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Abstract

In the area of membrane computing, time-freeness has been de-
fined as the ability for a timed membrane system to produce always
the same result, independently of the execution times associated to
the rules. In this paper, we use a similar idea in the framework of
spiking neural P systems, a model inspired by the structure and the
functioning of neural cells. In particular, we introduce stochastic spik-
ing neural P systems where the time of firing for an enabled spiking
rule is probabilistically chosen and we investigate when, and how, these
probabilities can influence the ability of the systems to simulate, in a
reliable way, universal machines, such as register machines.

1 Introduction and Motivations

Membrane computing (known also as P systems) is a model of computation
inspired by the structure and the functioning of living cells (a monograph
dedicated to the area is [21], an updated bibliography can be found at the
web-page [30]). Essentially, a P system is a synchronous parallel computing
device based on multiset rewriting in compartments where a global clock is
assumed and each rule of the system is executed in one time step.

Starting from the idea that different reactions may take different times
to be executed (or to be started, when enabled) a timed model of P system
was introduced in [5], where to each rule of the system is associated a time of
execution. The goal was to understand how time could be used to influence
the result produced by the P system (see, e.g., [6]) and, possibly, how to
design computational powerful time-free systems where the output produced
is independent of the timings associated to the rules, e.g., [2].

In this paper we use a similar idea in the framework of spiking neural P
systems, and we investigate how the timing of the spiking rules can influence
the output produced by the systems and in particular can influence the
ability of the systems to simulate universal computing devices.

Spiking neural P systems (in short, SN P systems) have been introduced
in [14] as computing devices inspired by the structure and functioning of
neural cells (a friendly introduction to the area is [20]).

The main idea of an SN P system is to have several one-membrane cells
(called neurons) which can hold any number of spikes; each neuron fires
(we also say, spikes) in specified conditions (after accumulating a specified
number of spikes).

In the standard definition of SN P systems, the functioning of the system
is synchronous: a global clock is assumed and, in each time unit, each neuron
that can use a rule does it. The system is synchronized but the work of the
system is sequential: only (at most) one rule is used in each neuron. One
of the neurons is considered to be the output neuron and its spikes are also
sent to the environment. The moments of time when (at least) one spike



is emitted by the output neuron are marked with 1, the other moments are
marked with 0. The binary sequence obtained in this manner is called the
spike train of the system — it is infinite if the computation does not stop.

To a spike train one can associate various numbers, which can be consid-
ered as computed (we also say generated) by an SN P system. For instance,
in [14] only the distance between the first two spikes of a spike train was con-
sidered, then in [22] several extensions were examined: the distance between
the first k spikes of a spike train, or the distances between all consecutive
spikes, taking into account all intervals or only intervals that alternate, all
computations or only halting computations, etc..

In [14] it is proved that synchronized SN P systems, with spiking rules in
the standard form (i.e., they produce only one spike) are universal — they can
characterize N RFE, the family of Turing computable sets of natural numbers;
normal forms of universal SN P systems were presented in [13].

In the proof of these results, the synchronization plays an important
role and, in general, the synchronization is a very powerful feature, useful
in controlling the work of a computing device. However implementing syn-
chronization is not always easy or possible and is (not always) biologically
justified, as, for instance, in case of network of spiking neurons (see, e.g., [9]).
For these reasons in [4], [3] an asynchronous version of SN P systems, where
at each step of the computation a spiking rule can be applied or skipped,
has been considered. There has been shown that removing the synchroniza-
tion, in some cases, can lead to a decrease of the computational power of
the systems. In the same papers, it is also conjectured that asynchronous
spiking neural P systems using standard rules are not universal.

However, the “border” between synchronous and asynchronous systems
seems to be not so drastic in natural systems, and in many other artificial
systems, e.g., networks of computers. In many cases we encounter networks
of computational units that do not work in a synchronous way, i.e., they do
not use same global clock, but still they do their operations in an “enough”
synchronous way, in such way that the functioning of the entire system
follows the specified goals.

We try to capture such intuition in the framework of SN P systems by
considering stochastic SN P systems (in short, SSN P systems) where to
each rule, when enabled, is associated a probability to fire in a certain time
interval. This means that, during the computation of a SSN P system,
an enabled rule may not spike immediately but can remain silent for a
certain (probabilistic) time interval and then spikes. During such interval
the neuron where the rule is present could receive other spikes from the
neighboring neurons or maybe other rules can fire in the same neuron. The
computation would then continue in the new circumstances (maybe different
rules are enabled now — the contents of the neuron has changed). If there is
competition between enabled rules for using the spikes present in the same
neuron, the fastest (probabilistically determined) rule spikes.



