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Introduction

The SOS response is an inducible DNA repair system that allows bacteria to
survive in presence of an increased level of DNA damage. More than 40 genes are
induced in response to DNA damage as part of the SOS regulon in Escherichia
coli. Two main proteins play a key role in the regulation of this response:
a repressor LexA that prevents the expression of these genes and an inducer
RecA that induces the LexA cleavage reaction and the subsequent expression of
the response genes. Most of these response genes are responsible for error-free
DNA-damage repair and for the regulation of cell division. In this thesis we
have investigated a network of nine genes including the principal mediators of
the SOS response: [1] lexA, recA, ssB, recF, dinI and umuDC and three sigma
factor genes: rpoD, rpoH and rpoS.

Starting from this well studied gene network we have employed four different
mathematical models that describe the dynamics of this network. The four
models are based on four distincts “principles” :

• mass action kinetics;

• Michaelis Menten-type kinetics;

• “Mendes” kinetics;

• S-systems.

One of the major problems in modeling gene networks is the estimation of
the kinetic parameters. In this thesis we present several methods to estimate the
parameter values of the constructed models. In particular we have investigated
which methods provide the parameters that fits better the experimental data
obtained from the M3D database [3] as time series data concerning samples
from cultures under norfloxacin perturbation.

For this purpose we have used the software COPASI [2] and we have investi-
gated all the different algorithms of parameter fitting available in the software.
Specifically, we have studied global optimization algorithms such as Particle
Swarm, Genetic Algorithms, and Evolutionary Programming and local opti-
mization algorithms like Hookes and Jeeves. Of the four models the last two
were the ones that fit better the time course experimental data. In particular
the best results were obtained by running Particle Swarm followed by Hookes
and Jeeves.

Once obtained the parameters of the model, we have studied how the model
could predict the dynamics of the network under specific perturbations. Specif-
ically, we have tested the models by using experimental data from four gene
over-expressions under low antibiotic. In this way we have found out that the
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model using Mendes kinetics could predict the steady state values for some of the
genes in the wild-type experiment, but not in the over-expression experiments,
while the S-model was not able to predict such steady states.

The thesis is organized in the following way: in the first chapter we present
the biological aspects of the SOS response gene network and the four models
above mentioned explaining the kinetic functions used and present the mathe-
matical equations derived for each of the genes involved in the network.

In the second chapter we describe the algorithms used to estimate the pa-
rameters focusing on the description of the two algorithms that are the ones
that perform better with the used experimental data.

In the third chapter we present in more details the tools used, in particular
the software COPASI and the database from which the experimental data have
been obtained.

In the fifth chapter we investigate the influence of the parameter values on
the dynamics of the models and on the way they fit the experimental data.

In the final chapter we summarize the obtained results, and we underline
some open problems.



Chapter 1

Modelling the SOS gene
network

In this chapter we will present the biological phenomen of the SOS response in
E. coli. This phenomen involves a lot of genes, but in particular we will focus
on the principal mediators of it. Once described the principal actors of this
network we will present four ODEs models.

1.1 The SOS response in Escherichia coli

Different sources such as radiation, chemical mutagens and products of metabolism
induce damage to the genomes of organisms from bacteria to man. DNA dam-
age can be fatal for the organism since they halt the DNA replication machinery
preventing the duplication of genetic information and thus cell division [8]. Dur-
ing evolution bacteria have evolved different mechanisms to repair or bypass this
damage .

In Escherichia coli this repair mechanism is called ‘SOS response’ a term
coined by Miroslav Radman in 1974 to describe cellular response after exposure
on ultraviolet radiation. The network involves nearly 40 genes directly regulated
by lexA and recA, and tens or possibly hundreds of indirectly regulated genes
[1]. Under normal conditions the cell does not need to express these repair genes
so that they are kept silent until a DNA damage occurs.

Two main proteins play key role in the regulation of this response: a re-
pressor LexA that prevents the expression of these genes and an inducer RecA
that induces the LexA cleavage reaction and the subsequent expression of the
response genes. The functioning of the network is the following one:

The repressor protein LexA binds to operators that contain a 20-bp1 consen-
sus sequence with different affinities so that genes with low affinities for LexA
are induced early. Ultraviolet radiation can create on the DNA dimerization
of neighbouring pyrimidines. Upon encountering such a lesion the replication
machinery halts leaving single stranded DNA free to be attacked; to avoid this
the DNA is covered with the protein RecA which polymerizes with the DNA
becoming active RecA*.

1bp: base pairs
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4 Chapter 1. Modelling the SOS gene network

Active RecA* nucleoprotein filaments are formed in the presence of ATP
by cooperative binding of 38-kDa2 RecA monomers to single-stranded DNA,
assembling in a 5′ → 3′ direction. Filament disassembly also proceeds 5′ → 3′

but requires ATP hydrolyses. A single helical turn covers 18 bases consisting
of six RecA monomers, with each monomer binding three nucleotides [9]. The
activaction of RecA permits the cleavage of LexA and so the induction of the
response genes.

The first genes to be induced are the uvr genes which encode for protein
that carry out the NER (nucleotide excise repair) reaction that excises the
damaged nucleotides from double stranded DNA. About 85% of lesions are
repaired in this way but some more intensive lesions are not repaired by this
mechanism, so a second one is required: recombination, which is carried out
by RecA. Homologous recombination allows the repair of lesions that occur on
ssDNA3 regions at replication forks by rendering them double-stranded and a
substrate for NER.

When both NER and recombination fail in repairing DNA lesions, repli-
cation is restarted by using a special DNA poliymerase DNApol V which is
the product of processed and assembled products of the gene umuDC. DNA
pol V is composed of the 46-kDa UmuC subunit, which contains the active
site of the polymerase, and two 12-kDa UmuD’ proteins. Before association of
the heterotrimer, UmuD undergoes a LexA-like cleavage reaction mediated by
RecA* [10] [11]. Only the N-terminal truncated UmuD’ is mutagenically active
and it stabilizes UmuC by forming UmuD′2C.

Figure 1.1 describes in a very general way the interactions above described.
The price paid for using this DNApol is mutagenesis, infact this polymerase

is a member of the Y-family polymerases, which lack a 3′ → 5′ exonuclease
proofreading4 activity and 5′ → 3′ nick translation activity, so DNApol V can
make substitution errors with a frequency of 10−2− 10−3 on undamaged DNA.

After succesfull repair of DNA damage, the LexA concentration must be
restored in order to shut off the SOS response genes that are not useful anymore.
There are different proteins that seems to play this role, in particular these
proteins interfer with the activaction and inactivation of the SOS response by
moduling the stability of RecA.

The assembly-disassembly regulation of RecA nucleoprotein filaments man-
tains a balance between RecA activaction for recombination, SOS induction and
mutagenesis [9].

Recent single-cell experiments measured the temporal dependence of the
activity of LexA-regulated promoters [12] for different UV doses: at low UV
doses, the promoter activity at about 10 minutes after the UV radiation showed
a single peak and this was also observed in measurements of promoter activity
averaged over a large population of cells [4] and can be attributed to the initial
rapid drop in LexA levels after UV damage because of the activation of RecA.
After the radiation with higher doses, LexA-regulated promoter activity often
had a second peak at about 30 - 40 min, sometimes even followed by a third
peak at 60 - 90 min.

So, in each cell, the SOS response is not simply turned on to an extent

2kDa: kiloDalton
3ssDNA: single strand DNA
4proofreading: excision of a misincorporated nucleotide at a growing 3’-primer end by a

3’-exonuclease associated with the polymerase.
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that depends on the level of DNA damage and then turned off but it acts in a
modular manner. Thus there is a highly precise timing device as part of the SOS
genetic network which is indipendent of the cell cycle. Walker and coworkers
with their experiments on mutants suggested that the genes umuC and umuD
might have a key role in the regulation of these modulations [9].

