
Technical Report CoSBi 12/2007

An Automated Translation from a Narrative

Language for Biological Modelling into
Process Algebra

Maria Luisa Guerriero

DISI, University of Trento

guerrier@dit.unitn.it

John K. Heath

School of Biosciences, University of Birmingham

j.k.heath@bham.ac.uk

Corrado Priami

CoSBi

and

DISI, University of Trento

priami@cosbi.eu

This is the preliminary version of a paper that will appear in
Proceedings of CMSB07, LNBI 4695, 136-151, 2007

available at http://www.springerlink.com/content/vt23126776012835/

An Automated Translation from a Narrative
Language for Biological Modelling into

Process Algebra

Maria Luisa Guerriero1, John K. Heath2, and Corrado Priami1,3

1 Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy
2 CRUK Growth Factor Group, School of Biosciences, University of Birmingham, UK

3 The Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Italy

{guerrier,priami}@dit.unitn.it, j.k.heath@bham.ac.uk

Abstract. The aim of this work is twofold. First, we propose an high
level textual modelling language, which is meant to be biologically intu-
itive and hence easily usable by life scientists in modelling intra-cellular
systems. Secondly, we provide an automatic translation of the proposed
language into Beta-binders, a bio-inspired process calculus, which allows
life scientists to formally analyse and simulate their models. We use the
Gp130 signalling pathway as a case study.

1 Introduction and Motivations

Process calculi, originally developed for modelling mobile communicating sys-
tems [10], have proved to be both useful and powerful tools for modelling biolog-
ical signalling pathways [14, 12, 13, 2, 9]. The need for such modelling approaches
has arisen from the complexity of these processes, which is not easily analysed
by biological intuition [6]. A key challenge in the application of process calculi to
biological problems is specification of models. The issue poses several practical
and computational problems. First, it is unlikely that most practising biologists
would be motivated to formulate their ideas in a non-intuitive language devised
for computational execution. Second, the process of specifying the model can
identify areas of ignorance or uncertainty in biological understanding which may
not be apparent to a computer scientist taking models from the literature. The
biological literature frequently articulates biological models in the form of infor-
mal diagrams or employs various formal graphical notations (e.g. Kohn molecular
interaction maps [8] and Kitano diagrams [7]), but these can be confusing or am-
biguous and particularly may conceal or abstract biological knowledge that may
be useful for the computational modeller. It is also clear that a two-dimensional
static representation may not adequately represent all pertinent features of the
dynamic evolution of a temporal and spatially directed process. Indeed these
ways of describing a biological process in reality involve the biologist translating
a narrative of events into a graphical format.

Prompted by these considerations we here present an approach to biological
model specification which is based on a narrative style language. In developing

this language there were three desiderata. First, the language should be bio-
logically intuitive using formalisms and syntax familiar to biologists. Second,
the language should exploit the specific advantages of a process calculus based
approach to modelling highlighting, for example, the roles of concurrency, de-
pendency and spatial confinement. Thirdly, the language should encourage the
biologists to critically examine their understanding in the process of model spec-
ification highlighting points of uncertainty.

In the proposed framework, biologists can specify their model by providing
a textual description of the system, containing the list of compartments, the list
of entities (i.e. proteins) composing the model, the list of reactions with their
rate parameters, and a narrative describing the evolution of the system.

A translation into process calculus (namely, Beta-binders [13]) has been de-
veloped and a few models have been specified into the proposed language and
translated into Beta-binders. This allowed us to run the models by using the
BetaWB simulator [15].

The front-end of the translation is designed to be independent of the lan-
guage, so that when implementing a translation to other modelling languages
it could be reused. The main aim of the current work, in fact, is to define an
high level language which hides the implementation details to the modeller, and
is generic so that it could be translated into other kinds of formalisms different
from Beta-binders (e.g. other process algebras, SBML [5], and possibly differen-
tial equations). This would allow us to have a common ground in which models
could be specified, but also allow modellers to choose the output language that
better fits their aims. In fact it is difficult to find one formal language which is
appropriate to describe all kinds of systems, or that could be used to study all
aspects of the systems. In addition, starting with the same input model, would
make the comparison of different formalisms much easier.

We use as a case study the Gp130 signalling pathway [11]. This was chosen as
an example of signalling concurrency which has yet to be explicitly articulated
in a process calculus model.

In Sect. 2 the modelling language is described, using the Gp130 pathway as
a modelling example. In Sect. 3 the translation algorithm is described, and the
generated Gp130 pathway Beta-binders model is shown. Finally, we draw some
conclusions on the pros of our approach and on issues that need to be tackled.

