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Abstract. We study a class of reaction-diffusion type equations on a finite

network with continuity assumptions and a kind of non-local, stationary Kirch-

hoff’s conditions at the nodes. A multiplicative random Gaussian perturbation

acting along the edges is also included. For such a problem we prove Gaussian

estimates for the semigroup generated by the evolution operator, hence gener-

alizing similar results previously obtained in [21]. In particular our main goal is

to extend known results on Gaussian upper bounds for heat equations on net-

works with local boundary conditions to those with non-local ones. We conclude

showing how our results can be used to apply techniques developed in [13] to

solve a class of Stochastic Optimal Control Problems inspired by neurological

dynamics.

1. Introduction

Our main goal is to generalize results contained in [21] to prove Gaussian upper

bounds for heat equations on networks with non-local boundary conditions. Such

estimates can be successfully used to study a certain Stochastic Optimal Control

Problem (SOCP) stated on a finite graph where the evolution on each edge is
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perturbed by a multiplicative Gaussian noise, while continuity assumptions and a

non-local Kirchhoff-type law are imposed in the nodes. Namely we will consider

the following stochastic evolution equation

Ẋ(t, x) = (c(x)X ′(t, x))
′
+ p(x)X(t, x) + f(t, x,X(t, x)) + g(t, x,X(t, x))Ẇ (t, x),

describing the electrical potential moving along each axon of a finite network,

subjected to particular non-local Robin-like boundary conditions in the nodes, of

the following type:

n−1∑
l=1

bi,lX(t, vl) =
m∑
j=1

Φijcj(vi)X
′
j(t, vi).

In Section 4 we will obtain our main result deriving a Gaussian upper bound

for the Green function of the problem. In particular we extend the analogous

result obtained in [21] under the more restrictive hypothesis of local boundary

conditions. Our approach differs from the one used in [21, §4] since we adopt a

different functional space (and associated distance) to apply the so-called Davies’

trick. This simple but essential modification allows us to overcome difficulties

arising in the case of non-local conditions. This allows us to exploit results given

by [13] to study a controlled stochastic process Xu
t with values in a Hilbert space

H being a mild solution of

(1)

dXu
t = [AXu

t + F (t,Xu
t )] dt+G(t,Xu

t )R(t,Xu
t )u(t)dt+G(t,Xu

t )dWt

Xu
t0

= x0 ∈ H,

where t0 ∈ [0, T ]. The control process u takes values in a given subset U of

a Hilbert space U , W is a cylindrical Wiener process in an other Hilbert space

H̄, G : [0, T ] × R → L(H̄,H), R : [0, T ] × R → L(U, H̄), F : [0, T ] × R → H
are suitable regular functions and A is the generator of a strongly continuous

semigroup of bounded linear operators (etA)t≥0 in H. Under suitable hypotheses

on the operator A, which will be assured by our estimates, and on the functions

F,G,R, g, ψ, φ, it is possible to apply Theorem 6.2 of [13] to have the existence

of a unique mild solution for the Hamilton-Jacobi-Bellman problem associated to

(1), hence obtaining uniqueness of solution for our SOCP.
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We will relax some hypotheses in a future work in order to allow F to have

polynomial growth. In particular taking H = L2(0, 1), F (x) = x(1 − x)(x − ξ),

with ξ ∈ (0, 1) and A as a second order elliptic operator in L2(0, 1), the above

equations can be used to describe a neuronal environment controlling a FitzHugh-

Nagumo system by mean of the control function u. This means e.g. that we

can find the optimal dose of inhibitory/stimulating drug u acting on the voltage

potential X = X(t, x) perturbed by a multiplicative Gaussian noise on the axon

and/or external noise acting on the nodes, see e.g. [5] for an example in the

deterministic case.

2. Setting of the problem

2.1. Structure of the network. In this paper we are concerned with a diffusion

problem on a finite connected network, therefore we will adopt the by now standard

setting introduced to study network flow problems. For a detailed survey on graph

theory and related issues we refer to the monograph [30] and references therein

(see e.g. [15, 16, 18, 28]). Throughout the whole article we will identify the

network with a directed graph G, consisting of a vertex set V (G) of n vertices

v1, ..., vn and an edge set E(G) of m oriented edges e1, . . . , em which we assume

to be normalized, i.e., ej = [0, 1] for j = 1, ...,m. Now we introduce the concepts

of path and distance in order to model movements in graphs. Given two nodes

v0, vk ∈ V (G), a v0, vk-path is a list v0, e1, v1, ..., ek, vk of vertices and edges such

that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. The length of a path is

its number of edges. Consequently the distance from v0 to vk, written dG(v0, vk) is

defined as the least length of a v0, vk-path. In general, given a point x ∈ ej let us

define the distance from x to vk as

dG(x, vk) := (dG(ej(0), vk) ∧ dG(ej(1), vk)) + 1,

because we consider the additional distance due to the edge ej. Moreover, the

eccentricity of a vertex v0, written ε(v0), is maxvi∈V (G) dG(v0, vi).

The orientation of the graph is described by the so-called incidence matrix Φ =

Φ+ − Φ−, where Φ+ = (φ+
ij)n×m (incoming incident matrix) and Φ− = (φ−ij)n×m
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(outgoing incident matrix) are given by

φ−ij =

1, vi = ej(1)

0, otherwise
and φ+

ij =

1, vi = ej(0)

0, otherwise.

Accordingly, we call the edge ej an incoming edge (respectively outgoing edge)

for vi if vi = ej(0) holds (respectively if vi = ej(1) holds). Note that the arcs

are parameterized contrary to the direction of the current flow. Moreover, we

introduce the diffusive matrices Φ+
δ = (δ+

ij)n×m and Φ−δ = (δ−ij)n×m defined by

δ+
ij =

cj(vi), if φ+
ij = 1 and i ≤ n− 1

0, otherwise
δ−ij =

cj(vi), if φ−ij = 1 and i ≤ n− 1

0, otherwise

where cj are nonnegative C1-functions describing the diffusivity per unit time along

the edge ej (see Assumptions 2.2 below). Finally we define the degree of a vertex

as the number of edges entering or leaving the node. If we denote by Γ(vi) the set

of all the indices of the edges having an endpoint at vi, i.e.