1.2 The Gene Network formalism

Functional interactions between genes can be represented through the use of
gene networks. These networks are depicted as diagrams in which the nodes
represent genes or their activities (mRNAs) and the edges represent the regula-
tory interactions between them.

Such interactions are not physical interactions but just causal. In fact, in
reality gene expression is not directly influenced by a gene, there is not phys-
ical interaction between them, but usually are the gene products (proteins or
metabolites) that mediate this reciprocal influence.

So, regulation not only involves the level of mRNAs but also the level of
protein and the level of intermediary metabolism. This hierarchy can be visual-
ized as in Figure 1.2 in which we can see that the three levels of interactions are
represented as planes and the interactions between the genes are only indirect
interactions (represented as dotted lines) [13].

The use of gene networks instead of complete biochemical models is an ab-
straction that can be useful when we want to study the functional dynamics
of genes; abstracting at a gene level can make modeling and analysing more
feasible.

In fact, not only gene networks are capable of describing a large number of
interactions in a simple way, but they may also be very useful in representing
the regulatory properties accompanying those interactions at a systems level.

Knowing the structure of gene networks and performing simulations of their
behavior on computers will increase our fundamental understanding of living
systems [13]. Knowledge about the dynamics of gene networks may help phar-
maceutical research in discovering targets for complex diseases, tailoring drug
therapy to the needs of patients [14].

In this thesis we investigate a subpart of the SOS gene network at such level
of abstraction.
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Figure 1.1: In normal conditions, the LexA repressor protein binds to
some genes that take part into the SOS response taking them silent. But
in the presence of single-stranded DNA, the RecA protein binds tightly to
the DNA forming the RecA filament (RecA*), which acts as a coprotease
cleaving any LexA from low-affinity operators. Further cleavage of LexA frees
up the more weakly bound operators, and the SOS genes are relieved from
repression. The SOS proteins are mainly involved in nucleotide-excision and
recombination-repair pathways to remove the DNA damage. However, the
two UV mutagenesis (umu) genes, umuC and umuD, are instead required
for replication past unrepaired lesions in the DNA template. They leave
behind mutations targeted to sites of DNA damage. The figure shows the
activaction of UmuD thanks to a cleavage reaction made by RecA and the
subsequent formation of the multiprotein complex polV [17].
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Figure 1.2: Example of a biochemical network. Molecular constituents
(nodes of the network) are organized in three levels (spaces): mRNAs, pro-
teins, and metabolites. Lines indicate interactions. Projections of these
interactions into the gene space, indicated by dashed arrows, constitute the
corresponding gene network [13].
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1.3 The ODE framework

The purpose of mathematical modelling is to translate biological phenomena
into a set of equations, determine the parameter values of that model to reflect
a particular experimental set-up and then through simulations in such a way,
confirming or disputing previous knowledge or hypotheses. The standard way
to model (non-spatial) physical systems is using ODEs and they have been
successfully applied to simulate metabolic systems [15] [16]. An example of an
ordinary differential equation is the following:

dx
dt

=
∑

f(x,p)−
∑

g(x,p)

where dx/dt represents the rate of change of the substrate concentration x, f(x)
corresponds to the steps leading to the accumulation of x, while g(x) represents
the steps that lead to a decrease in concentration of x.

The process of modeling identifies and defines the variables and the relation-
ships among them and the simulation is an execution of the model (usually done
on a computer). In case of differential equations models, a simulation refers to
numerical integration, as the process of finding a solution to the set of equations.

The goal of using a set of ODEs is to describe a biological phenomen (like
a gene network) to analyze the time dynamics of the system or to calculate the
steady state values of the variables involved in the model.

1.4 A subnetwork of the SOS gene network

In this thesis we use four different ODEs models for a subnetwork of the SOS
global network. We consider a well estabilished subnetwork that takes into
account only those genes that seems to be the principle mediators of the SOS
response. In Figure 1.3 the diagram shows the molecules involved in the response
network, while Figure 1.4 shows the gene network derived from this diagram
looking at the genes plane. The genes considered are the followings (we give for
each one a short functional description) :

• lexA: repressor protein;

• recA: recombinase A;

• ssB : single-strand DNA-binding protein;

• recF : recombination protein F;

• dinI : DNA damage-inducible protein I;

• umuDC : DNA polymerase V subunits UmuC and UmuD;

• rpoD : RNA polymerase sigma factor;

• rpoH : RNA polymerase sigma factor;

• rpoS : RNA polymerase, sigma S (sigma 38) factor;
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As described in Figure 1.3 a mutagenic agent, such as an antibiotic or UV
rays can lead to the formation of single stranded DNA. As a consequence of this,
the protein RecA binds to the single stranded DNA and becomes active RecA*.
This active nucleoprotein filament promotes the cleavage of the repressor protein
LexA which usually is bounded to the response gene promoters preventing their
expression.

In Figure 1.3 the red lines ending with filled circles shows the genes directly
affected by the LexA inhibition.

When this inhibition is removed the genes depicted as boxes in the picture,
becomes active and can express their proteins whose functions are synthesized
in circled boxes at the right side of the picture.

We are going to present several models for the considered subnetwork of the
SOS response.

1.5 Mass Action and Michaelis Menten-type Mod-
els

Usually the interactions between genes are represented as inhibitions or acti-
vations of the rate of transcription of one mRNA by other mRNA species. In
our attempt to find a good model for the SOS gene network, we propose three
models using three different kind of kinetics.

We start from the “easiest” model, the one that uses mass action kinetics.
In particular, we write a set of equations for the nine genes by considering
for each gene the rate of variation in concentration expressed as variations of
concentrations of the genes that acts as activators or inhibitors of the considered
gene, with inhibitors modeled as activactors of degradation.

We write two kind of mass action kinetic equation: one that considers each
gene variation dependent from the other genes as if they would act indepen-
dently from each other and we call it Mass Action Independent Model (MAI);
in the other one, Mass Action Dependent Model(MAD), the genes are instead
modeled as they would interact in a cooperative way in influencing the gene
expression. Below are defined the equations for the two models:
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Mutagenic agentsMutagenic agents

Figure 1.3: Diagram showing the principle mediators of the SOS
response. DNA lesions caused by mutagenic agents are converted to sin-
gle stranded DNA during chromosomal replication. The RecA protein after
binding to the ssDNA is activated and induces LexA cleavage thereby dimin-
ishing the repression of the SOS response genes. Boxes denote genes, ellipses
denote proteins, hexagon indicate metabolites, arrows denote positive reg-
ulation, filled circles denote negative regulation. Red emphasis denotes the
primary pathway by which the network is activated after DNA damage [1].
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Figure 1.4: Gene-gene interaction between the nine genes of SOS network
in E.coli known in literature. Positive interactions are shown as line, and
negative interactions are shown as dotted line [4].

