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Abstract

We propose a new logic for expressing properties of concurrent and distributed systems, Dy-
namic Epistemic Spatial Logic, as an extension of Hennessy-Milner logic with spatial and epis-
temic operators. Aiming to provide a completely axiomatized and decidable logic for concurrency,
we devise epistemic operators, indexed by processes, to replace the guarantee operator in the clas-
sical spatial logics. The knowledge of a process, considered as epistemic agent, is understood as
the information, locally available to our process, about the overall-global system/process in which
it is an agent/subprocess.
Dynamic Epistemic Spatial Logic supports a semantics based on a fragment of CCS against which
the classical spatial logics have been proved to be undecidable. Underpinning on a new congru-
ence relation on processes - the structural bisimulation - we prove the finite model property for
our logic, thus concluding on its decidability against the same semantics.
A sound complete Hilbert-style axiomatic system is developed, comprehending the behavior of
spatial operators in relation with dynamic/temporal and epistemic ones. Eventually we emphasize
on the similarities with the classical axioms and rules of knowledge, that present our logic as an
authentic dynamic-epistemic logic.

1 Introduction
The development of computer networks came with new paradigms of computation by proposing the
concurrent distributed computing systems, which are not only sequential, goal-directed, deterministic
or hierarchical systems, but represent programs/processors running in parallel and organized in net-
works of subsystems, each subsystem having its own identity. The subsystems interact, collaborate,
communicate and interrupt each other.

Underlying this new paradigm is the assumption that each part of such a system has its own
identity, which persists through time. We shall call these parts agents. Hence the agents are separate
and independently observable units of behavior and computation. They evolve in a given environment,
following some primitive rules, their evolution influencing the structure of the whole (multi-agent)
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system. The main feature of the agents is their ability to communicate, that is to exchange information
inside their environment.

Multi-agent systems are extremely complex. The success in dealing with this complexity de-
pends on the mathematical model we choose to abstract the system. Further we focus on two major
paradigms.

To be is to behave
The first paradigm is proposed by Process Algebra [3], that abstracts the agents of the system, on
the level of their behavior, and using some algebraic calculi and operational semantics [30] describes
the evolution of the whole system. Inspired by λ-calculus and deeply related with the programming
languages, this paradigm succeeds in modelling complex computational scenarios. Further, as the be-
havior of a concurrent system is, mainly, a succession of affine states in (possibly branching) time, was
considered the possibility of applying modal (especially temporal) logics for specifying properties of
the systems we modelled.

In studying security problems, for example, we may want to be able to specify systems composed
by agents that deal with fresh or secret resources. We may want to express properties such as “the
agent has the key”, “eventually the agent crosses the firewall” or “there is always at most one agent
here able to decrypt the message”.

In systems biology [10] we need to handle big complex systems having extreme dimensions and
variable environments. We need to express properties such as “somewhere there is a virus”, “if the
virus will meet the macrophage cell then it will be engulfed and eventually destroyed”, or “the pres-
ence of the protein x will stimulate the reaction X”, etc.

Hennessy-Milner logic [24] is one of the first modal logics that proposes some modal operators,
indexed by actions, to describe the behavior of the systems in CCS. The idea was further developed in
combination with temporal operators [31] or applied to other calculi [29, 16, 18]. Latter, Mads Dam
introduced a tensor that can express properties of modularity in the system [17], i.e. it can identify
subsystems of a system. All these logics are characterized by their extensional nature, meaning that
they cannot distinguish between processes that behave the same, even if these processes are different.

An increased degree of expressiveness is necessary if we want to specify and to reason about
notions such as locations, resources, independence, distribution, connectivity and freshness. The
specific applications of mobile computing call for properties that hold at particular locations, and it
becomes natural to consider spatial modalities for expressing properties that hold at a certain location,
at some locations or at every location. Thus, Spatial logics [7, 6, 12] propose, in addition to the modal
temporal operators, some modal spatial operators such as the parallel operator φ|ψ (meaning that
the current process can be split into a parallel composition Q|R of a process Q satisfying φ and a
process R satisfying ψ), and its adjoint - the guarantee operator φ . ψ, or location operator1 n[φ]
(meaning that the current process is an ambient n[P ] and the process P satisfies φ), etc. A formula in
a spatial logic describes a property of a particular part of the system at a particular time. These spatial

1This operator is characteristic for Ambient Logic [12], a special spatial logic developed for Ambient Calculus [11].
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modalities have an intensional flavor, the properties they express being invariant only for simple
spatial rearrangements of the system.

As the main reason for introducing spatial logics was to provide appropriate techniques for speci-
fication and model checking concurrent distributed systems, most of the work done in this field points
to decidability problems. We briefly present hereafter the (un)decidability results for spatial logics,
proved in [8], which motivated our work.

Consider the fragment of CCS generated by the next syntax, where A is a denumerable set of
actions and α ∈ A:

P ::= 0 | α.P | P |P
Hereafter this calculus2 is the object of our paper. We will use α, β to range over A and we will denote
by P the class of processes.
For it, in [8], were considered two spatial logics:

• Lspat given by the syntax

φ ::= > | 0 | φ1 ∧ φ2 | ¬φ | φ1|φ2 | φ1 . φ2 | � φ

• Lmod given, over an infinite set of variables X 3 x, by the syntax

φ ::= > | 0 | φ1 ∧ φ2 | ¬φ | φ1|φ2 | φ1 . φ2 | � φ | 〈x〉φ | ∃x.φ

A valuation is a mapping from a finite subset of X to A. For any valuation v, we write v{x← α} for
the valuation v′ such that v′(x) = α, and v′(y) = v(y) if y 6= x.
The semantics for the two spatial logics, defined by the satisfaction relation P, v |=M φ where P is a
process, M is a set of processes that contains P , φ a formula, and v is a valuation for the free variables
of φ, is presented in Table 1.

In [8] it is proved that Lspat can encode Lmod, hence they are equally expressive. Then it is proved
that model-checking and validity/satisfiability checking for Lspat with respect to this finite fragment
of CCS are all undecidable. But Lspat is the core of all Spatial Logics.

Thus it was proved that the basic spatial operators, in combination with temporal operators, gener-
ate undecidable logics [8, 14, 13], even against small finite pieces of CCS. This means that we cannot
solve most of the problems concerning satisfiability, validity and model checking. The situation is
caused, mainly, by the presence of the guarantee operator, which acts as a universal quantifier over
the class of processes. The reason for introducing such an operator was to have possibility to specify
not only local, but global properties of the system. Without it spatial logics are not enough expressive
for fulfilling the requirements of relevant applications.

However, some decidable sublogics have been investigated [5, 9, 28, 27] and some model-checking
algorithms exist for them. In the light of these results we have two alternatives for avoiding undecid-
ability: either we choose a logic based on a static calculus [9], thus the logic cannot specify properties

2We can, additionally, consider an involution on A that associate to each action α ∈ A an action α ∈ A, as usual in
CCS, and also to take into consideration the silent action τ . But all these represent just syntactic sugar, irrelevant from the
point of view of the logic we discuss.
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P, v |=M > for any process P
P, v |=M ¬φ iff P, v 6|= φ
P, v |=M φ ∧ ψ iff P, v |=M φ and P, v |=M ψ
P, v |=M 0 iff P ≡ 0
P, v |=M φ|ψ iff P ≡ Q|R, Q, v |=M φ and R, v |=M ψ
P, v |=M φ . ψ iff for any process Q, v |=M φ we have P |Q, v |=M ψ
P, v |=M ∃x.φ iff ∃α ∈ A such that P, (v{x← α}) |=M φ

P, v |=M 〈x〉φ iff ∃Q.P
v(x)

to Q and Q, v |=M φ

Table 1: Semantics of Spatial Logics

of our system in evolution, or we choose a dynamic calculus, but we have to avoid the use of a guar-
antee operator [5, 28], hence we can express only local properties of the system. The latter alternative
is useful only if our system is an isolated one (there is no upper-system for it) and we have a full
description of it. In this sense the possible applications are quite limited. In problems such as those
proposed by systems biology, for example, it is not acceptable, as biological systems are almost al-
ways subsystems of bigger ones with which they interact. Very often we do not know too much about
these upper systems, or we cannot decide how far up we should go with modeling the systems in order
to obtain the information we are looking for.

Concluding, though expressive and useful, most of the spatial logics proved to be undecidable,
even in the absence of quantifiers. Unlike in static spatial logics, the composition adjunct adds to the
expressiveness of the logic, so that adjunct elimination is not possible for dynamic spatial logics, even
quantifier-free [8]. To the best of our knowledge, no alternative operator, to replace the guarantee one
in order to express global properties and still ensuring decidability, has been studied. We propose
further such an alternative.

To be is to know
The other paradigm of modelling multi-agent systems comes from logics and philosophy: reason-
ing about systems in terms of knowledge [19]. At the beginning, the interest was to find inherent
properties of knowledge and related concepts. More recently, the computer scientists have become
increasingly interested in reasoning about knowledge. Within computer science, reasoning about
knowledge plays an extremely important role in contemporary theories of (intelligent) agents and it
has been proved to be useful in modelling and understanding complex communication-based systems.

In the transition from human agents to (artificial) intelligent agents and latter to the multi-agent
system in the most general sense, the meaning of the term “knowledge” evolved. It was originally
used in its ordinary language meaning: to say that an agent knows a sentence either means that it
consciously assents to it, or that it immediately sees it to be true when the question is presented.
Latter, in the new interpretation, the knowledge of the agent is understood as the sum of actions the
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agent may take as a function of its local state in a given environment. Thus the agent knows its
protocol in a given system. In this context we have an external notion of knowledge in the sense that
there is no notion of the agent computing his knowledge and no requirement that the agent being able
to answer questions based on his knowledge.

Epistemic/doxastic logics [19] formalize, in a direct manner, notions of knowledge, or belief,
possessed by an agent, or a group of agents, using modalities like KAφ - A knows φ, �Aφ - A
justifiably believes that φ, or Ckφ - all the agents knows φ (φ is a common knowledge). These
logics supports Kripke-model based semantics, each basic modality being associated with a binary
accessibility relation in these models. Thus for each epistemic agent A we devise an accessibility

relation
A

to, called indistinguishability relation for A, expressing the agent’s uncertainty about the

current state. The states s′ such that s
A

tos′ are the epistemic alternatives of s to agent A: if the current
state is s, A thinks that any of the alternatives s′ may be the current state. These logics have been
extensively studied and applied to multi-agent systems.