The choice of the probability distributions for the firing of the rules
clearly influences the synchrony of the entire system. Because of the results
in [4], we can expect that the probability distributions for the firing of the
rules “influence” the ability for the systems to simulate, in a “reliable” way,
computational universal machines. In this paper we do not want to provide
a formal proof for this statement but rather we want to present ways to
investigate such “influence”.

We first show that a SSN P system can simulate universal machines
when the probability distributions can be chosen in an arbitrary manner.
When such distributions cannot be arbitrarily chosen but they are given,
then, the reliability of an SSN P system (i.e., the ability for the system
to work correctly) depends on the given distributions, and, in some cases,
on the variance associated to the distributions. In general, one has to use
statistical analysis to investigate the reliability of the systems, when, for
instance, varying the variance associated to the distributions. In this paper,
we provide such an analysis for a specific example of SSN P system and
considering a specific register machine program. We also show how, using
such method of analysis, it is possible, to identify the (maximal) value for
the variance that guarantees that the system has a certain chosen reliability.

The functioning of the SSN P system is somehow similar to the one
of stochastic Petri nets, [17] where a time of delay for each transition is
used. However, motivations and questions of the two paradigms are clearly
different (modeling network of spiking neurons for computability study in
our case, modeling concurrent processes in case of stochastic Petri nets).
This is more evident when considering the control associated to the the
single computational unit: regular expressions associated to each neuron in
a SS N P system, presence of tokens in the places in stochastic Petri nets.

Probabilities have been also used in the more general framework of P sys-
tems. In particular, in [24] and [16] probabilities have been associated with
the localization of single objects and with rules and universality has been
shown when such probabilities are chosen in a very specific way. However,
no explicit analysis of the reliability of the systems has been presented. A
different approach is used in [19] and [23] where sequential membrane sys-
tems have been investigate using Markov chains theory. In these papers
however probability distributions are not directly associated to the timing
of the rules, but are rather obtained by starting from chemical reactions and
molecular dynamics; the goal of the authors is, in fact, to provide algorithms
to investigate dynamics of molecular systems.

We conclude by mentioning a similar work presented in [15] in the frame-
work of network of spiking neurons where each neuron has associated a given
threshold that specifies when a neuron fires. In [15] the author shows how
a network of spiking neurons, with noisy neurons (i.e., the time of firing is
not deterministic) can simulate, in a reliable way, boolean circuits and finite
state automata. In our case, we use more general and abstract type of neu-



rons and, for this reason, we can investigate more “complex” and general
encodings such as the one of register machines.

2 Preliminaries

We introduce in this section a limited amount of technical notation, assum-
ing the reader has some familiarity with (basic elements of) language and
automata theory, e.g., from the standard book [27] or from the correspond-
ing chapters of the handbook [25].

For an alphabet V', V* is the free monoid generated by V with respect
to the concatenation operation and the identity A (the empty string); the
set of all nonempty strings over V, that is, V* — {\}, is denoted by V.
When V = {a} is a singleton, then we simply write a* and a™ instead of
{a}*,{a}*. The length of a string z € V* is denoted by |z|. The family of
Turing computable sets of natural numbers is denoted by NRE.

A regular expression over an alphabet V' is constructed starting from A
and the symbols from V and using the operation of union, concatenation
and Kleene +, using parentheses when necessary for specifying the order of
operations. Specifically, (i) A and each a € V are regular expressions, (i)
if By and Ey are regular expressions over V, then (Ep) U (E2), (E1)(E2)
and (E1)" are regular expressions over V, and (iii) nothing else is a regular
expression over V.

To each regular expression E we associate a language L(E) defined
in the following way: (i) L(A\) = {A} and L(a) = {a}, for all a € V,
(i1) L(E1) U () = L(Ex) U L(Es), L(E1)(E2)) = L(E1)L(Ey), and
L((Ey)"™) = L(E1)™ for all regular expressions E1, F5 over V. Non-necessary
parentheses are omitted when writing a regular expression and (E)* U {\}
is written in the form (E)*.

In what follows we also assume that the reader possesses a basic knowl-
edge of probability theory, specifically about random variables and their
distribution. An introduction to these concepts can be found in [28].

2.1 Register Machines

A (non-deterministic) register machine is a construct M = (m, H,lg,lp, I)
where m is the number of registers, H is the set of instruction labels, [y is the
start label (labeling an ADD instruction), [}, is the halt label (assigned to an
HALT instruction) and I is the set of instructions; each label from H labels
only one instruction from I, thus precisely identifying it. The instructions
are of the following general forms:

e |1 : ADD(r),ls,l3, adds 1 to register r and then goes non-deterministically
to one of the instructions with labels I, I3;



e [y : SUB(r),la,ls, if register r is non-empty, then subtracts 1 from it
and goes the instruction with label ls, else goes to the instruction with
label I3;

e [, : HALT, is the halt instruction.