MAD model

dlexA

dt
= k1 [recA] [recF ] [rpoD] [dinI]− k2 [SsB] [umuDC] [lexA]

drecA

dt
= k3 [recF ] [rpoD] [dinI]− k4 [lexA] [SsB] [umuDC] [recA]

drecA

dt
= k3 [recF ] [rpoD] [dinI]− k4 [lexA] [SsB] [umuDC] [recA]

drecF

dt
= k5 [rpoD] [rpoS]− k6 [SsB] [umuDC] [recF ]

drpoS

dt
= k7 [rpoD]− k8 [rpoS]

drpoD

dt
= k9 [drecF ] [recA] [dinI] [rpoH]− k10 [umuDC] [SsB] [lexA] [rpoD]

dumuDC

dt
= k11 [rpoD] [recF ] [recA] [dinI]− k12 [SsB] [lexA] [umuDC]

ddinI

dt
= k13 [rpoD] [recF ] [recA]− k14 [umuDC] [lexA] [SsB] [dinI]

dSsB

dt
= k15 [dinI] [rpoD] [recF ] [recA]− k16 [umuDC] [lexA] [SsB]

drpoH

dt
= k17 [rpoD]− k18 [rpoH]
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MAI model

dlexA

dt
= k1 [recA] + k2 [recF ] + k3 [rpoD] + k4 [dinI]

− (k5 [SsB] + k6 [umuDC]) [lexA]
drecA

dt
= k7 [recF ] + k8 [rpoD] + k9 [dinI]

− (k10 [lexA] + k11 [SsB] + k12 [umuDC]) [recA]
drecF

dt
= k13 [rpoD] + k14 [rpoS]− (k15 [SsB] + k16 [umuDC]) [recF ]

drpoS

dt
= k17 [rpoD]− k18 [rpoS]

drpoD

dt
= k19 [recF ] + k20 [recA] + k21 [dinI] + k22 [rpoH]

− (k23 [umuDC] + k24 [SsB] + k25 [lexA]) [rpoD]
dumuDC

dt
= k26 [rpoD] + k27 [recF ] + k28 [recA] + k29 [dinI]

− (k30 [SsB] + k31 [lexA]) [umuDC]
ddinI

dt
= k32 [rpoD] + k33 [recF ] + k34 [recA]

− (k35 [umuDC] + k36 [lexA] + k37 [SsB]) [dinI]
dSsB

dt
= k38 [dinI] + k39 [rpoD] + k40 [recF ] + k41 [recA]

− (k42 [umuDC] + k43 [lexA]) [SsB]
drpoH

dt
= k44 [rpoD]− k45 [rpoH]

were k1, ..., k45 are constants taken in the set of real numbers.
The third model we develop is written by supposing a Michaelis-Menten

type kinetic. This kind of kinetic comes from the study of the interaction
between enzyme and substrate in a chemical reaction. In particular Michaelis
and Menten suggested that during a chemical reaction an equilibrium exists
between free and substrate-bound enzyme, governed by a dissociation constant
Kd.

The key element of their derivation was the assumption that the rate of the
reaction was dependent on the fraction of total enzyme that had the substrate
bound. Precisely the kinetic law is the following (see, e.g., [5]):

v0 =
VmaxA

KA +A

where A is the substrate, km the Michaelis Menten constant and Vmax repre-
sents a constant for a given enzyme and is the theoretical maximal rate of the
reaction. We used a modified Michaelis Menten equation considering A as the
gene that influence the substrate concentration. Using this function we can de-
fine the equations for the nine genes of the considered subnetwork and we call
the obtained model MMM-type (Michaelis-Menten type model):
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MMM-type model

dlexA

dt
=

Vmax1 [recA]
km1 + [recA]

+
Vmax2 [recF ]
km2 + [recF ]

+
Vmax3 [rpoD]
km3 + [rpoD]

+
Vmax4 [dinI]
km4 + [dinI]

−
(
Vmax5 [SsB]
km5 + [SsB]

+
Vmax6 [umuDC]
km6 + [umuDC]

+ k1b
[lexA]

)
drecA

dt
=

Vmax7 [recF ]
km7 + [recF ]

+
Vmax8 [rpoD]
km8 + [rpoD]

+
V max9 [dinI]
km9 + [dinI]

−
(
Vmax10 [lexA]
km10 + [lexA]

+
Vmax2 [SsB]
km11 + [SsB]

+
Vmax12 [umuDC]
km12 + [umuDC]

+ k2b

)
[recA]

drecF

dt
=

Vmax13 [rpoD]
k13 + [rpoD]

+
Vmax14 [rpoS]
km14 + [rpoS]

−
(
Vmax15 [SsB]
km15 + [SsB]

+
Vmax16 [umuDC]
km16 + [umuDC]

+ k3b [recF ]
)

drpoS

dt
=

V max17 [rpoD]
km17 + [rpoD]
−k18 [rpoS]

drpoD

dt
=

V max19 [recF ]
km19 + [recF ]

+
Vmax20 [recA]
km20 + [recA]

+
Vmax21 [dinI]
km21 + [dinI]

+
Vmax22 [rpoH]
k22 + [rpoH]

−Vmax23 [umuDC]
km23 + [umuDC]

+
Vmax24 [SsB]
km24 + [SsB]

+
Vmax25 [lexA]
km25 + [lexA]

+ k5b [rpoD]

dumuDC

dt
=

Vmax26 [rpoD]
km26 + [rpoD]

+
Vmax27 [recF ]
km27 + [recF ]

+
Vmax28 [recA]
km28 + [recA]

+
Vmax29 [dinI]
km29 + [dinI]

−
(
Vmaz30 [SsB]
km30 + [SsB]

+
Vmax31 [lexA]
km31 + [lexA]

+ k6b [umuDC]
)

ddinI

dt
=

Vmax32 [rpoD]
km32 + [rpoD]

+
Vmax33 [recF ]
km23 + [recF ]

+
Vmax34 [recA]
km34 + [recA]

−
(
Vmax35 [umuDC]
km35 + [umuDC]

+
Vmax36 [lexA]
km36 + [lexA]

+
Vmax37 [SsB]
km37 + [SsB]

+ k7b [dinI]
)

dSsB

dt
=

Vmax38 [dinI]
km38 + [dinI]

+
Vmax39 [rpoD]
km39 + [rpoD]

+
Vmax40 [recF ]
km40 + [recF ]

+
Vmax41 [recA]
km41 [recA]

−
(
Vmax42 [SsB]
km42 + [SsB]

+
Vmax43 [lexA]
km43 + [lexA]

+ k8b [SsB]
)

drpoH

dt
=

Vmax44 [rpoD]
km44 + [rpoD]

− k9b [rpoH]

1.6 ‘Mendes’ model

Another kind of approach we have investigated starts from the work of Mendes
and collaborators [6]. In particular, in [6], the changes in the rate of tran-
scription of an arbitrary gene depends on the changes in concentration of a
few other gene products. Given that the number of gene copies for each gene
is limited, and transcription is catalyzed by a limited number of transcription
complexes, the rate law is then mainly influenced by the quantity of activators
or inhibitors. This is formally expressed by the following general rate law for
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the transcription [6]:

dxi

dt
= Vi ·

∏
j

(
K

nj

ij

I
nj

j +K
nj

ij

)
·
∏
k

(
1 +

Ank

k

Ank

k +Kak
nk

)

where dxi/dt stands for gene rate of transcription, Ai and Ij are the quantities
of activators and inhibitors which act indipendently from each other, Vi is the
basal rate for transcription, and Kij and Kak are the concentrations at which
the effect of the inhibitor or the activator, respectively, is half of its saturating
value. The exponents ni and nk regulate the sigmoidicity of the curve like in
the Hill kinetic [7]. For the mRNA degradation steps we use a simple mass
action kinetics. Because this model is inspired from [6] we call it MM (Mendes
Model).

For the considered subnetwork of genes there is the same number of acti-
vators and inhibitors. Below, are described the equations for the genes. The
arrows with captions indicates the activaction and inactivaction of the gene in
between and the caption represents the genes that influence these two reactions.