2 The Narrative Language

In this section we present the modelling language. The structure of models in the
proposed language is inspired by SBML [5], one of the most well known descrip-
tion languages for biology. The main differences between the two languages are
the following ones. First, SBML species have only one possible state, while in our
language they can have multiple states (this choice was made bearing in mind
that our target language, process algebra, is a multistate one. Secondly, SBML
is very abstract and it does not represent details about species and reactions,
while the proposed language can easily represent them. Finally, the description

of system evolution in SBML is given in terms of reactions with reactants and
products, while in our language it is given in terms of a narrative of events.

A model in our language is composed of four sections:

– the description of the biological compartments in which the involved entities
can be located during the evolution of the system;

– the description of the entities composing the system;
– the description of the reactions occurring;
– the narrative description of the evolution of the system, i.e. the list of the

events occurring.

A compartment is identified by an integer number; moreover, its name, size,
and number of spacial dimensions can be specified. Compartments could repre-
sent cellular or sub-cellular compartments, but also abstract locations.

A component (i.e. a protein) is identified by its name, and it can be seen as
a list of interaction sites. Each site is defined by a name and a state (e.g. phos-
phorylated, bound, active, etc.). This choice reflects the fact that each basic
event in the evolution of intra-cellular systems is the modification of one inter-
action site for each protein involved in the reaction. However, since interaction
sites are not always known, states can also be associated to the protein itself,
to represent modifications involving generic interaction sites. If the position of
the protein is relevant, the compartments in which it can be located during the
system evolution can be specified. Finally, the initial quantity/concentration of
the component should be set.

A reaction is identified by an integer number; its type (e.g. phosphorylation,
binding, etc.) and the reaction rate parameter should also be specified.

A reliability value can be associated to each numerical value (e.g. rate pa-
rameters and initial quantities); it is a percentage value that can be used to
distinguish between values that are certain because obtained from wet experi-
ments, and others which are the result of not verified assumptions. Modellers can
take this information into account during the important step of model refining
by means of parameter space search and sensitivity analysis.

Finally, the evolution of the system is described by means of a narrative of
events. This narrative is a sequence of basic events, each of which is a textual de-
scription of a reaction involving at most two components. Events can be grouped
into processes.

An event is identified by an integer number; in addition to the textual semi-
formal description of the event, the identifier of the reaction associated with
the event should be specified. The description of the event is a string of the
form if condition then event descr, with the conditional part being optional.
A condition is a string of the form component is state, component.site is state,
component is in compartment, etc. Multiple conditions can be specified by sep-
arating them with the keyword and. Event descr is a string of the form compo-
nent reaction for monomolecular events, or component reaction component for
bimolecular events, where reaction can be for example phosphorylates, de-
phosphorylates, binds, activates. As mentioned before, we assume that each

event involves an interaction or modification of one site for each involved pro-
tein. If the exact site is known, it can be specified with a clause of the form
on sites; otherwise, it is assumed that one of the component’s defined states is
involved. Hence, conceptually, each step involves a single site; however, a list of
sites (separated by semicolons) can be specified as a shortcut for simultaneous
steps involving different sites (e.g. simultaneous phosphorylation of two sites).

In real life, two events occurring in a system of interacting entities can be
either concurrent (independent events, e.g. events involving different proteins),
or sequential (one event can occur only after the other one has occurred, e.g. a
phosphorylation of a site of a protein allowed only after it is bound to another
protein), or alternative (if one event occurs, the other one cannot occur, e.g.
binding of competing ligands to a receptor).

Consequently, in our language it is necessary to distinguish between con-
current, sequential, and alternative events. If a reaction event is alternative to
another one, the identifier of the alternative event should be specified. Conditions
should be used to enforce the ordering of sequential events. Events that are not
explicitly declared either alternative or sequential, are considered independent
and are treated as concurrent events.

The grammar of the language follows. Some attributes are left as optional
and are not actually used in the translation to Beta-binders, because they refer
to details that cannot be easily handled in Beta-binders, or about which we are
not interested at the moment; they have been added to allow them to be used in
an hypothetical translation to other languages that might handle those details.

