
Technical Report CoSBi 17/2007

A Parallel Beta-binders Simulator

Stefan Leye

University of Rostock

sl031@informatik.uni-rostock.de

Adelinde M. Uhrmacher

University of Rostock

lin@informatik.uni-rostock.de

Corrado Priami

CoSBi

and

DISI, University of Trento

priami@cosbi.eu

Technical Report
”A Parallel Beta-binders Simulator”

Stefan Leye∗, Corrado Priami+, Adelinde M. Uhrmacher∗
∗University of Rostock · Department for Computer Sciences &

+The Microsoft Research - University of Trento Centre for Computational and Systems
Biology

{sl031, lin}@informatik.uni-rostock.de & priami@cosbi.eu

Abstract

Beta-binders is a comparatively new modeling formalism introduced for systems bi-
ology. To execute Beta-binders models, suitable simulators are required which translate
the operational semantics of Beta-binders into a sound and efficient execution. Efficiency
can be reached by parallel and distributed simulation and by a proper representation of
models to ensure a fast manipulation. Both possibilities are considered in the implemen-
tation of the described hierarchical Beta-binders simulator. The description includes a
tree structure which reflects π-Calculus and Beta-binders processes and the algorithm of
the simulator which enables a distributed and optimistic, parallel execution.

1 Introduction

Biological research is concerned with a huge number of very complex processes. To understand
them, modeling and simulation is a very important tool. In the past, the main approach to
accomplish this task has been continuous modeling and simulation, but recently new concepts
have emerged. Those include discrete event approaches towards modeling and simulation, the
former including process algebra. Process algebra approaches vary from very general ones, like
the π-Calculus [12] and its extensions [13, 15, 10] to very specific ones, like BioAmbients [18]
mimicking biological compartments or Brane Calculi [3] for modeling membrane interactions.

Beta-binders [16] is an extension of the π-Calculus specifically designed for modeling and
simulation in molecular and cell biology. A π-Calculus process is wrapped into a box. Boxes
can be seen as compartments, however, nesting is not allowed. Special binders form interfaces
on these boxes to handle interactions between them. Possible transitions in Beta-binders allow
besides the simple internal π-Calculus transition, communications between boxes, the joining
of two boxes into one and the splitting of one box into two. A stochastic extension [4] allows
quantitative measures and makes a discrete event view possible.

A hierarchical simulator for Beta-binders has been introduced [8]. This attempt is inspired
by the abstract simulator of (P)DEVS [21] using discrete event techniques and a hierarchical
structure to enable distributed simulations. An adaptation of the Gillespie algorithm [7, 14]
is responsible for scheduling the events.

We implemented this approach in the simulation framework James II [9].

2

2 Handling the Model Structure

Since Beta-binders and the π-Calculus, are based on formal languages, executing those implies
typically inefficient string manipulation. To avoid this, a data structure is necessary, which
can be handled easily by the simulation system. The simulator described in the next sections
has been realized for the simulation framework James II, which is implemented in the object-
oriented programming language Java [1]. Hence, a realization of the data structure in Java
classes suggests itself.

2.1 Representation of the π-Calculus

A π-calculus process can be defined by the following context-free grammar:

P ::= P |P | !π.P | M | ν(x).P | 0
M ::= π.P | M + M
π ::= x 〈y〉 | x(y) | τ

where x and y are elements of a set of names N .
In the stochastic π-Calculus, an extension of the π-Calculus which will be used here, the

grammar is slightly changed:

π ::= (x 〈y〉 , r) | (x(y), r) | (τ, r)

with r ∈ R + ∪ ∞ as a stochastic rate.
Similar to [2] we use a tree structure to represent π-Calculus processes but we do not

maintain an additional structure for dynamic information (This part is handled by the sim-
ulator).

The π-Calculus is based on the notion of channels or names respectively, i.e. all the actions
of a π-process are processed on channels and with channels. They represent the connection
between communicating entities as well as exchanged values. Hence, channels are represented
by an own class - PiChannel, which holds the name in the form of a string as an attribute.

For the stochastic extension, the class StoP iChannel is introduced. It inherits from
the class PiChannel and is extended by a double value representing the rate. The gen-
eral π-process is represented by the abstract class PiProcess, from which all the specific
process classes are derived. ν(x).P creates a new name x which is only valid for P . The
class PiProcess holds an attribute restrictedChannels which is an ArrayList containing
references to these bound names.