MM model

Rate laws for synthesis

4 Activators - 2 Inhibitors

recA,recF,rpoD,dinI→ lexA
SsB,umuDC→

recA,recF,rpoD,dinI→ Ssb
lexA,umuDC→

dinI,recA,recF,rpoD→ umuDC
SsB,lexA→

Vsynti = V1 ·
Kn1i

1i

I1n1i +Kn1i
1i

· Kn2i
2i

I2n2i +Kn2i
2i

·
(

1 +
An1

1

An1
1 +K1n1

)
·
(

1 +
An2

2

An2
2 +K2n2

)
·
(

1 +
An3

3

An3
3 +K3n3

)
(

1 +
An4

4

An4
4 +K4n4

)

3 Activators - 3 Inhibitors

recA,recF,rpoD→ dinI
SsB,lexA,umuDC→

dinI,rpoD,recF→ recA
lexA,SsB,umuDC→
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Vsynti
= V1 ·

Kn1i
1i

I1n1i +Kn1i
1i

· Kn2i
2i

I2n2i +Kn2i
2i

· Kn3i
3i

I3n3i +Kn3i
3i

·
(

1 +
A1n1

A1n1 +K1n1

)
·
(

1 +
An2

2

An2
2 +K2n2

)
·
(

1 +
An3

3

An3
3 +K3n3

)

2 Activators - 2 Inhibitors

rpoS,rpoD→ recF
umuDC,SsB→

dinI,rpoD,recF→ recA
lexA,SsB,umuDC→

Vsynti = V1 ·
Kn1i

1i

I1n1i +Kn1i
1i

· Kn2i
2i

I2n2i +Kn2i
2i

· Kn3i
3i

I3n3i +Kn3i
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·
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1
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·
(
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2 +K2n2

)
·
(

1 +
An3

3

An3
3 +K3n3

)

1 Activator - No Inhibitors

rpoD→ rpoH

rpoD→ rpoS

Vsynti = V1 ·
(

1 +
An1

1

An1
1 +K1n1

)

Rate law for degradation

Vdegi
= Kb ·Ai

1.7 S-system model

Finally we present a model of the subnetwork based on equations in style of
the S-systems framework [18]. The basic idea of this model is to represent in-
teractions between biochemical species with power-law dynamics. In S-systems
[19] [20], in which the set of genes activating another gene and the set of genes
inhibiting it are aggregated in a power-product term, in the following way:

dXi

dt
= αi ·

n∏
j=1

X
gij

j − βi

m∏
k=1

X
hij

k .
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where X represents the variables (dynamic concentrations of internal metabo-
lites), αi and βi are rate constants, and gij , hij are kinetic orders, which may be
non-integer and non-positive; in our case X represent concentrations of genes.

These equations have many advantages: first, it is a concise representation,
in the sense that the kinetic description of each process takes a nearly minimal
number of parameters. Moreover the mathematical regularity can bring through
effective numerical methods for the integration of the differential equations [18].

Since the details of the molecular mechanisms that govern interactions among
system components are not substantially known or well understood, the descrip-
tion of these processes through the S-system can give a representation that is
general enough to capture the essence of the experimentally observed response.
We report below the equations of the considered subnetwork in the S-system
model.

S-system model

dlexA

dt
= V1 · [SsBg21 · dinIg31 · umuDCg41 · rpoDg51 · recF g81 · recAg91 ]

−Vd · lexA
dSsB

dt
= V2 · [lexAg12 · dinIg32 · umuDCg42 · rpoDg52 · recF g72 · recAg91 ]

−Vd · SsB
ddinI

dt
= V2 · [lexAg13 · SsBg23 · umuDCg43 · rpoDg53 · recF g83 · recAg93 ]

−Vd · dinI
dumuDC

dt
= V4 · [lexAg14 · SsBg24 · dinIg34 · rpoDg54 · recF g84 · recAg94 ]

−Vd · umuDC
drpoD

dt
= V5 ·

[
lexAg15 · SsBg25

· dinIg35 · umuDCg45 · rpoHg65 · recF g85 · recAg95

]
−Vd · rpoD

drpoH

dt
= V6 · [rpoDg56 ]− Vd · rpoH

drpoS

dt
= V7 · [rpoDg57 ]− Vd · rpoS

drecF

dt
= V8 · [SsBg28 · umuDCg48 · rpoDg58 · rpoSg78 ]

−Vd · recF
drecA

dt
= V9 · [lexAg19 · SsBg29 · dinIg39 · umuDCg49 · rpoDg59 · recF g89 ]

−Vd · recA



Chapter 2

Parameter Estimation

Each of the models presented in Chapter 1 contains a different set of parameters
that need to be estimated. To achieve this task we have used the optimization
algorithms available in the software COPASI (Complex Pathway Simulator). In
this chapter we will shortly describe the two algorithms that have been princi-
pally used in our analyses and we explain the reasons of their choice.

2.1 Overview of optimization algorithms

Once defined the models, to fit their dynamics to the experimental data we
need to find the values of the parameters for the model that would produce the
observed behaviour.

Here a technical clarification needs to be done: in modelling and simulation
with the word parameter we mean those entities of a model that are constant
in time, while with variables we mean entities whose values vary in time and
are entirely determined by the parameters.

In optimization problems, although these words share the same meaning,
the variable of the simulation are now part of the objective function and the
parameters to optimize becomes variables (because they are varied in the course
of optimization) [25]. The problem in parameter estimation of non-linear dy-
namic systems is to minimize a function that measure the goodness of the fit of
the model compared to a given experimental dataset.

There are different kinds of optimization algorithms and the most used falls
into three classes [26]:

• gradient search;

• deterministic direct search;

• stochastic direct search.

Gradient search methods look for the nearest minimum of the function by
following a direction that is determined from derivatives of the function. The
most popular method included in this class is the Levenberg-Marquardt method
[21] [22]. A feature that characterizes these algorithms is that they search for
the minimum that is closest to the initial guess but this could not be the global
minimum.

17
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Direct search methods are those that do not need to calculate derivatives
to minimize an objective function. These algorithms are deterministic and use
strategies based on keeping memory of previous solution and decide where to
move step by step. Examples of algorithms that use this strategy are Nelder
and Mead [23] and Hooke and Jeeves [24].

Gradient descent methods or deterministic direct search methods are local
minimizers and this can be a problem because of the presence of so-called local
minima. When the set of parameters to be determined is very large we need
to use methods that are able to find global minima, these methods are called
‘Global optimization methods’.

Global optimization methods can be classified as deterministic and stochas-
tic strategies [27]. Of the two approaches the deterministic approach can lead
to a more accurate solution, but with the increase of the parameters to estimate
the time of computation becomes too big [27]. In contrast, stochastic algorithms
can locate the vicinity of the solution in a reasonable computational time even
if the values obtained are not so precise. Examples of global optimization algo-
rithms are those grouped into the so called ‘Evolutionary Computation’ (EC)
techniques such as Genetic Algorithms [28], Evolutionary Programming [29],
Evolution Strategies [30]. This group of algorithms is a very popular class of
methods based on the ideas of biological evolution driven by the mechanism of
reproduction, mutation and the principle of survival of the fittest. The strategies
used by this group exploit a set of potential solutions, named population, and de-
tect the optimal problem solution through cooperation and competition among
the individuals of the population [27]. Other examples of GO algorithms that
take inspiration from nature are Particle Swarm [31] and ’Simulated Annealing’
algorithms, the former takes inspiration from flock of birds searching for food
and the second starts from the simulation of the cooling of metals where atoms
adopt the most stable configuration as slow cooling of a metal takes place [32].

2.2 Optimization methods used in the thesis

In the thesis we focus the attention on two optimization algorithms (among
the ones present in the software COPASI). These methods were the ones able
to produce the best fit, i.e., they produce parameters for the models in such a
way that the behaviour of the models was close to the experimental observed
behaviour. The comparison among the behaviours (modelled and experimen-
tal) was done by using the root mean square value. Here we will give a brief
description of these two methods.

