we require that C” entails ¢

14

when the variables 2" are fused. The fusion must be minimal, that is fusing a
proper subset of variables must not cause the entailment.

The rationale for minimality is that we want to fuse those variables only,
which are actually involved in the entailment of ¢ — not any arbitrary superset.
Pragmatically, we will often use fuse, ¢ as a construct to establish sessions: the
participants are then chosen among those actually involved in the satisfaction
of the constraint ¢, and each participant “receives” the fresh name n through
the application of ¢. In this case, n would act as a sort of session identifier.

To understand the motivations underlying the locality restriction, note that
a set of variables Z may be minimal w.r.t. a set of constraints C’, yet not minimal
for a superset C' D (', as the following example shows. Let:

c=p(x) C" ={q(y),q(z)Vs—py)} C=C"U{s}

To obtain C’ F ¢, all the variables z,y, z must be fused. It is immediate to see
that this fusion is minimal: to produce p(x) we must exploit the implication,
so fusing x with y is mandatory. Further, the hypothesis q(z) Vs can only be
discharged through q(y), and this forces the fusion of y and z. Instead, to obtain
C F ¢, we can simply fuse z with y; (and neglect z), because the hypothesis
q(z) Vs can now be discharged through s. So, in this case the set of variables
x,9, 2 is not minimal. This phenomenon could, in principle, lead to unexpected
behaviour. Consider, for instance:

P = (z)(y)(2)(fusey c.P | C") | s
Q = (2)(y) (=) (fuse, e.P | C' |5

where, with some abuse of notation, C’ stands for the parallel composition of its
constraints. In P, when dealing with the process (x)(y)(z)(fuse, c.P | C"), we
can apply CroseFusk to fuse the variables x, y, z, because only C” is known at this
time, and the set of variables is minimal for C’. Instead, in Q) the application of
CroseFuse must be deferred until a delimitation () is found; at that time the
whole set of constraints C' is known, so making the fusion z,y, 2z not minimal
for C. Of course, this phenomenon clashes with our intuition that P and Q
should be equivalent, since @ is obtained from P through a scope extrusion.
The key issue here is that minimality is intrinsically non-compositional: dis-
covering new constraints can break minimality. To recover compositionality, our

definition of C' l—l{orf/z} ¢ does not require z' to be minimal for C', but to be such

for any subset C' of C'. This allows, for instance, to have both C' I—{{Onc/zyz} c and
C I—l{orf/my} cin the example above. The intuition behind this is that it is not nec-
essary to (globally) explore the whole system to decide if a set of contracts leads
to an agreement — inspecting any set of (locally) known contracts is enough. To
a local observer, a set z, y, z of variables to fuse may appear minimal. To a more
informed observer, the same set may appear to be non-minimal (the minimal
one being z,y). Both choices for fusion are allowed by our semantics.

Our semantics does not make use of any structural equivalence relation.
However, such a relation can be defined as the minimum equivalence satisfying
the axioms of Fig. 2. This relation turns out to be a bisimulation.

Theorem 7. The relation = is a bisimulation, i.e.

P=Q%Q = 3IPP. PSP =Q

15

Plo=P PIQ=QIP PlQIR)=(PIQIR
(@)(PIQ) = Pl(@)Q ifag free(P) (a)(b)P = ()(0)Q

Figure 2: Structural equivalence.

— — [TAu]
(@ (r.P+Q|R) — (@) (P|R)

- - [TELL]
@) (tellu.P + Q | R) — (@)(u| P | R)

Ckec
[Ask]
(@) (C|aske.P+ Q| R) — (@)(C | P|R)
C,cl/ L R free from active constraints
[CHECK]
(@) (C'| checke.P+ Q| R) — (@) (P | R)
o= {n/xy} nfresh CF™"c
[FUSE]

(2j@) (C | fuse, c.P + Q | R) — (nd) (C'| P | R)o

C{r/a} & efnfa}
(znd) (C | join, c.P + Q | R) — (nd) (C'| P | R){"/x}

[JoIN]

=P —Q =Q
P—Q

[STrUCT)]

Figure 3: The reduction relation

3.2.2 Reduction Semantics

Our calculus also admits a reduction semantics, which agrees with the »— re-
lation we introduced above. In order to define it, we first augment the struc-
tural equivalence relation = of Fig. 2 so to include (possibly recursive) process
equations X (#) = P. Also, we (re-)define the relation — by working up-to
=-equivalent processes.

Definition 9 (Reduction). Reduction — is the smallest relation between pro-
cesses satisfying the rules in Fig. 3.

We now comment the rules for reduction. Rule Tau simply fires the 7 prefix.
Rule TerL augments the context (R) with a constraint u. Rule Ask checks
whether the context has enough active constraints C' so to entail ¢. Rule Curck
checks the context for consistency with ¢. Since this requires inspecting every
active constraint in the context, a side condition precisely separates the context
between C and R, so that all the active constraints are in C', which in this case
acts as a global constraint store.

Rule Fusk replaces a set of variables zy/, with a fresh name n, hence fusing
all the variables together. One variable in the set, x, is the one mentioned in the

16

fuse, ¢ prefix, while the others, ¥/, are taken from the context. The replacement
of variables is performed by the substitution o in the rule premises. We require
that o is a minimal fusion for C' |- ¢, as formally defined below.

Definition 10 (Minimal Fusion). A fusion ¢ = {n/Z} is minimal for C' I ¢,
written C' =™ ¢ iff:

Cobco N BGCZ : C{nfa}F c{v/a}

A minimal fusion ¢ must cause the entailment of ¢ by the context C. Fur-
thermore, fusing a proper subset of variables must not cause the entailment.
The rationale for minimality is exactly the one we discussed for local minimal
fusion in Def. 8. Here, the locality restriction is already implicit in rule Fusg,
since the context R could contain active constraints as well.

Rule Joix replaces a variable with a name n taken from the context. Note
that, unlike Fusg, n is not fresh here. To enable a join, ¢ prefix, the substitution
must cause ¢ to be entailed by the context C'. Intuitively, this prefix allows to
“search” in the context for some x satisfying a constraint c.

Rule StrucT simply allows to consider processes up-to structural equivalence.

The reduction relation coincides with the one defined through our labelled
semantics, when processes are considered up-to structural equivalence.

Theorem 8. Let —,. be the relation defined in Def. 9 and let —; be the relation
defined in Def. 7. Then:

P—,P < 3Q,Q . P=Q—,Q =P

Proof. (Sketch) The (=) implication follows by rule induction on the definition
of —,.. Indeed, most rules are axioms, and are easily checked. The only excep-
tion is Struct, which is handled by the inductive hypothesis and by choosing
Q, Q' accordingly.

The (<) implication requires more care. First, because of rule Strucr, we
can assume P = @ and P’ = Q' without loss of generality. Then, we check the
TopTau and TorChrck cases independently. This is done by rule induction on
the compositional relation =+, by proving the following invariants: (below, R
contains no active constraints)

rPLp = P, P
p @(Cro)

- P = (@b)(C|R|Q + ask c.S)A
P = 3b,Q,R,S. -
P"= (b)(C|R|S)

p @@ o 3.0.R. 5. P/E (af)(C|R|Q + join, ¢.S)A
P = (b)(C|RIS)
(@)(CrEe) - P = (@b)(C|R|Q + fuse, c.S)A
p =Y pr ,Q, R, S. -
= ORI = mens)
p@CYD W.0.R. 5. P= (af)(C|R|Q + check c.S)A
P = (b)(C|RS)
p 99 pi = 3b,R. P = (ab)(C|R) A P' = (b)(C|R)

17

3.3 Examples

We illustrate our calculus through some examples.