Suppose that we have a group consisting of n agents. Then we augment the language of propo-
sitional logic by n knowledge operators K1, ...Kn (one for each agent), and form formulas in the
obvious way. A statement like K1φ is read “agent 1 knows φ”. The state that agent 1 knows that
agent 2 knows φ is formalized by K1K2φ. A formula like K1φ ∧K1(φ→ ψ)→ K1ψ is interpreted:
“if agent 1 knows α and α→ β then it knows β”.

[The language of epistemic logic] Let Φ be a nonempty, countable set of atomic formulae and
S = {1, ...n} a set of agents. We introduce the language of epistemic logic as the least set FS of
formulas such that:

1. Atom ⊆ FS 3. if φ ∈ FS then ¬φ ∈ FS

2. if φ, ψ ∈ FS then φ ∧ ψ ∈ FS 4. if α ∈ FS and i ∈ S then Kiφ ∈ FS

One approach to defining semantics for epistemic logic is in terms of possible worlds. The intu-
itive idea behind the possible worlds approach is that an agent can build different models of the world
using some suitable language. He usually does not know exactly which one of the models is the right
model of the world. However, he does not consider all these models equally possible. Some world
models are incompatible with his current information state, so he can exclude these incompatible
models from the set of his possible world models. Only a subset of the set of all (logically) possible
models are considered possible by the agent.

The set of worlds considered possible by an agent i depends on the “actual world”, or the agent’s
actual state of information. This dependency can be captured formally by introducing a binary re-
lation, say Ri, on the set of possible worlds. To express the idea that for agent i, the world t is
compatible with his information state when he is in the world s, we require that the relationRi holds
between s and t. One says that t is an epistemic alternative to s (for agent i). If a sentence φ is true in
all worlds which agent i considers possible then we say that this agent knows φ.

Formally, the concept of models is defined in terms of Kripke structures, as follows:
[Semantics of Epistemic Logic] A model M for the language FS is a Kripke structure for the

agents in S over Φ, i.e. is a structureM = (S, π, (Ri)i∈S) where
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• S is a nonempty set of possible worlds (states)

• π is an interpretation which associates with each state in S a truth assignment to the primitive
propositions in Φ (i.e. for s ∈ S, π(s) : Φ→ {>,⊥})

• Ri is a binary relation on S associated to the agent i ∈ S

The satisfaction relation |= is defined recursively on FS as follows:

• M, s |= p iff π(s)(p) = > for any p ∈ Φ

• M, s |= ¬φ iffM, s 6|= φ

• M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ

• M, s |= Kiφ iff for all t ∈ S such that sRit we haveM, t |= φ

A modal epistemic logic for the agents in S is obtained by joining together n modal logics [4],
one for each agent in S. It is usually assumed that the agents are homogeneous, i.e., they can be
described by the same logic. So an epistemic logic for n agents consists of n copies of a certain
modal logic. Such a system over S will be denoted by the same name as the modal system, but with
the superscript S.

[Modal epistemic logicKS] The modal epistemic logicKS is the logic specified by the following
axioms and rules of inference, where i ∈ S:

(PC): All propositional tautologies.
(K): ` Kiφ ∧Ki(φ→ ψ)→ Kiψ
(MP): Modus ponens: if ` φ and ` φ→ ψ then ` ψ
(NEC): Necessity: if ` φ then ` Kiφ
Stronger logics can be obtained by adding additional principles, which express the desirable prop-

erties of the concept of knowledge, to the basic system KS. The following properties are often
considered:

(T): Knowledge axiom: ` Kiφ→ φ (4): Positive introspection: ` Kiφ→ KiKiφ
(D): Consistency axiom: ` Kiφ→ ¬Ki¬φ (5): Negative introspection: ` ¬Kiφ→ Ki¬Kiφ

The formula (T) states that knowledge must be true. In the doxastic logic this axiom is taken to
be the major one distinguishing knowledge from belief. For that reason (T) is called the Knowledge
Axiom or the Truth Axiom (for knowledge). Systems containing the schema (T) (such as S4 and S5)
are then called logics of knowledge, and logics without the schema (T) are called logics of belief.

The property (D), called the Consistency Axiom, requires that agents be consistent in their knowl-
edge: they do not know both a formula and its negation. Generally, (D) is a weaker condition than
(T).

The properties (4) and (5) are called positive and negative introspection axioms, respectively.
They say that an agent is aware of what he knows and what he does not know. Their converses, i.e.,
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the formulae ` KiKiφ → Kiφ and ` Ki¬Kiφ → ¬Kiφ, are instances of the schema (T). Taking
(4) and (5) together with their converses we have ` KiKiφ ↔ Kiφ and ` Ki¬Kiφ ↔ ¬Kiφ, which
allow to reduce multiple knowledge operators to a single (positive or negative) knowledge operator.
The commonly used epistemic logics are specified as follows:

• TS is KS plus (T) • S4S is TS plus (4) • S5S is S4S plus (5)
• KDS is KS plus (D) • KD4S is KDS plus (4) • KD45S is KD4S plus (5)

The following theorem summarizes some completeness and decidability results for modal epis-
temic logic [15, 25, 21, 22].

[Completeness and decidability of epistemic logics]

1. KS describes the class of models with accessibility relations indexed by elements in S.

2. TS describes the class of models with reflexive accessibility relations.

3. S4S describes the class of models with reflexive and transitive accessibility relations.

4. S5S describes the class of models with equivalence relations as accessibility relations.

5. KDS describes the class of models with serial accessibility relations.

6. KD4S describes the class of models with serial and transitive accessibility relations.

7. KD45S describes the class of models with serial, transitive and Euclidean accessibility rela-
tions.

8. KS, TS, S4S, S5S, KDS, KD4S, and KD45S are all decidable.

Dynamic logics [23] are closer to process calculi, in that they have names for programs (actions)
and operators to combine them. Accessibility relations are interpreted as transitions induced by pro-
grams, and a dynamic modality [π]φ captures the weakest precondition of such a program w.r.t. a
given post-specification φ. Modalities in a dynamic logic form an algebraical structure: programs are
built using basic program constructors such as sequential composition π.π′ or iteration π∗.

By mixing dynamic and epistemic formalisms Dynamic Epistemic Logics have been developed [1,
2, 26, 32, 33, 34], aiming to capture properties of evolving knowledge and of belief-changing actions,
such as communication. These logics combine a rich expressivity with low complexity ensuring
decidability and complete axiomatizations.
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Our approach
The two paradigms of modelling concurrent distributed systems - the process algebraical paradigm
with the epistemic-doxastic one - were developed in parallel, but to our knowledge, there has been
no unified paradigm. We propose such a paradigm in this paper, used for constructing a new logic
for concurrency completely axiomatized and decidable. The main idea is to combine the features
of spatial logics with the epistemic logics thus obtaining a special type of dynamic epistemic logic
equipped with spatial operators. We call it Dynamic Epistemic Spatial Logic.

More concretely, our logic extends Hennessy-Milner logic with the parallel operator (hence it is a
spatial logic) and epistemic operators. The role of the epistemic operators is to do most of the job of
the guarantee operator while maintaining decidability. In our logics the epistemic agents are related
(identified) with processes. Thus KPφ holds, the agent related with P knows φ, iff φ is satisfied
by any process having P as subprocess. The intuition is that the agent related with P is an observer
inside our system that can see only P . So, this epistemic agent cannot differentiate between the global
states P , P |Q or P |R of the whole system, as in all these states it sees only P . Thus its knowledge
rests on properties φ that are satisfied by each of these states (processes). For avoiding unnecessary
syntactic sugar we name the epistemic agents by the processes they are related with.

We prove, for Dynamic Epistemic Spatial Logic, the finite model property with respect to the
chosen semantics. Thus, we have decidability for satisfiability, validity and model-checking problems.

In proving the finite model property we used a new congruence on processes - the structural bisim-
ulation. A conceptually similar congruence has been proposed in [9], but for static processes only.
The structural bisimulation is interesting in itself, as it provides a bisimulation-like description of the
structural congruence. Informally, it is an approximation of the structural congruence bound by two
dimensions: the height and the weight of a process. The bigger these sizes, the better approximation
we obtain. At the limit we find exactly the structural congruence.

For the logic we propose a complete Hilbert-style axiomatic system, which helps in understanding
the basic algebraical behavior of the classical process operators. We prove its soundness and com-
pleteness with respect to the piece of CCS for which the classic spatial logic has been proved to be
undecidable in [8]. Thus, many properties can be syntactically verified and proved. Moreover the
interplay of our logical operators allows expression, inside the syntax, of validity and satisfiability
for formulas. We also have characteristic formulas able to identify a process (agent) up to structural
congruence (cloned copies).

Concluding, the novelty of our logic with respect to the classical spatial logics is the use of the
epistemic operators, as alternative to guarantee operator, for expressing global properties while en-
suring decidability. The epistemic operators allow to refer directly to agents of our system by mean
of their knowledge. An epistemic agent is, thus, an observer that can be placed in different places in
our system and has access to partial information. By combining these partial information (“points of
view” of different observers) we can specify complex properties of distributed systems.

From the epistemic logics perspective, we propose a new class of epistemic logics by imposing
an algebraical structure (CCS-like) on the class of epistemic agents. In this way we may assume
compositional and hierarchically organized agents. Thus P and Q are epistemic agents, but also P |Q
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may be another agent. As they are ontologically related (P and Q are ontological subsidiary of P |Q),
our logic allows to derive relations between their knowledge and dynamics from their ontological
relations. In the classical epistemic logics [19] the agents are assumed to be ontologically independent
entities, while our logics accepts dependencies. Other peculiarities of our epistemic logic comes from
the fact that we can activate and deactivate agents: thus in a system having the current state described
by α.P , the agent that sees P is not active, but it might be activated in a future state. Our logic allows
also cloned agents. Thus in a system described by P |Q|P we have two clones of the agent seeing
P . All these features are new for epistemic logics. Thus, we can model simultaneously, as agents
in a system, individuals, societies of individuals, societies of societies of individuals, etc and their
evolutions.