2.2.1 Particle swarm

Particle swarm optimization method is inspired by a flock of birds or a school
fish searching for food [31]. A swarm consists of N particles flying around in a
D-dimensional search space; each particle has a position Xi and a velocity Vi in
the parameter space and is able to successively adjust its position toward the
global optimum according to two factors: the best positive visited so far (lbest)
and the best position visited by the whole swarm (gbest). After finding the two
best values the particle updates its velocity and positions with the following
equations:
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Vi (t+ 1) = ωVi (t) + c1 · rand () · (pi −Xi (t)) + c2 · rand () · (pg −Xi (t)) .
Xi (t+ 1) = Xi (t) + Vi (t+ 1) .

where Xi (t) is the current particle position, Vi (t) is the particle velocity, pi

and pg are lbest and gbest, rand () is a random number uniformly distributed
between (0, 1), c1, c2 are constants and ω is called inertial weight and is used to
limit the velocity.

Through these steps, the particle position is updated until a minimum error
criteria is attained.

2.2.2 Hooke and Jeeves

The method of Hooke and Jeeves is a direct search algorithm that searches
for the minimum of a nonlinear function without requiring derivatives of the
function. It searches for trial solutions involving comparison of each trial so-
lution with the “best” obtained up to that time together with a strategy for
determining (as a function of earlier results) what the next trial solution will
be [24].

Starting from a space of points P, which represent possible solutions, a point
B0 is arbitrarily selected to be the first “base point”. A second point, P1, is
chosen and compared with B0, if P1 is a better solution than B0, P1 becomes
the second base point B1, if not, P1 take the same value as B0.

This process continues, and the strategy for selecting new trial points is
determined by a set of finite “states” which provide the memory, so the search
goes through a descent direction using the values of the function calculated in
a number of previous iterations until the final state S is reached.

2.3 Choosing the best fit

The optimization problem is stated as the minimization of a weighted distance
measure J between experimental and predicted values of the state variables
represented by the vector yp. Formally,

J =
n∑

i=1

ωi

[
ypred(i) − yexp(i)

]2
.

This represents the objective value, where n is the number of data for each
experiment, yexp are the known experimental data, and ypred represents the
theoretical values obtained using the model with a given set of parameters . The
terms ωi correspond to the different weights taken to normalize the contribution
of each term [27].

The software COPASI provides three methods to calculate these weights,
but for our estimations we selected the weights calculated with the mean square
method:

mean square ωj = 1/
√
< y2

exp(i) >.
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Once executed the algorithms the software returns the values of the root
mean square for each gene calculated taking the square root of the objective
value divided by the experimental points available ( in the studied case, n = 6):

rms =

√
J
n

Then the software provides a global root mean square value by considering
the root mean square value of the ones calculated for each gene. This value
is the one that we have used to compare the different optimization algorithms:
The smaller is this value and the better is the fit of the curve (obtained from the
model) to the experimental data. Formally such root mean square is defined as:

RMS =

√√√√ 1
m

m∑
i=1

(rms)2.

where in this case, m is the number of the genes considered .
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Methods

3.1 COmplex PAthway SImulator software

COPASI (Complex Pathway simulator) [2] is a software package that per-
mits the simulation of biochemical pathway through a simple user interface. In
COPASI we can choose a biochemical or a mathematical view. From the bio-
chemical widget it is possible to insert reactions, selecting substrates, products
and modifiers (which are the enzymes that influence a reaction). Once inserted
all the reactions the program is able to translate all in differential equations
according to the function that has been previously inserted to describe the dy-
namic of the reaction. In another widget called Multiple task it is possible to
do different kind of analyses. In particular, in this work, we present the steady
state analyses and parameter estimation analyses. In the parameter estima-
tion analyses there are several optimization algorithms like: genetic algorithm,
hooke and jeeves, Levenberg-Marquardt, Evolutionary Programming, random
search, Nelder-Mead, Particle swarm, simulated annealing, evolution strategy
and steepest descent. Usually is better to test which of the algorithms is best
suited for the experimental data under consideration, since there is no general
algorithm best for general data: each algorithm can be good on some data and
bad on other data. Judged over all possible datasets all algorithms are equally
good, so if an algorithm is better on one dataset it must be worst on other
datasets (the so called no-free lunch theorem [34]). In COPASI it is even pos-
sible to do the analyses using different experimental dataset all togheter. We
have used the COPASI parameter estimation to find the parameter values for
our model. After the parameters have been calculated, we have analyzed the
steady state values and we have compared the data obtained from the simulation
with the experimental ones available in the M3D database.

21
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time ssB lexA recF rpoH rpoD
0 10.520933 10.3338 9.472773 9.713127 10.5659
12 11.271833 11.154867 11.276533 10.284833 12.194267
24 11.689033 11.313133 10.390933 9.683377 11.67
36 11.571967 11.519667 10.177587 9.54622 11.1672
48 11.425567 11.5337 10.1489 9.358997 11.077733
60 11.312734 11.465633 10.0525 9.47462 10.948433

Table 3.1: Time series data from a Norfloxacin perturbation for some of
the SOS response genes.

time rpoS recA umuD dinI
0 10.564034 10.4524 7.34347 9.311147
12 10.420633 13.559767 8.087973 11.505433
24 10.3458 13.7375 8.965397 12.3316
36 10.031827 13.681466 9.106427 12.531933
48 9.770947 13.5981 9.236267 12.512233
60 9.80332 13.656733 9.329837 12.516367

Table 3.2: Time series data from a Norfloxacin perturbation for some of
the SOS response genes.

gene dinI U-N0025 lexA U-N0025 recA U-N0025 umuD U-N0025
lexA 11.468867 12.87 11.384833 11.3117
dinI 12.465967 10.042667 10.407267 10.476067

umuD 8.038043 7.73134 8.03572 13.200167
rpoD 10.545367 10.5738 10.620433 10.619833
rpoH 9.45017 9.468853 9.41849 9.424997
rpoS 10.8222 10.740933 10.577067 10.538466
recF 9.619356 9.634883 9.67105 9.814993
recA 11.714533 11.3685 13.254167 11.5945
Ssb 10.544267 10.5773 10.641367 10.655033

Table 3.3: Overexpression experiments for four of the SOS response genes,
U-0025 stays for upregulation and 0025 corresponds to the norfloxacin an-
tibiotic concentration that is 0.025µg/ml.



3.2. Many Microbe Microarrays Database 23

3.2 Many Microbe Microarrays Database

The Many Microbe Microarrays Database M3D contains over 1000 microarrays
for E. coli (507), Saccaromices cerevisiae (530) and Shewanella onideinsis (14)
all of which collected and combined from individual investigators GEO, Array
Express and ASAP. The expression data is uniformly normalized and simple
analysis tools are provided for the interrogation of the dataset. It is possible
to download raw data and normalized data. The raw probe-level microarray
data are normalized as a group with RMA. To use this procedure all expression
profiles for a particular array-design are collected, uniformly normalized, and
deposited as a so-called ‘build’. Periodically, the database is updated with new
expression profiles and all the data are renormalized. Browsing the database,
it is possible to select any experiment and then submit the list of genes on
which one is interested. For our purpose we have downloaded the expression
profiles of the nine genes of the SOS response in E. coli. The same database also
provides heat plots, expression histograms, scatter plots and a genome browser
for visualization in a genome context.

The build used (E. coli v31) contains 445 microarrays covering 189 experi-
mental conditions. We have used two of the experiments available in this build:

• Time course experiment: Time series data from a Norfloxacin pertur-
bation where samples from perturbed cultures were taken at 0, 12, 24, 36,
48 and 60 minutes (see Tables 3.1 and 3.2);

• Steady state experiment: Overexpression perturbations from four of
the nine genes investigated: dinI, lexA, recA and umuD in LB1 0.025µg/ml
norfloxacin antibiotic2 (see Table 3.3). DNA damage responses were in-
duced by growing transformed E. coli cells for 3 hours in 0.025µg/ml of
norfloxacin antibiotic [33].

The treatment of E.coli with Norfloxacin is equivalent to making a per-
turbation to recA [4]. Norfloxacin is a member of fluoroquinolone3 class of
antimicrobial agents that target the prokaryotic type II topoisomerase (DNA
gyrase4) and topoisomerase IV inducing the formation of single-stranded DNA
and thus activating the SOS pathway via activation of the recA protein.