Γ(vi) = {j ∈ {1, . . . ,m} : ej(0) = vi or ej(1) = vi}

then we define the degree of the vertex vi as the cardinality of the set Γ(vi).

2.2. Diffusion problem. Inspired by biological motivations we will impose on

every edge ej for j = 1, ...,m a stochastic reaction-diffusion equation in divergence

form of this type

(2) Ẋj =
(
cjX

′
j

)′
+ pjXj + fj(t,Xj) + gj(t,Xj)Ẇj,

where Xj(t, ·) for t ≥ 0 is the (real-valued) electrical potential on the edge ej. Here

Wj(t, x) for j = 1, ...,m are real valued space-time independent Wiener processes

defined on a (fixed) filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual

hypotheses (see e.g. [20, Definition 1.1]). Assumptions on the real-valued functions

cj, pj, fj and gj for j = 1, ...,m will be specified later. As usual Ẋ denotes the

derivative ofX with respect to the time variable t andX ′ with respect to the spatial

variable x. The generality of the above diffusion is motivated by discussions in the

biological literature, see for example [14] or [23], where concrete biological models
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are treated showing that the basic cable properties are not constant throughout

the dendritic tree. Note that linear elliptic operators of the form

AX = (cX ′)
′
+ pX

are commonly associated with mathematical models describing internal diffusions

of electrical potential in neurons. The consequent (possibly semilinear) parabolic

equation is often called as cable equation (for further details see e.g. [29, §4.2]).

The above system of equations will be endowed with suitable boundary and

initial conditions. First of all, since we are dealing with a diffusion in a network,

we require a continuity assumption on every node

(3) Xj(t, vi) = Xk(t, vi), t > 0, j, k ∈ Γ(vi), i = 1, ..., n

therefore, setting X(t, ·) := (X1(t, ·), ..., Xm(t, ·)), we can denote by X(t, vi) the

value of the electrical potential at the vertex vi.

Initial conditions are given for simplicity at time t = 0 of the form

(4) Xj(0, x) = X0
j (x), with X0

j ∈ C([0, 1]) j = 1, ...,m.

With regard to boundary conditions, the most common (and physically reasonable)

ones describe a kind of Kirchhoff’s second law in the ramification points, possibly

with a lower-order Robin-like term (often called δ-type interactions). In particular

we permit that the flow at a junction can accumulate, dissipate or hold steady

according to its value in the other nodes. Therefore we will impose, in the first

n− 1 nodes, a stationary, non-local Kirchhoff-type law as follows

(5)
n−1∑
l=1

bi,lX(t, vl) =
m∑
j=1

Φijcj(vi)X
′
j(t, vi) for i = 1, ..., n− 1.

Instead in the n-th node we will consider an homogeneous Dirichlet condition:

(6) X(t, vn) = 0.

With the previous notation, the boundary conditions (3), (5) and (6) can be re-

formulated as follows
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there exists dX(t) ∈ Rn such that

(Φ+)TdX(t) = X(t, 0), (Φ−)TdX(t) = X(t, 1) and

Φ+
δ X

′(t, 0)− Φ−δ X
′(t, 1) = BdX(t) for all t ≥ 0,

where

B =


b1,1 . . . b1,n−1 0
...

. . .
...

...

bn−1,1 . . . bn−1,n−1 0

0 . . . 0 1

 .

dX(t) will be in fact

dX(t) =


X(t, v1)

...

X(t, vn−1)

0

 ,

i.e. dX(t) is the n-dimensional vector of the electrical potential values at any

vertex.

Remark 2.1.

• Stationary, non-local Kirckhhoff-type boundary conditions (5) in the nodes

have been inspired by [21] where the author obtains upper Gaussian esti-

mates for the integral kernel in the local case characterized by a diagonal

matrix B with negative entries. Slightly modifying the functional setting

we generalize previous results to the non-local boundary conditions case,

including connections between entries of B, the network geometry and dif-

fusion data slightly modify the functional setting.

• We would like to underline that similar diffusion problems have been stud-

ied by various authors for more general boundary conditions in the nodes.

Let us mention some of these works.

In [22] is treated a class of diffusion problems on a whole network of neu-

rons, where the ramification nodes can be either active (with excitatory

time-dependent boundary conditions)

Ẋ(t, vi) = −
m∑
j=1

Φijcj(vi)X
′
j(t, vi) + biX(t, vi)
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or passive (no dynamics take place, i.e. only Kirchhoff laws are imposed).

In [3, 4] a stochastic version of the previous dynamical boundary conditions

is considered in the following form

Ẋ(t, vi) = biX(t, vi)−
∑

j∈Γ(vi)

Φijµjcj(vi)X
′
j(t, vi) + σiL̇(t, vi),

where L(t, vi) represents the stochastic perturbation acting on each node

due to the external surrounding.

Note that in all these cases well-posedness for the problem is

proved but no Gaussian estimates have been obtained so far.

• In treating a diffusion model on a network it is usual to impose on n0

boundary vertices (i.e. those of degree 1, according to the previous def-

inition) homogeneous Dirichlet boundary conditions. Since no evolution

takes place on these nodes we may rearrange the graph identifying all of

them with a unique vertex vn of degree n0 like in (6).

Let us state the main assumptions we shall make to handle the problem.

Assumptions 2.2.

(1) cj(·) belongs to C1([0, 1]), for j = 1, . . . ,m and cj(x) > 0 for every x ∈
[0, 1].

