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Abstract

In robust biological systems, wide deviations from highly controlled
normal behavior may be rare, yet they may result in catastrophic com-
plications. While in silico analysis has gained an appreciation as a
tool to offer insights into systems-level properties of biological systems,
analysis of such rare events provides a particularly challenging compu-
tational problem. This paper proposes an efficient stochastic simula-
tion method to analyze rare events in biochemical systems. Our new
approach can substantially increase the frequency of the rare events
of interest by appropriately manipulating the underlying probability
measure of the system, allowing high-precision results to be obtained
with substantially fewer simulation runs than the conventional direct
Monte Carlo simulation. Here, we show the algorithm of our new ap-
proach, and we apply it to the analysis of rare deviant transitions of
two systems, resulting in several orders of magnitude speedup in gener-
ating high-precision estimates compared with the conventional Monte
Carlo simulation.

1 Introduction

While rare events are, by definition, ones that occur with extremely small
probability, they can have significant influences and profound consequences
in many systems [2]. This is particularly true in biochemical and physiolog-
ical systems in that, while the occurrence of biochemical events that leads
to some abnormal states may be rare, it may have devastating effects. For
example, it has been shown that rare epigenetic modifications play crucial
roles in the development of cancer cells by, among other things, inactivating
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tumor-suppressing genes [3, 15, 5, 4]. The failed recognition of such danger-
ous cells by the immune system and the inability to induce apopotosis as a
self-defense mechanism are another infrequent yet devastating event, poten-
tially leading to growth and spread of tumors [20]. Thus, gaining insights
into the underlying biochemistry of such rare events is crucial for better
understanding of the development and physiology of disease.

Since computational methods come with virtually unlimited controllabil-
ities and observabilities of biochemical systems, in silico analysis may pro-
vide a tool to shed some light on the physiology of such rare yet catastrophic
events. The most exact way to analyze a quantitative model of a biochem-
ical system is molecular dynamics, where movements of every molecule are
tracked [10, 11]. The system state of molecular dynamics consists of the po-
sitions and the velocities of every molecule where the dynamics is described
by capturing every movement and every collision of molecules. While this
approach can describe the time evolution as well as the spatial distribution
of each molecule, acquiring such detailed knowledge and performing such
computationally expensive simulations is typically infeasible.

Stochastic chemical kinetics (SCK) describes the time evolution of well-
stirred biochemical systems as a discrete-space stochastic process. By mak-
ing the well-stirred assumption, the spatial property of a system can be
abstracted away, overriding the system state to be simply the populations
of species in the system. This greatly simplifies the complexity of the sys-
tem state description. The time evolution of the probability distribution of
a SCK model is governed by the chemical master equation (CME) [19, 9].
However, directly obtaining the solution of the CME of any realistic system,
either analytically or numerically, is not feasible owning to its intrinsic com-
plexity. Thus, exact numerical realizations of a SCK model via the stochastic

simulation algorithm (SSA) [7, 8] are often used to infer the temporal system
behavior with a much smaller memory footprint.

Unfortunately, the computational requirements of the SSA can be sub-
stantial due to the fact that it requires a potentially large number of simu-
lation runs in order to estimate the system behavior at a reasonable degree
of statistical confidence. And, this problem becomes further pronounced
in the analysis of rare events as it necessitates generation of a substantial
number of sample trajectories. For example, the spontaneous, epigenetic
switching rate from the lysogenic state to the lytic state in phage λ-infected
Escherichia coli [22] is experimentally estimated to be in the order of 10−7

per cell per generation [17]. Thus, the SSA would expect to generate sam-
ple trajectories of this rare event only once every 107 runs, and it would
require more than 1011 simulation runs to generate an estimated probability
with the 95% confidence interval with 1% relative half-width. Therefore,
even if the detailed molecular-reaction description of a physiological system
were available, a quantitative rare event analysis of such a system might be
unfeasible—even with a cluster of thousands of computers.
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This paper introduces a new Monte Carlo simulation method to effi-
ciently analyze rare events of biochemical systems. This approach, which
we call weighted SSA (wSSA), increases the chance to observe the rare events
of interest by utilizing the importance sampling technique [12]. Importance
sampling manipulates the probability distribution of the sampling so that
the events of interest can be observed more frequently than it would with
the conventional Monte Carlo sampling. The outcome of each biased sam-
pling is weighted by a likelihood factor to yield the statistically correct and
unbiased results. Thus, the importance sampling approach can increase the
fractions of samples that result in the events of interest per a given set of
simulation runs, and consequently, it can efficiently increase the precision
of the estimated probability. By applying importance sampling to simula-
tion of biochemical systems, hence, the wSSA can substantially increase the
frequency of observation of the rare events of interest, allowing reasonable
results to be obtained with orders of magnitude smaller simulation runs than
the SSA. This can result in a substantial increase in computational efficiency
of rare event analysis of biochemical systems.