1LB: cultivated nutritive substrate.
2genes of interest were overexpressed in E. coli by transforming these bacterial cells with

vector pBADX53. This vector generally increases gene expression level 2 to 10 fold above
native expression level

3The quinolones are a family of broad-spectrum antibiotics. The majority of quinolones in
clinical use belong to the subset of fluoroquinolones, which have a fluoro group attached the
central ring system.

4DNA gyrase is an essential bacterial enzyme that catalyzes the ATP-dependent negative
super-coiling of double-stranded closed-circular DNA.
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Chapter 4

Results

4.1 Selecting the optimization algorithm

To estimate the parameter values of the models presented in Chapter 1 we have
used the algorithms available in the software COPASI. In particular, we have
applied the algorithms in the case of the MAD, MAI and MMM models. To
compare the algorithms results with the experimental data, we used the global
root mean square value calculated by COPASI as described in Chapter 2.

Table 4.1 shows these results using dataset v31 (described in Chapter 3)
and setting the starting value for all the parameters to infer to 0.1 and the
boundaries for the search between 0.1 and 10.

As we can see, particle swarm optimization method is the one that provides
the best fit among the eleven algorithms, since gives the smaller root mean
square value. Moreover the computational time was much smaller (15 minutes)
for particle swarm algorithm than the one necessary for completing the simu-
lated annealing algorithm (6 hours for MAD model, for the other two models
the computational time was clearly excessive).

Considering the results presented in Table 4.1 we have decided to use Particle
swarm and the MMM model for developing our analyses by considering the
dataset v31.

4.1.1 Michaelis Menten-type model parameter estimation

We have started by estimating the parameters for the Michaelis Menten-type
model, presented in Chapter 2, using boundaries between 0.1 and 10, considering
0.1 as starting value and running the algorithm several times (34 times) and for
each run we use the previous obtained value, as new starting value. The value
of the root mean square decreased in this way from 0.277723 to 0.208325. Then
we changed the boundaries fixing them between 0 and 100 but after 10 runs
of the algorithm, the root mean square stayed fixed to the value of 0.279178
(which, however, can be considered still not an adequate fit).
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4.1.2 Mendes model and S-system model parameter esti-
mation

Because the Michaelis Menten-type model was not enterely succesfull, we de-
cided to test the Mendes Model and the S-system (described in Chapter 1).

In this case we have started by using wider boundaries for the parameters:
10E−12 and 10E06 and we have made some trials using different starting values
for the parameters in the Mendes Model with the following results:

• starting value root mean square (RMS) 0.01→ 0.153064;

• starting value 0.1→ 0.171091;

• starting value 1→ 0.248452;

• starting value 10→ 0.279178;

• starting value 100→ 0.279178;

Considering the obtained values we have decided to use an initial value for
the parameter of 0.01, for both MM and S-system models. After several runs of
the particle swarm algorithm followed by the local optimizer Hooke and Jeeves
we have obtained the root mean square values of: 0.0871909 for the S-system
and 0.153064 for the Mendes model.

In Figures 4.1, 4.2, 4.3 and 4.4 we present the fit obtained by using
particle swarm algorithm for each of the nine genes of the network presented
in Chapter 1 and in the tables 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, the
values obtained for the parameters in the Mendes model and in the S-system
model. The plots show a comparison between the experimental data fitted using
Microsoft office excel and the fit obtained using the models equations (with the
estimated parameter values) obtained through the particle swarm algorithm and
Hooke and Jeeves one.

Method MAD MAI MMM
Genetic algorithm 7.41043 4.07289 2.73041

Genetic algorithm SR 8.01853 4.04922 77.6712
Hooke and Jeeves 5.86722 3.5768 no result

Levenberg-Marquardt 4.66375 9.07598 no result
Evolutionary Programming 6.68054 4.56884 5.01391

Random Search 9.09124 9.07598 0.278172
Nelder Mead 7.91474 7.64839 no result

Particle swarm 6.19276 3.57677 0.277723
Simulated annealing 4.53036 ... ...
Evolution Strategy 6.05042 9.07598 1.36394
Steepest Descent 7.64048 4.6486 no result

Table 4.1: Root Mean Square values of the fitting using the listed methods
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4.1.3 Steady state predictions

In order to test the ability of the used models, to predict dynamics of the network
we have used the software f and calculate the steady state values of the nine
considered genes. The steady state is a state in which there are no changes in
concentrations of the considered variables. Table 4.2 shows the results obtained
for the two considered models, compared to the experimental data. As we can
see even if the time course simulation gave a better fit for the S-system model,
this model gives very different steady state values while the Mendes model gives
a much better approximation of these values only for some of the considered
genes.

Genes Experimental data Mendes Model S-system model
lexA 11.47125 11.4599 0.112364
dinI 9.916875 12.1365 1.07362

umuD 7.819235 9.35587 14.9465
rpoD 9.46181 5.20705 0.0463255
rpoH 8.59825 1.12474 0.02446
rpoS 10.3827 3.46706 0.00736807
recF 8.974975 4.87275 0.203794
recA 11.79455 16.492 5.39728
ssB 10.21345 11.2432 0.17333

Table 4.2: Steady state values of experimental data compared to the ones
obtained by the models simulations using the software COPASI.

4.1.4 Ability of prediction using gene overexpression ex-
periments

The goal of mathematical modeling biochemical systems is to be able to make
predictions of how the system responds to interventions. We here test how well
our model predicts the system response to overexpressions in some of the state
variables. We took the data from the M3D database in which some perturbation
of the genes involved in the network were provided. In particular, as described
in details in Chapter 3, we have used the overexpression experiments for four of
the nine genes: dinI, lexA, recA and umuD.

To make comparisons between the experimental data and the values obtained
from the models, we used the Co-response coefficient R.

The Co-response coefficient R represents how two system variables respond
to a common perturbation, so that, using this coefficient we can quantify how
perturbation propagate from one variable to another. In our case, the pertur-
bation is on the gene overexpressed and so we have calculated the Co-response
coefficient from both experimental data and from simulated data. Such coeffi-
cient is defined, similarly to [13] as:

Ri
j =

∆xj/xj

∆xi/xi

where, for the coefficient R that represents the variation between experi-
ments, ∆xj stands for the difference in concentration between each of the nine
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genes in the overexpression experiment and the experiment in normal conditions
(WT). ∆xi stands for the difference in concentration between the gene directly
overexpressed in the overexpression experiment and the same gene in the WT
experiment.

To obtain the steady state concentrations of the genes in overexpression
conditions using the two models (xss∗

im
), we have calculated how much a gene

is increased in the overexpression experiment and by that amount we have in-
creased the model steady state and fixed it, using COPASI. In this way we have
increased the level of the gene steady state concentration to the same percentage
as increased in the experiment. We calculate this as follows:

xss∗

im
=
xss∗

i

xss
i

· xss
im

where xss∗

i is the concentration at the steady state in the overexpression
experiment, xss

i is the WT steady state concentration, and xss
im

is the steady
state of the model in normal conditions. For instance, if we look at the values
collected in Tables 4.11 and 4.13 in which dinI is upregulated, the obtained
xss∗

dinIm
for the Mendes model is:

xss∗

dinIm
=

12.465967
9.916875

· 12.1365 = 15.25613749

Table 4.13 shows the data obtained.
We then calculated the R values both for models (Tables 4.14 and 4.16

show these values) and for the experiment. We have plotted all the results to
have a visual comparison of how the R values differ between experiment and
models (Figures 4.12,4.14,4.16).
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Mendes model parameter values.