〈model〉 ::= 〈comparts decl〉〈compons decl〉〈reacts decl〉〈procs decl〉
〈comparts decl〉 ::= Compartments 〈comparts list〉
〈compons decl〉 ::= Components 〈compons list〉
〈reacts decl〉 ::= Reactions 〈reacts list〉
〈procs decl〉 ::= Narrative 〈procs list〉

〈comparts list〉 ::= 〈compartment〉
| 〈compartment〉〈comparts list〉

〈compons list〉 ::= 〈component〉
| 〈component〉〈compons list〉

〈reacts list〉 ::= 〈reaction〉
| 〈reaction〉〈reacts list〉

〈procs list〉 ::= 〈proc〉
| 〈proc〉〈procs list〉

〈compartment〉 ::= (〈id〉, 〈compart name〉, 〈opt size〉, 〈opt unit〉, 〈opt dim〉)
〈component〉 ::= (〈name〉, 〈opt inform descr〉, 〈opt sites def〉,

〈opt states def〉, 〈opt comparts def〉, 〈initial quantity〉)
〈reaction〉 ::= (〈id〉, 〈react type〉, 〈rate const〉)
〈proc〉 ::= Process 〈opt inform descr〉〈events list〉
〈events list〉 ::= 〈event〉

| 〈event〉〈events list〉
〈event〉 ::= (〈id〉, 〈form descr〉, 〈react id〉, 〈opt altern event〉)

〈opt sites def〉 ::=
| 〈sites def〉

〈sites def〉 ::= 〈site def〉
| 〈site def〉; 〈sites def〉

〈site def〉 ::= 〈name〉 : 〈state name〉 : 〈is active〉

〈opt states def〉 ::=
| 〈states def〉

〈states def〉 ::= 〈state def〉
| 〈state def〉; 〈states def〉

〈state def〉 ::= 〈state name〉 : 〈is active〉

〈opt comparts def〉 ::=
| 〈comparts def〉

〈comparts def〉 ::= 〈compart def〉
| 〈compart def〉; 〈comparts def〉

〈compart def〉 ::= 〈id〉 : 〈is active〉

〈initial quantity〉 ::= (〈quantity〉, 〈opt reliability〉)
〈rate const〉 ::= (〈rate〉, 〈opt unit〉, 〈opt reliability〉)

〈form descr〉 ::= 〈event descr〉
| if 〈conds〉 then 〈event descr〉

〈conds〉 ::= 〈cond〉
| 〈cond〉 and 〈conds〉

〈cond〉 ::= 〈names〉 is 〈state name〉
| 〈names〉 is not 〈state name〉
| 〈names〉 is in 〈id〉
| 〈names〉 is not in 〈id〉

〈names〉 ::= 〈name〉
| 〈name〉.〈name〉
| 〈name〉; 〈names〉
| 〈name〉.〈name〉; 〈names〉

〈sites〉 ::= 〈name〉
| 〈name〉; 〈sites〉

〈event descr〉 ::= 〈complex name〉〈bimol react〉〈complex name〉 on 〈sites〉
| 〈complex name〉〈bimol react〉〈complex name〉
| 〈complex name〉〈monomol react〉 on 〈sites〉
| 〈complex name〉〈monomol react〉
| 〈complex name〉 relocates from 〈id〉 to 〈id〉
| 〈complex name〉 degrades
| 〈complex name〉 degrades 〈complex name〉
| 〈complex name〉 synthesises 〈complex name〉
| 〈complex name〉 homodimerises
| 〈complex name〉 dehomodimerises
| 〈complex name〉 dimerises with 〈complex name〉
| 〈complex name〉 dedimerises from 〈complex name〉

〈complex name〉 ::= 〈name〉
| 〈name〉 : 〈complex name〉

〈id〉 ::= Int
〈opt size〉 ::=

| Int
〈opt unit〉 ::=

| Str

〈opt dim〉 ::=
| Int

〈name〉 ::= Ide
〈opt inform descr〉 ::=

| Str
〈quantity〉 ::= Int | Real
〈opt reliability〉 ::=

| Int
〈rate〉 ::= Int | Real | inf
〈react id〉 ::= Int
〈opt altern event〉 ::=

| alternative to 〈id〉
〈is active〉 ::= Bool

〈compart name〉 ::= nucleus | cytosol | exosol
| cellMembrane | nucleusMembrane | Ide

〈react type〉 ::= phosphorylation | dephosphorylation
| binding | unbinding
| homodimerization | dehomodimerization
| dimerization | dedimerization
| activation | deactivation
| hydrolysis | dehydrolysis
| degradation | synthesis | relocation

〈state name〉 ::= phosphorylated | bound | active | hydrolysed | dimer

〈bimol react〉 ::= phosphorylates | dephosphorylates | binds | unbinds
| activates | deactivates | hydrolyses | dehydrolyses

〈monomol react〉 ::= phosphorylates | dephosphorylates | hydrolyses | dehydrolyses

2.1 Case Study: a Narrative Model of the Gp130 Signalling
Pathway

In this section we describe a model of the Gp130 signalling pathway in the
proposed language.