The rest of this paper is organized as follows. Section 2 overviews the
SCK and its analysis methods including the SSA. Section 3 describes the
wSSA while Section 4 discusses the choice of the biased probability measure
for the wSSA. The algorithm of the wSSA to analyze rare events is discussed
in Section 5. Section 6 presents case studies to compare the accuracy and
efficiency of the SSA and the wSSA. Finally, this paper concludes in Section
7 by summarizing the wSSA and describing directions for potential future
works.

2 Stochastic Chemical Kinetics

An SCK model is composed of N chemical species {S1 , . . . ,SN } which in-
teract through M irreversible reactions {R1 , . . . ,RM } inside a well-stirred,
chemically reacting system with a constant volume in thermal equilibrium
at some constant temperature. By letting X(t) ≡ (X1(t), . . . , XN (t)) be the
system state vector that represents the population of each Si , SCK describes
the time evolution of X(t) as a discrete-space Markovian process.

In SCK, the occurrence of each reaction Rj is viewed as a discrete random
event that changes the system state by vj ≡ (v1j , . . . , vNj), called the state

change vector, whose ith element vij specifies the change in Xi by one Rj

reaction event. Thus, given the system is in state x ≡ (x1, . . . xN ), the
system jumps to state x+vj as a consequence of a single Rj reaction event.
The time that the next event of reaction Rj occurs is governed by function
aj , which is called the propensity function of reaction Rj , where aj(x)dt is
defined as the probability that, given X(t) = x, reaction Rj will occur in
the next infinitesimal time interval [t, t + dt). With these definitions, SCK
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describes the time evolution of P (x, t | x0, t0), the probability of X(t) = x

given X(0) = x0 as:

P (x, t + dt | x0, t0) = P (x, t | x0, t0)



1−
M
∑

j=1

aj(x)dt





+
M
∑

j=1

[P (x− vj, t | x0, t0)aj(x− vj)dt].

(1)

Taking the limit for dt→ 0+ and with some algebraic manipulations Equa-
tion 1 can be rewritten as the following difference-differential equation:

∂P (x, t | x0, t0)

∂t
=

M
∑

j=1

[P (x− vj, t | x0, t0)aj(x− vj)− P (x, t | x0, t0)aj(x)],

(2)
which is called the chemical master equation (CME) [19, 9, 24]. Although
the time integral of the CME gives the probability P (x, t | x0, t0) for any
t > t0, directly obtaining the solution of the CME of nontrivial systems,
either analytically or numerically, is not feasible [8, 24, 6]. Thus, owing to
its intrinsic complexity, the CME itself may not be useful for analyzing the
temporal behavior of biochemical systems without reducing the system state
space with approximations such as those described in [16, 21].

In order to more practically analyze the time evolution of X(t) within
an SCK model, a Monte Carlo simulation algorithm called the stochastic

simulation algorithm (SSA) has been developed [7, 8]. SSA is derived by
defining a probability density function p(τ, j | x, t) such that p(τ, j | x, t)dτ
is the probability that, given X(t) = x, the next reaction occurs in the
infinitesimal time interval [t + τ, t + τ + dτ), and it is Rj . Then, it can be
shown that:

p(τ, j | x, t) = a0(x) exp (−a0(x)τ)× aj(x)

a0(x)
, (3)

where:

a0(x) ≡
M
∑

j=1

aj(x). (4)

Thus, formally, the SSA is a Monte Carlo simulation procedure that faith-
fully selects j and τ according to the probability distribution defined in
Equation 3. In other words, in the SSA, the time to the next reaction,
τ , is a sample of the negative exponential random variable T (x) with mean
1/a0(x) and the index of the next reaction, j, is a sample of the discrete ran-
dom variable J(x) with probability mass function pJ(j;x) = aj(x)/a0(x),
j = 1, 2, . . . , M .
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3 Weighted SSA

In the direct method implementation of the SSA [7], samples of J(x) are
drawn by first picking a unit uniform random value, u, and then choosing
the smallest j satisfying:

j
∑

µ=1

aµ(x) ≥ ua0(x).