2 On processes
In this chapter we return to CCS and we reconsider the subcalculus for which, in [8] the classical
spatial logic was proved undecidable. We will use it further as semantics for our logic. We propose
some new concepts that will help the future constructs. One of the most important is a new congruence
on processes - the structural bisimulation. This relation will be used, further, to prove the finite model
property for our logics against the process semantics in combination with the concept of pruning
processes.

The structural bisimulation is interesting in itself as it provides a bisimulation-like definition for
structural congruence. Informally, it is an approximation of the structural congruence bounded by two
sizes: the height (the depth of the syntactic tree) and the weight (the maximum number of bisimilar
subprocesses that can be found in a node of the syntactic tree) of a process. The bigger these sizes,
the better approximation we obtain. At the limit, for sizes big enough with respect to the sizes of
the processes involved, we find exactly the structural congruence. A conceptually similar congruence
was proposed in [9] for analyzing trees of location for the static ambient calculus.

On the two sizes defined for processes, height and weight, we will introduce an effective method to
construct, given process P , a minimal process Q that has an established size (h,w) and is structurally
bisimilar to P on this size. Because, for a small size, the construction is supposed to prune the
syntactic tree of P , we will call this method pruning, and we refer to Q as the pruned of P on the size
(h,w).

Eventually we will extend the notions of size, structural bisimulation and pruning from processes
to classes of processes. We focus our interest on contexts, defined as being special classes of processes
that contain, in a maximal manner, processes of interest for us (that might model completely or
partially our system together with all its subsystems). The contexts will be used, in the next chapters,
as the sets of processes on which we will define the satisfiability relation for the logics.

We recall the definition 1 as defining the subcalculus of CCS on which we will focus for the rest
of the paper. We will not consider additional features of CCS, such as pairs of names, etc., as we want
to avoid all the syntactic sugar that is irrelevant from the point of view of the logic. We might define
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an involution on A and the silent action τ , but all these can be introduced, in our logic, as derived
operators.

We call a process P guarded iff P ≡ α.Q for α ∈ A.
We introduce the notation P k def

= P |...|P︸ ︷︷ ︸
k

, and convey to denote P 0 ≡ 0.

[Representativeness modulo structural congruence] By definition, ≡ is a congruence (thence an
equivalence relation) over P. Consequently, we convey to identify processes up to structural congru-
ence, because the structural congruence is the ultimate level of expressivity we want for our logic.
Hereafter in the paper, if it is not explicitly otherwise stated, we will speak about processes up to
structural congruence.

2.1 Size of a process
Further we propose a definition for the size of a process, following a similar idea developed in [9] for
sizes of trees. The intuition is that the process has a height given by the vertical size of its syntactic
tree, and a width equal to the maximum number of bisimilar subprocesses that can be identified in a
node of the syntactic tree.

[Size of a process] We define the size (height and width) of a process P , denoted by P , by:

• 0
def
= (0, 0)

• P def
= (h,w) iff

– P ≡ (α1.Q1)
k1|(α2.Q2)

k2|...|(αj.Qj)
kj and Qi = (hi, wi), i ∈ 1..j

– h = 1 +max(h1, ..., hk), w = max(k1, ..., kj, w1, ..., wj)

where we used h for height and w for width. We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and
w1 ≤ w2 and (h1, w1) < (h2, w2) for h1 < h2 and w1 < w2.

Observe that, by construction, the size of a process is unique up to structural congruence. More-
over, if P = (h,w) then for any subprocess P ′ of P we have P ′ ≤ (h,w).

Example 2.1 We show further the size for some processes:

0 = (0, 0) α.0 = (1, 1) α.0|β.0 = (1, 1)
α.0|α.0 = (1, 2) α.α.0 = α.β.0 = (2, 1) α.(β.0|β.0) = (2, 2)

[Size of a set of processes] Let M ⊂ P. We write M = (h,w) iff (h,w) = max{P | P ∈M}.
As the sets of processes may be infinite, not for all of them this definition works, in the sense that
some sets may have infinite sizes3. For this reason we convey to extend the order, and when M has
infinite size, to still write (h,w) ≤M and (h,w) < M for any (h,w).

3Such a situation is in the case of the setM = {0, α.0, α.α.0, ..., α....α.0, ...}.
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2.2 Structural bisimulation
In this section we introduce the structural bisimulation, a congruence relation on processes bounded
by size. It analyzes the behavior of a process focusing on a boundary of its syntactic tree. This relation
will be used in the next chapter to prove the finite model property for our logics.

The intuition behind the structural bisimulation is that P ≈wh Q (P andQ are structurally bisimilar
on size (h,w)) iff when we consider for both processes their syntactic trees up to the depth h only (we
prune them on the height h) and we ignore the presence of more thanw parallel bisimilar subprocesses
in any node of the syntactic trees (we prune the trees on weight w), we obtain syntactic trees depicting
two structurally congruent processes.

The relation between the structural bisimulation and the structural congruence is interesting. We
will see that the structural bisimulation depicts, step by step, the structural congruence being, in a
sense, a bisimulation-like approximation of it on a given size. We will see further how P ≈wh Q
entails that, if we choose any subprocess of P with the size smaller than (h,w), then there exists a
subprocess of Q structurally congruent with it, and vice versa. Now, if the size indexing the structural
bisimulation is bigger than the size of the processes, then our relation will describe structurally con-
gruent processes. Moreover, the structural bisimulation is preserved by transitions with the price of
decreasing the size.

[Structural bisimulation] Let P,Q be any processes. We define P ≈wh Q by:

• P ≈w0 Q always

• P ≈wh+1 Q iff for any i ∈ 1..w and any α ∈ A we have

– if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh Qj , for j = 1..i

– if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈wh Pj , for j = 1..i

Example 2.2 Consider the processes

R ≡ α.(β.0|β.0|β.0)|α.β.0 and S ≡ α.(β.0|β.0)|α.β.α.0

We can verify the requirements of the definition 2.2 and decide that R ≈2
2 S. But R 6≈2

3 S because
on the depth 2 R has an action α (in figure 1 marked with a dashed arrow) while S does not have it
(because the height of S is only 2). Also R 6≈3

2 S because R contains only 2 (bisimilar) copies of β.0
while S contains 3 (the extra one is marked with a dashed arrow). Hence, for any weight bigger than
2 this feature will show the two processes as different. But if we remain on depth 1 we have R ≈3

1 S,
as on this deep the two processes have the same number of bisimilar subprocesses, i.e. any of them
can perform α in two ways giving, further, processes in the relation ≈3

0. Indeed

R ≡ αR′|αR′′, where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0
S ≡ α.S ′|α.S ′′, where S ′ ≡ β.0|β.0 and S ′′ ≡ β.α.0

By definition, R′ ≈3
0 S
′ and R′′ ≈3

0 S
′′

11



S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

�� **UUUUUUUUUUUUUUUUUUU

β.0|β.0|β.0

vvnnnnnnnnnnnnnn

�� ((PPPPPPP β.0

��
0 0 0 0

α.(β.0|β.0)|α.β.α.0

�� ((QQQQQQQQQQQQQ

β.0|β.0

wwoooooooooooooo

��

β.α.0

��
0 0 α.0

���
�
�

0

Figure 1: Syntactic trees

We focus further on the properties of the relation ≈wh . We start by proving that structural bisimu-
lation is a congruence relation.

[Equivalence Relation] The relation ≈wh on processes is an equivalence relation.
Proof We verify the reflexivity, symmetry and transitivity directly.
Reflexivity: P ≈wh P - we prove it by induction on h

the case h = 0: we have P ≈w0 P from the definition 2.2.
the case h + 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for i ∈ 1..w and some α ∈ A. The inductive
hypotheses gives Pj ≈wh Pj for each j = 1..i. Further we obtain, by the definition 2.2, that P ≈wh P .

Symmetry: if P ≈wh Q then Q ≈wh P
Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A then, by the definition 2.2, exists
Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice versa. Similarly, if we start from
Q ≡ β.R1|...|β.Rk|R′ for k ∈ 1..w and β ∈ A we obtain P ≡ β.S1|...|β.Sk|S ′ for some Sj , with
Rj ≈wh−1 Sj for j = 1..k and vice versa. Hence Q ≈wh P .

Transitivity: if P ≈wh Q and Q ≈wh R then P ≈wh R - we prove it by induction on h.
the case h = 0 is trivial, because by the definition 2.2, for any two processes P,R we have P ≈w0 R
the case h+ 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. Then from P ≈wh Q
we obtain, by the definition 2.2, that Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice
versa. Further, because Q ≈wh R, we obtain that R ≡ α.R1|...|α.Ri|R′ with Qj ≈wh−1 Rj for j = 1..i
and vice versa.

As Pj ≈wh−1 Qj and Qj ≈wh−1 Rj for j = 1..i, we obtain, using the inductive hypothesis that
Pj ≈wh−1 Rj for j = 1..i.