(2) fj : [0, T ]× [0, 1]× R → R, j = 1, ...,m is a measurable mapping, bounded

and uniformly Lipschitz continuous in the last component

|fj(t, x, u)| ≤ Kj |fj(t, x, u)− fj(t, x, v)| ≤ Lj|u− v|

for some positive constants Kj, Lj , j = 1, . . . ,m, every t ∈ [0, T ], x ∈ [0, 1],

u, v ∈ R.

(3) gj : [0, T ]× [0, 1]× R → R, j = 1, ...,m is a measurable mapping, bounded

and uniformly Lipschitz continuous in the last component

|gj(t, x, u)| ≤ K̃j |gj(t, x, u)− gj(t, x, v)| ≤ L̃j|u− v|

for some positive constants K̃j, L̃j , j = 1, . . . ,m, every t ∈ [0, T ], x ∈ [0, 1],

u, v ∈ R.
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(4) pj ∈ L∞(0, 1), j = 1, ...m such that pj ≤ 0.

(5) bi,l ∈ R for i, l = 1, ..., n− 1.

3. Well-posedness and regularity results

Being interested in generation properties for the evolution problem previously

introduced, we can rewrite the deterministic linear part of equation (2) endowed

with continuity assumption (3), initial condition (4), boundary conditions (5) and

(6) as a system of coupled evolution boundary value problems of this type

(7)



Ẋj(t, x) =
(
cj(x)X

′
j(t, x)

)′
+ pj(x)Xj(t, x)

Xj(t, vi) = Xk(t, vi), j, k ∈ Γ(vi), i = 1, ..., n

n−1∑
l=1

bi,lX(t, vl) =
m∑
j=1

Φijcj(vi)X
′
j(t, vi) i = 1, ..., n− 1,

X(t, vn) = 0,

Xj(0, x) = X0
j (x) j = 1, ...,m.

Let us introduce a functional framework which allows to reformulate our diffusion

problem (7) in abstract form.

3.1. Abstract setting. On the real Hilbert space X2 = [L2(0, 1)]m, endowed with

the natural inner product

〈X, Y 〉X2 :=
m∑
j=1

∫ 1

0

Xj(x)Yj(x)dx X, Y ∈ X2,

we define the unbounded linear operator (A,D(A)) as follows

(8) AX :=


(c1X

′
1)
′ + p1X1 0

. . .

0 (cmX
′
m)′ + pmXm


with domain, containing the boundary and continuity conditions, defined as follows

(9) D(A) :=

X ∈ [H2(0, 1)]m :

there exists dX ∈ Rn such that

(Φ+)TdX = X(0), (Φ−)TdX = X(1) and

Φ+
δ X

′(0)− Φ−δ X
′(1) = BdX

 .
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Now we can rewrite the system (7) as an abstract Cauchy problem on the Hilbert

space X2

(10)

{
Ẋ(t) = AX(t), t ≥ 0

X(0) = X0.

Where X0 = (X0
1 , ..., X

0
m) ∈ [C(0, 1)]m is the vector of initial data.

To discuss well posedness for (10) or equivalently generation properties for A on

X2, it is useful to apply a variational method based on forms.

Remark 3.1. Our following results are also treated in [21] for a very similar case,

hence we will use some of its contents while doing detailed proofs where differences

between the two approaches occur.

First of all let us introduce the domain of the form.

Lemma 3.2. The linear space

V0 :=

{
X ∈ [H1(0, 1)]m :

there exists dX ∈ Rn−1 × {0} such that

(Φ+)TdX = X(0) and (Φ−)TdX = X(1)

}

is densely and compactly embedded in X2. It becomes an Hilbert space when

equipped with the inner product

(11) 〈X,Y 〉V0 :=
m∑
j=1

∫ 1

0

X ′
j(x)Y

′
j (x)dx, X, Y ∈ V0.

The equivalence between the natural norm on V0 (as subspace of [H1(0, 1)]m)

and the one defined in (11) is the same existing between the norm of H1
0 (0, 1) and

the natural one derived from H1(0, 1). In particular such equivalence is based on

a Poincaré-type inequality, due to the homogeneous Dirichlet boundary condition

we have put on the node vn and to the connection of the graph. Therefore, previ-

ous argument allows us to derive some estimates which are useful to characterize

continuity and coercivity of the form we will introduce later. By the fundamental

theorem of calculus we have

|Xj(x)| ≤ |Xj(0)|+
∫ x

0

|X ′
j(y)|dy



10 L. DI PERSIO AND G. ZIGLIO

for all j = 1, ...,m and x ∈ ej. Moreover, iterating this inequality along the

shortest x, vn-path represented by x, ei0 , vi1 , ei1 , vi2 , ..., ein , vn, we obtain that

|Xj(x)| ≤
in∑
l=i0

∫ 1

0

|X ′
l(y)|dy,

thanks to X(vn) = 0. Recalling that ]{i0, ..., in} = dG(x, vn) ≤ ε(vn) the eccentric-

ity of vn, it follows that

(12)
m∑
j=1

∫ 1

0

|Xj(x)|2dx ≤ m2ε(vn)−1

m∑
j=1

∫ 1

0

|X ′
j(x)|2dx,

and analogously we have

(13) |dXi | ≤ 2
ε(vn)−1

2

(
m∑
j=1

∫ 1

0

|X ′
j(x)|2dx

) 1
2

.

Proposition 3.3. Consider the bilinear form a : V0 × V0 → R defined on the

Hilbert space X2 by

a(X, Y ) :=
m∑
j=1

∫ 1

0

(
cj(x)X

′
j(x)Y

′
j (x)− pj(x)Xj(x)Yj(x)

)
dx+

n−1∑
i,l=1

bi,ld
X
i d

Y
l

for all X, Y ∈ V0. Let us set

b := max
i,l=1,...,n−1

|bi,l|, p := min
j=1,...,m

min
x∈[0,1]

pj(x),

C := max
j=1,..,m

max
x∈[0,1]

cj(x), c := min
j=1,..,m

min
x∈[0,1]

cj(x).