This scheme correctly generates independent samples based on J(x). In
other words, by letting [q] be the Iverson bracket [13] such that

[q] =

{

1 if q is true,

0 otherwise,

pJ(j;x) can be expressed as:

pJ(j;x) = lim
n→∞

1

n

n
∑

i=1

[J{i}(x) = j] (5)

where J{1}(x), · · · , J{n}(x) is a sequence of n independent samples from
the next reaction selection scheme in the direct method, given that X = x.
Equation 5 implicitly shows that each sample is of equal weight, and hence,
the j-th reaction event is expected to occur once every 1/pJ(j;x) samples.
An implication of this is that, if pJ(j;x) ≈ 0, it is highly likely that observing
even a single j-th reaction requires a very large sample size. Thus, the
SSA typically requires a substantial number of simulation runs before state
transitions led by a sequence of such rare reactions are observed. This
presents significant computational demands for analysis of rare events in
biological systems via the SSA.

In order to alleviate the computational requirements in the analysis of
rare events of a SCK model, the weighted SSA (wSSA) uses the importance
sampling technique. In importance sampling, the average of a function of
a random variable Y on Ω with density function pY (y) is estimated using
a different random variable Ȳ on Ω with density function pȲ (y). Thus, let
〈[Y ∈ E]〉, the average of [Y ∈ E], be the property of interest. Then, by
definition,

〈[Y ∈ E]〉 =

∫ ∞

−∞
[y ∈ E] pY (y)dy. (6)

Multiplying and dividing the right hand side by pȲ (y) yields:

〈[Y ∈ E]〉 =

∫ ∞

−∞

[y ∈ E] pY (y)

pȲ (y)
pȲ (y)dy

= 〈
[

Ȳ ∈ E
]

pY (Ȳ )

pȲ (Ȳ )
〉.

(7)
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Since 〈[Y ∈ E]〉 is identical to, P (Y ∈ E), the probability that Y ∈ E, this
shows that P (Y ∈ E) can be expressed using Ȳ . That is, P (Y ∈ E) can
also be expressed via sampling of Ȳ as:

P (Y ∈ E) = lim
n→∞

1

n

n
∑

i=1

[

Ȳ {i} ∈ E
]

pY (Ȳ {i})

pȲ (Ȳ {i})
, (8)

where Ȳ {i} is the i-th independent sample of Ȳ . Hence, if Ȳ has a higher
probability for E to occur, then this approach has a higher chance to gen-
erate samples Ȳ {i} such that Ȳ {i} ∈ E.

Now, consider the next reaction selection scheme of the direct method,
and let Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) denote the probability that, given X =
x0, the first reaction is Rj1 , the second reaction is Rj2 ,. . . , and the k-th reac-
tion is Rjk

. Then, since X(t) is Markovian, this joint conditional probability
can be expressed using pJ(j;x) as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k
∏

h=1

pJ(jh;xh−1) (9)

where xh = x0 +
∑h−1

h′=1
vj

h′
. Here, let J̄(x) be a biasing discrete random

variable with probability distribution pJ̄(j;x) in the wSSA. Because pJ(j;x)
can be rewritten as w(j;x)pJ̄(j;x) where w(j;x) = pJ(j;x)/pJ̄(j;x), Equa-
tion 9 can also expressed as follows:

Pk(jk, k; · · · ; j2, 2; j1, 1 | x0) =
k
∏

h=1

w(jh;xh−1)pJ̄(jh;xh−1). (10)

Consequently, with n runs of Monte Carlo simulation via the wSSA, this
k-step path probability can be estimated as:

P̄k(jk, k; · · · ; j2, 2; j1, 1 | x0) =
1

n

n
∑

i=1

k
∏

h=1

w(jh,xh−1)
[

J̄(xh−1) = jh

]

. (11)

Hence, with an adequate choice of the biasing distribution pJ̄(j;x), the
wSSA can increase the fractions of sample trajectories that result in the
rare events of interest. And each such outcome is weighted by a score

k
∏

h=1

w(jh,xh−1),

to correct the sampling bias and yield the statistically unbiased results.
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4 Predilection Functions

To specify the explicit form of pJ̄(j;x) in the wSSA, let bj(x) denote a
function such that bj(x)dt is the probability with which, given X = x,
one Rj reaction event should occur within the next infinitesimal time dt,
based on the bias one might have to lead the system towards the events of
interest. Thus, we call bj(x) the predilection function of reaction Rj . With
the definition of predilection functions, pJ̄(j;x) can be expressed as:

pJ̄(j;x) =
bj(x)

b0(x)
, (12)

where b0(x) ≡ ∑M
µ=1

bµ(x). Thus, in the wSSA, samples of J̄(x) can be
drawn by first picking a unit uniform random value, u, and then choosing
the smallest j satisfying:

j
∑

µ=1

bµ(x) ≥ ub0(x),

while the weight functions w(j,x) can be expressed through the propensity
functions and predilection functions as:

w(j,x) =
aj(x)b0(x)

a0(x)bj(x)
. (13)

In this paper, we have further restricted the form of each predilection
function, and defined each predilection function to be proportional to the
corresponding propensity function. In other words, for each reaction Rj ,
bj(x) is defined as:

bj(x) = αj × aj(x), (14)

where each αj > 0 is a constant. This allows us to conveniently constrain
the predilection functions such that, for each bj(x), bj(x) = 0 if and only if
aj(x) = 0. This constraint can avoid the case where a possible trajectory of
a system is weighted by a factor 0.