π is the general definition for an action. All classes realizing an action have to inherit
from the abstract class PiAction, which has a reference to the channel on which the action
takes place. x 〈y〉 is a send action. If the action happens, channel y is sent over channel x.
This is realized by the class PiSend. We use the polyadic π-Calculus [13] where not only one
channel y but a vector of channels $y can be sent. Therefore, PiSend contains the reference
to the communicating channel (inherited from the PiAction class) and a list of references to
the channels which are communicated over the channel.

x(y) is a receive action. A channel is received on x and replaces y (or a vector of channels
is received and replaces the vector of channels $y, repectively) in the following process. The

3

((x() + y(u).u())| x | y<v>.v<>.t)

PiModel

PiParallel

xPiSummation

x() y(u)

u()

y<v>

v<>

t

Figure 1: Example for the tree structure of a π-process.

class PiReceive is similar to PiSend, and contains a list of references to the channels that
are replaced.

On the silent action τ no communication takes place. In the stochastic-π Calculus it
symbolizes a delay. The τ action does not use a channel. We alterate this construct in the
class PiSilent, which uses a channel to determine the rate of the action. Obviously this is
not exactly the τ -action but we can substitue τ.P by ν(x)(x.P). This way gives us the ability
to schedule the silent action as a simple communication. The class PiSilent simply inherits
from PiAction without any new attributes.

In a sequence π.P the process P is scheduled after the action π is executed. For this
case the class PiAction has a reference to the next process. The guarded replication !π.P ,
symbolizes a sequential copying of the process π.P according to the congruence rule !π.P ≡
π.(P |!π.P). This is realized by a boolean value in the class PiAction. True means, that it
is a replication, False means that it is a simple action. The simulator handles the action
according to this property and manages the necessary transformations.

P |P is the parallel execution of two processes. This is represented by the class PiParallel,
containing the attribute processes, which is an ArrayList containing all the processes (as ob-
jects of the class PiProcess), that run in parallel. M+M is the exclusive execution of guarded
processes, which means, that only one of the processes can be processed. A guarded process is
an action or a sequence. This construct is realized by the class PiSummation, which contains
similar to the class PiParallel an attribute processes, which is in ArrayList containing all
the processes of the summation. The processes are objects of the class PiAction. The empty
process 0 is represented by the Java null object.

The class BasicP iConstruct is the superclass for PiProcess. It holds the attribute
parent which is a reference to another BasicP iProcess. With it a tree representation of a
π-Calculus process is possible, where the parent of a process is the parent node in the tree.
The children of a summation and a parallel process are the composing processes, the child of
an action is the following process in the sequence.

4

-parent
BasicPiConstruct

-restrictedChannels
PiProcess

-freenames
-process

PiModel

-channel
-nextProcess
-replication

PiAction

-processes
PiParallel

-processes
PiSummationPiSilent

-value
PiReceive

-value
PiSend

Figure 2: Classes representing π-Calculus processes.

The class PiModel inherits from the class BasicP iConstruct. The simulator works
with a PiModel object. Additional to the reference to the process to be simulated it holds
information necessary for an efficient simulation like a list of all the free names (references to
the channels respectively) contained in the process.

2.2 Representation of Beta-binders

In Beta-binders an interface is wrapped around π-Calculus processes, they become
BioProcesses:

B ::= B∗[P] | B||B
B ::= β(x,∆) | βh(x,∆)

where P is a π-Calculus process of the grammar defined in 2.1 extended in the following way:

π ::= x 〈y〉 | x(y) | x | expose(x,∆) | hide(x) | unhide(x)

respectively:

π ::= (x 〈y〉 , r) | (x(y), r) | (x, r) |
(expose(x,∆), r) | (hide(x), r) | (unhide(x), r)

5

for the stochastic case. Note that in the following a πProcess is a π-Calculus process in-
cluding the extensions above. The interface consists of binders β(x,∆), where a channel x is
connected to a type δ on which a communication between two BioProcesses can take place.
The type is represented as a list of strings. How these strings are used for communications
is discussed in section 3. The binder is realized in the class BetaBinder, holding a reference
to the channel and a HashSet of strings for the type. We use a HashSet here for efficiency
reasons. A binder can be hidden, which means that no communication is possible on it. This
is realized by the boolean attribute hidden.

-freenames
-process

PiModel

-processes
BetaBindersSystem

-interface
BioProcess

-channel
-types

BetaBinder

Figure 3: Additional classes to represent Beta-binders.

A BioProcess extends the PiModel class. The BetaBindersBioProcess contains a new
attribute interface, which is a HashMap mapping each bound channel to its binder. A
system or set of parallel BioProcesses is realized by the class BetaBindersSystem, which
holds additionally to an ArrayList of single BioProcesses, information necessary for the
simulation.

The three additional actions are responsible for binder manipulation.The expose ac-
tion expose(x,∆) creates a new binder for the BioProcess. The associated class
BetaBindersExpose holds a reference to the channel which will be bound and a HashSet of
strings representing the type. hide(x) and unhide(x) change the hidden state of the binder
connected to channel x. Each of them has been realized as an own class, extending PiAction.
They do not need additional attributes.