A computation of a register machine M is defined in the following way.
The machine starts with all empty registers (i.e., storing the number zero).
Initially, the instruction with label Iy is executed. The computation pro-
ceeds by applying the instructions as indicated by the labels (and made
possible by the contents of the registers); if the halt instruction is reached,
the computation halts and the number n stored at that time in the first
register (output register) is the output of the computation. Because of the
non-determinism present in the ADD instruction, a machine M may have
multiple halting computations.

Without loss of generality, we can assume that, for any instruction, Io,
l3 is different from [;.

We denote by Cps the set of halting computations of M, and by Out(c),
the output produced by a computation ¢ € Cps. Then N (M) = {Out(c),c €
Car} is the set of all natural numbers computed by machine M.

We denote by RM ypgr the class of non-deterministic register machines.
It is known (see, e.g., [18]) that RMy pprr computes all sets of numbers which
can be computed by a Turing machine, hence characterizes NRE.

3 Stochastic Spiking Neural P Systems

We introduce a class of spiking neural P systems (in short, SN P system),
called Stochastic Spiking Neural P Systems (in short, SSN P systems). SSN
P systems are obtained from SN P systems by associating to each spiking
rule a firing time that indicates how long an enabled rule waits before it
is executed. Such firing times are random variables whose probability dis-
tribution functions have support contained in the set of non-negative real
numbers, which we shall denote by R*.

Informally, an SSN P system is an asynchronous SN P system ([4])
where the firing of the rules (hence, the asynchrony present in the system)
is stochastically regulated. Formally, an SSN P system is a quadruple

I1=(0,%, syn,i,)
where:
(i) O ={a} is the singleton alphabet (a is called spike);
(ii)) ¥ ={o1,09,...,0m} are neurons, of the form

oi = (ni, R;),1 <i <m,



where:

e n; > 0 is the initial number of spikes contained by the neuron;
e R; is a finite set of rules, of the following two forms:

(a) E/a" — a;F'(-) where E is a regular expression over O,
r > 1 and F'(-) is (a function that represents) a probability
distribution with support in R*;

(b) a® — X\; F"(-) for some s > 1, with the restriction that a® ¢
L(E) for any rule of type (a) in R; and F”(-) is a probability
distribution with support in R™;

(iii) syn C {1,2,...,m} x {1,2,...,m} with (i,9) € syn for 1 <i < m is
a set of synapses among the neurons;

(iv) i, € X is the output neuron.

A rule of type E/a" — a; F'(+) present in neuron i, for i € {1,2,...,m},
is a firing (also called spiking) rule: provided that the contents of neuron 4
(i.e., the number of spikes present in it) is described by the regular expression
E, then the rule is enabled and can fire (spike). When the rule fires, r spikes
are consumed in neuron ¢ and exactly 1 spike is sent to all the neurons to
which neuron ¢ is linked through the synapses. A rule of type a® — X\; F”/(+)
is a forgetting rule, and it functions in a similar way. The only difference
with respect to the firing rule is that, when the forgetting rule fires, s spikes
are consumed in neuron ¢ and no spike is sent out.

From the moment in which a rule is enabled up to the moment when the
rule fires, a random amount of time elapses, whose probability distribution
is specified by the function F(-) associated to the rule (different rules may
have associated different distributions).

Therefore, if a rule is enabled in neuron ¢ and before the rule fires the
neuron receives new spikes or another rule in neuron ¢ fires, it may happen
that the rule is not enabled anymore because the contents of neuron ¢ has
changed.

We suppose, that once the rule fires, the update of the number of spikes
in the neuron, the emission of spikes and the update of spikes in the receiving
neurons are all simultaneous and instantaneous events. Multiple rules may
be simultaneously enabled in the same neuron. Whenever multiple enabled
rules in a neuron draw the same random firing time, the order with which
those rule fire is randomly chosen, with a uniform probability distribution
across the set of possible firing orders.

A configuration of an SSN P system II is composed by the neurons with
their associated contents. Using the rules in the way described above, in each
neuron, the system II passes from a configuration to another configuration:



such a step is called transition'.

A sequence of transitions, starting in the initial configuration, is called
computation. A halting computation is a computation that reaches a halting
configuration, i.e., one in which no rule is enabled. We denote by Cry the set of
all halting computations of an SSN P system II. For an halting computation
¢ € Cr1, Out(c), the output produced by ¢, is defined as the contents of the
output neuron in the halting configuration and N (IT) = {Out(c), c € Cry} is
the set of natural numbers generated by 1I.

In what follows, we will use the usual convention to simplify spiking
systems rule syntax, writing a” — a; F(-) when the regular expression of the
rule is a”.