Then a enjoys the following properties:

• a is continuous, i.e. for some M > 0

|a(X,Y )| ≤M |X|V0|Y |V0 for all X, Y ∈ V0.

• a is symmetric, i.e.

a(X, Y ) = a(Y,X) for all X, Y ∈ V0.

• if B is positive definite, a is accretive and coercive, i.e. there exists α > 0

such that

(14) a(X,X) ≥ α|X|2V0
for all X ∈ V0.

Otherwise, a is coercive if c− 2ε(vn)−1b(n− 1)2 > 0.
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• a is closed.

Proof. Combining (12) and (13) we obtain continuity of the form:

|a(X, Y )| ≤ C
m∑
j=1

∫ 1

0

|X ′
j(x)Y

′
j (x)|dx+ |p|

m∑
j=1

∫ 1

0

|Xj(x)Yj(x)|dx+ b
n−1∑
i,l=1

|dXi ||dYl |

≤ C|X|V0 |Y |V0 + |p|m2ε(vn)−1|X|V0 |Y |V0 + 2ε(vn)−1b(n− 1)2|X|V0|Y |V0

= M |X|V0|Y |V0 for all X, Y ∈ V0

where M = C + 2ε(vn)−1(|p|m+ b(n− 1)2).

Let us suppose B positive definite. With regard to coercivity we have

a(X,X) ≥ c

m∑
j=1

∫ 1

0

|X ′
j(x)|2dx+

n−1∑
i,l=1

bi,ld
X
i d

X
l

≥ α|X|2V0

where α := 1
2
c. If B is indefinite or negative definite

a(X,X) ≥ c
m∑
j=1

∫ 1

0

|X ′
j(x)|2dx−

∣∣∣∣∣
n−1∑
i,l=1

bi,ld
X
i d

X
l

∣∣∣∣∣
≥ c

m∑
j=1

∫ 1

0

|X ′
j(x)|2dx− 2ε(vn)−1b(n− 1)2

m∑
j=1

∫ 1

0

|X ′
j(x)|2dx

=
(
c− 2ε(vn)−1b(n− 1)2

) m∑
j=1

∫ 1

0

|X ′
j(x)|2dx

≥ α|X|2V0
,

and we obtain the coercivity property taking e.g. α := 1
2

(
c− 2ε(vn)−1b(n− 1)2

)
>

0.

Symmetry for the form a is a direct consequence of its definition, while its closed-

ness follows from the completeness of V0. �

Remark 3.4. To the best of our knowledge, no reference treats of the relation be-

tween the diffusion/convection’s coefficients cj, bi,l, the complexity of the network

in term of the eccentricity ε(vn) (the maximal distance from the Dirichlet condi-

tion) and the dissipativity of the system (i.e. coercivity of the associated form).

As a matter of fact it seems us to be reasonable that the energy’s balance of the
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system depends on the diffusion velocities cj on the edges and on the convective

velocities bi,l on the nodes. In fact, Robin boundary conditions like (5) allow ac-

cumulation or dissipation of potential in a ramification point vi according to the

signs of the convective coefficients bi,l for l = 1, ..., n− 1. On the other hand, the

form of the coercivity constant α implies that the more its eccentricity ε(vn) is

large and its vertices are numerous, the more its diffusions along the edges have

to be fast in order to be dissipative.

In the light of Proposition 3.3 it is possible to characterize generation and spec-

tral properties for the associated operator. In particular (see e.g. [25, Prop. 1.51,

Thm. 1.52]) one can prove, in the the general case of B indefinite, the following.

Corollary 3.5. If c − 2ε(vn)−1b(n − 1)2 > 0, the operator associated with a is

densely defined, self-adjoint, sectorial and resolvent compact, hence it generates

an analytic, compact, contractive and uniformly exponentially stable C0-semigroup

(T (t))t≥0 on X2. Furthermore (T (t))t≥0 extrapolates to a family of contractive

semigroups (Tp(t))t≥0 on Xp := [Lp(0, 1)]m, p ∈ [1,∞] which are strongly continu-

ous for p ∈ [1,∞) and analytic for p ∈ (1,∞).

The following Lemma states that the operator associated with a is actually A

and then by Corollary 3.5 the abstract Cauchy problem (10) is well defined.

Lemma 3.6. The operator associated with the form a is (A,D(A)) defined in (8),

(9).

Since we are interested in the nonlinear stochastic problem obtained considering

equations (2), (3), (4), (5) and (6), we perturb the deterministic linear system (10)

by means of a nonlinear term and of a Gaussian noise in multiplicative form. We

set F : [0, T ]×X2 → X2 such that

F (t,X)(·) =
(
fj(t, ·, Xj(t, ·))

)
j=1,...,m

for all X ∈ X2

and G : [0, T ]×X2 → L(X2) such that

[G(t,X)Y ](·) =
(
gj(t, ·, Xj(t, ·))Yj(·)

)
j=1,...,m

for all Y ∈ X2.

Finally

W (t) =
(
Wj(t)

)
j=1,...,m
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is a cylindrical Wiener process taking values in X2. With the above notations, we

can rewrite our problem in the following abstract form

(15)

{
dXt = [AXt + F (t,Xt)]dt+G(t,Xt)dWt, t ≥ 0

X(0) = X0.

Assumptions 2.2 together with the Corollary 4.4 given in the next section, ensure

well posedness in mild sense for (15). In particular we have

‖T (t)G(t, x)‖HS ≤ K(t)(1 + |x|X2), t > 0, x ∈ X2,

with K(t) ' t−
1
4 , see [8, Hypothesis 5.1(iii)] for details.