Hence, for P ≡ α.P1|...|α.Pi|P ′, some i ∈ 1..w and α ∈ A we have that R ≡ α.R1|...|α.Ri|R′
with Qj ≈wh−1 Rj for j = 1..i and vice versa. This entails P ≈wh R. 2

If P ≈wh Q and Q ≡ R then P ≈wh R.
Proof Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. As P ≈wh Q, we

obtain Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice versa. But Q ≡ R, so R ≡
α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice versa. Hence P ≈wh R. 2
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[Antimonotonicity] If P ≈wh Q and (h′, w′) ≤ (h,w) then P ≈w′h′ Q.
Proof We prove it by induction on h.
The case h = 0 is trivial, as (h′, w′) ≤ (0, w) gives h′ = 0 and for any processes P,Q we have

P ≈w0 Q.
The case h+ 1 in the context of the inductive hypothesis:

Suppose that P ≈wh+1 Q and (h′, w′) ≤ (h+ 1, w).
If h′ = 0 we are, again, in a trivial case as for any two processes P,Q we have P ≈w0 Q.
If h′ = h′′ + 1 then consider any i ∈ 1..w′, and any α ∈ A such that P ≡ α.P1|...|α.Pi|P ′. Because
i ≤ w′ ≤ w, and as P ≈wh+1 Q, we have Q ≡ α.Q1|...|αi.Qi|Q′ with Pj ≈wh Qj , for j = 1..i. A
similar argument can de developed if we start the analysis from Q.
But (h′′, w′) ≤ (h,w), so we can use the inductive hypothesis that gives Pj ≈h′′,w′ Qj for j = 1..i.
Hence P ≈w′h′′+1 Q, that is, P ≈w′h′ Q q.e.d. 2

[Congruence] The following holds:

1. if P ≈wh Q then α.P ≈wh+1 α.Q

2. if P ≈wh P ′ and Q ≈wh Q′ then P |Q ≈wh P ′|Q′

Proof 1.: Suppose that P ≈wh Q. Because α.P is guarded, it cannot be represented as P ≡
α.P ′|P ′′ for P ′′ 6≡ 0. The same about α.Q. But this observation, together with P ≈wh Q gives, in the
light of definition 2.2, α.P ≈wh+1 α.Q.

2.: We prove it by induction on h.
If h = 0 then the conclusion is immediate.
For h+1, suppose that P ≈wh+1 P

′ and Q ≈wh+1 Q
′; then consider any i = 1..w, α and Rj for j = 1..i

such that

P |Q ≡ α.R1|...|α.Ri|Ri+1

Suppose, without loss of generality, that Rj are ordered in such a way that there exist k ∈ 1..i, P ′′, Q′′

such that

P ≡ α.R1|...|α.Rk|P ′′
Q ≡ α.Rk+1|...|α.Ri|Q′′

Ri+1 ≡ P ′′|Q′′

Because k ∈ 1..w, from P ≈wh+1 P
′ we have P ′ ≡ α.P ′1|...|α.P ′k|P0 such that Rj ≈wh P ′j for j = 1..k.

Similarly, from Q ≈wh+1 Q
′ we have Q′ ≡ α.Q′k+1|...|α.Q′i|Q0 such that Rj ≈wh Q′j for j = (k+ 1)..i.

Hence, we have

P ′|Q′ ≡ α.P ′1|...|α.P ′k|α.Q′k+1|...|α.Q′i|P0|Q0

13



As Rj ≈wh P ′j for j = 1..k and Rj ≈wh Q′j for j = (k + 1)..i, and because a similar argument starting
from P ′|Q′ is possible, we proved that P |Q ≈wh+1 P

′|Q′. 2

[Inversion] If P ′|P ′′ ≈w1+w2
h Q then exists Q′, Q′′ such that Q ≡ Q′|Q′′ and P ′ ≈w1

h Q′, P ′′ ≈w2
h

Q′′.
Proof Let w = w1 + w2. We prove the theorem by induction on h:

The case h = 0: is trivial.
The case h+ 1: Suppose that P ′|P ′′ ≈wh+1 Q.

Consider the following definition: a process P is in (h,w)-normal form if whenever P ≡ α1.P1|α2.P2|P3

and P1 ≈wh P2 then P1 ≡ P2. Note that P ≈wh+1 α1.P1|α2.P1|P3. This shows that for any P and any
(h,w) we can find a P0 such that P0 is in (h,w)-normal form and P ≈wh+1 P0.

Now, we can suppose, without loosing generality, that4:

P ′ ≡ (α1.P1)
k′1 |...|(αn.Pn)k

′
n

P ′′ ≡ (α1.P1)
k′′1 |...|(αn.Pn)k

′′
n

Q ≡ (α1.P1)
l1|...|(αn.Pn)ln

For each i ∈ 1..n we split li = l′i + l′′i in order to obtain a splitting of Q. We define the splitting of li
such that (αi.Pi)

k′i ≈h+1,w1 (αi.Pi)
l′i and (αi.Pi)

k′′i ≈h+1,w2 (αi.Pi)
l′′i . We do this as follows:

• if k′i + k′′i < w1 + w2 then P ′|P ′′ ≈wh+1 Q implies li = k′i + k′′i , so we can choose l′i = k′i and
l′′i = k′′i .

• if k′i+k
′′
i ≥ w1+w2 then P ′|P ′′ ≈wh+1 Q implies li ≥ w1+w2. We meet the following subcases:

– k′i ≥ w1 and k′′i ≥ w2. We choose l′i = w1 and l′′i = li−w1 (note that as li ≥ w1 +w2, we
have l′′i ≥ w2).

– k′i < w1, then we must have k′′i ≥ w2. We choose l′i = k′i and l′′i = li − k′i. So l′′i ≥ w2 as
li ≥ w1 + w2 and l′i < w1.

– k′′i < w2 is similar with the previous one. We choose l′′i = k′′i and l′i = li − k′′i .

Now for Q′ ≡ (α1.P1)
l′1 |...|(αn.Pn)l

′
n and Q′′ ≡ (α1.P1)

l′′1 |...|(αn.Pn)l
′′
n the theorem is verified by

repeatedly using theorem 2.2. 2

The next theorems point out the relation between the structural bisimulation and the structural
congruence. We will prove that for a well-chosen boundary, which depends on the processes involved,
the structural bisimulation guarantees the structural congruence. P ≈wh Q entails that if we choose
any subprocess of P having the size smaller than (h,w), we will find a subprocess of Q structurally
congruent with it, and vice versa. Now, if the size indexing the structural bisimulation is bigger than

4Else we can replace P ′, P ′′ with (h+ 1, w)-related processes having the same (h,w)-normal forms
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the size of the processes, then our relation will describe structurally congruent processes. We also
prove that the structural bisimulation is preserved by transitions with the price of decreasing the size.

If P ≤ (h,w) and P ′ ≤ (h,w) then P ≈wh P ′ iff P ≡ P ′.
Proof P ≡ P ′ implies P ≈wh P ′, because by reflexivity P ≈wh P and then we can apply theorem

2.2.
We prove further that P ≈wh P ′ implies P ≡ P ′. We’ll do it by induction on h.
The case h = 0: P ≤ (0, w) and P ′ ≤ (0, w) means P ≡ 0 and P ′ ≡ 0, hence P ≡ P ′.
The case h + 1: suppose that P ≤ (h + 1, w), P ′ ≤ (h + 1, w) and P ≈wh+1 P

′. We can suppose,
without loosing generality, that

P ≡ (α1.Q1)
k1|...|(αn.Qn)kn

P ′ ≡ (α1.Q1)
l1 |...|(αn.Qn)ln

where for i 6= j, αi.Qi 6≡ αj.Qj . Obviously, as P ≤ (h+ 1, w) and P ′ ≤ (h+ 1, w) we have ki ≤ w
and li ≤ w.

We show that ki ≤ li. If ki = 0 then, obviously, ki ≤ li. If ki 6= 0 then P ≡ (αi.Qi)
ki |Pi and

P ≈wh+1 P
′ provides that P ′ ≡ αi.Q

′′
1|...αi.Q′′ki |R with Qi ≈wh Q′′j for j = 1..ki. By construction,

Qi ≤ ((h+ 1)− 1, w) = (h,w) and Q′′j ≤ ((h+ 1)− 1, w) = (h,w). So, we can apply the inductive
hypothesis that provides Qi ≡ Q′′j for j = 1..i. Hence P ′ ≡ (αi.Qi)

ki |R that gives ki ≤ li.
With a symmetrical argument we can prove that li ≤ ki that gives ki = li and, finally, P ≡ P ′.

2

If P ≈wh Q and P < (h,w) then P ≡ Q.
Proof Suppose that P = (h′, w′) and P ≡ (α1.P1)

k1|...|(αn.Pn)kn with αi.Pi 6≡ αj.Pj for i 6= j.
Obviously we have ki ≤ w′ < w.

We prove the theorem by induction on h. The first case is h = 1 (because h > h′).
The case h = 1: we have h′ = 0 that gives P ≡ 0. Further 0 ≈w1 Q gives Q ≡ 0, because else
Q ≡ α.Q′|Q′′ asks for 0 ≡ α.P ′|P ′′ - impossible. Hence P ≡ Q ≡ 0.
The case h+ 1: as P ≡ (αi.Pi)

ki |P+, P ≈wh Q and ki < w, we obtain that Q ≡ αi.R1|...|αi.Rki|R+

with Pi ≈wh−1 Rj for any j = 1..ki.
But Pi ≈wh−1 Rj allows us to use the inductive hypothesis, because Pi ≤ (h′ − 1, w′) < (h − 1, w),
that gives Pi ≡ Rj for any j = 1..ki. Hence Q ≡ (αi.Pi)

ki |R+ and this is sustained for each i = 1..n.
As αi.Pi 6≡ αj.Pj for i 6= j, we derive Q ≡ (α1.P1)

k1|...|(αn.Pn)kn|R.
We prove now that R ≡ 0. Suppose that R ≡ (α.R′)|R′′. Then Q ≡ α.R′|R−, and as P ≈wh Q,

we obtain that there is an i = 1..n such that α = αi and R′ ≈h−1,w Pi.
Because Pi ≤ (h′ − 1, w′) < (h − 1, w), we can use the inductive hypothesis and obtain R′ ≡ Pi.
Therefore R ≡ αi.Pi|R′′, that gives further

Q ≡ (α1.P1)
k1|...(αi−1.Pi−1)

k(i−1) |(αi.Pi)ki+1|(αi+1.Pi+1)
k(i+1) |...|(αn.Pn)kn|R

So, we can consider Q ≡ (αi.Pi)
ki+1|Q+. Because P ≈wh Q and ki + 1 ≤ w′+ 1 ≤ w, we obtain that

P ≡ αi.P
′
1|...|αi.P ′ki+1|P ′ with P ′j ≈wh−1 Pi for any j = 1..ki + 1.
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But Pi ≤ (h′ − 1, w′) < (h − 1, w), consequently we can use the inductive hypothesis and obtain
P ′j ≡ Pi for any j = 1..ki + 1.
Hence P ≡ (αi.Pi)

ki+1|P ′′ which is impossible because we supposed that P ≡ (α1.P1)
k1|...|(αn.Pn)kn

with αi.Pi 6≡ αj.Pj for i 6= j.
Concluding, R ≡ 0 and Q ≡ (α1.P1)

k1|...|(αn.Pn)kn , i.e. Q ≡ P . 2

If P ≡ R|P ′, P ≈wh Q and R < (h,w) then
Q ≡ R|Q′.