Example 4 (Handshaking). Recall the basic handshaking in Sect. 1.1:

Alice = () (tellb(z) — a(w). fuse, a(x). lendAirplane)
Bob = (y) (tella(y) — b(y). fuse, b(y). lendBike)

A possible trace is the following:

Alice | Bob
5 (x) (b(z) — a(z) | fuse, a(x). lendAirplane) | Bob
= (z) (b(z) — a(x) | fuse, a(x). lendAirplane) |
(y) (aly) — b(y) | fuse, b(y). lendBike)
5 (n) (b(n) — a(n) | lendAirplane{"/z} |
a(n) — b(n) | ask b(n). lendBike{"/y})
= (n) (b(n) — a(n) | lendAirplane{n/=} |
a(n) — b(n) | lendBike{"/y})

In step one, we use TeLL,PARTAU,DEL (o fire the prefiz tellb(x) — a(z). Similarly,
in step two we fire the prefiz tella(y) — b(y) through the very same rules. Step
three is the crucial one. The prefiz fuse, a(x) is fired through rule Fuse. Through
rules ConsTR,PARFUSE, we discover the active constraint ¢, = b(x) — a(x). We
use rule OpeN to obtain the action (x){c.} F" a(z) for the Alice part. For the
Bob part, we use rule Constr to discover ¢, = a(y) — b(y), which we then
merge with the empty set of constraints obtained through rule IoLe; we finally
apply Opex and obtain (y){cy}. At the top level, we can then apply PARFUsE
to deduce (z,y){ca,cp} FI a(x). Finally, rule CroseFuse here can be applied,
fusing and y by instantiating them to the fresh name n. It is easy to check
that {cq,cp} l—{nc/m 4y a(@). Note that the fusion {n/x,y} transforms fuse, b(y)
into ask b(n), which is then fired in the last step.

Example 5 (Unfair handshaking). To better understand the role of contractual
implication, consider the following processes:
Alice’ = (z) (tella(z). fuse, b(x). lendAirplane)
Bob' = (y) (tellb(y). fuse, a(y). lendBike)
Note that, differently from Ez. 4, the contracts of Alice’ and Bob’ do not use —».
It is straightforward to check that P' = Alice’ | Bob" behaves similarly to P =

Alice | Bob, since the handshaking is still performed. However, the processes P
and P’ behave quite differently in the presence of a third kid, e.g. let:

Carl = (z) fuse, a(z2).0

The system P’ | Carl allows Carl to fire his own prefix, by fusing x with z. So,
Carl will be allowed to play with Alice’s airplane, even though Alice receives no
promises from Carl. Indeed, after the fusion, Alice will be stuck on an ask b(n).

18

Technically, this happens because {a(x)} e a(z) holds. In this case, Bob
: o Anja,z} S . :
will be stuck as well: he cannot play with Alice’s airplane, since Carl took it.
By contrast, the system P | Carl does not allow Carl to play with the airplane.
Indeed, Alice specified in her contract that she will lend her airplane only if
a bike is promised in return. Since Carl promises no bike, he cannot use the

airplane. Instead, Bob can successfully exchange his bike with Alice’s airplane.

Example 6 (Dining retailers). We reuse the formulae of Fx. 3, augmenting
each prime formula with a parameter x.

ei(z) = Njgji(x) pi(z) = A;gij(@)
R; = () (teII ei(z) — pi(x). fusey pi(x). |; givei,j)

As discussed in Ex. 3, we have that Nie;(n) — pi(n) is enough to entail p;(n)
for all i. So, all the fuse prefizes are fired, and all the give; ; continuations
erecuted. Note that, as a process the above is actually no more complex than
the simple handshaking of Fx. 4. Indeed, all the complexity ends up inside the
contract, and not in the process code, as it should be.

Example 7 (Insured Sale). We model a seller S who will ship any order as long
as she is either paid upfront, or she receives an insurance from the insurance
company I, which she trusts.

s(z) = order(x) A (pay(x) V insurance(x)) — ship(z)
S = (x)tell s(x).fuse, ship(x).(S | doShip(z))

The process S above is recursive, so that many orders can me shipped. The
exposed contract is straightforward. Below, we model the insurer. As for the
seller, this is a recursive process. The contract used here is trivial: a premium
must be paid upfront.

i(z) = premium(z) — insurance(x)
I = (x)tell i(x).fuse, insurance(zx).
(I|7.check —pay(x).(refundS (z) | debtCollect(x)))

When an insurance is paid for, the insurer will wait for some time, modelled by
the T prefiz. After that is fired, the insurer will check whether the buyer has not
paid the shipped goods. In that case, the insurer will immediately indemnify the
seller, and contact a debt collector to recover the money from the buyer.

Note that S and I can be specified without the need to explicitly mention a
specific buyer. Indeed, the interaction between the parties is loosely specified, so
that many scenarios are possible. For instance, the above S and I can interact
with the following buyer, paying upfront:

bo () = ship(z) — order(x) A pay(z)
By = (x)tell b(x).receive (x)

A buyer can also pay later, if provides insurance:

b1(z) = ship(z) — order(x) A premium(z)
By = (z)tell b(z).(receive(x) | 7.tell pay(z))

19

Interaction is also possible with an “incautious” buyer which pays upfront with-
out asking any shipping guarantees.

by () = order(z) A pay(x) By = By
Finally, interaction with a malicious buyer is possible:
bs(z) = order(z) A premium(x) B3 = By

Here, the insurer will refund the seller, and start a debt collecting procedure.
This is an example where a violated promise can be detected so to trigger a
suitable recovery action. Summing up, note the role of the CroseFuse rule in
these scenarios: the minimality requirement makes sure the insurer is involved
only when actually needed.

Example 8 (All-you-can-eat). Consider a restaurant offering an all-you-can-
eat buffet. Customers are allowed to have a single trip down the buffet linemeal,
where they can pick anything they want. After the meal is over, they are no
longer allowed to return to the buffet. In other words, multiple dishes can be
consumed, but only in a single step.

We model this scenario through the following processes:

Buffet = (x) (pasta(x) | chicken(z) | cheese(x) | fruit(x) | cake(x))
Bob = (x) fuse, pasta(z) A chicken(z). Satiated B
Carl = (x) fuse, pasta(z).fuse, chicken(z). SatiatedC

The Buffet above can interact with either Bob or Carl, and make them sa-
tiated (we assume that SatiatedB and SatiatedC have no free variables). Here,
Bob eats both pasta and chicken in a single meal. By contrast, Carl eats the
same dishes but in two different meals, thus violating the Buffet policy:

Buffet | Carl —* SatiatedC | P

Indeed, the Buffet should forbid Carl to eat the chicken, i.e. to fire the second
fuse, . To enforce the Buffet policy, we first define the auziliary operator ®. Let
(pi)ier be arbitrary PCL formulae. Take a fresh prime symbol r, a fresh name
o, and fresh variables z,(z;)icr. Then,

P ri = (0)(2)(zi)ic1(r(0,2) | licrr(0, 1) — pi)

icl

To see how this works, consider the process ®;cr pi|@ where Q fires a fuse,
which demands a subset of the constraints (p;)icy with J C I. To deduce p; we
are forced to fuse z; with z (and x); otherwise we can not satisfy the premise
r(o,z;). Therefore all the (z;)ics are fused, while minimality of fusion ensures
that the (z;);cp\g are not. After fusion we then reach

(0)(m)((zi)iel\.](liens r(o, 2i) = pi)l lics (r(0,m)[r(0,m) — Pz‘)) | Q'
where m is a fresh name resulting from the fusion. Note that the (pi)icr\; can

no longer be deduced through fusion, since the variable z was “consumed” by the
first fusion. The restricted name o prevents from interference with other similar

20

J
P———— %P Coteco

1 — - CLOSEJOIN

P L (i@pPo o@)Ci []
p (zgma)(Crie) o, CF7¢

- if o(z) =n fresh [CLosEFuUsE]

o () C it

Figure 4: Alternative labelled semantics for fuse and join.

constraints which may be available in the context. The rough result is that @®; p;
allows a subset of the (p;)icr to be demanded through fusion, after which the
rest is no longer available.

We can now exploit the ® operator to redefine the Buffet as:

Buffet’ = (x)(pasta(x) @ chicken(x) & cheese(z) & fruit(x) & cake(x))
The new specification actually enforces the desired buffet policy:

Buffet' | Carl +/* SatiatedC | P

3.4 Fusions Involving Many Names

Consider the semantics fuse, ¢ and join, ¢ (Def. 7). A fuse, ¢ fuses x and other
variables in the context with a single fresh name n. Similarly, a join, ¢ instan-
tiates x with one name from the context. While we consider multiple variables
for fuse, in no case we consider multiple names.

In Def. 11 below we introdce an alternative semantics for fuse and join. This
semantics allows these primitives to handle multiple names. A prefix join; c can
now be indexed with a vector of variables &, instead of a single variable x.

Definition 11. The alternative labeled semantics is defined by all the rules in
Fig. 1, except that CroseJoin and CroseFuse are replaced as in Fig. 4.

The notion of local minimal fusion is adapted as follows.