Theorem 3.7. Assume that coefficients in (15) satisfy Assumptions (2.2). Then

for every p ∈ [2,∞) there exists a unique process X ∈ Lp(Ω;C([0, T ];X2)) that is

a mild solution of the equation (15) (mild solution being understood in the sense

of [8]).

See [8, Theorem 5.3.1] for a proof.

4. Gaussian estimates

In this section we derive our main result extending that one obtained in [21]

to the case of non-local boundary conditions, with respect to the existence of a

Gaussian upper bound for heat equations on a network. The basic point is that

the particular class of functions W constructed in [21, §4], in order to apply the

so-called Davies’ trick, does not permit to consider non-diagonal matrix B. This

is equivalent to restrict oneself to the case of local node conditions. In fact, in

defining the bilinear form aρ (analogous to the one defined in (17)), it appears a

term which depends on the difference between the boundary values of the functions

belonging to the space W . Such a difference can not be uniformly (with respect

to ρ ∈ R and φ ∈ W ) dominated, hence the form aρ is not uniform accretive

(essential property to derive a Gaussian estimate following the approach in [2]).

Our approach is based on the following idea: we shall define a functional space

Wbc that contains functions with constant values on the nodes and that defines on

Rn a metric equivalent to that Euclidean one, still being in the framework of the

Davies’ trick.
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Theorem 4.1. If c − 2ε(vn)−1b(n − 1)2 > 0 then the semigroup (T (t))t≥0 has a

Gaussian upper bound. More precisely (T (t))t≥0 is isometric to a C0-semigroup

(T̃ (t))t≥0 on L2(0,m) and there exists a kernel k̃(t, ·, ·) ∈ L∞((0,m) × (0,m))

satisfying

|k̃(t, x, y)| ≤ βt−
1
2 e−

|x−y|2
σt eηt

for Lebesgue almost all x, y ∈ (0,m) and all t > 0 (where β, σ > 0, η ∈ R are

constants) such that

[T̃ (t)f ](x) =

∫ m

0

k̃(t, x, y)f(y)dy

for Lebesgue almost all x ∈ (0,m) and for all t > 0, for all Borel measurable

f ∈ L2(0,m).

We provide here a detailed proof by suitably modifying an approach first for-

mulated in [2] (see also [21] and [22]).

Proof. The proof is divided in three steps.

Step 1: Definition of an isometry between [L2(0, 1)]m and L2(0,m).

Let us define a one-to-one mapping U from [L2(0, 1)]m onto L2(0,m) in the fol-

lowing way: for given functions L2(0, 1) 3 fj : [0, 1] → R, j = 1, ...,m, we define a

function L2(0,m) 3 Uf : [0,m] → R by

Uf(x) := fj(x− j + 1) if x ∈ (j − 1, j),

endowed with the natural norm in X2 := L2(0,m) defined by

|Uf |X2 :=

(
m∑
j=1

∫ 1

0

|fj(x)|2dx

) 1
2

.

By the isomorphism U we can introduce the similar semigroup T̃ (t) := UT (t)U−1

defined on X2. This ”stretching” permits us to embed the problem in the right

framework for proving Gaussian estimates: that one of a C0-semigroup defined on

a Hilbert space of the form L2(I) for some bounded open set I ⊂ R (see e.g. [9,

§3.2] and [1, §13.1]).

Step 2: Davies’ method for Gaussian upper bounds.

Our next purpose is to derive a Gaussian upper bound for the semigroup T̃ (t)

by uniform ultracontractivity of certain semigroups T̃ ρ(t) obtained by a suitable



GAUSSIAN ESTIMATES ON NETWORKS WITH APPLICATIONS TO OPTIMAL CONTROL 15

perturbation. Then we define a slight modification of the functional space defined

in the classical Davies’ trick (see e.g. [2, 21]), due to the presence of boundary

conditions and continuity assumptions on the nodes. Let

Wbc =

{
ψ ∈ C∞(R) ∩ L∞(R) :

|ψ′|∞ ≤ 1, |ψ′′|∞ ≤ 1, ψ(0) = 0 and

ψ takes a constant value for x = 1, ...,m

}
,

where, without loss of generality, we stretch the network in such a way to obtain

vn ≡ 0. Then

d(x, y) :=

{
sup{|ψ(x)− ψ(y)| : ψ ∈ Wbc} if (x, y) ∈ R2 \ {0, ...,m} × {0, ...,m},

|x− y| if (x, y) ∈ {0, ...,m} × {0, ...,m}

defines a metric on R which is actually equivalent to the Euclidean distance (see

e.g. [26, pp. 200-202] for the proof). Previous equivalence is the basic ingredient

for the application of the Davies’ method.

Taken ρ ∈ R and ψ ∈ Wbc, let us define the C0-semigroup T̃ ρ(t) on X2 by

T̃ ρ(t)f = e−ρψT̃ (t)(eρψf) for all f ∈ L2(0,m)

and for p ∈ [1,∞] we define Xp := Lp(0,m).

Theorem 4.2 (Davies’ trick). The following assertions are equivalent:

(i) There exist M > 0, η ∈ R such that

(16) |T̃ ρ(t)|L(X1,X∞) ≤Meη(1+ρ
2)t · t−

1
2

for all ρ ∈ R, ψ ∈ Wbc and t > 0;

(ii) T̃ (t) has a Gaussian bound.

Proof. See [1, Thm. 13.1.4]. �

In the relevant cases of semigroups generated by some differential operators

associated with a sesquilinear form a with domain V , ultracontractivity estimates

are usually proved by showing that V is continuously embedded in some space

Lp(D), and this is in turn usually accomplished as application of some Sobolev

inequality. However, this procedure can only be performed if D is in fact an

open subspace of Rn with n ≥ 2 (see e.g. [2]). If instead one is interested in

1-dimensional applications (e.g. to ”stretched” networks), then a method based

on Nash inequality is more suitable and has been first proved in [11].
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Step 3: Nash inequality.