3 A Hierarchical Beta-binders Simulator

The idea of [8] divides the simulator into several components according to the structure of the
model. Each BioProcess is handled by a so called Simulator, which processes all internal
events. The whole system is managed by a Coordinator, which handles the communication
between the BioProcesses. On top of that a RootCoordinator is responsible for the sim-
ulation’s progress in time. It is possible to create a simulator tree according to the model
tree (see figure The interaction between the components is done by messages which facilitates
a distributed execution. According to the semantics of Beta-binders, the simulator has to
handle four types of transitions:

• the intra-communication describes a communication inside of a BioProcess, which is
in most cases a stochastic-π transition. Additionally it can be the processing of one

6

of the new actions: expose, hide and unhide. These transitions are handled by the
Simulator component. 4).

Root
Coordinator

Coordinator

Simulator Simulator Simulator

BioSystem

B1[P1] B2[P2] Bn[Pn]

Figure 4: Scheme for the mapping of the model tree onto the hierarchical simulator.

BioSystem

B1* B2* Bn*

PiParallel

x<y> x(z) Q3

Q2Q1

BioSystem

B1*

PiParallel

Q3Q2{y/z}Q1

P2 P3

Bn*B2*

P2 P3

Figure 5: Example for the changes of the model tree caused by an intra event on
channel x.

• the inter-communication describes a communication between two BioProcesses, to
be more specific one BioProcess sends over a binder, while a different BioProcess
receives over a binder. The connection between the binders is derived from their types.
Therefore a special affinity (a positive, real number) is defined for each pair of types
which shall be able to create a Communication. Since types in our implementation
consist of sets of strings the affinities are defined for pairs of those strings. During
simulation those affinities are applied similarly to the propensity calculation in basic
Gillespie. The affinities are stored in the class TypeCoupling including as attributes the
sending and receiving string. Although we use the stochastic variant of Beta-binders
[4] we do not distinguish between a bimolecular reaction and a homodimerization. This
is not necessary, because our BioProcesses are individual objects each simulated by
an own simulation component. So whether two communicating partners are structural
congruent as in homodimerization is of no interest, as the individuals are distinguished.
While scheduling and forwarding messages between the involved BioProcesses, i.e.
their Simulators, is done by the Coordinator component, the changes in the model
structure is the responsibility of the Simulators.

7

BioSystem

(x,!)B1* Bn*

PiParallel

x<y> u(z)

Q1P1

BioSystem

PiParallelP3

Bn*

P3PiParallel PiParallel

P2 Q2 P1 P2 Q2Q1{y/z}

(x,!)B1* (u,")B2*(u,")B2*

Figure 6: Example for the changes of the model tree caused by an inter event commu-
nicating over the types Γ and ∆.

• the join-transition describes the joining of two BioProcesses into one. Instead of the
very general definition of join in [16] or as the idea put forward in [8] where join was
interpreted as an invariant, we introduce a specific interpretation that is inspired by
and based on the inter-communication. For the join, again an affinity between types
(or strings, rspectively) is defined. Given that two BioProcesses are in the state for
an inter-communication, two things can happen: either a normal inter-communication
or a join combined with an intra-communication, depending on the type of the affinity.
If the BioProcesses want to communicate over types which have a join affinity, they
will join, i.e, the πProcess of the ’sending’ BioProcess is absorbed by the ’receiving’
BioProcess (i.e., it is set parallel to the original πProcess of the ’sending’ BioProcess).
The ’sending’ channel in the engulfed πProcess is replaced by the ’receiving’ channel
(an intra-communication is now possible between the engulfed process and the former
πProcess of the engulfing BioProcess).

BioSystem

(x,!)B1* Bn*

PiParallel

x<y> u(z)

Q1P1

BioSystem

PiParallelP3

Bn*

P3PiParallel

P2 Q2

P2{u/x} Q2

(u,")B2*B1*(u,")B2*

u<y> u(z)

Q1P1{u/x}

PiParallel PiParallel

Figure 7: Example for the changes of the model tree caused by an join event, initiated
by the types Γ and ∆.

The join-transition is displayed by the following rule:

8

P ≡ νũ((x(w), rx).P1|P2) Q ≡ νṽ((y 〈z〉 , ry).Q1|Q2)

B ≡ β(x : Γ)B∗
1[P]||β(y : ∆)B∗

2[Q]
J ;B;αj(Γ,∆);(1,1)

−→ β(x : Γ)B∗
3[P ′|Q′]

where P ′ = νũ(x(w).P1|P2), Q′ = νṽ(x 〈z〉 .Q1 {x/y} |Q2 {x/y}) and B∗
3 = B∗

1 ∩B∗
2

provided x, z /∈ ũ and x, y, z /∈ ṽ. The join is handled by the Coordinator component.