Definition 12 (Local Minimal Fusion). The relation C 7 ¢ holds whenever:
3C'CC : (C'otco AN o’ Co: C'o’ o)

The new semantics of join; ¢ makes the process wait until a set of names 7 is
found so that ¢{7/Z} is entailed. The instantiation of # need not be injective,
in general. For instance, we have the following transition:

() pr,m)) | (@)(w)ioing, plr,y).Q) —
(m)(m) (p(nm) | Q{n/,m/y})

In the same spirit, a fuse, ¢ can now involve multiple names. As in Def. 7,
x is still instantiated to a fresh name n. Instead, the variables i taken from the
context do not need to be instantiated with n. We allow them to be instantiated

21

to either n or or any other name found in the context. For instance, we have
the following transition, where n, m, o are names, and x, y, z, w are variables.

()) w) plzm,w)) | ((@)(y)(0) fuse. p(a, y,0).Q) —
(m)(m) (p(n,m,) | Q{n/z.m/y})

Note how the variable z in the context had to be instantiated with the existing
name o. Dually, the variable y had to be fused with name m from the context.
Variables z, w instead are fused with the fresh name n.

Example 9 (Synchronization involving multiple names). Let:

P = (2)(y)(n) p(z,n,y)

The constraint P represents an “open” contract, in which the name n is fized, but
the variables x,y can be instantiated by the context. For instance, the process:

P| (w)('z)(m) fusey, p(w,z,m).Q

is able to fire the fuse prefiz. The variable w will be fused with x: both are
instantiated to a fresh name (say, o). The variable z instead must be instantiated
to the existing name n. Similarly, the variable y must be instantiated to the
name m. The residual process will then be (assuming o,n fresh in Q):

(0)(m)(m) (plo,n,m)|@{0/w,n/2})

Example 10 (Linear disjunction). We exploit the alternative semantics of fuse
to construct a variant B of the all-you-can-eat operator & introduced in Ex. 8.
Intuitively, & allows one to consume any number of dishes, as long as a single
fuse prefiz is involved. The operator B is stricter than &, since it allows only
one dish to be consumed.

Formally, B is defined as follows:

Biiipi = (m,ma, ... ,mn, y) (r(m, y)| 72 (r(m, mi) — pi))

Above, m and the m; are names, while y is a variable. When a fuse demands a
constraint p;, this will cause the fusion of y and m;, so that the guard r(m,m;)
can be discharged. The restricted name m prevents from interference with other
similar constraints which may be available in the context.

In the following example, Bob is not be allowed to fire its fuse , since it
requires two dishes. Carl can instead fire its first fuse and obtain the pasta;
however, he cannot eat the chicken as well.

Buffet = (x) (pasta(z) H chicken(z) B cheese(z) B fruit(x) B cake(x))
Bob = (x) fuse, pasta(z) A chicken(z). Satiated B
Carl = (x) fuse, pasta(z).fuse, chicken(x). SatiatedC

The above works as intended. Since y can be fused with one name m;, only
one dish can be consumed: therefore, Bob cannot eat two dishes, and Carl is
prevented to eat a second time.

Note that, under the standard semantics of fuse given in Def. 7, the H
operator above would not work, since y could be fused only with a fresh name,
hence not with any of the m;. Instead, the semantics in Def. 11 allows to
instantiate x to a fresh name while fusing y with one of the m;.

22

In real-world contracts, the binding between the principals and the promises
they are making is usually made explicit. For instance, when Alice says “I will
lend my airplane provided that I will borrow a bike”, she is actually issuing
the contract “Alice says that she will lend her airplane provided that she will
borrow a bike”. To cope with this, in [3] we have shown an extensions of the
logic PCL with a says modality which allows for expressing, within a contract,
the identity of the principal who is promising something. For instance, Alice’s
contract can now take the form:

Alice says (z says b(z)) — a(x)

This means that a principal named Alice is promising her airplane a in a ses-
sion z, provided that some (unknown) principal z is promising a bike b. The
additional information contained in such contract can be exploited, e.g. to sin-
gle out the principal who is responsible for a violation, and possibly to take
countermeasures against him.

The alternative semantics in Def. 11 allows for dealing with such kind of
contracts. For instance, consider the formula z says p(y). To reach an agree-
ment, the variable z has to be instantiated to the name of a principal, while y
has to be instantiated to a fresh session ID. In general, more than two names
can be involved in the fusion; for this reason, the semantics Def. 7 is unsuited
for dealing with principals.

Example 11 (Principals). Consider an online market, where buyers and sellers
trade items. The contract of a buyer np is to pay for an item, provided that
some (still unknown) seller xg promises to send it; dually, the contract of a
seller ng s to send an item, provided that some buyer yp pays.

cp = np says ((zs says send(z)) — pay(z))

s = MNg says ((yB says pay(y)) — Send(y))
A buyer first issues her contract cg, then waits until discovering she has to pay,
and eventually proceeds with the process B'. At this point, the buyer may either
refuse to pay (process NoPay), or actually pay the item, by issuing a paid(z).

After the item has been paid, the buyer may wait for the item to be sent or open
a dispute with the seller.

B = (z)(zs)(np) (tellcp. fuse, (np says pay(x)). B')
B’ = 71.NoPay + 7.tell(np says paid(x)). B”
B" = ask (zs says sent(z)) + 7. tell (np says dispute(z))

The behaviour of the seller ng is dual.

S = (y)(ys)(ns) (tellcs. fuse, (ng says send(y)). S")

S" = 1.NoSend + T.tell (ng says sent(y)). S’

S" = ask (yp says pay(y)) + 7.tell (ns says dispute(y))
An handshaking is reached through the fusion o = {m/x,m/y,ns/xs,np/ys},
where m is fresh.

To automatically resolve disputes, a judge J can enter a session initiated
between a buyer and a seller, provided that a dispute has been opened, and

23

either the obligations pay or send have been inferred. This is done through the
askz primitive, where ¥ = {z,xg,yp}. This binds the variable z to the session
identifier m, xg to the actual name of the seller (ng), and yp to the actual
name of the buyer (np).

J = (%) (askz (yp says pay(z) A xg says dispute(z)).
check —(yp says paid(2)). jail(ys)
| askz (zs says send(z) A yp says dispute(z)).
check =(z g says sent(z)). jail(zs))
If the obligation pay(z) is found, but the item has not been actually paid then
the buyer is convicted (modelled by jail(yp), not further detailed). Similarly, if

the obligation send(z) has not been supported by a corresponding sent(z), then
the seller is convicted.

4 Expressive power

We now discuss the expressive power of our synchronization primitives, by show-
ing how to encode some common concurrency idioms into our calculus.

4.1 Semaphores

Semaphores admit a simple encoding in our calculus. Below, n is the name
associated with the semaphore, while 2 is a fresh variable. P(n) and V(n)
denote the standard semaphore operations, and process @ is their continuation.

P(n).Q = (x) fuse, p(n, x).Q V(n) = (z) tell p(n, z)

Each fuse, p(n,x) instantiates a variable x such that p(n,z) holds. Of course,
the same z cannot be instantiated twice, so it is effectively consumed. New
variables are furnished by V'(n).

4.2 Memory cell
We model below a memory cell in our calculus. The cell at any time contains a
name v as its value.
New(n,v).Q) = (z)tellc(n, z) Ad(z,v).Q
Get(n,y).Q = (w)fuse, c(n, w).join, d(w, y). New(n,y).Q
Set(n,v).Q = (w)fuse, c(n,w).New(n, v).Q
Process New(n,v) initializes the cell having name n and initial value v. Process

Get(n,y) recovers v by fusing it with y: the procedure is destructive so the cell
is re-created. Process Set(n, v) destroys the current cell and creates a new one.

24

4.3 Linda

Our calculus can model a tuple space, and implement the insertion and retrieval
of tuples as in Linda [23]. For illustration, we only consider p-tagged pairs here.