In order to prove the ultracontractivity estimate (16) for T̃ ρ(t) we first define an

isometric semigroup on X2 as follows

T ρ(t)f := U−1T̃ ρ(t)Uf = (U−1e−ρψ)T (t)(U−1eρψ)f for all f ∈ X2

where

[(U−1e±ρψ)f ](x) =


e±ρψ1(x)f1(x)

...

e±ρψm(x)fm(x)

 and ψj(·) = ψ(·)|[j−1,j], for j = 1, ...,m

is considered as a multiplication operator on X2. Given ρ ∈ R and ψ ∈ Wbc, the

semigroup T ρ(t) is generated by the operator

Aρ = (U−1e−ρψ)A(U−1eρψ)

with domain

D(Aρ) = {f ∈ X2 : (U−1eρψ)f ∈ D(A)}.

Note that exploiting the boundary conditions in the definition of the functional

space Wbc, we have that (U−1e±ρψ)f ∈ V0 for every ψ ∈ Wbc, ρ ∈ R and f ∈ V0.

Therefore a direct computation shows that the bilinear form aρ : V0 × V0 → R,

associated with the operator Aρ, is defined by

(17)

aρ(f, g) = a((U−1eρψ)f, (U−1e−ρψ)g)

=
m∑
j=1

∫ 1

0

cj(x)f
′
j(x)g

′
j(x)dx

+ ρ
m∑
j=1

∫ 1

0

cj(x)ψ
′
j(x)(fj(x)g

′
j(x)− f ′j(x)gj(x))dx

−
m∑
j=1

∫ 1

0

(ρ2cj(x)ψ
′
j(x)

2 + pj(x))fj(x)gj(x)dx+
n−1∑
i,l=1

bi,ld
f
i d

g
i

for all f, g ∈ V0.

Let us note that the ultracontractivity estimate (16) for T̃ ρ(t) is equivalent to the

following one for e−η(1+ρ2)t T ρ(t) thanks to isomorphism U :

there exist M > 0, η ∈ R such that

|e−η(1+ρ2)t T ρ(t)|L(X1,X∞) ≤M · t−
1
2 ,
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for all ρ ∈ R, ψ ∈ Wbc and t > 0.

Moreover, a simple computation shows that the linear operator Aρ − η(1 + ρ2)I

generates the product semigroup e−η(1+ρ
2)t T ρ(t) and it is associated to the bilinear

form aρ+η(1+ρ2) obviously endowed with the same domains as before. Therefore

the following result holds.

Lemma 4.3. If c−2ε(vn)−1b(n−1)2 > 0 then the product semigroup e−η(1+ρ
2)t T ρ(t)

on X2 associated with aρ + η(1 + ρ2) satisfies the estimate

(18) |e−η(1+ρ2)t T ρ(t)|L(X2,X∞) ≤M · t−
1
4 , t > 0,

for some constant M .

Proof. By [25, Thm. 6.3] estimate (18) holds if and only if

(19) |f |6X2
≤M

[
aρ(f, f) + η(1 + ρ2)|f |2X2

]
· |f |4X1

, ∀f ∈ V0.

Using also inequalities (12), (13), the constants c defined in Proposition 3.3 and

P := maxj=1,..,m maxx∈[0,1] pj(x), we can prove that aρ + η(1 + ρ2) is coercive:

(20)

aρ(f, f) + η(1 + ρ2)|f |2X2
=

m∑
j=1

∫ 1

0

cj(x)|f ′j(x)|2dx

−
m∑
j=1

∫ 1

0

(ρ2cj(x)ψ
′2
j (x) + pj(x))|fj(x)|2dx

+
n−1∑
i,l=1

bi,ld
f
i d

f
l + η(1 + ρ2)

m∑
j=1

∫ 1

0

|fj(x)|2dx

≥ c
m∑
j=1

∫ 1

0

|f ′j(x)|2dx− (ρ2C + P )
m∑
j=1

∫ 1

0

|fj(x)|2dx

− 2ε(vn)−1b(n− 1)2

m∑
j=1

∫ 1

0

|f ′j(x)|2dx

+ η(1 + ρ2)
m∑
j=1

∫ 1

0

|fj(x)|2dx

≥ ω|f |2V0
∀f ∈ V0
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for some η ≥ ρ2C+P
1+ρ2

, where ω := 1
2
(c − 2ε(vn)−1b(n − 1)2) > 0. Combining the

following multiplicative Sobolev inequality (see e.g. [19, §1.4.8, Thm. 1])

|f |L2(0,1) ≤ N |f |
1
3

H1(0,1) · |f |
2
3

L1(0,1) for all f ∈ H1(0, 1),

with the coercivity estimate (20) and recalling the equivalence between norms

defined in V0 and [H1(0, 1)]m, we obtain that there exists a constant which we will

denote again by M such that

|f |2X 2 ≤M |f |
2
3
V0
· |f |

4
3

X 1

≤M
[
aρ(f, f) + η(1 + ρ2)|f |2X 2

] 1
3 · |f |

4
3

X 1 , ∀f ∈ V0

which implies (19). �

Symmetry of the form aρ + η(1 + ρ2) implies that condition (19) is satisfied also

by its adjoint, then the semigroup e−η(1+ρ
2)t T ρ(t) is ultracontractive by duality and

in particular (16) holds. Hence Theorem 4.2 implies that T̃ (t) admits a Gaussian

bound, so that Theorem 4.1 is proved. �

Corollary 4.4. Under Assumptions 2.2, the semigroup (T (t))t≥0 generated by A

is an Hilbert-Schmidt operator for every fixed t > 0. Moreover

|T (t)|L2(X2) ≤Mt−
1
4 for all t ∈ (0, T ].