• the split-transition describes the splitting of one BioProcess into two. Again we use
a specific interpretation here. For each BioProcess B = B∗[P] we introduce a set of
channels split(B), with split(B) ⊆ fn(P). If a silent action occurs on one of these
channels, the whole following sequence is put into a new created BioProcess holding
the same interface as the BioProcess where the action occured.

BioSystem

B1* B2* Bn*

PiParallel

x Q2

Q1

BioSystem

B1*

PiParallel

Q2

P2 P3

Bn*B2*

P2 P3

Bn+1*

Q1

Figure 8: Example for the changes of the model tree caused by a split event with
channel x as trigger.

The split-transition is displayed by the following rule:

P ≡ νũ((x, rx).P1|P2)

B ≡ B∗[P]
S;B;rx×(1+nO×nI);(1,1)−→ B∗[P1]||B∗[P2]

where nO = 1 + Outx(P2) and nI = 1 + Inx(P2)
provided x ∈ split(B)
As a split is based on the intra communication and happens locally it can be handled
by the Simulator component. The Simulator generates a new BioProcess, however,
the existence of the new BioProcess has to be announced to the Coordinator, which
will also generate the Simulator responsible for executing the new BioProcess.

3.1 The Simulator Component

The algorithm of the Simulator is based on the stochastic-π machine [14], extended by some
additional features to handle Beta-binders. Instead of lists we work on the model structure
introduced in section 2.1.

The Simulator holds a list of all the possible activities which can occur on each channel at
the actual state. This list contains all the possible communication pairs (each with a sender
and a receiver), and references to the single actions, this includes silent actions, expose, hide

9

and unhide actions. Following the argumentation line in [8], the algorithm consists of three
phases: the preEvent preparing a simulation step, the doEvent executing the step and the
postEvent providing information for the next event.

In the preEvent a message from the Coordinator is received. This can be either a
StarMessage containing only the actual simulation time or an XY Message containing in-
formation necessary for an inter communication. The doEvent distinguishes between the

Algorithm 1 Pseudocode for the preEvent of the Simulator Component

1 wait until msg r e c e i v ed
2 update time

different types of incoming messages. If it is a StarMessage the Simulator needs to execute
the next scheduled intra communication. The algorithm uses the list of all possible activities,
for the actual channel. One of these activities is picked randomly. If the received message is

Algorithm 2 Pseudocode for the doEvent of the Simulator Component

1 i f msg i s a StarMessge then
2 get actualChannel
3 get random a c t i v i t y on actualChannel
4 else i f msg i s a XY Message then
5 i f msg has a Value then
6 get the type
7 get the channel
8 get a random r e c e i v e r on the channel
9 else

10 get the type
11 get the channel
12 get a random sender on the channel
13 get the value
14 send XY message to parent
15 f i
16 f i
17 d e l e t e a c t i on s from model t r e e
18 case
19 one o f the a c t i on s i s a r e c e i v e r :
20 s ub s t i t u t i o n
21 one o f the a c t i on s i s a expose :
22 c r e a t e new binder
23 one o f the a c t i on s i s a hide :
24 hide binder
25 one o f the a c t i on s i s a unhide :
26 unhide binder
27 one o f the a c t i on s i s a s i l e n t :
28 i f channel i s a s p l i t i n d i c a t o r then
29 s p l i t
30 f i
31 update communication l i s t s
32 c r e a t e new StructureUpdateMessage

an XY Message an inter communication needs to be performed. The Simulator can be ei-
ther the sender or the receiver. The XY Message holds the type on which the communication
takes place and a value if the Simulator is a receiver. With these information it is possible
to select a channel and after that a send or receive action at the level of the πProcesses. In
contrast to the proposed solution in [8] where the values were part of a var-struct message
which wraps up the execution of a doEvent, here the sender of an inter communication

10

needs to send its value explicitly by an additional XY Message to the Coordinator which
will forward the message to the receiver. This explicit message facilitates handling inter
communication for the Coordinator. Otherwise, as the system is based on the polyadic π
calculus, the Coordinator would be faced with handling quite complex structure updates as
the values that are sent to the Coordinator are lists of channels.

After the Simulator identified the corresponding actions within the BioProcess, their
execution starts. The first step of the execution is done by a restructuring of the model tree.
In the simple case, this is done by deleting the action or actions from the tree. If a performing
action is a replication the subtree of the action has to be transformed according to the rule
!π.P ≡ π.(P.!π.P) before deleting the action. If a performing action is part of a summation,
the summation needs to be deleted as well.