Out(w, y).Q = (z)tell p(z) A p1(z,w) A p2(2,y).Q
In(w,y).Q = (z)fuse, p1(z, w) A p2(z,y).Q

In(?w,y).Q = (z)fuse, pa(z,y).join,, p1(z, w).Q

In(w, ?7y).Q = (z)fuse, p1(z, w).join, p2(z,y).Q

In(?w, 7y).Q = (x)fuse, p(x).join,, p1(x,w).join, pa(z,y).Q

Operation Out inserts a new pair in the tuple space. A fresh variable x is related
to the pair components through suitable predicates. Operation In retrieves a
pair through pattern matching. The pattern In(w,y) mandates an exact match,
so we require that both components are as specified. Note that the fuse prefix
will instantiate the variable x, effectively consuming the tuple. The pattern
In(?w,y) requires to match only against the second component y. We do exactly
that in the fuse prefix. Then, we use join to recover the first component of
the pair, and bind it to variable w. Pattern In(w,?y) is symmetric. Pattern
In(?w, 7y) matches with any pair, so we specify a weak requirement for the
fusion. Then we recover the pair components.

4.4 Synchronous m-calculus

We encode the synchronous w-calculus [28] into our calculus as follows:

(PlQ]=[P]Q]
[(vn)P] = (n) [P]
[a(b).P] = (z)(msg x,b) |fusem in(a,x). [P]) (z fresh)
[a(2).Q] = (y)(in(a,y)|(2)join, msg(y, 2).[Q]) (y fresh)
(X (a)] = X(a)
(X () = Pl = X(y) = [P]

Our encoding preserves parallel composition, and maps name restriction to name
delimitation, as one might desire. The output can not proceed with P until x
is fused with some y. Dually, the input can not proceed until y is instantiated
to a name, that is until y is fused with some x — otherwise, there is no way to
satisfy msg(y, z).

The encoding above satisfies the requirements of [25]. Tt is compositional,
mapping each 7 construct in a context of our calculus. Further, the encoding is
name invariant and preserves termination, divergence and success. Finally it is
operationally corresponding since, writing —, for reduction in m,

P =i Pl = [P ="~ [P]
[P] =" Q = 3IP".Q —~*~[P|ANP—=LP
where ~ is »—-bisimilarity. For instance, note that
[(vm)(n{m).Pln(2).Q)] —"
(m)(0) (msg (o, m)|[P]lin(n, o) [Q{/v}) ~ (m)[P|Q{"/v}]

25

since the name o is fresh and the constraints msg(o,m),in(n,o0) do not affect
the behaviour of P, Q. To see this, consider the inputs and outputs occurring
in P, Q. Indeed, in the encoding of inputs, the fuse, prefix will instantiate = to
a fresh name, hence not with 0. On the other hand, in the encoding of outputs,
the join, prefix can fire only after y has been fused with z, hence instantiated
with a fresh name. The presence of msg(o, m) has no impact on this firing.

In our encoding above, we did not handle the choice operator. This is how-
ever manageable through the very same technique we will use below to encode
graph rewriting, where the operator & introduced in Ex. 8 is used to properly
encode non-deterministic choices.

4.5 Graph rewriting

In the encoding of the m-calculus we have modelled a simple interaction pattern;
namely, Milner-style synchronization. Our calculus is also able to model more
sophisticated synchronization mechanisms, such as those employed in graph
rewriting techniques [18]. Before dealing with the general case, we introduce
our encoding through a simple example.

Example 12. Consider the following “ring-to-star” rewriting rule:

_}

Above, Ay ... Ay are processes, while bullets represent shared names. Whenever
these processes are in a configuration matching the left side of the rule, a tran-
sitton is enabled leading to the right side. Processes change to By ... B4, and a
new name is created, which is shared among all of them, while the old names are
forgotten. Modelling this kind of synchronization in, e.q., the w-calculus would
be cumbersome, since a discovery protocol must be devised to allow processes to
realize the transition is enabled. Note that no process is directly connected to
the others, so this protocol is non-trivial.

Our calculus allows for an elegant, symmetric translation of the rule above,
which is interpreted as an agreement among the processes Ay ... As. Intuitively,
each process A; promises to change into B;, while adjusting the names, provided
all the others perform the analogous action. Since each A; shares two names
with the others, we write it as A;(n,m). We can now define the advertised
contract: below, we denote addition and subtraction modulo four as @4 and Oy,
respectively.

a;(n,m,x) = fig,1(x,m) Asio,1(x,n) = fi(z,n) As;(z,m) (15)

An intuitive interpretation of f,s is as follows: f;(x,n) states that n is the first
name of some process A;(n,—) which is about to apply the rule. Similarly for
si(x,m) and the second name. The parameter x is a session ID, uniquely iden-
tifying the current transition. The contract a;(n,m,x) states that A; agrees to
fire the rule provided both its neighbours do as well. The actual A; process is as
follows.

Ai(n,m) = (z)tell a;(n, m, x).fusey f;(z,n) A'si(x,m). B;i(z)

26

Our PCL logic enables the wanted transition:

P = ||; Ai(ni, nig,1) =" (m)]: Bi(m)

Further, note that the above works even when nodes n; are shared among multiple
parallel copies of the same processes. For instance, P|P will fire the rule twice,
possibly mixing A; components between the two P’s.

We now deal with the general case of a graph rewriting system.

Definition 13. An hypergraph G is a pair (V, Eq) where Vi is a set of vertices
and Eg is a set of hyperedges. Each hyperedge e € Eg has an associated tag
tag(e) and an ordered tuple of vertices (e1,...,ex) where e; € V. The tag
tag(e) uniquely determines the arity k.

Definition 14. A graph rewriting system is a set of graph rewriting rules {G; =
H;}; where G;, H; are the source and target hypergraphs, respectively. No rule
is allowed to discard vertices, i.e. Vg, C Vi,. Without loss of generality, we
require that the sets of hyperedges Eq, are pairwise disjoint.

In Def. 15 below, we recall how to apply a rewriting rule G = H to a given
graph J. The first step is to identify an embedding o of G inside J. The
embedding o roughly maps H \ G to a “fresh extension” of J (i.e. to the part
of the graph that is created by the rewriting). Finally, we replace o(G) with
o(H).

Definition 15. Let {G; = H;}; be a graph rewriting system, and let J be a
hypergraph. An embedding o of G; in J is a function such that:

o o(v) € Vy for each v € Vi, and o(v) & Vy for each v € Vy, \ Vg,
e g(e) € Ej for each e € Eg,, and o(e) € Ey for each e € Eq, \ Eg,

o(v') = v="1" for each v,v' € Vy, \ Vg,

g

(e)
e o(v) =
(e) =0(e)) = e=¢ foreache,¢ € Eg, UEq,
o tag(e) = tag(o(e)) for each e € Eg, U Ey,
o(e)n =olen) for each e € Eg, UEq, and1 < h <k

The rewriting relation J — K holds iff, for some embedding o, we have
Vi =(Vo\o(Ve,))Uo(Vl,) Ex =(E;\o(Eg,))Uo(En,)

Note that the assumption Vo, € Vi, of Def. 14 ensures that Vy C Vi, so
no dangling hyperedges are created through rewriting.

4.5.1 A First (Unsuccessful) Attempt

We now try to encode graph rewriting in our calculus. We anticipate that our
first attempt will not lead to a correct encoding, as we will see. Yet, in the
process we will introduce several fundamental concepts, paving the way to the
correct (but more complex) encoding, which we will describe later on.

To simplify our encoding, we make a mild assumption: we require each G;
to be a connected hypergraph. Then, we will try to encode a generic hypergraph

27

J in a compositional way: we assign a unique name n to each vertex in V;, and
then build a parallel composition of processes A;qq(c) (77), one for each hyperedge
ein Ej, where i1 = (nq,...,ny) identifies the adjacent vertices. Note that since
the behaviour of an hyperedge e depends on its tag, only, we index A with
t = tag(e). Note that ¢ might be the tag of several hyperedges in each source
hypergraph G;. We stress this point: tag ¢ may occur in distinct source graphs
G, and each of these may have multiple hyperedges tagged with ¢. The process
Ay must then be able to play the role of any of these hyperedges. The willingness
to play the role of such a hyperedge e relatively to a single node n is modelled by
a formula pe (2, n) meaning “I agree to play the role of e in session z, and my
h-th node is n”. The session variable x is exploited to “group” all the constraints
related to the same rewriting. We use the formula p j(z,n) in the definition of
Ay. The process Ay (1) promises pe,1(x, 1), ..., Pe.i(z,n) (roughly, “I agree to
be rewritten as e”), provided that all the other hyperedges sharing a node ny,
agree to be rewritten according to their roles €. Formally, the contract related
to e € Eq, is the following:

ae(‘raﬁ) = /\ pé,ﬁ(xanh) - /\ pe,h(xanh) (16)
1<h<k 1<h<k
é; = gh

Note that in Example 12 we indeed followed this schema of contracts. There,
the hypergraph J has four hyperedges e;, es, es, e4, each with a unique tag.
The formulae f; and s; in (15) are rendered as pe, 1 and pe,,2 in (16). Also the
operators @4 and Sy, used in (15) to choose neighbours, are generalized in (16)
through the condition ej = ey,.