The Gp130 pathway is the subject of significant clinical and biological inter-
est not least due to the key role it plays in human fertility, neuronal repair and
haematological development [11]. Robust experimental platforms are available
and there is much information on pathway components and behaviour. Vari-
ous features of this pathway make it an attractive case study for the modelling
approach. First, the Gp130 signalling pathway involves a family of private and

public receptors where biological outcomes are dictated by the relative occupa-
tion of different receptor combinations. Thus, it exhibits signalling concurrency,
which has not been explicitly tackled by computational modelling approaches
yet. Moreover, a key feature of the Gp130 system is nuclear/cytoplasmic shut-
tling of key signalling components whose dynamics have been investigated using
imaging techniques; hence, this is an excellent test case for developing spatially
confined compartment models which can be tested against high quality datasets.

The model is made of six entities: two ligands (LIF and OSM), three membrane-
bound receptors (gp130, LIFR and OSMR) and one effector (STAT3).

Four compartments are involved in the system: the exosol (the extracellular
space, where the two ligands are located), the cell membrane (location of the
receptors), and the cytosol and the nucleus (compartments between which the
effector shuttles). Table 1 lists the compartments with their attributes.
Table 1. List of compartments (The volumes are calculated based on the average cell
radius and ratio between intra-cellular compartments volumes stated in [1]).

id name size unit of measure dimensions

1 exosol 9.95 · 10−12 l 3
2 cellMembrane 12.57 · 10−8 dm2 2
3 cytosol 2.10 · 10−12 l 3
4 nucleus 0.25 · 10−12 l 3

The components representing the involved proteins are listed in Table 2. The
definition of each component contains its name, an informal description, the list
of sites (each defined by its name, state, and a boolean flag specifying whether
it is or not in an active state at system initialisation), the list of protein states
(each defined by its name and the active/inactive flag), the list of compartments
in which the protein could be located (each defined by its identifier referring
to the definition in Table 1, and the active/inactive flag), and finally its initial
quantity and the reliability of this numerical value.

Table 3 contains the list of reactions. Each reaction definition contains an
identifier, its type, and a rate parameter with its unit of measure and reliability.
The rate parameter is the reaction kinetic constant (Ka, Koff , etc.). In order to be
used in stochastic models (such as Beta-binders), the given kinetic constants need
to be translated into stochastic reaction rates. As described in [3], for first order
reactions (unbinding, phosphorylation and relocation events) the stochastic rate
r is equal to the kinetic rate k; for second order heterologous reactions (binding
events) r = k

V ·NA
, where V is the reaction volume and NA is Avogadro’s number,

while for second order homologous reactions (dimerization events) r = 2·k
V ·NA

.
Finally, the narrative of events is shown in Table 4. The events are grouped

into processes, relative to the binding/unbinding of ligand/receptor pairs, the
downstream LIF and OSM pathways, and the downstream STAT3 pathway,
which starts with the binding of STAT3 to one of the receptors and ends in
its translocation into the nucleus. Each event is described by an identifier, the
semiformal description, the identifier of the reaction referring to the definition
in Table 3 and the optional identifier of the alternative event.

Table 2. List of components (The initial quantities values for the ligands LIF and
OSM are calculated based on the known extracellular concentration values, 500pM).

name descr site site state site act state state act compart compart act initial quant reliab

LIF ligand bound false 1 true 3000 100%
OSM ligand bound false 1 true 3000 100%
gp130 receptor LIF bound false dimer false 2 true 1000 50%

OSM bound false
Y767 phospho false
Y814 phospho false
Y905 phospho false
Y915 phospho false

LIFR receptor LIF bound false bound false 2 true 1000 50%
OSM bound false dimer false
Y981 phospho false
Y1001 phospho false
Y1028 phospho false

OSMR receptor OSM bound false bound false 2 true 1000 50%
Y917 phospho false dimer false
Y945 phospho false

STAT3 effector Y705 phospho false bound false 3 true 5000 0%
gp130 bound false dimer false 4 false
LIFR bound false
OSMR bound false

Table 3. List of reactions.

id type rate unit of measure reliability

1 binding 8 · 105 M−1s−1 (ka) 50%
2 unbinding 6 · 10−4 s−1 (koff) 50%
3 binding 8 · 105 M−1s−1 (ka) 50%
4 unbinding 6 · 10−3 s−1 (koff) 50%
5 binding 8 · 105 M−1s−1 (ka) 50%
6 unbinding 6 · 10−3 s−1 (koff) 50%
7 binding 8 · 105 M−1s−1 (ka) 50%
8 unbinding 6 · 10−4 s−1 (koff) 50%
9 binding 8 · 105 M−1s−1 (ka) 50%