The second step is the processing of the additional activities. Those include the substi-
tution for a communication or the creation, hiding or unhiding of a binder for expose, hide
or unhide respectively. If a silent action has been processed the Simulator needs to check if
the actual channel is a channel demanding a split. If that is the case a new BioProcess has
to be created with a copy of the interface of the actual one. The internal πProcess of the
newly generated BioProcess will be the sequentially following process of the silent action.

After doing the transitions, the lists of activities have to be updated. This is done by
going through the tree structure and getting all the actions, that can perform. At this phase
we also get the structure information necessary for the Coordinator. This information is
sent via a StructureUpdateMessage. It holds the changes of the count of possible senders
and receivers of the binder′s types (their strings in our case)), the time of the next intra
event which will be calculated later, and the splitted BioProcesses, if existing. Finally, the

Algorithm 3 Pseudocode for the postEvent of the Simulator Component

1 for a l l channe l s in the p roce s s do
2 c a l c u l a t e next de lay
3 get sma l l e s t de lay
4 s e t a s s o c i a t ed channel as next channel
5 upadate t on i e for StructureUpdateMessage

Simulator has to calculate the time of the next intra event and the associated channel in
the postEvent. This is done by a variant of the Gillespie algorithm [7] using the notion of
the channel activity to stochastically select the channel on which the next reaction occurs.
The delay to the next intra event is an exponentially distributed random number taking the
rates and the counts of possible activities as parameters of the channels into account. It is
added to the current simulation time. The result (the time of the next intra event) is sent
with the StructureUpdateMessage to the Coordinator.

3.2 The Coordinator Component

The Coordinator handles the interaction between the BioProcesses. Hence, similar to the
Simulator it holds lists containing information about the possible communications. Since
the inter communication and the join transition are based on affinities, these lists do not
depend on channels but on the TypeCoupling objects.

We do not use the Gibson and Bruck method [6] as proposed in [8], since it is hardly
possible to construct a dependency tree in our approach. Although we work with event

11

queues to schedule some events in advance. This is possible because of the memoryless
property of exponentially distributed random numbers.

As the Coordinator is responsible for the scheduling of all the interactions in the system
(even the intra interactions) it maintains two event queues. The first one contains the events
caused by interactions between BioProcesses, i.e. inter communications and joins which
are represented by the TypeCouplings. The second one contains the events scheduled by
the StructureUpdateMessages of the Simulators which covers intra communications and
splits.

The algorithm of the Coordinator comprises again the three phases: preEvent, doEvent
and postEvent.

In the preEvent a message from the RootCoordinator is received, which contains the
time stamp of the next event. This message is always a StarMessage containing only the
current simulation time.

Algorithm 4 Pseudocode for the preEvent of the Coordinator Component

1 wait until msg r e c e i v ed
2 update time

The doEvent checks the times of the next events stored in the event queues. The event
associated to the time matching the current time stamp is selected and will be executed.

If the event is an intra event or split, a StarMessage is sent to the Simulator responsible
for its execution. If the event is an inter event or join, the TypeCoupling is taken. If
it is associated to an inter communication, a Simulator, which can send on the sending
type is selected randomly and an XY Message is sent to it. The Coordinator waits for
an answer XY Message (see section 3.1) which contains the values of the communication.
Another Simulator which can receive on the receiving type is selected and the XY Message
is forwarded to it.

If the event is a join, two Simulators able to perform on the associated types are selected
randomly. The BioProcess which will be engulfed is sent to the Simulator of the engulfing
BioProcess. The fusion of the processes happens according to the rule specified before.

After the internal changes of the BioProcesses, the Coordinator waits for the up-
dates of the information necessary to schedule the next events. It waits for one
StructureUpdateMessage if the actual event is an intra, split, or join transition and for
two if it is an inter communication. With the received information, the TypeCoupling lists
are updated. Each message also contains the time of next event of the Simulator, which is
put into the appropriate event queue. If the StructureUpdateMessage contains a splitted
process a new Simulator is created to handle the new BioProcess. They are integrated into
the simulator and model structure, respectively. The postEvent of the Coordinator has a
similar function like the postEvent of the Simulator. For each TypeCoupling the affinity
and the number of possible transitions on it are taken into account to get an exponential
distributed random number, which represents the delay for the next event on the types. The
TypeCoupling is stored with its time of next event in the dedicated event queue. The mini-
mum of the two event queues is sent to the RootCoordinator via a StructureUpdateMessage.
The RootCoordinator starts the next simulation step.