Back to the general case, the process A; will advertise the contract a. for
each e having tag ¢, and then will try to fuse variable x. Note that, since
the neighbours are advertising the analogous contract, we can not derive any
Pe,n(x,np) unless all the hyperedges in the connected component agree to be
rewritten. Since G; is connected by hypothesis, this means that we indeed
require the whole graph to agree.

However, advertising the contracts a. using a simple parallel composition
can lead to unwanted results when non-determinism is involved. Consider two
unary hyperedges, which share a node n, and can be rewritten using two distinct
rules: G = H with el,e2 € Eg, and G = H with 1,2 € Eg. Let tag(el) =
tag(el) = tl and tag(e2) = tag(e2) = t2. Each process thus advertises two
contracts, for instance:

A = (z)(aer(x,n)|ag (x,n)|Fusions)
Ao = (z)(ae2(x,n)|age(x,n)|Fusions)

Processes Fusiony; above are meant to trigger the fusion of variables . Consider
now Az |Asa. After the fusion of z, it is crucial that both hyperedges agree on
the rewriting rule that is being applied — that is either they play the roles of
el,e2 or those of €l,e2. However, only one Fusion process above will fire its
fuse prefix, say the first one:

(m)(ae1 (m, n)|ag1(m, n)|Rewritee |ace(m, n)|asa(m, n)| Fusiong{m/«})

Above m is a fresh name. Note however that the process Fusionia{™/z} can still
proceed with the other rewriting, since the substitution above can not disable

28

a fuse prefix which was enabled before. So, we can end up with Rewritess,
leading to an inconsistent rewriting. Indeed, A;; was rewritten using G = H,
while Ay according to G = H.

To avoid this, we resort to the construction &;p; discussed in Ex. 8. We can
then define A; as follows.

A (1) = (z)(@ ae(x,)| Z fuse, /\ Pen(z,np).Be(z, 7))

tag(e)=t tag(e)=t 1<h<k

In each A;, the contracts a. are exposed under the @. The consequences of
these contracts are then demanded by a sum of fuse, . We defer the definition
of B,.

Consider now the behaviour of the encoding of a whole hypergraph: A,(77)| - - - | Ay (7).
If the hypergraph J contains an occurrence of GG, where G = H is a rewriting
rule, each of the processes involved in the occurrence Py, ..., P, may fire a fuse,
prefix. Note that this prefix demands ezactly one contract a. from each process
inside of the occurrence of GG. This is because, by construction, each a. under
the same @ involves distinct pe . This implies that, whenever a fusion is per-
formed, the contracts which are not directly involved in the handshaking, but
are present in the occurrence of G triggering the rewriting, are then effectively
disabled. In other words, after a fusion the sums in the other involved processes
have exactly one enabled branch, and so they are now committed to apply the
rewriting coherently.

After the fusion B.(z,) is reached, where x has been instantiated with a
fresh session name m which is common to all the participants to the rewriting.
It is then easy to exploit this name m to reconfigure the graph. Each in-
volved vertex (say, with name n) can be exposed to all the participants through
e.g. tellverty(m,n), and retrieved through the corresponding join, verts(m,y).
Since m is fresh, there is no risk of interference between parallel rewritings. New
vertices (those in Vi \ V&) can be spawned and broadcast in a similar fashion.
Once all the names are shared, the target hypergraph H is formed by spawn-
ing its hyperedges Ep through a simple parallel composition of A:(7i) processes
— each one with the relevant names. Note in passing that the processes A;,
where t ranges over all the tags, are mutually recursive. Summing up, it is easy
to construct Be(z,7) from the above discussion, so we omit a verbose formal
definition.

Correctness. Whenever we have a rewriting J — K, it is simple to check
that the contracts used in the encoding yield an handshaking, so causing the
corresponding transitions in our process calculus. The reader might wonder
whether the opposite also holds, hence establishing an operational correspon-
dence. It turns out that our encoding actually allows more rewritings to take
place, with respect to Def. 15. Using the A; from Ex. 12, we have that the
following loop of length 8 can perform a transition.

P =A(n1,n2)|Az(na, n3)|Az(n3, na)| As(na, ns)|

A1 (ns,n6)|Az(ne, n7)|Az(n7, ns)| As(ns, n1)
Indeed, any edge here has exactly the same “local view” of the graph as the
corresponding G of the rewriting rule. So, handshaking takes place. Roughly,

if a graph Jy triggers a rewriting rule in the encoding, then each “bisimilar”
graph J; will trigger the same rewriting rule.

29

A possible solution to capture graph rewriting in an exact way would be
to mention all the vertices in each contract. That is, edge A; would use
pa,(n1,n2, x,y), while edge As would use pa,(w,na,ng, z), and so on, using
fresh variables for each locally-unknown node. Then, we would need the fuse
prefix to match these variables as well, so that variables in each contract are
fused with names used in the others. This would precisely establish the em-
bedding o of Def. 15. This kind of extended fusion is actually provided by the
alternative semantics of fuse, which we discussed in Sect. 3.4, and which was
first introduced in [3]. By exploiting this general fusion, we now give a correct
encoding.

4.5.2 Towards a Correct Encoding

We now use the alternative semantics for fuse, ¢ given in Def. 11 to construct
a correct encoding. We present our encoding in an incremental way. In this
section, we make some simplifying assumptions on the rewriting rules G; = H;.
All of these will be discharged in the following sections.

e (Connection) Each G; is connected.

e (Tag Uniqueness) A tag occurs at most once in each G;. That is, for all
e, e’ € FEg,, if tag(e) = tag(e’) then e = ¢’

e (Single Adjacency) No vertex in G; can have multiple adjacency with an
edge. That is, for each e € Eg,, if e; = e; then i = j.

Note that the above requirements indeed restrict the rewriting rules, only. No
assumption is made on the graph J which is being rewritten, which can violate
any of the above.

For each rewriting rule G; = H; we fix an arbitrary ordering for the vertices
and edges of Gj.

Vo, = (b1, obh Eg, = (e", ... e"")

When G; is clear from the context, we shall omit the index 1.

Similarly to the previous encoding, we use one predicate p.(z, o, - ,0h)
for each edge e € Eg,. The arity of p. is | + 1. The intended meaning of
the argument is as follows. The first argument is intended to be the “session
identifier”, as usual. The rest of the arguments shall list the names representing
the identities of the vertices of the embedding of G; in J. As before each
hyperedge in the current graph will be encoded by a process A:(77), where the
names 77 represent the adjacent vertices to the edge having tag t.

30

Below, x, w; are variables, while id, n; are names. We also let [= max; |V, |-

A7) = (w,wr,. . w) (D @S D fuses pe(S).Be(x))
e c EGi e c EGi
tag(e) =t tag(e) =t
where § = SHUF FLE (e, x, 7, W)

a®=(A ee®) > peld)

SHUFFLE (e, x, i, W) = (z,0',...,0")
N if ey = v for some m € [1..arity(e)], Eg, > e

where 07 = .
w; otherwise

Note that the last line above is well-defined since m is unique, as implied by the
Single Adjacency assumption.

The contracts p(z,?,...,9') involve all the vertices of G;, with e € G.
Since A;(7) knows its adjacent nodes 7, these can be used to specify the related
©¢ parameters. Instead, A;() has no knowledge of the other vertices, so it
is not able to precisely specify them in its contract p.. These parameters are
instead filled with “wildcard” variables w;. Formally, the correct arrangement
of i and W is defined through the SHUFFLE function. These contracts are
then combined so to form the constraint a.(---). Finally, the & operator is
applied to each a., where e ranges over all edges having tags t; this is because
A; can play the role of each such e.

Firing a fuse, pe(z, .. .) prefix performs a number of variable fusions, “unify-
ing” the contracts. Suppose that in the context the following contracts can be
found, encoding a rewriting rule where E¢ = {e, ¢'}.