Parameter Value Parameter Value
(lexA activaction).V1 0.412155 (SsB activaction).V1 0.834594
(lexA activaction).k3 1.00E+07 (SsB activaction).k3 0.489622
(lexA activaction).k4 7.87E+06 (SsB activaction).k4 0.000776705
(lexA activaction).K1i 1.45E+06 (SsB activaction).K1i 9.97E+06
(lexA activaction).K2i 6.26966 (SsB activaction).K2i 0.0853612
(lexA activaction).k1 193.315 (SsB activaction).k1 1.14E-11
(lexA activaction).k2 5.23E-11 (SsB activaction).k2 1.00E+07
(lexA activaction).n1 9.99567 (SsB inactivaction).Kb 0.0684776
(lexA activaction).n2 9.67547 (SsB activaction).n1 9.14704
(lexA activaction).n3 9.99997 (SsB activaction).n2 9.9845
(lexA activaction).n4 0.189053 (SsB activaction).n3 0.1
(lexA activaction).n1i 10 (SsB activaction).n4 9.18061
(lexA activaction).n2i 9.99999 (SsB activaction).n1i 9.99757

(lexA inactivaction).Kb 0.00138536 (SsB activaction).n2i 0.372758

Table 4.3: Parameter values for lexA and ssB genes.

Parameter Value Parameter Value
(dinI activaction).V1 17379.6 (umuDC inactivaction).Kb 0.0600737
(dinI activaction).K3i 0.0124648 (umuDC activaction).V1 0.094125
(dinI activaction).K1i 0.156487 (umuDC activaction).k3 1.00E-11
(dinI activaction).K2i 25.5756 (umuDC activaction).k4 9.61E+06
(dinI activaction).K3 39.801 (umuDC activaction).K1i 4.04E+06
(dinI activaction).K1 0.0105687 (umuDC activaction).K2i 46906
(dinI activaction).K2 0.0120594 (umuDC activaction).k1 14.0415

(dinI inactivaction).Kb 0.0302833 (umuDC activaction).k2 0.00249712
(dinI activaction).n1 0.224947 (umuDC activaction).n1 0.100002
(dinI activaction).n2 6.85644 (umuDC activaction).n2 9.99955
(dinI activaction).n2i 2.09636 (umuDC activaction).n3 0.19867
(dinI activaction).n3i 1.71202 (umuDC activaction).n4 9.99999
(dinI activaction).n3 0.1 (umuDC activaction).n1i 1.67879
(dinI activaction).n1i 0.1 (umuDC activaction).n2i 4.72143

Table 4.4: Parameter values for dinI and umuDC genes
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Parameter Value Parameter Value
(rpoD inactivaction).Kb 0.00638541 (rpoH activaction).V1 0.000519047
(rpoD activaction).V1 0.482133 (rpoH activaction).k1 6.70E+06
(rpoD activaction).K1i 6.22827 (rpoH inactivaction).Kb 0.000461482
(rpoD activaction).K2i 8.29965 (rpoH activaction).n1 9.99987
(rpoD activaction).K3i 0.20023 (rpoS activaction).V1 0.00528418
(rpoD activaction).K3 1.00E-11 (rpoS activaction).k1 2016.23
(rpoD activaction).K1 4.05E-05 (rpoS inactivaction).Kb 0.0020656
(rpoD activaction).K2 0.0280862 (rpoS activaction).n1 0.1
(rpoD activaction).K4 0.000200763
(rpoD activaction).n1i 9.99999
(rpoD activaction).n2i 0.100051
(rpoD activaction).n1 9.99859
(rpoD activaction).n2 0.176835
(rpoD activaction).n3 0.100052
(rpoD activaction).n3i 0.101233
(rpoD activaction).n4 3.8883

Table 4.5: Parameter values for gene rpoD, rpoS and rpoH genes.

Parameter Value Parameter Value
(recF degradation).Kb 0.00610749 (recA inactivaction).Kb 0.0226016
(recF activaction).V1 6.383 (recA activaction).V1 7727.73
(recF activaction).K1i 5.10438 (recA activaction).K3i 0.0302787
(recF activaction).K2i 1.44E+06 (recA activaction).K1i 0.266951
(recF activaction).k1 0.000129844 (recA activaction).K2i 6.65718
(recF activaction).k2 4.05E+06 (recA activaction).K3 4.32E+06
(recF activaction).n1i 9.99997 (recA activaction).K1 9.70E+06
(recF activaction).n2i 10 (recA activaction).K2 6.18E-07
(recF activaction).n1 10 (recA activaction).n1 9.96024
(recF activaction).n2 9.99998 (recA activaction).n2 9.99995
(recA activaction).n2i 9.99995
(recA activaction).n3i 0.780803
(recA activaction).n3 9.80912
(recA activaction).n1i 0.100012

Table 4.6: Parameter values for recF and recA genes.
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S-system model parameter values.

Parameter value Parameter Value
(lexA activation).V 0.120798 (SsB activaction).V 0.0713686
(lexA activation).g1 -1.80E-05 (SsB activaction).g1 -8.04E-06
(lexA activation).g2 1.62441 (SsB activaction).g2 0.069987
(lexA activation).g3 -1.13139 (SsB activaction).g3 -0.102948
(lexA activation).g4 0.0128164 (SsB activaction).g4 0.467413
(lexA activation).g5 2.73E-06 (SsB activaction).g5 0.293946
(lexA activation).g6 0.0232403 (SsB activaction).g6 0.266941

(lexA inact).k1 0.0565731 (SsB inact).k1 0.0732245

Table 4.7: Parameter values for lexA and ssB genes.

Parameter value Parameter value
(dinI activation).V 0.233409 (umuDC activation).V 0.0973935
(dinI activation).g1 -0.0233436 (umuDC activation).g1 -0.0247963
(dinI activation).g2 -0.0990657 (umuDC activation).g2 -1.25224
(dinI activation).g3 -0.00295359 (umuDC activation).g3 1.259
(dinI activation).g4 0.242035 (umuDC activation).g4 0.092878
(dinI activation).g5 0.422833 (umuDC activation).g5 0.0159113
(dinI activation).g6 0.00149227 (umuDC activation).g6 1.31317

(dinI inact).k1 0.065681 (umuDC inact).k1 0.452944

Table 4.8: Parameter values for dinI and umuDC genes.
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Parameter value Parameter value
(rpoD activation).V 0.0612521 (rpoH activation).V 1.00E-05
(rpoD activation).g1 -0.0264438 (rpoH activation).g1 1.95E-07
(rpoD activation).g2 -0.466528 (rpoH inact).k1 0.00040883
(rpoD activation).g3 0.486808 (rpoS activation).V 1.00E-05
(rpoD activation).g4 -0.235035 (rpoS activation).g1 0
(rpoD activation).g5 0.26667 (rpoS inact).k1 0.00135737
(rpoD activation).g6 1.13764
(rpoD activation).g7 0.218669

(rpoD inact).k1 0.153078

Table 4.9: Parameter values for rpoD, rpoH and rpoS genes.

Parameter value Parameter value
(recF activation).V 3.52731 (recA activation).g2 -0.271949
(recF activation).g1 -1.22353 (recA activation).g3 0.208153
(recF activation).g2 -0.014753 (recA activation).g4 -0.0229387
(recF activation).g3 4.05E-06 (recA activation).g5 0.0242887
(recF activation).g4 1.25263 (recA activation).g6 0.384584

(recF inact).k1 0.302526 (recA inact).k1 0.159817
(recA activation).V 1.06809
(recA activation).g1 -0.019806

Table 4.10: Parameter values for gene recF
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Gene dinI∗ lexA∗ recA∗ umuD∗ WT
lexA 11.468867 12.87 11.384833 11.3117 11.47125
dinI 12.465967 10.042667 10.407267 10.476067 9.916875

umuD 8.038043 7.73134 8.03572 13.200167 7.819235
rpoD 10.545367 10.5738 10.620433 10.619833 9.46181
rpoH 9.45017 9.468853 9.41849 9.424997 8.59825
rpoS 10.8222 10.740933 10.577067 10.538466 10.3827
recF 9.619356 9.634883 9.67105 9.814993 8.974975
recA 11.714533 11.3685 13.254167 11.5945 11.79455
Ssb 10.544267 10.5773 10.641367 10.655033 10.21345

Table 4.11: Steady state values from upregulation experiments and wild
type experiment.