10 unbinding 6 · 10−4 s−1 (koff) 50%
11 dimerization inf M−1s−1 50%
12 phosphorylation 0.2 s−1 (kcat) 50%
13 binding 104 M−1s−1 (ka) 50%
14 dimerization inf M−1s−1 (ka) 50%
15 phosphorylation 0.2 s−1 (kcat) 50%
16 unbinding 10−3 s−1 (koff) 50%
17 homodimerization inf s−1 50%
18 relocation 10 min (t1/2) 50%
19 relocation 100 min (t1/2) 50%

3 The Translation into Beta-binders

3.1 Beta-binders

Beta-binders [13] is a language, which belongs to the family of the bio-inspired
process calculi, strongly inspired by pi-calculus. The main advantage of process

Table 4. List of events.

id description react alt

LIF-LIFR binding
1 if LIFR.LIF is not bound and LIF is not bound then LIF binds LIFR on LIF 1
2 if LIFR.LIF is bound and LIF is bound then LIF unbinds LIFR on LIF 2

LIF-gp130 binding
3 if gp130.LIF is not bound and LIF is not bound then LIF binds gp130 on LIF 3
4 if gp130.LIF is bound and LIF is bound then LIF unbinds gp130 on LIF 4

OSM-LIFR binding
5 if LIFR.OSM is not bound and OSM is not bound then OSM binds LIFR on OSM 5 1
6 if LIFR.OSM is bound and OSM is bound then OSM unbinds LIFR on OSM 6

OSM-OSMR binding
7 if OSMR.OSM is not bound and OSM is not bound then OSM binds OSMR on OSM 7
8 if OSMR.OSM is bound and OSM is bound then OSM unbinds OSMR on OSM 8

OSM-gp130 binding
9 if gp130.OSM is not bound and OSM is not bound then OSM binds gp130 on OSM 9 3

10 if gp130.OSM is bound and OSM is bound then OSM unbinds gp130 on OSM 10
LIF pathway

11 if LIFR.LIF is bound then LIFR dimerises with gp130 11 2
12 if gp130 is dimer then gp130 phosphorylates on Y767;Y814;Y905;Y915 12
13 if LIFR is dimer then LIFR phosphorylates on Y981;Y1001;Y1028 12

OSM pathway
14 if LIFR.OSM is bound then LIFR dimerises with gp130 11 6
15 if OSMR.OSM is bound then OSMR dimerises with gp130 14 8
16 if gp130 is dimer then gp130 phosphorylates on Y767;Y814;Y905;Y915 12
17 if OSMR is dimer then OSMR phosphorylates on Y917;Y945 12

STAT3 pathway
18 if gp130.Y767 is phospho and STAT3 is in 3 then gp130 binds STAT3 on gp130 13
19 if LIFR.Y981 is phospho and STAT3 is in 3 then LIFR binds STAT3 on LIFR 13
20 if OSMR.Y917 is phospho and STAT3 is in 3 then OSMR binds STAT3 on OSMR 13
21 if STAT3.gp130 is bound then STAT3 phosphorylates on Y705 15
22 if STAT3.LIFR is bound then STAT3 phosphorylates on Y705 15
23 if STAT3.OSMR is bound then STAT3 phosphorylates on Y705 15
24 if STAT3.gp130 is bound and STAT3.Y705 is phospho then gp130 unbinds STAT3 16
25 if STAT3.LIFR is bound and STAT3.Y705 is phospho then LIFR unbinds STAT3 16
26 if STAT3.OSMR is bound and STAT3.Y705 is phospho then OSMR unbinds STAT3 16
27 if STAT3.Y705 is phospho and STAT3 is not bound then STAT3 homodimerises 17
28 if STAT3 is dimer then STAT3 relocates to 4 18
29 if STAT3 is in 4 then STAT3 relocates to 3 19

calculi is that, in addition to simulation, they allow for analysing statically the
models (e.g. causality, locality, equivalence and reachability analysis). They also
allow the modeller to easily execute so called in silico genetics experiments, i.e.
to modify some components of the system, and execute simulations to verify the
modified system behaviour.

Beta-binders language is quite new, but much work has been done with it in
the past few years, and a simulator has also been recently developed [15].

Beta-binders was developed to better adhere to the structure and dynamics
of biological systems. By introducing the concept of affinity, the calculus relaxes
the key-lock model of interaction, commonly assumed in classical process cal-
culi, and hence it permits us to model more correctly domains and interactions
between enzymes and small molecules based on their types and affinities. In Beta-
binders, pi-processes are encapsulated into boxes (also called bio-processes) with
interaction capabilities, represented by specialised binders (called beta binders).