12

Algorithm 5 Pseudocode for the doEvent of the Coordinator Component

1 get time from msg
2 i f time = min o f i n t r a event queue then
3 send StarMessage to Simulator
4 else i f time = min o f i n t e r event queue then
5 i f event i s i n t e r then
6 get TypeCoupling
7 get random Simulator on sending type
8 send XYMessage to Simulator
9 wait for XYMessage

10 get random Simulator on r e c e i v i n g type
11 forward XYMessage to Simulator
12 else
13 get TypeCoupling
14 get random Simulator on embedable type
15 get random Simulator on embeding type
16 get b io p roce s s o f embedable Simulator
17 j o i n bio p roce s s i n to model o f embeding Simulator
18 f i
19 f i
20 i f event i s i n t e r then
21 wait for two StructureUpdateMessages
22 else
23 wait for one StructureUpdateMessage
24 f i
25 i f StructureUpdateMessage conta in s new proce s s then
26 c r e a t e new s imu la to r
27 wait for StructureUpdateMessage
28 f i
29 update l i s t s

Algorithm 6 Pseudocode for the postEvent of the Coordinator Component

1 for a l l TypeCouplings in the system do
2 c a l c u l a t e next de lay
3 update i n t e r event queue
4 t1 = min o f i n t e r event queue
5 t2 = min o f i n t r a event queue
6 ton i e = getMin (t1 , t2)
7 upadate t on i e for StructureUpdateMessage

4 An Optimistic Variant

Although the hierarchical Beta-binders simulator described in the previous section can be
executed in a distributed way very easily, its parallelization opportunities are rather limited.
Because of the stochastic factor there are practically no events that happen at the same time.
The only event type, where more than one Simulator could work at the same time, would
be the inter communication. That means that only two Simulators work in parallel.

We need a sophisticated concept for a parallel execution. Discrete event parallel simula-
tion distinguishes between conservative and optimistic approaches [5]. With a conservative
approach all safe events can be processed in parallel. Because events shall be executed in
time stamp order, an event is safe if it is guaranteed that no other event happens prior to
it. To identify these safe events guarantees are exchanged between the simulators residing
at different nodes. Those are based on the local time stamp of the simulators and typically
take a look ahead into consideration. The look ahead defines the time interval within which
no event will be scheduled for the receiving simulator by the sending one. So the sending

13

simulator gives a guarantee until which time stamp it is safe for the receiver to proceed.
Obviously the efficiency of conservative approaches is closely related to the ability to define
significant lookaheads [11]. In contrast, an optimistic approach assumes “optimistically” that
no conflict will happen and processes its events. In the case it receives an event with a time
stamp smaller than the ones it has already processed (a so called straggler event), it rolls
back to the state before this event and undoes all the messages it has sent to other simulators
by launching anti-messages.

The stochastic factor in the Beta-binders simulator hampers defining suitable lookaheads.
No Simulator which is able to communicate via an inter communication is able to guarantee
that no event will be scheduled for it before a specific time. Therefore, an optimistic variant
of the simulator appears more suitable. However, due to the large effort required in handling
the model-structure an unbounded optimistic simulation does not appear very promising.
Therefore, we decided to combine conservative and optimistic features in our parallel simula-
tor. Whereas the intra events are processed in an optimistic manner, the inter events form
a kind of barrier and as such are only processed if they are safe. The later is guaranteed by
letting all BioProcesses advance up to this barrier.

Within the Simulators we need mechanisms to rollback executed events, this includes
saving the state of a BioProcess. Storing exchanged messages is not required, as those will
only be processed if they are safe. At the level of the Coordinator the parallel execution
including initiating roll backs is realized.

4.1 Realizing Rollbacks

To be able to roll an event back it is necessary to save the states which existed before the
event. This is possible by using the tree structure of a πProcess. It is only necessary to
roll back intra events (see section 4.2). Since these events are transitions of the internal
πProcesses of BioProcesses, it is required to save the states of them. One possibility to
save previous states, is to keep the information about the changes leading from these old
states to the actual one.

The transitions of πProcesses base on the deletion of the actions which participate on
it and the replacement of them with the sequentially following process. The optimistic
Simulator component holds a list containing each time stamp on which an action has been
removed from the model tree, a reference to the action (or to the summation if the action
belonged to one) and a reference to the process which replaced the action. Additional in-
formation, dependent on the transition are saved. This includes a list of the substituted
channels, if the action is a receive action or a reference to the created binder, if the action is
an expose action.