(zaw17w25w3)(p€’(x7n17w27n3) - pe(z,nl,wg,ng) D)
(@, w1, w2, w3)(pe (T, w1, M2, 13) = Per (T, w1, M2,n3) B -+ -)

Above, the first process/edge is adjacent to ny and ns, and is willing to play
the role of e. The second is adjacent to ns and n3. Suppose that the first edge
wants to fire the following fuse prefix:

fuse, pe(z,n1, w2, n3).Be()

This can be done by fusing w; = ni,ws = no, w3 = ng so that the contractual
implications indeed form a handshaking, implying the constraint required by
the fuse '. As another result of the fusion, z is replaced with a fresh session ID.
(For the sake of completeness, also some variables hidden in the definition of &
are fused as well.)

The above argument supports the fact that the intended rewriting does take
place, as it happened for the tentative encoding of Sect. 4.5.1. We now support
the fact that no other rewritings but the intended one occur.

First, recall the counterexample of Sect. 4.5.1, where an 8-ring could trigger
a rewriting requiring a e-ring. This does not happen in the new encoding,

INote in passing that this fusion requires the semantics of Def. 11.

31

since each vertex is made explicit in contracts. Indeed, to trigger such a wrong
rewriting fusion would have to unify 8 contracts which carry 8 distinct names
into a 4-tuple of names — which is impossible. More in general, since vertices
are enumerated in the contracts p., no misunderstanding can happen regarding
vertices.

We now consider edges. A possible source of confusion here is the fact that
the @, a.(---) construct allows a fuse prefix to demand many a. constraints at
the same time. If this happens, we would have that a single process A; is playing
the role of many edges in the rewriting rule: this would be unsound, since graph
embeddings are meant to be injections over edges. To rule out this possibility,
we first observe that the fuse prefix will demand a p. contract for some e € Eg,.
By construction of a, only contracts arising from the same G; can contribute to
the entailment of p.. Hence, by the minimality of our fusions, no contracts will
be demanded from @, a.(---) but those related to G;. So, if two constraints
e, aer are demanded then e, e’ share the same G;, and by construction of A;
they also share the same tag. By the Tag Uniqueness assumption, this can only
happen when e = ¢'.

By the above reasoning, when a fusion occurs, each involved process plays
the role of exactly one of the edges in a G;. Also, by the definition of the
constraints a., and the fact that the GG; are connected, it is easy to see that
contracts p. are involved for all the edges of G;. This can only happen if each
of these p. is provided by some A;. So, when a fusion happens, the processes
involved indeed form the encoding of an embedding of GG;. Hence, no rewritings
are allowed other that those allowed by the rewriting rules.

4.5.3 Relaxing Tag Uniqueness

In order to relax tag uniqueness, we need to watch out for those GG; having mul-
tiple edges e, e’ sharing the same tag. As we discussed in the previous section,
the danger here is that the same process could pose both as the embedding of
two distinct edges e and €¢’. We need to prevent this from happening.

Essentially, all we have to ensure is that only a single a. constraint from
each A; can be demanded by a fuse prefix. A simple way to do this is to exploit
the linear disjunction operator B we introduced in Ex. 10. By just replacing &
with H, we recover the correctness of the encoding.

At(ﬁ) - (wila .- 7wi)(Ea ec EGi ae(8)| Z fuse, pe(S)'Be(x))
tag(e) =t e € Eg,
tag(e) =t

The definitions of Z, a., and § are unchanged.

4.5.4 Relaxing Single Adjacency

The single adjacency requirement implies that any edge e having tag equal to
tag(e) is an embedding of e. Without this requirement, instead, sharing a tag
is a necessary but (in general) not sufficient condition for being an embedding.
This is because it may happen that we have e; = e; in the rewriting rule (i.e. in
G), but & # &; in the graph to be rewritten (i.e. in J). In this case, no

32

embedding ¢ may map e to e. Technically, this can be seen by checking the
requirements of Def. 15. Indeed, the requirements imply e; = o(e); = o(e;) =
o(e;) = o(e); = &; which is not the case. So, no o is allowed to map e to é.

The above reasoning show that our encoding A;(77) is not allowed to adver-
tise its contracts p. under the lone assumption tag(e) = t. We need to check
whether the vertices 7 satisfy the required multiplicities (w.r.t. e) before an
edge can expose its contract (p.). Our logic PCL does not feature an equality
predicate, which would help in expressing the multiplicity requirements as, for
instance, (n; = ng) — (--+ — pe(-- -)). However, we can achieve the same effect
exploiting the freshness of names. The idea is the following: let id be a fresh
name (i.e. local to the edge), and q be a fixed predicate symbol. Then, the
proposition

qlid. n) A (aidne) = (- = pe(---))

allows p. to be demanded by a fusion only if n; = nj. This is because PCL is a
propositional logic, hence the prime hypothesis q(id, ny) can only be discharged
if it occurs in the context?. Since id is local to the edge, no interference may
occur from other edges: the hypothesis can indeed be discharged if and only if
n; = ny, as we wanted. This idea can then be generalized to several equality
constraints in a simple way. Indeed, it suffices to use one fresh symbol q; for
each name n; in 7.

Our encoding is then changed as follows. Below, ¢d is a name, while x, w;
are variables. We let [to be max; |V, |, as before.

I ajtid,ngy) |

) | =a] ¢ € Bo ac(id, i, S) |
Ay(7) = (id, z, w1, . .., wy) tag(e) =t
Y ecmy fuserpe(S)-Be(x)
tag(e) =t

where § = SHUFFLE (e, x, i, W)

alid i) =(N atdn))=[(A ped)) = ped)]
7,k s.t. e s.t.
e; = ek dh, h. e, =epn

SHUFFLE (e, x, i, W) = (z,0%,...,0")
Ny if m = min{mle,, = v}, Eq, > e

0 = hg)
where @ w; if{mley, =0v"} =0,Eg, de

Above, in A, we provide the q;(id, n;) constraints to state that n; is the j-th
vertex of the edge at hand. The rest of the process A; is unchanged. Instead,
in ac(---) we now require q;(id, ny), which plays the role of n; = ny, for each
multiple adjacency found in e.

The definition of SHUF FLE is adapted so to consider multiple adjacency.
When arranging the known vertices in the contracts p., we might find many

2 Actually, in PCL a prime formula could also be derived from L. In our encoding, however,
we never employ negative formulae, so the consistency of the context is ensured by Lemma 2.

33

copies of the same vertex in the vector 7, so we pick one of them: n,, in the
definition above. When A; is an embedding of e, that is when A; respects
the multiplicities of e, the set {n,,|e,, = v"7} is a singleton, so our choice of
a specific m is actually immaterial. When instead A; is not a encoding of e,
that is when multiplicities are not respected, the set {n,,|e, = v*7} is not a
singleton, and our choice of m selects a vertex n,, carrying no useful meaning
w.r.t. graph rewriting. In this case, the contract p.(---) will indeed be filled
with “garbage” names. In principle, it could be dangerous to advertise such
“garbage” contracts, since they may trigger unintended rewritings. However, in
our case the “garbage” contract pe(---) is guarded by a q;(id, ny) premise which
can not be discharged because n; # ny, so this is actually safe. This argument
supports the fact that no other rewriting is triggered except the intended ones.

4.5.5 Relaxing Connection

Our a. constraints provide p, whenever for every edge € sharing (at least) a
vertex with e we have pz. That is, in the contractual implication, only edges e
which are “neighbours” of e are mentioned. When the graph G; is connected,
in order to cause an handshaking we actually need to involve all the pg for each
€ € Vi, This is because the definition of a. forces us to close the set of involved
edges € under the neighbourhood relation. This is the intended behaviour, since
we do not want to trigger a rewriting unless a process for each edge in G, is
involved.

If instead the graph G; is not connected, it is no longer enough to consider
only the neighbourhood, since that will not include all the required edges in the
handshaking. We can however change our definition of a. so to consider all the
€ which belong to the same Eg, as e. Essentially, the new a. uses a “greedy
handshaking” as its contract.

alidit)=(A adm) =[N pe®) > pe(d)]
7,k s.t.

S.t.
e; = eg Ji. e,e € Eg,

Doy

The definitions of A; and SHUF FLE are unchanged.

5 Related Work

Various approaches to the problem of providing both clients and services with
provable guarantees about each other’s functional behaviour have been studied
over the last few years. Yet, at the present no widespread technology seems to
give a general solution to this problem.