Clearly, if αj = α for all j, then pJ̄(j;x) = pJ(j;x) and w(j,x) = 1 for
all j. Thus, such a selection of predilection functions may not be useful.
While optimized selection schemes of the predilection functions require fur-
ther investigation, it is somewhat intuitive to select predilection functions
to alleviate the computational demands in a number of cases. For exam-
ple, suppose we are interested in analyzing the probability that a species S
transitions from θ1 to θ2 where θ1 < θ2. Then, most likely, increasing the
predilection functions of the production reactions of S and/or decreasing the
predilection functions of the degradation reactions of S—even with a small
factor—would increase the fractions of the sample trajectories that result in
the event of interest.
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5 Algorithm

Algorithm 1 implements the wSSA. This algorithm performs n wSSA sim-
ulation runs to estimate the probability that the system moves to a state
in E—which we presume to be a rare event—within the time limit tmax.
Note that, while Algorithm 1 is presented in a similar fashion as the coun-
terpart direct method of the SSA, various optimization techniques of the
direct method, such as [1, 18], can also be applied to an implementation of
the wSSA to further reduce the simulation cost.

First, the algorithm initializes to 0 the variable q, whose value divided
by n at the end of the simulation provides the estimate of the probability of
interest (line 1). Then, it generates n sample trajectories of X(t) using the
Monte Carlo simulation method of the wSSA. For each simulation run, the
initialization is first performed to set the weight of each sample trajectory, w,
the time, t, and the system state, x to 1, 0, and x0, respectively (lines 3-5).
It then evaluates all the propensity functions aj(x) and all the predilection
functions bj(x), and also calculates a0(x) and b0(x) (line 6). Each Monte
Carlo simulation is run up to time tmax. If a rare event (i.e., x ∈ E) occurs
within that time frame, then the current sample trajectory weight w is
added to q, and the algorithm carries on to the next simulation (lines 8-11).
Otherwise, the waiting time to the next reaction, τ , is sampled in the same
way as in the direct method of the SSA, and also the next reaction Rµ is
selected using the predilection functions (lines 12-14). Then, the algorithm
updates the variables, w, t, and x to reflect the selections of the waiting
time and the next reaction (lines 15-17). Any propensity functions and
predilection functions which need to be updated based on the firing of one
Rµ reaction event are re-evaluated, and a0(x) and b0(x) are re-calculated
(line 18). After n sample trajectories are generated via the Monte Carlo
simulation method, the probability that the system reaches states in E within
tmax given the system is in x0 at time 0 is estimated by q/n (line 21).

The computational complexity of Algorithm 1 and the counterpart of the
standard SSA can be compared by noticing that the multiplication/division
operations in the wSSA only increases linearly. Indeed, those operation
counts in Algorithm 1 differ from the counterpart of the SSA only in the
two steps: line 15; and line 18 inside the while loop. Line 15 adds a constant
number of operations (i.e., 2 multiplications and 2 divisions), while line 18
includes the operations for the update of the predilection functions bj(x),
j = 1, 2, . . . , M as well as b0(x). The cost of such updates depends on the
specific form of the predilection functions and the network of the model.
However, if, as considered in this paper, the predilection functions take
the form of simple scaling functions of the propensity functions, then these
updates require at most M + 1 multiplications, which does not change the
overall complexity of the simulation algorithm between the wSSA and the
direct method of the SSA.
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Algorithm 1 The wSSA
1: q ← 0
2: for k = 1 to n do

3: w ← 1
4: t← 0
5: x← x0

6: evaluate all aj(x) and bj(x), and calculate a0(x) and b0(x)
7: while t ≤ tmax do

8: if x ∈ E then

9: q = q + w
10: break out of the while loop
11: end if

12: τ ← a sample of exponential random variable with mean 1/a0(x)
13: u← a sample of unit uniform random variable
14: µ← smallest integer satisfying

∑µ
i=1

bi(x) ≥ ub0(x)
15: w ← w × (aµ(x)/bµ(x))× (b0(x)/a0(x))
16: t← t + τ
17: x← x + vµ

18: update aj(x) and bj(x), and re-calculate a0(x) and b0(x)
19: end while

20: end for

21: report q/n as the estimated probability
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6 Case Studies

This section analyzes the effectiveness of wSSA for the estimation of rare
event probabilities by applying it to two simple biochemical systems and
comparing the accuracy and the efficiency with the SSA. The probabilities
of interest in these two systems can be numerically obtained by constructing
the underlying Markov chain and solving for the corresponding probabilities.
Thus, accuracy of the wSSA and the SSA can be quantified by comparing
the estimated probabilities with the true probabilities obtained with this
scheme.