If a Simulator receives a rollback message it extracts the time stamp until which the
πProcess should be rolled back. Now the state of this time can be reconstructed step by
step. The time of the last change is taken from the list of changes. The reference to the
parent node saved in the class PiProcess and the reference to the process, which replaced
the action, saved in the list of changes define the exact position of the action (or summation)
in the model tree. The action needs to be linked at the parent node on the position of the
process which replaced it before. The former replacing process gets son node of the action
again. If there was a substitution it is made undone, if the action was a hide, unhide or expose
the binder is made unhidden, hidden or deleted, respectively. After the change is cancelled
the Simulator takes the time of the next change and compares it to the rollback time. If it

14

PiParallel

x Q

R
(x.R|Q)

 (R|Q)
PiParallel

QR
x

Save:

R
replaced by

(x.R|Q)
PiParallel

x Q

R

Transition on x

Rollback

Figure 9: Example for a transition and its rollback, shown with the π-Calculus syntax (right),
the tree structure (middle) and the information needed to get the last state (left).

is smaller the Simulator stops, the right state has been rebuilt, if it is greater or equal the
change will be cancelled too. Since the Coordinator drops the StructureUpdateMessages
of Simulators which need a rollback (see section 4.2), it is not necessary to send an update
of the structure to the Coordinator after a rollback.

4.2 A Moving Time Windows Coordinator

In section 3.2 the Coordinator is responsible for the execution of one event at each simulation
step. The optimistic Coordinator handles multiple events at one step. We use a moving time
windows approach [20], where all the events which are scheduled before a time barrier (which
is reset in each simulation step) are processed. This is a hybrid concept of parallel simulation.
There is an optimistic part because the barrier is no guarantee here, it only indicates a time
frame where conflicts are unlikely. In our case the barrier is the next inter or join event.

Sim 1 Sim2 Sim3 Sim4 Sim5

Figure 10: Phase 1: Executing intra events.

15

The algorithm is devided into four phases. In phase one a StarMessage is sent to each
Simulator which can execute an intra event, before the next inter or join event (the time
barrier) in the system. In phase two the Coordinator waits for a TimeWarpUpdateMessages

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

Figure 11: Phase 2: Updates and scheduling of new events.

from each Simulator which executed an event. The TimeWarpUpdateMessages is an exten-
sion of the StructureUpdateMessages holding the time stamp of the event. This is necessary
because the updates have to be done in the order of the execution of their events. This is
a bottleneck in the algorithm because the updates can only be done sequentially. With the

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

Figure 12: Phase 3: Rollback of executed events scheduled after the new barrier.

updates a new intra or join event could be scheduled which lies before the original one. The
barrier moves backward. This could conflict the events executed in phase one, which have a
time stamp after the moved barrier. The TimeWarpUpdateMessages from the Simulators
which executed those events are dropped, and the Coordinator sends RollbckMessages, con-
taining the time stamp of the new barrier, to them. The Simulators do the rollbacks and
recover the states at the time of the barrier. In phase four the Coordinator checks whether
there are intra events left, scheduled before the barrier. If there is no one left, the intra
event or join representing the barrier is executed. If there are intra events before, the bar-

16

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

Figure 13: Phase 4: Executing intra or join if possible.

rier remains for the next simulation step, which means that no intra or join event will be
executed at the actual step.

5 Related Work

The Simulator component presented in section 3.1 is based on a stochastic-π simulator
inspired by the stchastic-π machine (spim) [14]. Spim translates a stochastic-π Calculus
process into a list of summations, for an efficient handling. For each channel x the count
of possible communications is calculated, according to (inx ∗ outx)−mixx, where inx is the
count of possible inputs on x, outx is the count of possible outputs on x and mixx is the count
of communications on x where sender and receiver lie in the same summation (i.e. they can
not communicate). The channels on which a transition occurs is calculated by a variant of
the Gillespie method, using the notion of channel activity. For each channel x the propensity
(the product of a channels rate and the number of possible communications on it) px is
calculated. Non-zero values of px are stored in a list (xµ, pµ), with µ ∈ {1, ..n}. The sum of
the propensities is calculated and a random number n1 between 0 and 1 taken. The time delay
to the next event τ is calculated according to τ = (1/s)∗ ln(1/n1). A second random number
n2 is taken. The next reaction channel xµ is achieved by

∑µ−1
v=1 pv < n2 ∗ s ≤

∑µ
v=1 pv. With

the channel, the next transition can be choosen by randomly selecting a communication pair
of the channel. We use this concept for an own implementation of a stochastic-π simulator,
which is the base of the Beta-binders Simulator component.

[19] presents a Beta-binders simulator following a different approach than the one de-
scribed here. BioProcesses are seen as instances of species, multiple BioProcesses belong
to one species if they are structural congruent [17]. The simulator holds a list of these species
together with the count of the BioProcesses of each species. A transition does not lead
to a structural change of a process but to a decrease or respectively increase of the species
counts. The possibility of composing and decomposing complexes of BioProcesses by in-
troducing dynamic communication connections, replaces the split and join transitions. This
way gives the opportunity to represent molecular structures but drops the original idea of a
simple modeling of absorbing and excluding processes. This attempt is very efficient when

17

handling large amounts of similar BioProcesses. Although, it is impossible to trace a single
BioProcess and its behaviour during a simulation. We focus on individual BioProcesses to
make a tracing of specific entities possible. We get this ability through our tree structure.
Each process of a system is represented by a node, the structure of a process is represented
by the structure of the sub tree on the associated node. Observation can be done by following
the structure of the sub tree during simulation.