Proof. Note that

|T (t)|L2(X2) = |T̃ (t)|L2(X2) = |k̃(t, ·, ·)|L2((0,m)×(0,m)).

where X2 = L2(0,m) and k̃(t, ·, ·) is the kernel defined in Theorem 4.1. Then we

have

|T (t)|2L2(X2) =

∫ m

0

∫ m

0

|k̃(t, x, y)|2dx dy

≤
∫ m

0

∫ m

0

β2t−1e−2
|x−y|2

σt e2ηtdx dy

≤ mβ2

√
π
σt

2
e2ηT for all t ∈ (0, T ].

This implies that |T (t)|L2(X2) is bounded by Mt−1/4 when t ∈ (0, T ] and M =
1
2
mβ2

√
2πσ e2ηT is a positive constant. �



GAUSSIAN ESTIMATES ON NETWORKS WITH APPLICATIONS TO OPTIMAL CONTROL 19

5. Stochastic Optimal Control Problem

Throughout this section we will use results obtained in [13] where the task of

SOCP is studied in the infinite dimensional Kolmogorov-equation (backward/forward)

framework. We would like to underline that the following methods allow to use

non smooth feedbacks once the weak control formulation stated in [12] is adopted.

Let H, H̄, U be Hilbert spaces, then, for every t0 ≥ 0 and x0 ∈ H, we define an

Admissible Control System (ACS) as
(
Ω,F , (Ft)t≥0 ,P,Wt, u

)
, where

• (Ω,F ,P) is a probability space,

• (Ft)t≥0 is a filtration in it, satisfying the usual conditions [8],

• {Wt : t ≥ 0} is a cylindrical P-Wiener process with values in H̄ and adapted

to the filtration (Ft)t≥0,

• L2
P (Ω× [t0, T ];K) denotes the space of equivalence classes of processes

Y ∈ L2(Ω× [t0, T ];K), admitting a predictable version L2
P(Ω× [t0, T ];K)

is endowed with the norm

|Y |2L2
P

= E
[∫ T

t0

|Y |2K dt
]

• CP ([t0, T ];L2(Ω;K)) denotes the space of K−valued processes Y such that

Y : [t0, T ] → L2(Ω;K) is continuous and Y has a predictable modification,

endowed with the norm

|Y |2CP = sup
t∈[t0,T ]

E [|Yt|K ]2

• u ∈ L2
P (Ω× [t0, T ];U) satisfies the constraint: u(t) ∈ U , P-a.s. for a.a.

t ∈ [t0, T ], where U is a fixed bounded subset of U .

To each ACS there is associated the mild solution Xu ∈ CP([t0, T ];L2(Ω;H)) of

the state equation

(21)

dXu
t = [AXu

t + F (t,Xu
t )] dt+G(t,Xu

t )R(t,Xu
t )u(t)dt+G(t,Xu

t )dWt,

Xu
t0

= x0 ∈ H ,

where t ∈ [t0, T ] and the superscript u indicates the dependence of the mild solution

on the particular admissible control u(t).

The structure of (21), in particular with respect to the terms G and R, is

discussed in [13].
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Here we treat the case of a finite time horizon SOCP, i.e. we want to minimize,

over all ACS, a cost functional of the following general form:

(22) J(t0, x0, u) := E
[∫ T

t0

g(s, u(s), Xu
s )ds+ φ(Xu

T )

]
in the time interval [t0, T ], where the function g, resp. φ, represents the running

cost function, resp. the terminal cost.

The Hamiltonian function associated to the above problem is defined as follows

(23) ψ0(t, x, p) := inf {g(t, x, u) + 〈p, u〉 : u ∈ U} , ∀(t, x, p) ∈ [0, T ]×H× U .

For a detailed description of the assumptions on the coefficients in (21) and

(22) needed to have existence and uniqueness of the optimal control, we refer the

reader to [13], Hyp. (7.1). Here we limit ourselves to explicit the hypothesis on

the function G since these are the ones that will be verified applying our estimates

in 4.4.

Hypothesis 5.1.

The map G : [0, T ]×H → L(H̄,H) is such that ∀v ∈ H̄ the map Gv : [0, T ]×H →
H is measurable, esAG(t, x) ∈ L(H̄,H) for every s > 0, t ∈ [0, T ] and x ∈ H, and

(24)


∣∣esAG(t, x)

∣∣
L2(H̄,H)

≤ Ls−γ(1 + |x|),∣∣esAG(t, x)− esAG(t, y)
∣∣
L2(H̄,H)

≤ s−γ|x− y| ,

|G(t, x)|L(H̄,H) ≤ L(1 + |x|),

moreover

esAG(t, ·) ∈ G1(H, L2(H̄,H))

for s > 0, t ∈ [0, T ], x, y ∈ H , L > 0 , γ ∈
[
0, 1

2

)
.

By Th. 6.2 in [13], the following Hamilton-Jacobi-Bellman equation associated

to (21), (22) for t ∈ [0, T ], x ∈ H:

(25)


∂v(t, x)

∂t
+ Lt[v(t, ·)](x) = ψ(t, x, v(t, x), G(t, x)?∇xv(t, x)),

v(T, x) = φ(x),

admits a unique mild solution. This implies the following (cfr. Th 7.2 in [13]):
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Theorem 5.2. For all ACS we have J(t0, x0, u) ≥ v(t0, x0) and the equality holds

iff the following feedback law is verified by u,Xu

(26) u(s) = Γ(s,Xu
s , R(s,Xu

s )?G(s,Xu
s )∇xv(s,X

u
s )) ,P− a.s.for a.a.s ∈ [t0, T ]

Moreover there exists at least an ACS for which (26) holds and the associated

closed loop equation

(27)
dX̄s = AX̄sds+G(s, X̄s)R(s, X̄s)Γ(sX̄s, R(s, X̄s)

?G(s, X̄s)
?∇xv(s, X̄s))ds+

+ F (s, X̄s)ds+G(s, X̄s)dWs, s ∈ [t0, T ],

X̄t0 = x0 ∈ H

admits a solution s.t. if ū(s) = Γ(s, X̄s, R(s, X̄s)
?G(s, X̄s)

?∇xv(s, X̄s)) then (ū, X̄)

is optimal for the SOCP.