Beta binders have the form β(x : Γ) (active) or βh(x : Γ) (hidden) where the
name x is the subject of the beta binder and Γ represents the type of x. The
actions that bio-processes can execute are communications (x(y) for input and
x〈y〉 for output) and operations to manipulate the interaction sites of the boxes
(expose(x, Γ), hide(x) and unhide(x)). The system is a parallel composition of
bio-processes that can be either the deadlock bio-process Nil or the elementary
bio-process B[P].

The reader is referred to [15] for a detailed description of the syntax and
semantics of the language.

3.2 The Translation Algorithm

Beta-binders bio-processes are an intuitive representation of proteins, and hence
in the translation into Beta-binders we choose to have one bio-process for each
component. Component interaction sites, states and locations are translated into
beta binders on the interface of the respective bio-processes. Two beta binders
are defined for each state and site, to represent their active/inactive state, and
only one of them is set to be initially visible depending on the active/inactive
flag value.

The translation is subdivided in two main steps. First, one bio-process is
created for each component (Algorithm 1). Then, the pi-processes representing
the translation of events are added to the bio-processes (Algorithm 7).

As Algorithm 1 describes, the bio-processes are initially empty, and then beta
binders are added on their interface.

Algorithm 1 ComponentsToBioprocesses
1: for all component ∈ Components do ! each component is a bio-process
2: component.bioprocess ← new empty bio-process
3: CompartsToBetaBinders (component)
4: StatesToBetaBinders (component)
5: SitesToBetaBinders (component)
6: end for

The names of the beta binders representing possible compartments, states
and sites are constructed based on their names. As Algorithm 2 shows, the
subject of the beta binder representing a compartment is the compartment name,
while its type is the compartment name concatenated with the compartment
identifier. In the example, STAT3 is located in compartment 3 (the cytosol),
hence a visible binder β(cytosol : cytosol 3) is added to STAT3 bio-process.

As Algorithm 3 shows, two beta binders are created to represent a state in its
active/inactive forms, and the subjects of the beta binders are the state names,
while their types are the state names concatenated with the component name. In
the example, LIFR can be a dimer (but it is a monomer at system initialisation),
hence a visible binder β(monomer : monomer LIFR) and an hidden binder
β(dimer : dimer LIFR) are added to LIFR bio-process.

As Algorithm 4 shows, two beta binders are created to represent a site in
its active/inactive forms, and the subjects of the beta binders are the site name

Algorithm 2 CompartsToBetaBinders (c)
1: for all compart ∈ c.compartments do ! each location is a beta binder
2: binder ← new beta binder in c.bioprocess
3: binder.name ← compart.name∧compart.id ! β(cytosol : cytosol 3)
4: binder.type ← compart.name∧compart.id
5: if c is in compart at initial state then
6: binder.is visible
7: else
8: binder.is hidden
9: end if

10: end for

Algorithm 3 StatesToBetaBinders (c)
1: for all state ∈ c.states do ! each state is a pair of beta binders
2: binder1, binder2 ← new beta binder in c.bioprocess
3: binder1.name ← state.name ! β(dimer : dimer LIFR)
4: binder2.name ← state.opposite name
5: binder1.type ← state.name∧c.name ! β(monomer : monomer LIFR)
6: binder2.type ← state.opposite name∧c.name
7: if c is in state at initial state then
8: binder1.is visible and binder2.is hidden
9: else

10: binder1.is hidden and binder2.is visible
11: end if
12: end for

concatenated with the states names, while their types are the state names con-
catenated with the component name and the site name. In the example, site Y981
of receptor LIFR can be phosphorylated (but it is dephosphorylated at system
initialisation), hence a visible binder β(Y 981 depho : depho LIFR Y 981) and an
hidden binder β(Y 981 pho : pho LIFR Y 981) are added to LIFR bio-process.

Algorithm 4 SitesToBetaBinders (c)
1: for all site ∈ c.sites do ! each site is a pair of beta binders
2: b1, b2 ← new beta binder in c.bioprocess
3: b1.name ← site.name∧site.state.name ! β(Y 981 pho : pho LIFR Y 981)
4: b2.name ← site.name∧site.state.opposite name

! β(Y 981 depho : depho LIFR Y 981)
5: b1.type ← site.state.name∧c.name∧site.name
6: b2.type ← site.state.opposite name∧c.name∧site.name
7: if site is in state at initial state then
8: binder1.is visible and binder2.is hidden
9: else

10: binder1.is hidden and binder2.is visible
11: end if
12: end for

As Algorithms 5, 6 and 7 describe, each monomolecular event step is trans-
lated into one sequential pi-process which is placed into the bio-process repre-
senting the involved component, while each bimolecular event step is translated
into two sequential pi-processes which are placed into the bio-processes repre-
senting the involved components.