6.1 Single Species Production-Degradation mechanism

The first model consists of two chemical reactions as follows:

R1 : S1
k1−→ S1 + S2 ,

R2 : S2
k2−→ ∅.

(15)

This model represents a simple system where species S1 constitutively syn-
thesizes species S2 at a rate constant k1 in reaction R1 while species S2

is degraded with rate constant k2 in reaction R2. The initial state of the
system is given by

X1(0) = 1; and X2(0) = 40,

and the rate constants are given by:

k1 = 1.0; and k2 = 0.025.

In this system, we are interested in evaluating Pt≤100(X2 → θ | x0),
the probability that the system moves from the initial state x0 to states
where X2 = θ within time limit 100. Initially, reactions R1 and R2 are
in equilibrium because k1 × X1(0) = k2 × X2(0). As X2 increases, a2(x)
increases while a1(x) stays the same, resulting in a higher probability of
R2 firing to push back X2. Symmetrically, if X2 decreases, a2(x) decreases
while a1(x) stays the same, resulting in a higher probability of R1 firing to
increase X2. Hence, X2 in this system tends to stay around 40. Indeed, the
stationary distribution of X2 follows a Poisson distribution with parameter
λ = k1/k2 = 40. Thus, the mean of limt→∞ X2(t) becomes λ. Consequently,
if θ is substantially higher than λ, then Pt≤100(X2 → θ | x0) may become so
small that analysis via the SSA becomes unwieldy.

We have applied both the SSA and the wSSA to estimate Pt≤100(X2 →
θ | x0) for four different values of θ: 65; 70; 75; and 80. For each θ, we have
estimated the probability with the two methods at each 10i-th simulation
run, i ∈ [1, 7], and analyzed the changes of the estimate over simulation
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runs by comparing each to the “true” probability, which is obtained through
numerical solution (see Appendix for detail on the method). In this analysis,
to increase the fractions of the events resulting in X2 reaching θ within 100
time units with the wSSA, the predilection functions are defined as follows:

b1(x) = δa1(x),

b2(x) =
1

δ
a2(x),

where δ = 1.2. The results of this analysis are shown in Figures 1 and 2.
Figure 1 compares the changes of the estimate of Pt≤100(X2 → θ | x0) via
the SSA and the wSSA over simulation runs, and quantifies the accuracy by
also comparing the estimates to the true probability of Pt≤100(X2 → θ | x0).
From Figure 1, it is clear that the wSSA performs better than the SSA in
terms of accuracy for given simulation runs. Also, the estimate produced
via the wSSA can converge to the true probability more rapidly that the
one obtained via the SSA. And, as the value of θ increases, the difference in
accuracy becomes more pronounced. For example, while the wSSA produces
a fine estimate for Pt≤100(X2 → 80 | x0) by generating 57,444 out of 107

simulation runs resulting in X2 = 80, none of the 107 simulation runs via the
SSA results in X2 = 80 within 100 time units (Figure 1(d)). To measure the
convergence rates more precisely, Figure 2 shows the changes of the relative
distance of the estimated probability from the exact one with respect to a
number of simulation runs for each value of θ. This shows that, while the
relative distance is overall a decreasing function of a number of simulation
runs, the wSSA converges more rapidly, and the SSA requires more than
two orders of magnitude larger simulation runs in order to achieve the same
level of accuracy as the wSSA.

We have measured the efficiency of the wSSA by considering the ratio
of the computation time between the wSSA and the SSA. We expect this
value to be bounded by a constant as the computational complexity of the
wSSA only increases linearly compared with the direct method of the SSA,
and as shown in Figure 3(a), the ratio appears to be bounded by 1.5. That
is, the SSA is at most 1.5 times faster than the wSSA per simulation run.
However, provided that the wSSA can achieve the same level of accuracy
with orders of magnitude smaller simulation runs compared with the SSA,
the wSSA is substantially more efficient than the SSA. For example, whereas
the SSA requires 440 seconds of computation time (i.e., 107 simulation runs)
to estimate Pt≤100(X2 → 65 | x0) with relative distance of 3.9× 10−3 to the
true value, the wSSA only requires 5.7 seconds of computational time (i.e.,
105 simulation runs) to estimate this probability with a relative distance of
2.5× 10−3 (Figure 1(a)).