4 Computational power of SSN P systems

In this section we discuss the computational power of SSN P systems, by
relating their capabilities to those of register machines. In particular, we
construct specific SSN P systems modules that can simulates the instructions
of a register machine. We follows and combines the approaches presented in
[13] and [14]; the main difference here is that, in this case, care must be put in
the selection of the distributions associated to the spiking rules. In the next
Theorem, we show that an SSN P system can “simulate” a synchronous SN P
system, hence a register machine, provided that the distributions associated
to the spiking rules are appropriately chosen.

Theorem 4.1 For every M € RMypgr there exists an SSN P system 11
such that N(M) = N(II).

Proof Let r1,79,...,7m be the registers of M, r; being the output
register, and I = {lp,l1,...,ln, 5} the set of labels for the instructions I
of M. Without any loss of generality, we may assume that in the halting
configuration, all registers of M different from r; are empty, and that the
output register is never decremented during the computation, we only add
to its contents.

We construct the SSN P system IT = (O = {a}, X, syn, i,) that simulates
the register machine M. In particular, we only present separate types of
modules that can be used to compose the SSN P system II. Each module
simulates an instruction of the register machine M (we distinguish between
a deterministic and non-deterministic version of the ADD).

(i) A deterministic add instruction l; : ADD(7), 15,1}, for some p € {2,...,m}
and i,j € {0,1,...,n}U{h}, is simulated by the module presented in
Figure 1.

!Notice that, because of the way the firing of the rules has been defined, in general
there is no upper bound on how many rules fire for each transition.
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Figure 1: Module for the deterministic ADD instruction

(ii) A deterministic add instruction to register rq, l; : ADD(ry),l;,1;, for
some 4,7 € {0,1,...,n} U{h} is simulated by a module as the one
shown in Figure 1, where neuron [} is removed and neuron nr; has no
rules.

(iii) A non-deterministic add instruction, l; : ADD(r}),;, Ik, for some p €
{2,...,m} and 4,5,k € {0,1,...,n} U{h} is simulated by the module
shown in Figure 2; Again, as in the deterministic case, {; : ADD(71), [, li
(i.e., a non-deterministic add instruction to register 1) is simulated by
a module as the one in Figure 2, but in which neuron li1 is removed
and neuron nry has no rules inside.

(iv) A sub instruction, l; : SUB(rp),ly, Ly, for some p € {2,...,m} and
i,7,k € {0,1,...,n}U{h} is simulated by the module shown in Figure
3.

Neuron nrj, for each j € {1,---,m}, corresponds to the register r;
of M. Neuron nl;, for each j € {0,1,...,n} U {h}, corresponds to the
(starting point of) instruction I; in the set I. In the initial configuration of
II all neurons are empty, except the neuron nly corresponding to the initial
instruction of M that has 1 spike. The output neuron of II is defined to be
nry corresponding to register r1 of M (we recall that such register is only
subject to add instructions).

Finally, to complete the specification of the modules, we select the prob-
ability distribution functions associated to the rules as follows:

e Fi(z) is defined as the Gaussian normal distribution with average 1
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Figure 2: Module for the non-deterministic ADD instruction

and variance o2, which we shortly denote as N(u,0?), where we set
p1 = 1 and 0% = 0 so that Fy(z) = H(z — 1), where H(z) is the
Heaviside unitary step function?;

o Fy(x) is defined to be N(ug,0?), with pp = 2;

e F3(z) is defined to be 0.5H(z — 1) + 0.5H (z — 2) , i.e., F3(x) is the
discrete uniform distribution in {1,2});

o Fy(x) is defined to be N(juy4,0?), with pg = 0.5.

We now show how, because of the selected distributions of firing rules,
each instruction of the register machine can be correctly simulated by the
corresponding presented module.

2The Heaviside unitary step function H(z) is defined as H(z) = 0if 2 < 0, H(z) = 1
if2>0.
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Figure 3: Module for the SUB instruction

Let us suppose that, at an arbitrary time ¢, the register machine M is
in a given configuration, in which it is to execute the instruction at label I;
with a given state of ri,ro,...,ry, registers, and suppose that the SSN P
system II is in a configuration that corresponds to that of M, that means:

e neuron nr; contains a number of spikes that is twice the contents of
register r;, for i = 2,3,...,m;

e neuron nr contains a number of spikes equal to the contents of register
T

e all other neurons are empty except neuron nl; that contains exactly 1
spike.

10



Notice that, by construction, the initial configuration of II corresponds
to the initial one of M.

Consider now the various possible cases for the instruction I; that M
starts executing at time t.

e l;: ADD(rp),l;,1; (deterministic add) — module shown in Figure 1.