Proof Suppose that R = (h′, w′) < (h,w). Because P ≡ R|P ′ and P ≈wh Q, using theorem 2.2,
we obtain that exists Q1, Q2 such that Q ≡ Q1|Q2 and R ≈w′+1

h Q1 and P ′ ≈w−(w′+1)
h Q2. Further,

as R ≈w′+1
h Q1 and R = (h′, w′) < (h,w′ + 1) we obtain, by using theorem 2.2, that Q1 ≡ R, hence

Q ≡ R|Q2. 2

Let P ≈wh Q. If P ≡ α.P ′|P ′′ then Q ≡ α.Q′|Q′′ and P ′|P ′′ ≈w−1
h−1 Q

′|Q′′
Proof As P ≈wh Q and P ≡ α.P ′|P ′′, we obtain that, indeed, Q ≡ α.Q′|Q′′ with P ′ ≈wh−1 Q

′.
We will prove that P ′|P ′′ ≈w−1

h−1 Q
′|Q′′. Consider any i = 1..w − 1 and β ∈ A such that:

P ′|P ′′ ≡ β.P1|...|β.Pi|P ? (1)

We can suppose, without loos of generality that for some k ≤ i we have

P ′ ≡ β.P1|...|β.Pk|P+

P ′′ ≡ β.Pk+1|...|β.Pi|P−
P ? ≡ P+|P−

Because P ′ ≈wh−1 Q
′ and k ≤ i ≤ w − 1, we obtain that Q′ ≡ β.Q1|...|β.Qk|Q+ with Pj ≈wh−2 Qj

for j = 1..k. Further we distinguish two cases:

• if α 6= β then we have

P ≡ β.Pk+1|...|β.Pi|(P−|α.P ′)

and because P ≈wh Q, we obtain

Q ≡ β.Rk+1|...|β.Ri|R? with Rj ≈wh−1 Pj for j = k + 1..i

But Q ≡ α.Q′|Q′′ and because α 6= β, we obtain Q′′ ≡ β.Rk+1|...|β.Ri|R+ that gives us in the
end

Q′|Q′′ ≡ β.Q1|...|β.Qk|β.Rk+1|...|β.Ri|(R+|Q+)
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with Pj ≈wh−2 Qj for j = 1..k (hence Pj ≈w−1
h−2 Qj) and Pj ≈wh−1 Rj for j = k + 1..i (hence

Pj ≈w−1
h−2 Rj).

• if α = β then we have

P ≡ α.Pk+1|...|α.Pi|α.P ′|P−

and as P ≈wh Q and i ≤ w − 1, we obtain

Q ≡ α.Rk+1|...|α.Ri|α.R′|R?

with Rj ≈wh−1 Pj for j = k + 1..i and R′ ≈wh−1 P ′. Because P ′ ≈wh−1 Q′ and ≈wh is an
equivalence relation, we can suppose that R′ ≡ Q′ (Indeed, if α.Q′ is a subprocess of R? then
we can just substitute R′ with Q′; if α.Q′ ≡ α.Rs, then Q′ ≈wh−1 Ps and as Q′ ≈wh−1 P

′ and
P ′ ≈wh−1 R

′ we derive R′ ≈wh−1 Ps and Q′ ≈wh−1 P
′, so we can consider this correspondence).

So

Q ≡ α.Rk+1|...|α.Ri|α.Q′|R?

that gives

Q′′ ≡ α.Rk+1|...|α.Ri|R?

which entails further

Q′|Q′′ ≡ α.Q1|...|α.Qk|α.Rk+1|...|α.Ri|(R?|Q+)

with Pj ≈wh−2 Qj for j = 1..k (hence Pj ≈w−1
h−2 Qj) and Pj ≈wh−1 Rj for j = k + 1..i (hence

Pj ≈w−1
h−2 Rj).

All these prove that P ′|P ′′ ≈w−1
h−1 Q

′|Q′′ (as we can develop a symmetric argument starting in (1) with
Q|Q′). 2

[Behavioral simulation] Let P ≈wh Q. If P α−→ P ′ then exists a transition Q α−→ Q′ such that
P ′ ≈w−1

h−1 Q
′.

Proof If P α−→ P ′ then P ≡ α.R′|R′′ and P ′ ≡ R′|R′′. But P ≈wh Q gives, using theorem 2.2
that Q ≡ α.S ′|S ′′ and R′|R′′ ≈w−1

h−1 S
′|S ′′. And because Q α−→ S ′|S ′′, we can take Q′ ≡ S ′|S ′′. 2
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2.3 Bound pruning processes
In this subsection we prove the bound pruning theorem, stating that for a given process P and a
given size (h,w), we can always find a process Q having the size at most equal with (h,w) such that
P ≈wh Q. Moreover, in the proof of the theorem we will present a method for constructing such a
process from P , by pruning its syntactic tree to the given size.

[Bound pruning theorem] For any process P ∈ P and any (h,w) exists a process Q ∈ P with
P ≈wh Q and Q ≤ (h,w).

Proof We describe the construction5 of Q by induction on h.
For h = 0: we just take Q ≡ 0, because P ≈w0 Q and 0 = (0, 0).
For h+ 1: suppose that P ≡ α1.P1|...|αn.Pn.

Let P ′i be the result of pruning Pi by (h,w) (we use the inductive step of construction) and P ′ ≡
α1.P

′
1|...|αn.P ′n. As for any i = 1..n we have Pi ≈wh P ′i (by the inductive hypothesis), we obtain,

using theorem 2.2, that αi.Pi ≈wh+1 αi.P
′
i and further P ≈wh+1 P

′.
Consider the canonical representation of P ′ ≡ (β1.Q1)

k1|...|(βm.Qm)km .
Let li = min(ki, w) for i = 1..m. Then we define Q ≡ (β1.Q1)

l1|...|(βm.Qm)lm . Obviously Q ≈wh+1

P ′ and as P ≈wh+1 P
′, we obtain P ≈wh+1 Q. By construction, Q ≤ (h+ 1, w). 2

[Bound pruning processes] For a process P and for a tuple (h,w) we denote by P(h,w) the process
obtained by pruning P to the size (h,w) by the method described in the proof of theorem 2.3.

Example 2.3 Consider the process P ≡ α.( β.(γ.0|γ.0|γ.0) | β.γ.0 ) | α.β.γ.0.
Observe that P = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to prune the syntactic
tree of P such that to not exist, in any node, more than two bisimilar branches. Hence P(3,2) =
α.( β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0
If we want to prune P on the size (3, 1), we have to prune its syntactic tree such that, in any node,
there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.
For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and in the new tree we
have to let, in any node, a maximum of two bisimilar branches. As a result of these modifications,
we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going further we obtain the smaller processes P(0,0) = 0,
P(1,1) = α.0, P(1,2) = α.0|α.0, P(2,1) = α.β.0.

If P ≡ Q then P(h,w) ≡ Q(h,w).
Proof Because a process is unique up to structural congruence, the result can be derived trivially,

following the construction in the proof of theorem 2.3. 2

P ≤ (h,w) iff P(h,w) ≡ P .
Proof (⇒) If P ≤ (h,w), then, by construction, P(h,w) ≤ (h,w) and P ≈wh P(h,w), we can use

theorem 2.2 and obtain P(h,w) ≡ P .
(⇐) Suppose that P(h,w) ≡ P . Suppose, in addition that P > (h,w). By construction, P(h,w) ≤

(h,w), hence P(h,w) ≤ (h,w) < P , i.e. P(h,w) 6= P . But this is impossible, because the size of a
process is unique up to structural congruence, see remark 2.1. 2

5This construction is not necessarily unique.
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2.4 Substitutions
For the future constructs is also useful to introduce the substitutions of actions in a process. [The set
of actions of a process] We define Act(P ) ⊂ A, inductively by:

1. Act(0)
def
= ∅ 2. Act(α.P )

def
= {α}∪Act(P ) 3. Act(P |Q)

def
= Act(P )∪Act(Q) For

a set M ⊂ P of processes we define Act(M)
def
=

⋃
P∈M Act(P ).

We will define further the set of all processes having a size smaller than a given tuple (h,w) and
the actions in a set A ⊂ A, and we will prove that for the fragment of CCS we considered they are
finitely many (modulo ≡).

Let A ⊂ A. We define

PA
(h,w)

def
= {P ∈ P | Act(P ) ⊂ A, P ≤ (h,w)}

If A ⊂ A is finite, then PA
(h,w) is finite6.

Proof We will prove more, that if we denote by n = (w + 1)card(A), then

card(PA
(h,w)) =


1 if h = 0

nn
n...

n︸ ︷︷ ︸
h

if h 6= 0

We prove this by induction on h.
The case h = 0: we have Q = (0, w) iff Q ≡ 0, so PA

(0,w) = {0} and card(PA
(0,w)) = 1.

The case h = 1: let Q ∈ P(1,w). Then

Q ≡ (α1.Q1)
k1|...|(αs.Qs)

ks with Qi ∈ PA
(0,w) and αi.Qi 6≡ αj.Qj for i 6= j.

But Qi ∈ PA
(0,w) means Qi ≡ 0, hence

Q ≡ (α1.0)k1|...|(αs.0)ks

Since Q ≤ (1, w) we obtain that ki ≤ w. The number of guarded processes α.0 with α ∈ A is
card(A) and since ki ∈ 0..w, the number of processes in PA

(1,w) is (w + 1)card(A) = n1.
The case h+ 1: let Q ∈ PA

(h+1,w). Then

Q ≡ (α1.Q1)
k1|...|(αs.Qs)

ks with Qi ∈ PA
(h,w) and αi.Qi 6≡ αj.Qj for i 6= j.