To better characterize the computational gain obtained with wSSA, we
have evaluated the number of runs required by SSA to achieve a given pre-
cision ǫ of the estimate. We define the accuracy ǫ as 1 minus the relative
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(a) (b)

(c) (d)

Figure 1: Changes of the estimated Pt≤100(X2 → θ | x0) via the SSA and
the wSSA with respect to a number of simulation runs for each θ. The solid
line represents the true probability. (a) θ = 65, (b) θ = 70, (c) θ = 75, and
(d) θ = 80.
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(a) (b)

(c) (d)

Figure 2: Changes of the relative distance between the true value and the
estimate value of Pt≤100(X2 → θ | x0) via the SSA and the wSSA with
respect to a number of simulation runs for each θ. (a) θ = 65, (b) θ = 70,
(c) θ = 75, and (d) θ = 80.
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(a) (b)

Figure 3: Comparison between SSA and wSSA computation times. (a)
Ratio of the simulation time of wSSA and SSA with respect to a number of
simulation runs for the four values of θ in the model given by reactions 15.
(b) Ratio of SSA and wSSA computation time (on the vertical axis) for a
given level of accuracy ǫ (on the horizontal axis).

distance, and we estimate the number of runs required by SSA through a
statistical argument based on confidence intervals (see Appendix for details).
Using the estimated number of runs as well as the average run time, we have
evaluated the expected computation time of SSA for achieving the accuracy
ǫ. Figure 3(b) shows the ratio of the expected computation time between
the SSA and wSSA. This clearly indicates that a significant computational
gain is achieved with the wSSA algorithm. For instance, while the wSSA can
estimate Pt≤100(X2 → 80 | x0) with an accuracy of 99.9999% in 5.6 × 104

seconds (i.e., with 109 simulation runs), to achieve the same level of accu-
racy with SSA would require around than 2.3 × 105 years of computation
(i.e. 1.67× 1017 simulation runs).

6.2 Enzymatic Futile Cycle Mechanism

The enzymatic futile cycle motif consists of two instances of the elementary
single-substrate enzymatic reaction scheme as follows:

R1 : S1 + S2
k1−→ S3 ,

R2 : S3
k2−→ S1 + S2 ,

R3 : S3
k3−→ S1 + S5 ,

R4 : S4 + S5
k4−→ S6 ,

R5 : S6
k5−→ S4 + S5 ,

R6 : S6
k6−→ S4 + S2 .

(16)
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One enzymatic reaction scheme is to transform S2 into S5 catalyzed by S1 ,
and the other one is to transform S5 into S2 catalyzed by S4 . This motif
can be ubiquitously seen in biological systems including GTPase cycles,
mitogen-activated protein kinase cascades, and glucose mobilization [23]. In
our model, the initial state of the system is given by

X1(0) = X4(0) = 1;X2(0) = X5(0) = 50; and X3(0) = X6(0) = 0,

and the rate constants are specified as follows:

k1 = k2 = k4 = k5 = 1; and k3 = k6 = 0.1.

Because of the perfect symmetry in the rate constants as well as in the
initial molecule counts of the two enzymatic reaction scheme in this system,
we expect the system to stay—with high probability—around states in which
X2 and X5 are balanced. With this model, we are interested in evaluating
Pt≤100(X5 → θ | x0), the probability that, given X(0) = x0, the condition
X5 = θ is satisfied within 100 time units where θ takes four distinct values:
25; 30; 35; and 40.

Since reaction set 16 defines a closed system where the total molecule
count is conserved (i.e.,

∑

6

i=1
Xi(t) is a constant for all t ≥ 0), this system

has a finite number of states. With our model, the number of the states
is relatively small, making the system amenable to a numerical solution of
the transient probability distribution of the underlying Markov process (see
Appendix for the method). We can therefore compute the exact value of
Pt≤100(X5 → θ | x0), and hence compare the accuracy of the wSSA and the
SSA.

In order to increase the fractions of simulation runs that reach the states
of interest with the wSSA, we use the following predilection functions:

b1(x) = a1(x),

b2(x) = a2(x),

b3(x) = γa3(x),

b4(x) = a4(x),

b5(x) = a5(x),

b6(x) =
1

γ
a6(x),

where γ = 0.5. This biasing can increase the production reaction rate of S2

while decreasing the production rate of S5, resulting in an increase in the
frequency of X5 to move to low count states.