Suppose first that p # 1. Then, the execution of instruction [; is
simulated in II in the following way. At time ¢ + 1 neuron nl; fires
(with probability 1, because of the chosen distributions), one spike is
introduced (at time ¢+ 1, hence instantaneously) in neurons I} and [2.
At time t+2 neurons li1 and 12-2 fire with probability 1 and two spikes are
added to neuron nr,. Also, at time ¢+ 2, one spike is added to neuron
nl;. Except the ones mentioned, no other rule can fire in neurons lil, l?
and nr,. Then, II reaches, starting from the supposed configuration,
and with probability 1, a configuration that corresponds to the state
of M after the execution of instruction /;. If p = 1, the execution of
instruction [; is simulated in a similar way, the only difference being
that only 1 spike is deposited in neuron nri at time ¢ + 2. Thus, again
IT reaches with probability 1 a configuration that corresponds to the

state of M after the execution of instruction ;.

e [ : ADD(rp),l;, 1}, (non-deterministic add) — module shown in Figure
2. In this case, the execution of the instruction /; is simulated in II as
follows. We only describe the case when p # 1, the non-deterministic
add to register ri is similar. At time ¢t + 1, neuron nl; fires with
probability 1, and at the same time one spike is introduced in neuron
I} and [2. At time ¢ + 2, neurons I} and [? fire with probability 1,
two spikes are then added to the neuron nr, and one spike is added to

g’, lf and lz~5. Neurons lf and 11-5 fire, with probability 1, at time

t 4+ 3 and t + 4, respectively, emitting one spike to neuron l? and lZ .

In neuron 3, the rule a — a; F3(x) fires at a time that is either ¢ + 3

or t + 4, with equal probability 27!, and l? emits one spike to neurons

li6 and lZ: this probabilistic choice of the firing time in l;-g’ simulates the
non-deterministic choice of the ADD instruction.

neurons [

In fact, if neuron lf’ fires at time t 4+ 3, then one spike is sent to both
neurons [9 and [/. The rule a? — a; Fy(z) fires with probability 1 in
neuron l? at time t+4, sending one spike to neuron nlj. The forgetting
rule in neuron [ fires with probability 1 at time ¢ +3.5. At time ¢ + 4,
the spike emitted by neuron li5 also reaches neuron li7 , the forgetting
rule is enabled and it fires, with probability 1, at time ¢t + 4.5.

If neuron l;?’ fires at time at time t 4 4, the spike that was deposited
in neuron l? by the firing of l? at time t + 3 gets consumed, with
probability 1, by using the forgetting rule at time ¢ + 3.5. Then, the

11



spike deposited at time ¢ + 4 in [$ by the firing of neuron I3 enables
again the forgetting rule of neuron l?, and the spike present in l? is
consumed, with probability 1, at time ¢ + 4.5. Also, at time t + 4,
2 spikes are deposited in neuron lZ (coming from neurons l? and lf’)
This allows the rule a? — a; Fy () in neuron I! to fire at time ¢+5 with
probability 1 and to send 1 spike in neuron nli. In both considered
cases, when 1 spike reaches either neuron nl; or nlj, no rule can fire

172 7
U7 1 and nrp.

anymore in neurons [
The system II can only execute, when starts from the supposed config-
uration, with probability 1, the above described transitions. Therefore,
II reaches, with probability 1, the configuration that corresponds to

the state of M after the instruction /; has been executed.

li : SUB(rp),1j,1; (non-deterministic sub) — module shown in Figure
3. The execution of instruction /; is simulated in II in the following
way. At time t + 1, neuron nl; fires with probability 1 and one spike
is added to neuron nry, and one spike is added to both neurons li1 and
l%. Neuron [} fires at time ¢ + 2 with probability 1 and deposits one
spike in neuron lg’. Also, neuron lf fires, with probability 1, at time
t + 2 and deposits one spike in neuron lf. Which rules fires in neuron
nrp and at which time depends on the contents of the neuron at time
t. There are the two possible cases.

(i) The number of spikes in neuron nry, at time ¢ is 0. Then, the
forgetting rule a — \; Fi(z) consumes the single spike present in
the neuron, at time ¢ 4+ 2, with probability 1.

(#4) The number of spikes in neuron nr, at time ¢ is 2k with k£ >
0. Then, the rule a(aa)™ — a; Fi(z) fires at time ¢ + 2 with
probability 1, depositing one spike in neuron lg’ .

Notice that both rules present in neuron nr, consume an odd number
of spikes and then, once a rule is applied, no other rule in such neuron
is enabled anymore.