The constructed pi-processes consist in sequences of communications, hide
and unhide operations (Algorithms 5 and 6). The names of bio-processes, pi-
processes, beta binders and types follow a template, so that they are standard-
ised, it is possible to refer to the previously defined beta binders, and no name
clash occurs. Reaction rates and types affinities are assigned based on the in-
put definitions. The constructed sequence of events represents a single event
step, so the reaction rate is assigned to the first action, while the others are
assigned infinite rates (so that after the first one occurs, then the others are
immediately executed). The actual sequence of actions depends on the reac-
tion type. In the example, event 17 involves the phosphorylation of sites Y917
and Y945 on OSMR, translated into a sequence of two pairs of hide/unhide
actions. Moreover, the phosphorylations can occur only if OSMR is a dimer,
hence the sequence is prefixed by an additional hide/unhide pair on the beta
binder representing the dimer state. The final pi-process is, therefore, Pho 17 =
hide(0.2, dimer) . unhide(inf, dimer) . hide(inf, Y 917 depho) . unhide(inf, Y 917 pho) .
hide(inf, Y 945 depho) . unhide(inf, Y 945 pho) . Pho 17, and it is added to OSMR
bio-process.

Algorithm 5 EventToPiprocess (event)
1: if event.reaction is relocation then
2: piproc ← hide(binder from) . unhide(binder to)
3: else if event.reaction is phosphorylation then
4: piproc ← hide(binder site depho) . unhide(binder site pho)
5: else if event.reaction is dephosphorylation then
6: piproc ← hide(binder site pho) . unhide(binder site depho)
7: else if ... then
8: end if
9: if event.condition is specified then

10: piproc ← hide(binder cond) . unhide(binder cond) .piproc
11: end if

The ordering of the events is given in the following way (Algorithm 7). If two
reactions are concurrent, they are translated into processes placed in parallel
composition. If, instead, they have to be executed one after the other, the second
one is prefixed by one operation on a binder which is unblocked at the end of
the first one. If, finally, they are mutually exclusive, both events are prefixed by
one operation on a binder which is blocked at the end of the other one.

3.3 Case Study: the Translation of the Gp130 Signalling Pathway
Model

A prototype of the tool has been developed and it is currently under integration
into BetaWB. The model described in Sect. 2.1 was translated into Beta-binders

Algorithm 6 EventToPiprocesses (event)
1: if event.reaction is phosphorylation then
2: piproc1 ← binder event.id〈〉
3: piproc2← binder site depho() . hide(binder site depho) . unhide(binder site pho)
4: AddAffinity (binder event.id, binder site depho)
5: else if ... then
6: end if
7: if event.condition is specified on event.component1 then
8: piproc1 ← hide(binder cond) . unhide(binder cond) .piproc1
9: end if

10: if event.condition is specified on event.component2 then
11: piproc2 ← hide(binder cond) . unhide(binder cond) .piproc2
12: end if

Algorithm 7 NarrativeToPiprocesses
1: for all ev ∈ Events do ! each event is one or two sequential pi-processes
2: if ev is monomolecular then ! one pi-process is inserted into the bio-process

of the involved component
3: pproc ← EventToPiProcess (ev)
4: if ev is alternative to prev ev then
5: pproc ← hide(binder prev ev blocked) . unhide(binder prev ev blocked) .pproc
6: prev ev.pproc← hide(binder ev blocked) . unhide(binder ev blocked) .prev ev.pproc
7: end if
8: AddPiprocessInParallel (ev.component.bioproc, pproc)
9: else if ev is bimolecular then ! one pi-processes is inserted into the bio-process

of each involved component
10: 〈 pproc1, pproc2 〉 ← EventToPiProcesses (ev)
11: if ev is alternative to prev ev then
12: if both ev and prev ev involve ev.component1 then
13: pproc1← hide(binder prev ev blocked) . unhide(binder prev ev blocked) .pproc1
14: prev ev pproc ← hide(binder ev blocked) . unhide(binder ev blocked) .prev ev pproc
15: end if
16: if both ev and prev ev involve ev.component2 then
17: pproc2← hide(binder prev ev blocked) . unhide(binder prev ev blocked) .pproc2
18: prev ev pproc ← hide(binder ev blocked) . unhide(binder ev blocked) .prev ev pproc
19: end if
20: end if
21: AddPiprocessInParallel (ev.component1.bioproc, pproc1)
22: AddPiprocessInParallel (ev.component2.bioproc, pproc2)
23: end if
24: end for

by using this prototype, and then simulated by using BetaWB. Figure 1 is a
BetaDesigner screenshot showing the graphical visualisation and part of the
imported Beta-binders code which has been obtained from the translation of the
Gp130 pathway model.