Figure 4 shows the estimates of Pt≤100(X5 → θ | x0) via the SSA and
the wSSA with respect to a number of simulation runs for the four values
of θ. When θ = 40, the estimate from the wSSA appears to stay in a
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(a) (b)

(c) (d)

Figure 4: Changes of the estimated Pt≤100(X5 → θ | x0) via the SSA and
the wSSA with respect to a number of simulation runs for each θ. The solid
line represents the true probability. (a) θ = 40, (b) θ = 35, (c) θ = 30, and
(d) θ = 25.

good agreement with the true value from as low as 103 simulation runs,
while the same level of precision requires 106 simulation runs with the SSA
(Figure 4(a)). This difference becomes more pronounced as the value of θ
decreases. For example, when θ = 25, the estimate from the SSA with 107

simulation runs cannot achieve the same level of precision that the wSSA
obtains with 102 simulation runs (Figure 4(d)). To further quantify the
convergence rates, Figure 5 shows a comparison of the relative distances of
the estimated probability from the exact one with respect to the number of
simulation runs. Again, it is shown in the figure that the estimates from
the wSSA converge to the true value more rapidly than those from the SSA.
Thus, it demonstrates that SSA requires a substantial number of simulation
runs to provide a reliable estimate of Pt≤100(X5 → θ | x0) compared with
the one required by wSSA.

The ratio of the simulation time between the wSSA and the SSA with
respect to a number of simulation runs for each θ is illustrated in Figure
6(a). This shows that, in the worst case, the run time of wSSA is 1.2 times
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(a) (b)

(c) (d)

Figure 5: Changes of the relative distance between the true value and the
estimate value of Pt≤100(X5 → θ | x0) via the SSA and the wSSA with
respect to a number of simulation runs for each θ. (a) θ = 40, (b) θ = 35,
(c) θ = 30, and (d) θ = 25.
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(a) (b)

Figure 6: Comparison between SSA and wSSA computation times. (a) The
ratio of the simulation time of the wSSA and the SSA with respect to a
number of simulation runs for the four values of θ in the model of Reaction
16. (b) Ratio of SSA and wSSA computation time (on the vertical axis) for
a given level of accuracy ǫ (on the horizontal axis).

slower than the direct method of the SSA. In this example, the wSSA is
able to get 25% speedup from the counterpart of the SSA when θ = 40.
This is because, in the wSSA, higher fractions of sample trajectories result
in X5 = 40, allowing many simulation runs to be terminated quickly. Thus,
provided the order of magnitude higher precision that the wSSA can achieve
per a given number of simulation runs, the wSSA is substantially more
efficient in computing Pt≤100(X5 → θ | x0) than the SSA. Figure 6(b) shows
the ratio of the computation time between with respect to a given level of
accuracy of the estimate, which provides further evidence to the higher of
wSSA for the estimation of rare event probabilities.

7 Conclusions

This paper has presented a Monte Carlo simulation algorithm (wSSA) to
efficiently analyze rare events in biochemical systems by manipulating the
underlying probability measure of biochemical systems. This approach fa-
cilitates a substantial increase of the fraction of simulation runs that result
in the events of interest. Thus, the wSSA can perform high-precision rare
event analysis of biochemical and physiological systems with a relatively
small number of simulation runs, which would otherwise require a several
orders of magnitude larger simulation runs and might take thousands of
years of computation with the direct Monte Carlo simulation.

As a case study, we have applied the wSSA to rare event analysis in
a simple production-degradation system and a symmetric enzymatic futile
cycle system. The preliminary results are promising. In this work, using
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a simple biasing scheme of the wSSA, we are able to show that (i) the es-
timate probability from our new simulation approach can rapidly converge
to the true probability, and (ii) the average run time of a single simula-
tion run via the wSSA only increase linearly with a small constant with
respect to the one of the SSA. Therefore, provided that the wSSA can pro-
duce a high-precision estimate with orders of magnitude smaller simulation
runs compared with the direct Monte Carlo simulation, the wSSA can make
the rare event analysis—which would otherwise be infeasible even using a
supercomputer—practical on a single PC. Future work includes an optimized
selection of predilection functions and more case studies such as analysis of
rare deviant effects of physiological systems that can lead a catastrophic
complication.
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A Computation of Exact Rare Event Probabilities

A.1 Single Species

To compute the probability that the system moves, within the time window
[0, tmax], from the initial state to a state where the number of molecules is θ,
we consider the discrete space Markov process {n}t, whose state represents
the number of S2 molecules at time t, t ≥ 0. Notice that it is not necessary
to represent species S1 in the state of the model, as its number is constant
and equal to 1. The state space of {n}t is the finite set of integers Ω = {i |
0 ≤ i ≤ θ}, and the transitions rate qi,j from state i to state j, i, j ∈ Ω, are
specified as follows:

qi,j =







k1 if j = i + 1 and i < θ,
jk2 if j = i− 1 and i < θ,
0 otherwise.