In the case (i) only one spike reaches neuron I3 at time ¢ + 2, and this
spike is consumed, with probability 1, by using the forgetting rules, at
time ¢+ 3. Also, only one spike is deposited in neuron lf at time ¢+ 3,
which fires, with probability 1, at time ¢ + 4 depositing one spike in
neuron nly.

In the case (ii), two spikes are deposited in neuron [3 at time t +
2, which enable the rule a> — a; Fy(z). Neuron [ then fires, with
probability 1, at time ¢+ 3, depositing one spike in neuron nl/; and one
spike in neuron l?. Neuron l? has two spikes at time ¢t 4+ 3 which are
consumed, with probability 1, by the forgetting rule a? — \; Fy(x) at
time ¢ + 4.

12



Starting from the supposed configuration II can only execute, with
probability 1, the above described transitions. Therefore, II reaches,
with probability 1, the configuration that corresponds to the state of
M after the instruction [; has been executed.

The execution of an instruction (ADD or SUB) in M followed by the
HALT instruction is simulated in II by simulating the corresponding in-
struction (ADD or SUB) as described above and then sending 1 spike to the
neuron nl,. By construction, neuron nl; does not have any outgoing synapse
to other neurons. Hence, the firing of its rule a — a; Fi(x) consumes the
spike without sending any. Thus, also in this case II halts in a configuration
that correspond to the situation of M when the register machine halts.

From the above description, it is clear that II can be composed using the
presented modules in such a way that can simulate each computation of M
and each computation in II can be simulated in M. Therefore, the Theorem
follows.

A remark concerns the dashed neurons shown in Figures 1,2, and 3.
They represent the neurons shared among the modules. In particular, this
is true for the neurons corresponding to the registers of M. Each neuron
nrp, with p € {2,3,---,m} subject of a SUB instruction sends a spike to
several, possibly to all, neurons lf‘ ,1=0,1,...,n, but only one of these also
receives at same time a spike from the corresponding neuron lil. In all other
cases, the other neurons forget the unique received spike.

A last comment closes the proof — it concerns the probabilities of the
computations in II. Each numbers z € N(II) is obtained with a proba-
bility p(x) greater than zero. However not all the numbers in N(II) are
obtained in II with the same probability. Indeed, for every computation
c in M such that Out(c) = z, there is a probability 27 % that II simulates
exactly such computation where u. is the number of non-deterministic ADD
instructions executed in ¢. Therefore, the overall probability p, is given by

Uc

Zc€M|Out(c) =z 2
O

5 Experiments on the Reliability of SSN P Sys-
tems

The SSN P system II constructed in the proof of Theorem 4.1 works cor-
rectly because of the appropriate choice of the probability distributions for
the firing times associated to the rules in the neurons. In fact, the chosen
distributions constrain the possible computations of Il in a way that the
register machine M is able to simulate all the computations of II and vice
versa.

13



It was crucial in Theorem 4.1 that some of the chosen probability distri-
butions had zero-variance. It is interesting to understand what happens to
the correctness of the computation when this is not true anymore. In other
words, what happens if we use the modules defined in Theorem 4.1 but we
select, for all of them, a value of 02 > 07 In informal words, this corresponds
to increase the degree of non-synchronization in the constructed SSN P sys-
tem: more variance is admitted for the distributions, more non-synchronous
is the obtained system. As mentioned in the Introduction, in some cases
asynchronous spiking neural P systems are not universal [4], so we conjec-
ture that having distributions with non-zero variance makes more difficult
(if not impossible) to simulate a register machine, with good “reliability”.

Therefore, from a computational point of view it is interesting to under-
stand how the asynchrony present in the system, influences the ability for the
system to correctly simulate a register machine. Moreover, considering dis-
tributions with non-zero variance is interesting also from a biological point
of view: spiking in neurons is the result of biochemical reactions, which are
inherently random processes, hence they generally have a non-zero variance
associated to their distributions.

As it has been shown in Theorem 4.1, by using 02 = 0, each of the
considered SSN P modules simulates the corresponding register machine
instruction. When o2 > 0 such an equivalence may not exists anymore,
since the synchronization of the neurons in the modules is crucial. For
example, consider the following transitions of the module corresponding to
the deterministic ADD instruction, as shown in Figure 1. Neurons [} and [?
simultaneously receive 1 spike, but it may happen that the rule in li1 neuron
fires at time ¢ and the one in neuron [? fires at time ¢ + &, where § depends
on ¢2 and may be large enough to make the two spikes in neuron nry to
be consumed, one after the other, without actually increasing the number
of spikes in neuron nr, as it should be done for a proper simulation of the
ADD instruction.