Note that in our case H = H̄ = X2, moreover Assumptions 2.2, Corollary 3.5

and Lemma 3.6 imply that

• the operator A is the generator of a strongly continuous semigroup etA for

t ≥ 0, in X2,

• F : [0, T ] × X2 → X2 is a measurable, uniformly Lipschitz map with Lip-

schitz constant L := maxj=1,...,m

{
Lj, L̃j

}
in the last component and uni-

formly bounded by a positive constant K := maxj=1,...,m

{
Kj, K̃j

}
,

• G : [0, T ]×X2 → L(X2) is a measurable, uniformly Lipschitz map with Lip-

schitz constant L := maxj=1,...,m

{
Lj, L̃j

}
in the last component, uniformly

bounded by a positive constant K := maxj=1,...,m

{
Kj, K̃j

}
, esAG(t,X) ∈

L(X2) for every s > 0, t ∈ [0, T ] and X ∈ X2, moreover satisfies a sublinear

growth condition of this type

|G(t,X)|L(X2) ≤ (L ∧K)(1 + |X|X2) for t ∈ [0, T ], X ∈ X2.

Finally conditions on G stated in 5.1, are veryfied by the Gaussian-type estimate

4.4 for the semigroup (T (t))t≥0 generated by A which implies that the Hilbert-

Schmidt norm of the semigroup esA is bounded as follows

(28) |esA|L2(X2) ≤Ms−γ,

for some γ ∈ [0, 1/2) and positive constant M .
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6. Conclusions

Our approach to the study of a class of reaction-diffusion type equations on a

finite network motivated by neurological reasons allows the generalization of pre-

viously proven results for Gaussian estimates. Namely we prove Gaussian upper

bounds for heat equations semigroup on finite networks extending [21] to the non-

local conditions case. This results is used to apply those obtained [13] for SOCP

which requires that the Hilbert-Schmidt norm of the semigroup has a bound of

the form: |etA|L2(X2) ≤ Ct−γ for γ ∈ [0, 1/2), for some constant C > 0, as t ↓ 0.

In [3] this is obtained for a particular heat equation. The authors treat a reac-

tion diffusion problem on an interval coupled with stochastic dynamical boundary

conditions in the extremes as an abstract evolution equation on a product Hilbert

space X (as suggested in [6]). By an analogous of characteristic polynomial for

matrix in finite dimensions (see [10, 24] for a survey on spectral properties of un-

bounded matrix operators), they are able to explicitly calculate the eigenvalues of

the leading operator A showing that they are asymptotic to −π2n2, n ∈ N, i.e.

|etA|L2(X ) ≤ Ct−1/4, for some constant C > 0, as t ↓ 0 . In the case of a system of

coupled evolution equations on a network, it is not easy in general to character-

ize so precisely the spectral properties of the operator, even when the boundary

conditions are static. So an alternative way is to prove Gaussian estimates for the

generated semigroup, which in fact imply a stronger condition. Note that even

in the one dimensional case of an interval, the dynamics of the boundary put the

abstract evolution on a product space, so even what is the correct definition of

Gaussian estimates is not any longer so clear. In a future work we aim at deriving

some kind of Gaussian bounds for diffusion problems on networks with stochastic

dynamical boundary conditions both in one and more dimensions.

Another generalization we will be interested in concerns the possibility to take a

nonlinear reaction term with polynomial growth at infinity (therefore only locally

Lipschitz) in order to include some biological models in neurobiology. In particular

if we take the non-linear term in (2) to be a cubic

F (x) = x(1− x)(x− ξ)
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we obtain the FitzHugh-Nagumo model for diffusion of electrical potential in neu-

rons, where 0 < ξ < 1 represents the voltage threshold (see e.g. [27] for a survey

and [5] for a deterministic optimal control problem). Perhaps methods of [7] and

[17] for treating stochastic optimal control problems on Banach spaces with non-

Lipschitz coefficients will be useful in this context.
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ical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential

Equations (2008), No. 164, 20.

6. V. Casarino, K.-J. Engel, R. Nagel, and G. Nickel, A semigroup approach to boundary feed-

back systems., Integral Equations Operator Theory 47 (2003), no. 3, 289–306.

7. S. Cerrai, Optimal control problems for stochastic reaction-diffusion systems with non-

Lipschitz coefficients, SIAM J. Control Optim. 39 (2001), no. 6, 1779–1816 (electronic).

8. G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems, Cambridge UP,

1996.

9. E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92,

Cambridge University Press, Cambridge, 1990.

10. K.J. Engel, Spectral theory and generator property for one-sided coupled operator matrices.,

Semigroup Forum 58 (1999), 267–295.

11. E. B. Fabes and D. W. Stroock, A new proof of Moser’s parabolic Harnack inequality using

the old ideas of Nash, Arch. Rational Mech. Anal. 96 (1986), no. 4, 327–338.



24 L. DI PERSIO AND G. ZIGLIO

12. W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions,

Springer-Verlag, New York, 1993.

13. M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional

spaces: the backward stochastic differential equations approach and applications to optimal

control, Ann. Probab. 30 (2002), no. 3, 1397–1465.

14. J. Keener and J. Sneyd, Mathematical physiology, Springer, New York, 1998.

15. M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in net-

works, Math. Z. 249 (2005), no. 1, 139–162.
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