The infinitesimal generator matrix of {n}t is the (θ + 1) × (θ + 1) matrix
Q whose entry i, j is equal to qi,j if i 6= j and to −∑h 6=i qi,h if i = j. The
probability distribution vector at time tmax, denoted by π(tmax) is given by

π(tmax) = π(0)eQtmax (17)

where π(0) is the initial probability distribution vector, which assigns prob-
ability 1 to the state X2(0) and 0 to all other states. Because state θ is by
construction an absorbing one, its component of the mass probability dis-
tribution vector π(tmax) is exactly the probability that the process reaches
state θ within tmax. To compute π(tmax) numerically, we applied the uni-
formization method [14] for the transient solution of Markov processes.

A.2 Futile Cycle

To compute the probability that the system moves, within the time window
[0, tmax], from the initial state to a state where the number of S5 molecules
is θ, we consider the discrete space Markov process {n}t, whose state is a 4-
dimensional vector (nS2

, nS3
, nS5

, nS6
) representing the number of molecules

of species S2, S3, S5, S6 at time t, t ≥ 0. Notice that the state does not
include an explicit representation of the number of S1 and S4 molecules as
this information is obtained from the value of the components for S3 and
S6, as S1 +S3 = 1 and S4 +S6 = 1. The state space of {n}t is the following
finite set of vectors Ω:

Ω =

{

n ∈ N
4 |

4
∑

i=1

ni = X2(0) + X5(0) and nS2
< θ, nS3

, nS6
∈ {0, 1}

}

⋃

{(θ, 1, X2(0) + X5(0)− θ, 0), (θ, 1, X2(0) + X5(0)− θ − 1, 1)} .
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The last two states of Ω are absorbing ones, and state transitions from the
initial state to those states represent the occurrence of the rare event in the
system.

The cardinality of set Ω is 4(X2(0) + X5(0)− θ− 1) + 2. The transition
rates qn,m from state n to state m, with n,m ∈ Ω, are as follows:

qn,m =







































nS2
k1 if nS3

= 1−mS3
, mS2

= nS2
− 1, nS2

> θ,
k−1 if nS3

= 1−mS3
, mS2

= nS2
+ 1, nS2

> θ,
k2 if nS3

= 1−mS3
, mS5

= nS5
+ 1,

nS5
k3 if nS6

= 1−mS6
, mS5

= nS5
− 1,

k−3 if nS6
= 1−mS6

, mS5
= nS5

+ 1,
k4 if nS6

= 1−mS6
, mS2

= nS2
+ 1,

0 otherwise.

The infinitesimal generator matrix Q of {n}t is defined in the same way
as it was defined in Appendix A.1. The initial state probability distribu-
tion at time t = 0 is the vector π(0) that assigns probability 1 to the state
(X2(0), 0, X5(0), 0) and 0 to all other states. The product π(0)eQtmax pro-
vides the probability distribution vector of {n}t at time tmax, given the
initial state. This computation is again performed through the uniformiza-
tion algorithmic technique [14]. Because the two states representing the
occurrence of the rare event are absorbing ones, the sum of their state prob-
abilities at time tmax gives the probability of the system reaching the states
of interest.

B Estimation of the Number of SSA Runs

A simple statistical argument can be used to evaluate the expected number
of simulation runs via the SSA to provide an estimate within a given relative
distance from the exact value p. Let us denote by pn the estimate of the
measure of interest obtained with n simulation runs of SSA. The absolute
distance between pn and p is bounded, with 95% probability, by the half-
width of the confidence interval, as follows [25]:

|p− pn| ≤
uσ√

n
,

where u = 1.96 is the 97.5th percentile of the normal standard distribution, p
the exact value of the estimated probability and σ the standard deviation of
the discrete Bernoulli distribution that gives probability p to the rare event
of interest. For a Bernoulli distribution, the variance is p(1− p), hence the
standard deviation is σ =

√

p(1− p). The relative distance of pn from the
exact value p is therefore given by the half-width of the confidence interval
divided by p. This means that the relative distance of an estimate obtained

23



with n runs of SSA simulation, is, with 95% probability, less than or equal
to

u
√

p(1− p)

p
√

n
.

Therefore, in order to obtain an estimate that is within a relative distance
of δ, the expected number of SSA simulation runs is expressed as follows:









(

u
√

p(1− p)

pδ

)2








.
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