For an SSN P systems II constructed as described in Theorem 4.1 we
define the notion of correct simulation of a single instruction of the register
machine M. We say that 11 simulates correctly the instruction with label I;
of M (suppose that [; is followed by the instruction with label ;) when the
following thing is true. If II starts from the configuration that corresponds
to the configuration of M when instruction [; is started, then Il executes a
sequence of transitions that leads to the configuration of IT that corresponds
to that of M after the instruction /; has been executed and, during these
transitions, the contents of all the neurons of II, except nl; and nl;, have
not been modified.

Let papp, papp_~nDp and psyp be the probability that II simulates
correctly the a deterministic ADD instruction, a non-deterministic ADD
instruction and the SUB instruction of M, respectively. Theorem 4.1 shows
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that, when ¢ = 0 is used, we have that papp, papp—np and psyp are
all equal to 1. When o2 > 0, this is not true anymore. To quantitatively
evaluate the effect of the variance o we have developed a simulator of SSN
P systems 3.

We report the outcome of simulations conducted to evaluate probabilities
PADD, PADD—ND and psyp when varying the variance 02 > 0. We present
in Figure 4 the obtained results for papp, papp—np and psyp when o2 is
varied in the range [0.01,0.1]. These probabilities have been computed with
10000 simulation batches for every value of o2, with confidence level of 95%.
The width of the confidence intervals for the simulation results is in each
case below 0.1%, too narrow to be shown in Figure 4.
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Figure 4: Probabilities papp, papp—np and psyp for values of o2 in
[0.01,0.1]

To give a quantitative feeling to the reader, we underline this well-known
fact: the probability that a random sample of a random variable distributed
as N(u,0?) is far from g more than o is about 0.3, more than 20 is about
0.05 and more than 3¢ is about 0.003. For instance, when o2 = 0.1, a
random sample drawn from distribution F(z) will have probability 0.3 of
being outside interval [0.7,1.3] and probability 0.05 of being outside interval
[0.4,1.6]. Such variability brings asynchrony in the considered instruction
modules and this makes possible many transitions, which would not occur
if 02 = 0. Therefore, it is not surprising that probabilities pAapp, PADD—ND
and psyp decrease as o2 increases (as Figure 4 shows).

From Figure 4 it is also possible to observe that probabilities papp,
papp—nND and psyp are close to 1 (i.e., the corresponding instructions are
simulated correctly) when o2 takes values in the lower part of the considered
range of variation. This result supports the idea that II is able to simulate
correctly, with high probability, long computations of the register machine
M even for values of o > 0.

3To simulate SSN P systems, we have used the Mobius modeling framework [7].

15



To understand more precisely how II can simulate M in a reliable way,
when a non-negative variance o2 is considered, we define a probability metric
called the reliability of 1I, which we use to characterize the ability of II to
compute correctly a number in Out(M).

The reliability of a system is defined as a function R(¢),¢ > 0, which
expresses the probability that in the interval of time [0,¢] the system has
been working correctly, supposing that the system was working correctly
at time ¢ = 0 (this follows the standard definition of reliability. See, e.g.,
[11]). The definition of the correct behavior of the system has to be given
with reference to a specification of the system, or alternatively can be given
with respect to another system, which is assumed to be always correct. We
choose the second approach: In what follows, we shall evaluate the reliability
of the SSN P system II (when varying o?) by comparing the sequences of
transitions performed by II against the ones that are performed by a register
machine M.

Precisely, we define the reliability R (n) as the probability that IT sim-
ulates correctly a sequence of n instructions executed by M, when M starts
from the initial configuration and II starts from the corresponding one.

In what follows we experiment on a particular SSN P system (and on
a particular computed set of numbers) how the variance of firing rules dis-
tribution times systems affects the reliability. For this purpose we consider,
the set of natural numbers Pow2 = {n | n = 2™, m > 0} that is the set of
natural numbers that are power of 2 (actually, Pow?2 is also a non-semilinear
set of natural numbers).

The set Pow2 can be computed, for instance, by the following register
machine M' = (2,{lo,l1,...,1s8,In},l0,ln,I). The idea is that M’ moves
the contents of register 1 to 2 and back, and, in this case, doubles the
contents; ADD with label /1 is a “dummy” instruction, used only for the non-
deterministic choice between continuation of the computation or halting: the
object added is, in fact, subtracted again in the SUB, at Iy or [g.

Instructions I are the following ones.

lo: ADD(?“l),ll,ll
lli ADD(T’l),lg,lQ
l22 SUB(’I"l),lg,lg
lg: SUB(T‘l),l4,l5
l42 ADD(T‘Q), l3, l3
l5: SUB(T’Q),ZG,ll
lﬁt ADD(T‘l), l7, l7
l7: ADD(Tl), l5, l5
ls: SUB(r1),n, 1,
l: HALT
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Let II be the SSN P system that corresponds to M, built as described in
Theorem 4.1, using the modules presented in Figures 1, 2 and 3 and having
o2 > 0.