Recent research papers address the problem of defining contracts that spec-
ify the interaction patterns among (clients and) services [9, 10, 11, 29]. For
instance, in [10] a contract is a process in a simplified CCS featuring only pre-
fixing, internal and external choice. A client contract is compliant with a service
contract if any possible interaction between the client and the service will always
succeed. There, a main problem is how to define (and decide) a subcontract
relation, that allows for safely substituting services without affecting the com-
pliance with their clients. Even assuming that services are trusted and respect

34

the published contract, this approach provides the client with no provable guar-
antees, except that the interaction with the service will “succeed”, that is all
the expected synchronizations will take place.

For instance, consider a simple buyer-seller scenario. In our vision, it is
important to provide the buyer with the guarantee that, after the payment has
been made, then either the payed goods are made available, or a full refund is
issued. For the seller, it is important to be sure that a buyer will not repudiate
a completed transaction, so to obtain for free the goods already delivered. This
could be modelled by the following contracts, assuming a perfect duality between
buyer and seller:

Buyer = (ship V refund) — pay Seller = pay — (ship V refund)

The above two contracts lead to an agreement, which allows the buyer for pay-
ing, and the seller for shipping or issuing a refund.

Instead, in [10] the contracts of the buyer and of the seller would take a very
different form, e.g.:

Buyer = pay. (ship + refund) Seller = pay. (ship @ refund)

Intuitively, this means that the client will first output a payment, and then
either receive the item, or receive a refund (at service discretion). Dually, the
service will first input a payment, and then opt for shipping the item or issuing
a refund. However, this is very distant from our notion of contracts.

First, the contracts exposed above are quite rigid, in that they precisely fix
the order in which the actions must be performed. Even though in some cases
this may be desirable, many real-world contracts seem to allow for a more liberal
way of constraining the involved parties (e.g., “I will pay before the deadline”).

Second, while the crucial notion if the contracts in [10] is compatibility, in our
model we focus on the inferring the obligations that arise from a set of contracts.
The key difference between the two notions is that, given a set of contracts, a
compatibility check results in a yes/no output, while inferring the obligations
provides a fine-grained quantification of the reached agreement. For instance,
the obligations may identify who is responsible of each action mentioned in the
contract. Our processes can then exploit this information to take some recovery
action against clients and services which do not respect their promises.

A lot of work addresses the problem of managing service failures in long-
running business transactions, see e.g. [12, 5, 8, 6]. Since, in a long-lived trans-
action, the standard rollback mechanism of database systems does not scale, the
idea is to partition the long transaction into a sequence of smaller transactions,
each of which is associated with a given compensation [20]. Compensations are
recovery actions specified by the service designer, that will be run upon failures
of the standard execution. For instance, we can model our buyer-seller scenario
as follows in Compensating CSP [8]. The seller charges the buyer credit card,
and then proceeds by shipping the ordered item. Simultaneously, the seller
performs an availability check, to see whether the ordered item is in stock. If
the item is not available, the service throws an exception, which triggers the
compensation refundAmount. This compensation restores the original state of
the buyer account, so it will actually perform a transaction rollback:

Seller = [availCheck; (ok; SKIPP [notOk; THROWW)
|| (debitAmount + refundAmount) |; ship

35

Notice that the choice of the compensation is crucial; while “refundAmount” may
be acceptable by any client, if the compensation was instead just a “15%Discount”
on the next order, then not all the clients would have been perfectly happy. Ac-
tually, our main criticism to long-running transactions is that clients have no
control on the compensations provided by services.

In our vision, instead, clients have the right to select those services that offer
the desired compensations. For instance, we may exploit our logic to model the
contract of a buyer that will pay provided that, if the ordered item is unavailable,
then she will obtain a full refund, as well as a 15% discount on the next order:

Buyer = (unavailable — (refund A 15%discount)) —» pay

Several logics for modelling contracts have been introduced over the years,
taking inspiration and extending e.g. classical [16], modal [15, 1, 21], intuitionis-
tic [2], deontic [33, 22], default [24] and defeasible logics [26]. This flourishing of
logics is justified by the many facets of contracts that arise when modelling real-
world scenarios, e.g. principals, authorizations, duties, delegation, mandates,
regulations, assume-guarantee specifications, etc. (see [4] for a more direct com-
parison between these logics and PCL). We think none of these logics, including
our PCL, captures all the facets of contracts. Actually, each of the aforemen-
tioned logics is designed to represent some particular aspect of contracts, e.g.
obligations, permissions and prohibitions in deontic logics, violation of contracts
in default and defeasible logics, and agreement in PCL. We argue that, since
these aspects are orthogonal, it is possible to extend PCL with features from
some of these logics. Note that the key feature of PCL, i.e. the ability of discov-
ering which obligations arise from any set of contracts, has allowed us to design
the contract-based mechanism used in our calculus to establish sessions.

6 Research Directions

The main design goals for the logic and the calculus proposed in this paper
have been minimality and decidability. We expect, however, that some useful
constructs can be added to our framework, to make it suitable for modelling
even more complex scenarios. Of course, preserving the decidability will be a
major concern while considering these extensions, as it will require to revisit
the proof of the cut elimination theorem. We discuss below some of the more
promising research directions.

First order features. We plan to extend logic with predicates and quanti-
fiers. This will allow us to model more accurately those scenarios where a party
issues a “generic” contract that can be matched by many parties. While this
first order extension shall force us to drop the decidability result, we expect to
find interesting decidable fragments of the logic, yet expressive enough to model
many relevant situations. For instance, consider an e-commerce scenario, where
a seller promises to ship the purchased item to a given address, provided that
the customer will pay for that item. Aiming at generality, we make the seller
contract parametric with respect to the item, customer and address. This can
be modelled using a universal quantification over these three formal parameters:

Seller = Yitem, cust, addr :

pay(item, cust, addr) — ship(item, addr) (17)

36

Now, assume that a customer (say, Bob) promises that he will pay for a drill,
provided that the seller will ship the item to his address. This will be modelled
by the following contract issued by Bob, where the actual parameters remark
that the payment is made by Bob, and that the destination address is Bob’s.

Bob = ship(drill, bobAddress) — pay(drill, Bob, bobAddress)
Joining the two contracts above will yield the intended agreement:

Seller A Bob — pay(drill, Bob, bobAddress) A ship(drill, bobAddress)

Explicit time. Time is another useful feature that may arise while modelling
real-world scenarios. For instance, in an e-commerce transaction, a contract
may state that if the customer returns the purchased item within 10 days from
the purchase date, then she will have a full refund within 21 days from then.
We plan a temporal extension of our logic, so to reason about the obligations
that arise when the deadlines expire. Back to our e-commerce example, we
could imagine to express the seller contract as the following formula, where the
parameter ¢ in p(t) tells the point in time where the “event” p occurs:

Seller(t) =Vt : (pay(t) A return(t’) A t' <t+10) — " <’ + 21 : refund(t”)

From the point of view of the buyer, the contract says that the buyer is
willing to pay, provided that she can obtain a full refund (within 21 days from
the date of payment), whenever she returns the item within 7 days from the
date of payment:

Buyer(t) = (V' :return(t') A t' <t+10 — 3" < t' 4 21 : refund(t”)) — pay(t)

In the presence of an agreement (i.e. a completed e-commerce transaction)
between the customer and the seller on (say) January the 1st, 2009, we expect
our extended logic able to deduce that, if the customer has returned the pur-
chased item on January the 5th, then the seller is required to issue a full refund
to the customer within January, the 26th.

Buyer(1.1.09) A Seller(1.1.09) A return(5.1.09) — " < 26.1.09 : refund(t”)

There are a number of techniques to explicitly represent time in logical
systems, so we expect to be able to reuse some of them for extending PCL.
These techniques range from Temporal Logic [19], to more recent approaches
on temporal extensions of authorization logics like [17].

Such a temporal extension to the logic demands for a timed semantics for
our calculus. This will allow to check whether a promise is violated in a given
trace (e.g. the deadline passed). Another key aspect is characterizing honest
and timely processes, i.e. processes that always fulfill their duties on time.