We do not present in this work any biologically relevant result: in order to
achieve this final goal, more details on the pathway dynamics should be taken
into account and precise information on reaction rates should be acquired. More-
over, some aspects of the translation should be improved for the tool to be prac-
tically used for translation of complex models. This work was primarily meant
to be a sort of feasibility study. We believe that the proposed language, together
with the automatic translation into Beta-binders and the existing simulator, al-
lows the modeller to describe biological systems in simple words, simulate the

Fig. 1. The Gp130 pathway Beta-binders model imported in BetaDesigner.

model, and obtain sensible results. The Gp130 model we have described in this
work was developed by a biologist who had no previous experience in modelling.
This gives us some confidence that our main goal, which is to have a user-friendly
language which biologists feel comfortable with, was achieved.

4 Conclusions and Further Work

The proposed modelling language and the automatic translation into a formal
language allow us to hide the formal details from life scientists. Therefore, we be-
lieve that life scientists could easily use the textual language to describe systems,
and automatically obtain simulation and analysis results.

The choice of which primitives had to be included in our language has been
done to have a simple and basic set of events which could be described. The lan-
guage and the tool can be extended with new constructs and some improvements
on the already present ones can be done. For example, the fact that two binders
are used to model the active/inactive states of sites and proteins is not optimal,
in terms of code readability, of simulation efficiency and biological correctness.
The usage of events [15] and biological transactions [4] to tackle this problem is
under investigation. We are also considering the suitability of extending Beta-
binders with constructs representing conditions on the state of beta binders,
which would greatly reduce the number of actions needed to translate condi-
tions for sequential and alternative events.

A formal comparison with other description languages will be done, and the
interchangeability with graphical notations should be taken into account.

Finally, we believe that in order to fully benefit of this approach an integra-
tion with some of the many biological databases (i.e. the automatic extraction
of data and parameters) would be much useful. In addition to this, another in-
teresting aspect is the automatic extraction of information from the simulation
output to be used again to refine the input model.

Acknowledgments. The authors wish to thank Nicholas Underhill-Day (Can-
cer Research UK).

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
biology of the cell. Garland Science, 2002.

2. Muffy Calder, Stephen Gilmore, and Jane Hillston. Modelling the Influence of
RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA.
T. Comp. Sys. Biology, 7:1–23, 2006.

3. Luca Cardelli. On Process Rate Semantics. Available at
http://lucacardelli.name/Papers/On%20Process%20Rate%20Semantics.pdf,
2007.

4. F. Ciocchetta and C. Priami. Beta-binders with Biological Transactions. Technical
Report TR-10-2006. Technical report, The Microsoft Research - University of
Trento Centre for Computational and Systems Biology, 2006.

5. M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, and H. Kitano. The sys-
tems biology markup language (SBML): a medium for representation and exchange
of biochemical network models. Bioinformatics, 19:524–531, 2003.

6. Boris N. Kholodenko. Cell signalling dynamics in time and space. Nature Reviews
Molecular Cell Biology, 7(3):165–176, 2006.

7. Hiroaki Kitano. A graphical notation for biochemical networks. Biosilico, 1(5):169–
176, 2003.

8. K. W. Kohn. Molecular interaction map of the mammalian cell cycle control and
dna repair systems. Molecular Biology of the Cell, 10:2703–34, 1999.

9. M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney.
Simulation and verification for computational modelling of signalling pathways. In
Proc. Winter Simulation Conference, pages 1666–1675. Omnipress, 2006.

10. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice hall, 1989.

11. Underhill-Day N. and Heath J. K. Oncostatin m (osm) cytostasis of breast tu-
mor cells: Characterization of an osm receptor β-specific kernel. Cancer Research,
66(22):10891–10901, 2006.

12. A. Phillips and L. Cardelli. A Correct Abstract Machine for the Stochastic Pi-
calculus. In BioConcur ’04, Workshop on Concurrent Models in Molecular Biology,
2004.

13. C. Priami and P. Quaglia. Operational patterns in Beta-binders. Transactions on
Computational Systems Biology, 1:50–65, 2005.

14. Corrado Priami, Aviv Regev, William Silverman, and Ehud Shapiro. Application
of a stochastic name-passing calculus to representation and simulation of molecular
processes. Information Processing Letters, 80(1):25–31, 2001.

15. A. Romanel, L. Dematté, and C. Priami. The Beta Workbench. Technical Re-
port TR-03-2007. Technical report, The Microsoft Research - University of Trento
Centre for Computational and Systems Biology, 2007.