Since Q ≤ (h+ 1, w) we obtain that ki ≤ w. The number of guarded processes α.R with α ∈ A and
R ∈ PA

(h,w) is card(A) × card(PA
(h,w)) and since ki ∈ 0..w, the number of processes in PA

(h+1,w) is

(w + 1)card(A)×card(PA
(h,w)

) = ((w + 1)card(A))card(P
A
(h,w)

) = ncard(P
A
(h,w)

). But the inductive hypothesis

gives card(PA
(h,w)) = nn

n...
n︸ ︷︷ ︸

h

, so card(PA
(h+1,w)) = nn

n...
n︸ ︷︷ ︸

h+1

. 2

6We count the processes up to structural congruence.

19



[Action substitution] We call action substitution any function σ : AtoA. We extend it further,
syntactically, from actions to processes, σ : PtoP, by

σ(P ) =


0 if P ≡ 0
σ(Q)|σ(R) if P ≡ Q|R
σ(γ).σ(R) if P ≡ γ.R

We extend σ for sets of processes M ⊂ P by σ(M)
def
= {σ(P ) | P ∈M}.

For short, we will denote, sometimes, σ(P ) by P σ and σ(M) by Mσ.
Observe that P ≡ Q entails Act(P ) = Act(Q) and P σ ≡ Qσ.
Let σ be a substitution. We define the subject of σ, sub(σ) and the object of σ, obj(σ), by:

sub(σ)
def
= {α ∈ A | σ(α) 6= α}

obj(σ)
def
= {β ∈ A | β 6= α, σ(α) = β}

If sub(σ) ∩ Act(P ) = ∅ then σ(P ) ≡ P .
Proof We prove it by induction on P .

The case P ≡ 0: by definition, σ(0) ≡ 0.
The case P ≡ α.Q: σ(P ) ≡ σ(α).σ(Q). But α ∈ Act(P ), and because Act(P ) ∩ sub(σ) = ∅,
we obtain α 6∈ sub(σ), hence σ(α) = α. But then σ(P ) ≡ α.σ(Q). Further Act(Q) ⊂ Act(P ),
i.e. Act(Q) ∩ sub(σ) = ∅ and we can apply the inductive hypothesis that provides σ(Q) ≡ Q, so
σ(P ) ≡ α.Q, q.e.d.
The case P ≡ Q|R: σ(P ) ≡ σ(Q)|σ(R). But Act(Q), Act(R) ⊂ Act(P ), hence Act(Q)∩sub(σ) =
Act(R) ∩ sub(σ) = ∅. Hence we can apply the inductive hypothesis that provides σ(Q) ≡ Q and
σ(R) ≡ R, thus σ(P ) ≡ Q|R ≡ P . 2

If obj(σ) ∩ Act(P ) = ∅ then σ(Q) ≡ P implies Q ≡ P .
Proof We prove it by induction on P .

If P ≡ 0: if Q 6≡ 0 then Q ≡ α.Q′|Q′′, thus σ(Q) ≡ σ(α).σ(Q′)|σ(Q′′) 6≡ 0. Impossible.
If P 6≡ 0: Suppose that

P ≡ α1.P1|...|αn.Pn
and

Q ≡ β1.Q1|...|βm.Qm

Then σ(Q) ≡ σ(β1).σ(Q1)|...|σ(βm).σ(Qm) and

α1.P1|...|αn.Pn ≡ σ(β1).σ(Q1)|...|σ(βm).σ(Qm)

But then m = n and for each i = 1..n there exists j = 1..n such that αi.Pi ≡ σ(βj).σ(Qj),
thus αi = σ(βj). But from obj(σ) ∩ Act(P ) = ∅ we derive σ(βj) = βj = αi. Further, from
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αi.Pi ≡ σ(βj).σ(Qj) we infer Pi ≡ σ(Qj), and since Act(Pi) ⊂ Act(P ), we can use the inductive
hypothesis and derive Pi ≡ Qj . Thus P ≡ Q. 2

If σ(P ) ≡ Q|R then there exist processes Q′, R′ such that P ≡ Q′|R′, with σ(Q′) ≡ Q and
σ(R′) ≡ R.

Proof Suppose that P ≡ α1.P1|...|αn.Pn. Then

σ(P ) ≡ σ(α1).σ(P1)|...|σ(αn).σ(Pn) ≡ Q|R

We can suppose, without loosing generality, that

Q ≡ σ(α1).σ(P1)|...|σ(αi).σ(Pi)

R ≡ σ(αi+1).σ(Pi+1)|...|σ(αn).σ(Pn)

Then we can define Q′ ≡ α1.P1|...|αi.Pi and R′ ≡ αi+1.Pi+1|...|αn.Pn. 2

If P 6≡ R|Q and obj(σ) ∩ Act(R) = ∅, then σ(P ) 6≡ R|S.
Proof Suppose that σ(P ) ≡ R|S for some S. Then, by the theorem 2.4, there exists R′, S ′ such

that P ≡ S ′|R′ and σ(R′) ≡ R, σ(S ′) ≡ S. But because obj(σ) ∩ Act(R) = ∅ and σ(R′) ≡ R, we
derive, applying the theorem 2.4, that R′ ≡ R, hence P ≡ R|S ′. But this contradicts the hypothesis
of the theorem. So, there is no S such that σ(P ) ≡ R|S. 2

3 Contexts
In this section we introduce the contexts, sets of processes that will be used to evaluate formulas of
our logics. The intuition is that a contextM is a (possibly infinite) set of processes that contains, in
a maximal manner, any process representing a possible state of our system or of a subsystem of our
system. Hence if a process belongs to a context then any process obtained by pruning its syntactic
tree, in any way7, should belong to the context, as it might represent a subsystem. For the same
reason, the context should be also closed to transitions.

It is useful in this point to define some operations on sets of processes.
For any sets of processes M,N ⊂ P and any α ∈ A we define:
α.M

def
= {α.P | P ∈M} M |N def

= {P |Q | P ∈M,Q ∈ N}
As we speak about processes up to structural congruence, the parallel operator on sets of processes
will be commutative, associative and will have {0} as null.

We associate further to each process P the set π(P ) of all processes obtained by pruning, in the
most general way, the syntactic tree of P .

7We do not refer here on bound pruning only, but on any possible pruning of the syntactic tree.
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For P ∈ P we define8 π(P ) ⊂ P inductively by:
1. π(0)

def
= {0} 2. π(α.P )

def
= {0} ∪ α.π(P ) 3. π(P |Q)

def
= π(P )|π(Q)

We extend the definition of π to sets of processes M ⊂ P by π(M)
def
=

⋃
P∈M π(P ).

The next assertions hold:

1. P ∈ π(P ) 2. 0 ∈ π(P ) 3. P ∈ π(P |Q) 4. P(h,w) ∈ π(P )

Proof 1. We prove it by induction on P

• if P ≡ 0 then π(P ) = {0} 3 0 ≡ P

• if P ≡ α.Q then π(P ) = {0} ∪ α.π(Q). But the inductive hypothesis gives Q ∈ π(Q), hence
α.Q ∈ α.π(Q) ⊂ π(P ).

• if P ≡ Q|R then π(P ) = π(Q)|π(R). The inductive hypothesis provide Q ∈ π(Q) and
R ∈ π(R), hence P ≡ Q|R ∈ π(Q)|π(R) = π(P ).

2. We prove it by induction on P .

• if P ≡ 0 we have, by definition, π(P ) = {0} 3 0

• if P ≡ α.Q then π(P ) = {0} ∪ α.π(Q) 3 0.

• if P ≡ Q|R then π(P ) = π(Q)|π(R). The inductive hypothesis provide 0 ∈ π(Q) and
0 ∈ π(R), hence 0 ≡ 0|0 ∈ π(Q)|π(R) = π(P ).

3. We have π(P |Q) = π(P )|π(Q). But P ∈ π(P ) and 0 ∈ π(Q), hence P ≡ P |0 ∈ π(P )|π(Q) =
π(P |Q).
4. We prove the theorem by induction on the structure of P .

• if P ≡ 0: we have P(h,w) ≡ 0 ∈ {0} = π(P ) for any (h,w).

• if P ≡ α.Q: we distinguish two more cases:
if w = 0 then P(h,0) ≡ 0 ∈ π(P )
if w 6= 0 then (α.Q)(h,w) ≡ α.Q(h−1,w) by the construction of the adjusted processes. If we
apply the inductive hypothesis we obtain that Q(h−1,w) ∈ π(Q), hence (α.Q)(h,w) ∈ α.π(Q) ⊂
π(P ).

• if P ≡ (α.Q)k: we have P(h,w) ≡ (α.Q(h−1,w))
l where l = min(k, w), by the construction of

the adjusted processes. The inductive hypothesis gives Q(h−1,w) ∈ π(Q), hence α.Q(h−1,w) ∈
α.π(Q) ⊂ π(α.Q). But because 0 ∈ π(α.Q) and

P(h,w) ≡ α.Q(h−1,w)|...|α.Q(h−1,w)︸ ︷︷ ︸
l

| 0|...|0︸ ︷︷ ︸
k−l

8We consider also π(P ) defined up to structural congruence.
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we obtain
P(h,w) ∈ π(α.Q)|...|π(α.Q)︸ ︷︷ ︸

k

= π(P )

• if P ≡ (α1.P1)
k1 |...|(αn.Pn)kn with n ≥ 2: we split it in two subprocessesQ ≡ (α1.P1)

k1|...|(αi.Pi)ki
and R ≡ (αi+1.Pi+1)

ki+1|...|(αn.Pn)kn . By the way we split the process P we will have
P(h,w) ≡ Q(h,w)|R(h,w) and using the inductive hypothesis on Q and R we derive P(h,w) ≡
Q(h,w)|R(h,w) ∈ π(Q)|π(R) = π(P ).