Gene dinI∗ lexA∗ recA∗ umuD∗

lexA -0.00080817 1 -0.060873869 -0.020211234
dinI 1 0.10402766 0.399586678 0.081939418

umuD 0.108864996 -0.092187184 0.223720616 1
rpoD 0.445519655 0.96382304 0.989487667 0.177848302
rpoH 0.385458897 0.830387372 0.770856145 0.139723457
rpoS 0.164678879 0.282960575 0.151270655 0.021800634
recF 0.279317926 0.60300483 0.626708019 0.136007265
recA -0.026393089 -0.296244188 1 -0.024646993
Ssb 0.126009904 0.292159866 0.338555237 0.062827046

Table 4.12: R values, comparison from experiments)
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Figure 4.1: Curve fitting for each of lexA, rpoD, recF, recA genes using
the Mendes model.
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Figure 4.2: Curve fitting for umuD, ssB, dinI, rpoH genes using the
Mendes model.
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Figure 4.3: Curve fitting for each of lexA, rpoD, recF, recA genes using
the S-system model.
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Figure 4.4: Curve fitting for umuD, ssB, dinI, rpoH genes using the S-
system model.
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Gene dinI∗fixed lexA∗fixed recA∗fixed umuD∗fixed Mendes model
lexA 11.0713 12.85726603 11.4564 0.0718649 11.4599
dinI 15.25613749 11.6524 12.1608 5.3363 12.1365

umuD 9.39146 9.34954 9.35618 15.79426203 9.35587
rpoD 5.03237 5.18464 5.20549 0.0400115 5.20705
rpoH 1.12474 1.12474 1.12474 1.12474 1.12474
rpoS 3.46506 3.46681 3.46704 3.20536 3.46706
recF 4.69161 4.90577 4.87113 0.0259799 4.87275
recA 16.766 16.3642 18.53294294 164.806 16.492
Ssb 11.2236 11.2449 -2.22E-16 8.76072 11.2432

Table 4.13: Steady state values simulation of gene upregulation with
Mendes model

Gene dinI lexA recA umuD
lexA -1.32E-01 1 -0.002467912 -1.444025063
dinI 1 -0.327123894 0.016179134 -0.814207292

umuD 0.014799026 -0.005548686 0.000267744 1
rpoD -0.130509091 -0.035295615 -0.002420891 -1.441971615
rpoH 0 0 0 0
rpoS -0.002244181 -0.000591356 -4.66134E-05 -0.109685477
recF -0.144620401 0.055574247 -0.002686478 -1.44539002
recA 6.46E-02 -0.063551846 1 13.06819432
Ssb -0.006781964 0.001240023 -7.18708E-05 -0.320850399

Table 4.14: R values, comparison from Mendes model

Gene dinI∗fixed lexA∗fixed recA∗fixed umuD∗fixed S-system model
lexA 0,111589 0.126065135 0.0950698 0.0650685 0.112364
dinI 1.349589613 1.07069 1.06848 1.10423 1.07362

umuD 20.9084 14.8154 17.2448 25.23217374 14.9465
rpoD 0.0477309 0.0462451 0.045975 0.0453676 0.0463255
rpoH 0.02446 0.02446 0.02446 0.02446 0.02446
rpoS 0.00736807 0.00736807 0.00736807 0.00736807 0.00736807
recF 0.202096 0.203942 0.202081 0.212593 0.203794
recA 5.59963 5.38502 6.065212362 5.57012 5.39728
Ssb 0.173815 0.173246 1.74E-01 0.166391 0.17333

Table 4.15: Steady state values simulation of gene upregulation with S-
system model
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Gene dinI∗fixed lexA∗fixed recA∗fixed umuD∗fixed
lexA -2.68E-02 1 -0.277665798 -0.611644947
dinI 1 -0.022381422 -0.128541054 0.041430435

umuD 1.551795578 -0.071933937 0.030014927 1
rpoD 0.118023683 -0.014233332 -0.131319541 -0.030047395
rpoH 0 0 0 0
rpoS 0 0 0 0
recF -0.032414223 0.005955812 -0.067921682 0.062740603
recA 1.46E-01 -0.018628855 1 0.046534609
Ssb 0.010885724 -0.003974442 0.041957658 -0.058174132

Table 4.16: R values, comparison from S-system model

R values dinI upregulation

ssBrecA

recF
rpoSrpoH

rpoD
umuD

dinI
lexA

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9 10

R
 v

a
lu

e
s

Experimental values

Mendes model

S-system model

Figure 4.5: R-values for dinI overexpression experiment.
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Figure 4.6: R-values for umuD overexpression experiment.
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Figure 4.7: R-values for lexA overexpression experiment.
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Chapter 5

Conclusions and open
problems

The Thesis presents four different models for a subnetwork comprising the prin-
cipal mediators of the SOS response gene in E. coli. To construct the models we
have used the gene network presented in [4] representing the interactions be-
tween nine genes of the SOS network. The goal of the thesis was to find a model
able to predict the dynamics of the system. To achieve this we have used a time
course dataset available in the M3D database that describes the behaviour of
the nine genes in response to a perturbation with the antibiotic Norfloxacin.
The perturbation with this antibiotic leads to the formation of single-stranded
DNA and thus to the activaction of the SOS pathway via the recA protein. The
main part of this work focuses on the estimation of the parameters, starting
from the experimental data with the help of the optimization algorithms avail-
able in the software COPASI, in particular the global optimization algorithm
particle swarm and Hooke and Jeeves.

Considering the general root mean square value, we have found out that
Mendes model and S-system model where the two that produced the best fit.

Once obtained the parameters, we have used the models to predict the steady
state concentrations in normal conditions and in overexpression experiments.

We have discovered that, although the S-system model gave the better fit
between the two models, only the Mendes model was able to approximately
retrieve the concentrations at the steady state at least for some of the genes
considered in the network.

In particular the genes for which we have obtained predicted steady state
concentrations distant from the experimental ones where rpoD, rpoH, rpoS and
recF. Such similar result has been obtained also considering overexpression ex-
periments.

The graphs presented in Figures 4.5, 4.6, 4.7 and 4.8, show the variance of
the Co-response coefficient that indicates how two system variables respond to
a common perturbation which in this case represents the overexpression of one
of the genes in the network. Looking at these plots, we can see that the major
differences between the R values calculated using the experiments and the ones
calculated using the Mendes model present the major differences for the genes
rpoD, rpoH, rpoS and recF, while the R values obtained using the S-system
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model simulations gave very different results from the experiments.
Focusing our attention on the Mendes model, we conjecture that we could not

retrieve the right concentrations at the steady state for all the genes because
of several problems: (i) just six data points are not enough to estimate the
parameters of the models; (ii) the model is not appropriate to describe this
network, probably not all the genes should have been modelled with the same
equation. The wrong modeling of rpoH gene can probably have lead to a wrong
estimation of the parameters for the genes that “influence” its regulation, as
rpoD, rpoS and recF. If we look at the gene network we can see that rpoH gene
is influenced only by rpoD, so maybe we should have added other genes in the
regulation of its synthesis. In fact if we look at the parameter values estimated
for this gene, we can see that they represent very low rate of synthesis. Due
to this, even the R value for this gene it is always lower than the experimental
one, in all the overexpression simulations and the same for the genes under its
influence.
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