We evaluate the function Rﬂ/f /(n) by using simulations for values of o2
close to 0.01. We show in Figure 5 the simulation results, which were com-
puted with 100000 batches of simulation for each considered value of o2,
with a confidence level of 95%. The width of confidence intervals is within
5% of the estimated values (they are not shown in Figure 5 for the sake of
clarity).
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Figure 5: Reliability function RM' (n) for different values of o

The reliability functions plotted in Figure 5 show that, as ¢ increases,

IT has higher and higher probability of performing incorrect simulations.
However, for 02 = 0.01, the probability that II is able to simulate correctly
computations of M’ composed by 15.000 instructions is still quite high,
0.9. For such value of o2, the value of the reliability function at n = 1000
is of about 0.996. This means that, if we restrict our attention to the
computations of M’ that are composed by less than 1000 instructions and
consider 02 = 0.01, then we observe that II can simulate correctly these
computations with probability 0.996.

We can also use the above described procedure do design systems with
arbitrary reliability.

In fact, constructing an opportune Figure 5, one can identify, for an
arbitrary register machine M, the maximal value of ¢ for which is possible
to construct, using the approach given in Theorem 4.1, an SSN P system
II with a reliability R} (n) that is at least k, with k an arbitrarily chosen
constant 0 < k < 1.
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Finally, it is important to mention that, for a given register machine
M, several equivalent SSN P systems can be constructed, using different
constructions (Theorem 4.1 shows only one of them). These SSN P systems,
even equivalent from a computational point of view, can have very different
reliability. A way to get different SSN P systems, with different reliability, is,
for instance, to construct different modules to simulate the register machine
instructions.

For instance, consider the module shown in Figure 6, for which we define
Fi(z) = N(1,0%). It is easy to check that, when o2 = 0, the module shown
in Figure 6 (we call it ADD?2) is equivalent to the module shown in Figure
1 (we call it ADD). In fact, both of them, for ? = 0, simulate correctly
the (deterministic) ADD instruction of the register machine.

However, having an intermediate neuron, makes the module in Figure
6 more reliable than the module in Figure 1. We can check that by calcu-
lating, using the above described procedure, papps. This is clear from the
comparison between papp and pappo presented in Figure 7.

Figure 6: An alternative SSN P module [; : ADD(r), [}, [;
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Figure 7: Probabilities papp1 and papps for values of o2 in [0.01,0.1]

6 Perspectives

Constructing reliable and powerful computational devices by combining sev-
eral simple (bio-inpired) units has been studied intensively in computer sci-
ence, starting from classical cellular automata. Recently, several researchers
are investigating the possibility of constructing fault-tolerant systems, es-
pecially computer architectures and software by using ideas coming from
nanotechnology and from biological processes (see, e.g., [12]).

In our case, we have investigated, in the framework of SN P systems,
a kind of fault-tolerance that concerns the possibility to obtain powerful
(universal) computing devices, when using computational units that are
simple and non-synchronized. We have defined a stochastic version of SN
P systems (SSN P system) where to each rule is associated a stochastic
“waiting” time and we have presented a preliminary study that shows how
the degree of asynchrony (expressed as variance) among the neurons can
influence the ability of an SSN P systems to simulate/executed in a reliable
way the program of a register machine.

The topic is very general and several lines of research can be followed.
The most interesting one concerns the possibility to implement powerful
computing devices (possibly, universal) using SSN P systems having an high
degree of asynchrony, i.e., with distributions associated to the firing times
with an high variance. When is this possible? What is the price to pay for
that? An important question that we have not answered in the paper is the
following one. Can the topology of the network influence the reliability of
the constructed system? (in this case one may find motivations and inspira-
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tions from the topology of the real networks of neurons). Another relevant
question: Can the redundancy (i.e., number of neurons and connections)
help in obtaining more reliable systems? This appears to be true, at least in
view of the better reliability (Figure 7) of the module presented in Figure 6
compared to that of the module shown in Figure 1. How much redundancy
can help and what is the best way to use redundancy ?

Another line of research concerns the study of class of SSN P system
where reliability can be analytically investigated. For instance, in case of
exponential distributions, one should be able to construct an equivalent
Markov chain and then studying in an analytical manner the reliability of
the system. Are there other cases where this is possible? In general, as seen
in Section 5, there is a link between the type of transitions executed and the
reliability of the system (not all transitions are equally relevant/dangerous
for the reliability of an SSN P system). Is there a possibility to limit the
number of certain type of transitions? (this is, of course, very much linked
to the number of minimal instructions of a certain type that one has to use
in a register machine program - hence one may find links between reliability
and Kolmogorov complexity, [29]).
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