2

1. Act(π(P )) ⊆ Act(P ) 2. If P toQ then Act(Q) ⊆ Act(P ).
Proof 1. We prove it by induction on P .

if P ≡ 0 then Act(π(P )) = Act(∅) = ∅ ⊆ Act(P ).
if P ≡ α.Q then Act(π(P )) = Act({0} ∪ α.π(Q)) = Act(α.π(Q)) = {α} ∪ Act(π(Q)). By induc-
tive hypothesis, Act(π(Q)) ⊆ Act(Q), hence Act(π(P )) ⊆ {α} ∪ Act(Q) = Act(P ).
if P ≡ Q|R thenAct(π(P )) = Act(π(Q)|π(R)) = Act(π(Q))∪Act(π(R)). Using the inductive hy-
pothesis, Act(π(Q)) ⊆ Act(Q) and Act(π(R)) ⊆ Act(R), hence Act(π(P )) ⊆ Act(Q) ∪ Act(R) =
Act(Q|R) = Act(P ).
2. If P toQ then P ≡ α.Q1|Q2 and Q ≡ Q1|Q2. Then Act(Q) = Act(Q1) ∪ Act(Q2) ⊆ {α} ∪
Act(Q1) ∪ Act(Q2) = Act(P ). 2

π(π(P )) = π(P ).
Proof We prove it by induction on P .

The case P ≡ 0: π(π(0)) = π({0}) = π(0)
The case P ≡ α.Q: π(π(α.Q)) = π({0} ∪ α.π(Q)) = π(0) ∪ π(α.π(Q)) = {0} ∪ α.π(π(Q)).
Now we can use the inductive hypothesis and we obtain π(π(Q)) = π(Q). Hence π(π(α.Q)) =
{0} ∪ α.π(Q) = π(α.Q) = π(P ).
The case P ≡ Q|R: π(π(P )) = π(π(Q|R)) = π(π(Q)|π(R)) = π(π(Q))|π(π(R)). Now we ca
apply the inductive hypothesis on Q and R and obtain π(π(P )) = π(Q)|π(R) = π(Q|R) = π(P ).

2

If Q ∈ π(P ) then π(Q) ⊂ π(P ).
Proof Q ∈ π(P ) implies π(Q) ⊂ π(π(P )), and applying the theorem 3, we obtain π(Q) ⊂ π(P ).

2

If σ is a substitution, then π(σ(P )) = σ(π(P )).
Proof We prove it by induction on P .

The case P ≡ 0: π(σ(P )) = π(0) = {0} = σ({0}) = σ(π(P )).
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The case P ≡ α.Q: π(σ(P )) = π(σ(α).σ(Q)) = {0}∪ σ(α).π(σ(Q)). But the inductive hypothesis
gives π(σ(Q)) = σ(π(Q)), hence

π(σ(P )) = {0} ∪ σ(α).σ(π(Q))

from the other side, σ(π(P )) = σ({0} ∪ α.π(Q)) = {0} ∪ σ(α).σ(π(Q)).
The case P ≡ Q|R: π(σ(Q|R)) = π(σ(Q)|σ(R)) = π(sigma(Q))|π(σ(R)). But the inductive hy-
pothesis gives π(σ(Q)) = σ(π(Q)) and π(σ(R)) = σ(π(R)). Hence π(σ(P )) = σ(π(Q))|σ(π(R)) =
σ(π(Q)|π(R)) = σ(π(P )). 2

These being proved, we can propose the definition of context:
[Context] A context is a nonempty setM⊆ P of processes such that

• if P ∈M and P −→ P ′ then P ′ ∈M

• if P ∈M then π(P ) ⊂M

IfM is a context and σ a substitution, thenMσ is a context.
Proof Let P ∈ Mσ. Then it exists a process Q ∈ M such that σ(Q) ≡ P . Then π(P ) =

π(σ(Q)), and using theorem 3 we derive π(P ) = σ(π(Q)). But Q ∈ M implies π(Q) ⊂ M, thus
σ(π(Q)) ⊂Mσ. Then π(P ) ⊂Mσ.
Let P ∈Mσ and P toP ′. Then it exists Q ∈M such that σ(Q) ≡ P . Suppose that

Q ≡ α1.Q1|...|αk.Qk

then
P ≡ σ(Q) ≡ σ(α1).σ(Q1)|...|σ(αk).σ(Qk)

But then P toP ′ gives that it exists i = 1..k such that

P ′ ≡ σ(α1).σ(Q1)|...|σ(αi−1).σ(Qi−1) | σ(Qi) | σ(αi+1).σ(Qi+1)|...|σ(αk).σ(Qk)

and if we define
Q′ ≡ α1.Q1|...|αi−1.Qi−1 | Qi | αi+1.Qi+1|...|αk.Qk

we obtain QtoQ′ (i.e. Q′ ∈M) and σ(Q′) ≡ P ′. Hence P ′ ∈Mσ. 2

Observe that, due to the closure clauses in definition 3, we can consider the possibility to define
systems of generators for a context, as a class of processes that, using the rules in definition 3 can
generate the full context.

[System of generators for a context] We say that the set M ⊂ P is a system of generators for the
contextM ifM is the smallest context that contains M . We denote this by M =M.

If M ∈ P is a finite set of processes, then M is a finite context.
Proof Trivial. 2
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3.1 Structural bisimulation on contexts
We extend the definitions of structural bisimulation from processes to contexts. This will allow us to
prove the context pruning theorem, a result similar to the bound pruning theorem proved for processes.

[Structural bisimulation over contexts] LetM,N be two contexts. We writeM≈wh N iff
1. for any P ∈M there is a Q ∈ N with P ≈wh Q
2. for any Q ∈ N there is a P ∈M with P ≈wh Q

We convey to write (M, P ) ≈wh (N , Q) for the case when P ∈M, Q ∈ N , P ≈wh Q andM≈wh N .
[Antimonotonicity over contexts] IfM≈wh N and (h′, w′) ≤ (h,w) thenM≈w′h′ N .
Proof For any process P ∈ M there exists a process Q ∈ N such that P ≈wh Q and using

theorem 2.2 we obtain P ≈w′h′ Q. And the same if we start from a process Q ∈ N . These proves that
M≈w′h′ N . 2

3.2 Pruning contexts
As for processes, we can define the pruning of a context M as the context generated by the set of
pruned processes ofM, taken as system of generators.

[Pruning contexts] For any contextM and any (h,w) we define

M(h,w)
def
= {P(h,w) | P ∈M}

For any contextM, and any size (h,w) we haveM(h,w) ≈hwM.
Proof Denote by

M = {P(h,w) | P ∈M}
Let P ∈M. Then it exists a process Q ∈M(h,w), more exactly Q ≡ P(h,w) such that P ≈hw Q.
Let Q ∈ M(h,w). Since M is the smallest context containing M , and because, by construction,
M ⊆ M we derive that M ⊆ M. Hence, for any process Q ∈ M there is a process P ∈ M, more
exactly P ≡ Q such that P ≈hw Q (since P ≡ Q implies P ≈hw Q). 2

For any contextM and any size (h,w) we have Act(M(h,w)) ⊆ Act(M).
Proof As P(h,w) ∈ π(P ) for any process P ∈ M and any (h,w), by theorem 3, we obtain, by

applying theorem 3, Act(P(h,w)) ⊆ Act(M), hence Act({P(h,w) | P ∈ M}) ⊆ Act(M). Further
applying again theorem 3, we trivially derive the desired result. 2

Let A ⊂ A. We denote by MA
(h,w) the set of all contexts generated by systems with the size at

most (h,w) and the actions in A:

MA
(h,w)

def
= {M ⊂ P | Act(M) ⊆ A, M ≤ (h,w)}
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If A ⊂ A is a finite set of actions, then the following hold:

1. IfM∈MA
(h,w) thenM is a finite context.

2. MA
(h,w) is finite.

Proof 1.: IfM ∈MA
(h,w) thenM = M , M ≤ (h,w) and Act(M) ⊂ A. Thus M ⊂ PA

(h,w). But
PA

(h,w) is finite, by theorem 2.4. Thus, by theorem 3, M =M is a finite context.
2.: As PA

(h,w) is finite by theorem 2.4, the set of its subsets is finite, and as all the elements of
MA

(h,w) are generated by subsets of PA
(h,w), we obtain that MA

(h,w) is finite. 2

[Pruning theorem] LetM be a context. Then for any (h,w) there is a contextN ∈M
Act(M)
(h,w) such

thatM≈wh N .
Proof The contextN =M(h,w) fulfills the requirements of the theorem, by construction. Indeed,

it is a context, and it is generated by the set N = {P(h,w) | P ∈ M}. Moreover N ≤ (h,w) and, by
theorem 3.2, Act(M(h,w)) ⊆ Act(M). Hence N ∈M

Act(M)
(h,w) . 2

4 Dynamic Epistemic Spatial Logic
In this section we introduce Dynamic Epistemic Spatial Logic, LS

DES , which extends Hennessy-
Milner logic with the parallel operator and epistemic operators. The intuition is to define the knowl-
edge of the process P in the contextM as the common properties of the processes inM that contain
P as subprocess. If we think to the epistemic agent as to an observer that can see only the process P ,
then its knowledge about any state of global system concerns only P . Thus, for it, the global states
P |Q and P |R looks indistinguishable. Hence the knowledge implies a kind of universal quantifier
overM, sinceKPφ, if is satisfied by a process P |Q, then it is satisfied by any process P |R ∈M. We
find this enough for expressing most of the properties considered in the spatial logic literature, which
required the use of the guarantee operator.

By using the structural bisimulation and pruning method, we will prove the finite model prop-
erty for LS

DES in relation to the semantics we considered. Consequently, we obtain decidability for
satisfiability/validity and model checking.

For LS
DES we will develop a Hilbert-style axiomatic system that will be proved to be sound and

complete with respect to process semantics. Thus we identify the main axioms and rules that regular-
ize the behavior of the classical, spatial, dynamic and epistemic logical operators. We will stress the
similarities between our axioms and the classical axioms of epistemic logic, and we will prove some
meaningful theorems.

Combined with the decidability, the properties of soundness and completeness make our logic a
useful tool in analyzing complex multi-agent systems.
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To introduce epistemic operators into our syntax we need to specify, for the beginning, the epis-
temic agents. As in classic epistemic logic, we may start with a class of agents, each agent pointing
to a predefined subsystem (subprocess) of the system we consider. In this respect, we should consider
quite a large class of agents, also for the processes that are not active in the current state but might be
activated in future.

Hence for a system containing an agent associated with the process α.P |Q, we might want to have
also agents associated with α.P , P , P |Q and Q respectively.