6 Conclusion

We presented a parallel Beta-binders simulator. We extended the ideas of [8], which provided
the possibility of a distributed simulation and created an optimistic variant to enable a real
parallel execution. A model structure has been introduced to represent π-Calculus and Beta-
binders processes in an entity based way.

Future work needs to evaluate the time warp simulator with an appropriate model. We
have to study the influences of networks and different types of models on the performance of
our approach. In this context a full optimistic attempt without a barrier could be developed
and considered in the evaluation as well.

7 Acknowledgements

The research was done while the first author was visiting Microsoft Research - University of
Trento Centre for Computational and Systems Biology. The research was supported by the
DFG project dIEM oSiRiS and the DFG project DiErMoSiS (at the University of Rostock)
and the Microsoft Research - University of Trento Centre for Computational and Systems
Biology. We would like to thank Allessandro Romanel, Lorenzo Dematté, Celine Kuttler,
Andrew Phillips, Roland Ewald and Jan Himmelspach for constructive suggestions in realizing
the simulator and for fruitful discussions. In particular, the first author would like to thank
the entire team in Trento for the inspiring and productive atmosphere.

References

[1] Java JDK 6.0. http://java.sun.com/javase/downloads/index.jsp.

[2] A. Bloch, B Haagensen, M. K. Hoyer, and S. U. Knudson. The stopi-calculus and
simulator - a stochastic pi-calculus and the implementation of a simulator. Technical
report, Aalborg University, Department of Computer Science, 2003.

[3] Luca Cardelli. Brane calculi - interactions of biological membranes. Computational Meth-
ods in Systems Biology: International Conference CMSB 2004, pages 257–278, 2005.

[4] Pierpaolo Degano, Davide Prandi, Corrado Priami, and Paola Quaglia. Beta-binders for
biological quantitative experiments. Electronic Notes in Theoretical Computer Science,
2005.

[5] Richard Fujimoto. Parallel and Distributed Simulation Systems. John Wiley & Sons,
2000.

18

[6] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems
with many species and many channels. Journal of Physical Chemistry, 104(9):1876–1889,
2000.

[7] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal
of Physical Chemistry, 81, 1977.

[8] Jan Himmelspach, Paola Lecca, Davide Prandi, Corrado Priami, Paola Quaglia, and
Adelinde M. Uhrmacher. Developing an hierarchical simulator for beta-binders. In
Workshop on Parallel and Distributed Simulation (PADS), 2006.

[9] Jan Himmelspach and Adelinde M. Uhrmacher. Plug’n simulate. In Proceedings of the
40th Annual Simulation Symposium, pages 137–143, 2007.

[10] C. Kuttler, C. Lhoussaine, and J. Niehren. A stochastic pi calculus for concurrent
objects. Technical report, INRIA., 2006.

[11] Yi-Bing Lin and Edward D. Lazowska. Exploiting lookahead in parallel simulation. IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1:457, 1990.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes part i and ii.
Information and Computation, 96:1–40, 41–77, 1992.

[13] Robin Milner. The polyadic π-calculus: a tutorial. Logic and Algebra of Specifications,
94, 1993.

[14] Andrew Phillips and Luca Cardelli. A correct abstract machine for the stochstic pi-
calculus. Electronic Notes in Theoretical Computer Science, 2004.

[15] Corrado Priami. Stochastic π-calculus. The Computer Journal, 38/7:578–589, 1995.

[16] Corrado Priami and Paola Quaglia. Beta binders for biological interactions. In Compu-
tational Methods in Systems Biology: International Conference CMSB 2004, 2004.

[17] Corrado Priami and Alessandro Romanel. On the decidability and complexity of the
structural congruence for beta-binders. Technical report, The Microsoft Research - Uni-
versity of Trento Centre for Computational and Systems Biology, 2006.

[18] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, and E.Y. Shapiro. Bioambients: an
abstraction for biological compartments. Theoretical Computer Science, 325(1):141–167,
2004.

[19] Alessandro Romanel, Lorenzo Dematté, and Corrado Priami. The beta workbench. Tech-
nical report, The Microsoft Research - University of Trento Centre for Computational
and Systems Biology, 2007.

[20] L. Sokol and B. Stucky. Mtw: Experimental results for a constrained optimistic schedul-
ing paradigm. In Proc. SCS Multiconf. Distributed Simulation, 22:169–173, 1990.

[21] B.P. Zeigler, D.H. Kim, and A.C. Chow. Abstract simulator for the parallel devs-
formalism. 1994.

19