Analysis techniques. We plan to develop analysis techniques to formally
and automatically prove the correctness of a service infrastructure, i.e. that the
contracts are always respected, without the need for resorting to third parties
(e.g. legal offices) external to the model. We will investigate analysis techniques
for services and contracts, in order to provide clients and service providers with

37

provable assurances about the behaviour of services. To do that, we will consider
a variety of properties, concerning both standalone services and aggregations of
services. One of the primary goals of these analyses will be that of determin-
ing whether a service actually respects the declared contract, i.e. if the facts
promised by the service agree with its behaviour. It is highly desirable to verify
a property of this kind before making a service available, because it prevents
from the possibility of being legitimately charged for not having fulfilled a signed
contract. We will analyse a variety of global properties about aggregations of
cooperating services. For instance, we will study what happens when a service
provider is not able to fulfill a contract because of an external service that does
not deliver the negotiated functionalities. In such a scenario, the goal of our
analysis will be that of exactly determining the liabilities of the involved parties,
and to decide if it is always possible to compensate the client through suitable
recovery actions. We will also focus on deciding if a party can always detect that
a signed contract has not been fulfilled. This property is particularly relevant,
because in the scenarios where it is respected, we can provide the offended party
with the possibility of contesting a contract, by resorting to a third party that
enforces its fulfillment.

Whenever the analysis techniques establish the compliance of a service with
its own promises, one might wish to apply the techniques of [14] to derive an
implementation which securely runs over an untrusted network.

Implementation issues. In our model of contracts we have abstracted from
most of the implementation issues. For instance, in insecure environments pop-
ulated by attackers, the operation of exchanging contracts requires particular
care. Clearly, integrity of contracts is a main concern, so we expect that suitable
mechanisms have to be applied to ensure that contracts are not tampered with.
Further, establishing an agreement between participants in a distributed
system with unreliable communications appears similar to establishing common
knowledge among the stipulating parties [27], so an implementation has to cope
with the related issues. For instance, the fuse, prefix requires a fresh name
to be delivered among all the contracting parties, so the implementation must
ensure everyone agrees on that name. Also, it is important that participants
can be coerced to respect their contracts after the stipulation: to this aim, the
implementation should at least ensure the non repudiation of contracts [39].

7 Conclusions

We have investigated the notion of contract from a logical perspective. To
do that, we have first extended intuitionistic propositional logic with a new
connective, that models contractual implication. We have provided the new
connective with an Hilbert-style axiomatisation, which has allowed us to show
some interesting properties and application scenarios for our logic. The main
result about our logic is its decidability. To prove that, we have devised a
Gentzen-style sequent calculus for the logic, which is equivalent to the Hilbert-
style axiomatisation. Decidability then follows from the subformula property,
which is enjoyed by our Gentzen rules, and by a cut elimination theorem, which
we have proved in full details in [4]. We have implemented a proof search
algorithm for PCL.

38

Our logic for contracts has served as a basic building block for designing
a calculus of contracting processes. This is an extension of Concurrent Con-
straints, featuring a peculiar mechanism for the fusion of variables, which well
suites to formalise contract agreements. We have shown our calculus expressive
enough to model a variety of typical scenarios, and to encode some common
idioms for concurrency, among which the m-calculus and graph rewriting.

Acknowledgements. Work partially supported by EU-FETPI Global Com-
puting Project IST-2005-16004 SENSORIA (Software Engineering for Service-
Oriented Overlay Computers) and by the MIUR-PRIN project SOFT. (Tecniche
Formali Orientate alla Sicurezza).

References

[1] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A
calculus for access control in distributed systems. ACM Transactions on
Programming Languages and Systems, 4(15):706-734, 1993.

[2] Martin Abadi and Gordon D. Plotkin. A logical view of composition. The-
oretical Computer Science, 114(1):3-30, 1993.

[3] Massimo Bartoletti and Roberto Zunino. A calculus of contracting pro-
cesses. To appear in LICS 2010.

[4] Massimo Bartoletti and Roberto Zunino. A logic for contracts. Technical
Report DISI-09-034, DIST - Universita di Trento, 2009.

[5] Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A calculus for long
running transactions. In Proc. FMOODS, 2003.

[6] Roberto Bruni, Hernén C. Melgratti, and Ugo Montanari. Theoretical
foundations for compensations in flow composition languages. In Proc.
POPL, 2005.

[7] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based
language for specifying service level agreements. In Proc. ESOP, 2007.

[8] Michael J. Butler, C. A. R. Hoare, and Carla Ferreira. A trace seman-
tics for long-running transactions. In 25 Years Communicating Sequential
Processes, 2004.

[9] Samuele Carpineti and Cosimo Laneve. A basic contract language for web
services. In Proc. ESOP, 2006.

[10] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of con-
tracts for web services. ACM Transactions on Programming Languages and
Systems, 31(5), 2009.

[11] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes.
In Proc. CONCUR, volume 5710 of Lecture Notes in Computer Science.
Springer, 2009.

39

[12]

23]

[24]

[25]

[26]

Mandy Chessell, Catherine Griffin, David Vines, Michael J. Butler, Carla
Ferreira, and Peter Henderson. Extending the concept of transaction com-
pensation. IBM Systems Journal, 41(4):743-758, 2002.

Mario Coppo and Mariangiola Dezani-Ciancaglini. Structured communica-
tions with concurrent constraints. In Proc. Trustworthy Global Computing
(TGC), volume 5474 of Lecture Notes in Computer Science. Springer, 2008.

Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhar-
gavan, and James J. Leifer. A secure compiler for session abstractions.
Journal of Computer Security, 16(5):573-636, 2008.

Aspassia Daskalopulu and Tom Maibaum. Towards electronic contract
performance. In Proc. 12th International Workshop on Database and Ezxpert
Systems Applications, 2001.

Hasan Davulcu, Michael Kifer, and 1.V. Ramakrishnan. CTR-S: A logic
for specifying contracts in semantic web services. In Proc. WW W04, 2004.

Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic
with explicit time. In Proc. CSF, 2008.

Hartmut Ehrig. Tutorial introduction to the algebraic approach of graph
grammars. In Proc. of the Workshop on Graph-Grammars and Their Ap-
plication to Computer Science, 1987.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), pages 995—
1072. North-Holland Pub. Co./MIT Press, 1990.

Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD Conference,
1987.

Deepak Garg and Martin Abadi. A modal deconstruction of access control
logics. In Proc. FoSSaCS, pages 216230, 2008.

Jonathan Gelati, Antonino Rotolo, Giovanni Sartor, and Guido Governa-
tori. Normative autonomy and normative co-ordination: Declarative power,
representation, and mandate. Artificial Intelligence and Law, 12(1-2):53~
81, 2004.

David Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80-112, 1985.

Georgios K. Giannikis and Aspassia Daskalopulu. The representation of
e-contracts as default theories. In New Trends in Applied Artificial Intelli-
gence, 2007.

Daniele Gorla. Towards a unified approach to encodability and separation
results for process calculi. In Proc. CONCUR, 2008.

Guido Governatori. Representing business contracts in RuleML. Interna-
tional Journal of Cooperative Information Systems, 14(2-3), 2005.

40

[27]

28]

[29]

[30]

[31]
[32]

33]

[34]

[35]

Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge
in a distributed environment. J. ACM, 37(3):549-587, 1990.

Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mo-
bile Processes, I and II. Information and Computation, 100(1):1-40,41-77,
September 1992.

Luca Padovani. Contract-based discovery and adaptation of web services.
In SFM, 2009.

Joachim Parrow and Bjorn Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In LICS, 1998.

The PCL web site. http://www.disi.unitn.it/~zunino/PCL.

Frank Pfenning. Structural cut elimination - I. intuitionistic and classical
logic. Information and Computation, 157(1/2):84-141, 2000.

Cristian Prisacariu and Gerardo Schneider. A formal language for electronic
contracts. In Proc. FMOODS, 2007.

Davide Sangiorgi and David Walker. The m-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

Vijay Saraswat, Prakash Panangaden, and Martin Rinard. Semantic foun-
dations of concurrent constraint programming. In Proc. POPL, pages 333—
352. ACM, 1991.

Richard Statman. Intuitionistic propositional logic is polynomial-space
complete. Theoretical Computer Science, 9:67-72, 1979.

Anne Troelstra and Dirk van Dalen. Constructivism in Mathematics, vol.
1. North-Holland, 1988.

Martin Wirsing, Rocco De Nicola, Stephen Gilmore, Matthias M. Holzl,
Roberto Lucchi, Mirco Tribastone, and Gianluigi Zavattaro. Sensoria pro-
cess calculi for service-oriented computing. In Proc. TGC, 2006.

Jianying Zhou. Non-repudiation in Electronic Commerce. Artech House,
2001.

41