To avoid a syntax that is too complex, we decided to identify the agents with the processes they
represent. Hence, in our logic the class of epistemic agents is just a subclass of P. We will call this
class signature, as it contains processes that will be part of the syntax as indexes of the epistemic
agents. To denote the signature of our logic we will use the symbol S.

[Signature] A signature over P is a set of processes S ⊂ P, hereafter called epistemic agents,
satisfying the conditions:

• if P |Q ∈ S then P,Q ∈ S

• if P ∈ S and P −→ Q, then Q ∈ S

Observe that, by the previous definition, any signature S contains 0.

4.1 Syntax of LS
DES

[Syntax of LS
DES] Let S be a signature over P. We define the language of Dynamic Epistemic Spatial

Logic over S, FS
DES , by the following grammar:

φ := 0 | > | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | KQφ

where Q ∈ S and α ∈ A.
Anticipating the semantics, we will outline here the intuition that motivates the choice of the

formulas. Mainly it is similar to that of Hennessy-Milner and spatial logics.
The formula 0 is meant to characterize any process structurally congruent with 0 (and only these)

in any context, expressing “there is no activity here”. It should not be confused with “false”.9

> will be satisfied by any process in any context.
The reason for introducing the parallel operator φ|ψ is that we want to be able to express, as in

other spatial logics, the situation in which our system is composed by two parallel subsystems, one
satisfying φ and the other satisfying ψ.

The dynamic-like operator 〈α〉φ is meant to be used, as in Hennessy-Milner logic, to speak about
the transitions of our system. It expresses “the system may perform the action α thus meeting a state
described by φ”.

We associate to each process P ∈ S an epistemic operator KPφ meaning the agent (process)
P knows φ. Obviously, for our agents the notion of knowledge is different than in the standard

9We insist on this aspect as some syntaxes of classical logic use 0 for denoting false. This is not our intention. We use
⊥ to denote false.
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approaches to intelligent agents, in the sense that we do not expect our agents to answer questions
concerning their knowledge or to compute it. The knowledge of the agent P in a contextM is strictly
related to the spectrum of actions P can perform in this environment.

In our approach an inactive agent does not have a knowledge. This is an expected fact, as an
inactive agent does not exist. Indeed, approaching systems from the point of view of behavior, to be
is to behave. This aspect is new for the class of epistemic logic where, always, all the agents exist and
know at least the tautologies.

[Derived operators] In addition we introduce some derived operators:

1. ⊥ def
= ¬> 4. [α]φ

def
= ¬(〈α〉(¬φ)) 6. 〈!α〉ψ def

= (〈α〉ψ) ∧ 1

2. φ ∨ ψ def
= ¬((¬φ) ∧ (¬ψ)) 5. 1

def
= ¬((¬0) | (¬0)) 7.

∼
KQφ

def
= ¬KQ¬φ

3. φ→ ψ
def
= (¬φ) ∨ ψ

We could also introduce, for each action α, a derived operator10 〈α, α〉 to express communication by
α, supposing that we have defined an involution co : A −→ A which associates to each action α its
co-action α:

〈α, α〉φ def
=

∨
φ↔φ1|φ2

〈α〉φ1|〈α〉φ2

⊥ will be used to express the inconsistent behavior of the system. For this reason no process, in
any context, will satisfy ⊥.

The dynamic-like operator [α]φ, the dual operator of 〈α〉φ, expresses the situation where either
the system cannot perform α, or if the system can perform α then any future state that can be reached
by performing α can be described by φ.

The formula 1 is meant to describe the situation in which the system cannot be decomposed into
two non-trivial subsystems. 1 can describe also the trivial system 0.

The formula 〈!α〉ψ expresses a process guarded by α, which, after consuming α, will satisfy ψ.
We convey that the precedence order of the operators in the syntax ofLS

DES is¬, KQ, 〈α〉, |,∧ ,∨ ,→
where ¬ has precedence over all the other operators.

4.2 Process semantics
A formula ofFS

DES will be evaluated to processes in a given context, by mean of a satisfaction relation
M, P |= φ.

[Models and satisfaction] A model of LS
DES is a contextM for which we define the satisfaction

relation, for P ∈M, as follows:
M, P |= > always
M, P |= 0 iff P ≡ 0

10The disjunction is considered up to logically-equivalent decompositions φ↔ φ1|φ2 that ensures the use of a finitary
formula.
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M, P |= ¬φ iffM, P 2 φ
M, P |= φ ∧ ψ iffM, P |= φ andM, P |= ψ
M, P |= φ|ψ iff P ≡ Q|R andM, Q |= φ,M, R |= ψ
M, P |= 〈α〉φ iff there exists a transition P α−→ P ′ andM, P ′ |= φ
M, P |= KQφ iff P ≡ Q|R and ∀Q|R′ ∈M we haveM, Q|R′ |= φ

Then the semantics of the derived operators will be:
M, P |= [α]φ iff for any P ′ ∈M such that P α−→ P ′ (if any),M, P ′ |= φ
M, P |= 1 iff P ≡ 0 or P ≡ α.Q (P is null or guarded)
M, P |= 〈!α〉φ iff P ≡ α.Q andM, Q |= φ

M, P |=
∼
KQφ iff either P 6≡ Q|R for any R, or it exists Q|S ∈M such thatM, Q|S |= φ

Remark the interesting semantics of the operators K0 and
∼
K0:

M, P |= K0φ iff for any Q ∈M we haveM, Q |= φ

M, P |=
∼
K0φ iff it exists a process Q ∈M such thatM, Q |= φ

If a process P ∈ M satisfies K0φ then φ is valid inM (the same about K0φ) and vice versa. Hence
we can encode, in the syntax, the validity with respect to a given context.

If a process P ∈ M satisfies
∼
K0φ (then all the processes inM satisfy

∼
K0φ) then it exists a process

Q ∈ M that satisfies φ and vice versa. Hence
∼
K0φ provides a way to encode the satisfiability with

respect to a given model.

In the end of this section we recall some classic definitions.
We call a formula φ ∈ FS

DES satisfiable if there exists a contextM and a process P ∈ M such
thatM, P |= φ.
We call a formula φ ∈ FS

DES validity if for any context M and any process P ∈ M we have
M, P |= φ. In such a situation we write |= φ.
Given a contextM, we denote byM |= φ the situation when for any P ∈M we haveM, P |= φ.

φ is satisfiable iff ¬φ is not a validity, and vice versa, φ is a validity iff ¬φ is not satisfiable.

4.3 Finite model property and decidability
Now we prove the finite model property for our logic that will entail the decidability against the
process semantics. To prove the finite model property means to prove that it exists, for a formula φ,
a finite class Cφ of couples (M, P ) with M context and P ∈ M such that if φ is satisfiable then,
necessarily, an element (M, P ) ∈ Cφ exists such thatM, P |= φ. Anticipating, we define a size for
φ; then we prove that ifM, P |= φ then substituting, by σ, all the actions inM (and implicitly in
P ) that are not in the syntax of φ (as indexes of dynamic operators) by a fixed action with the same
property, and then pruning Mσ and P σ to the size of φ we will obtain a couple (N , Q) such that
N , Q |= φ. The fixed action of substitution can be chosen as the successor11 of the maximum action
of φ, which is unique. Hence N ∈MA

(h,w) where (h,w) is the size of φ and A is the set of actions of

11We consider defined, on the class of actions A, a lexicographical order.
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φ augmented with the successor of its maximum, thus A is finite. But then theorem 3.2 ensures that
the set of pairs (N , Q), with this property, is finite.

[Size of a formula] We define the sizes of a formula, φ (height and width), inductively on FS
DES ,

by:
1. 0 = > def

= (0, 0) 2. ¬φ def
= φ

and supposing that φ = (h,w), ψ = (h′, w′) and R = (hR, wR) we define further:

3. φ ∧ ψ def
= (max(h, h′),max(w,w′)) 4. φ|ψ def

= (max(h, h′), w + w′)

5. 〈α〉φ def
= (1 + h, 1 + w) 6. KRφ

def
= (1 +max(h, hR), 1 +max(w,wR))

The next theorem states that φ is “sensitive” via satisfaction only up to size φ. In other words, the
relation M, P |= φ is conserved by substituting the couple (M,P ) with any other couple (N,P )
structurally bisimilar to it at the size φ.

[Extending the structural bisimulation] We write (M, P ) ≈wh (N , Q) for the case when P ∈ M,
Q ∈ N , P ≈wh Q andM≈wh N .

If φ = (h,w),M, P |= φ and (M, P ) ≈wh (N , Q) then N , Q |= φ.
Proof We prove it by induction on the syntactical structure of φ.

• The case φ = 0: φ = (1, 1).
M, P |= 0 implies P ≡ 0.
As P ≈1

1 Q we should have Q ≡ 0 as well, because else Q ≡ α.Q′|Q′′ asks for P ≡ α.P ′|P ′′
for some P ′, P ′′, but this is impossible because P ≡ 0.
So Q ≡ 0 ∈ N and we have N , Q |= 0, q.e.d.

• The case φ = >: is a trivial case as N , Q |= > always.

• The case φ = φ1∧φ2: denote by (hi, wi) = φi for i = 1, 2. Then we have φ = (max(h1, h2),max(w1, w2)).

M, P |= φ is equivalent withM, P |= φ1 andM, P |= φ2.

Because (M, P ) ≈max(w1,w2)
max(h1,h2) (N , Q) we obtain, by using theorem 3.1, that (M, P ) ≈w1

h1

(N , Q) and (M, P ) ≈w2
h2

(N , Q).

Now (M, P ) ≈w1
h1

(N , Q) andM, P |= φ1 give, by inductive hypothesis, N , Q |= φ1, while
(M, P ) ≈w2

h2
(N , Q) andM, P |= φ2 give, by inductive hypothesis N , Q |= φ2.

Hence N , Q |= φ1 ∧ φ2, q.e.d.

• The case φ = ¬φ′: φ = φ′ = (h,w).

We haveM, P |= ¬φ′ and (M, P ) ≈wh (N , Q).

If N , Q 6|= ¬φ′, then N , Q |= ¬¬φ′, i.e. N , Q |= φ′.
Because (M, P ) ≈wh (N , Q) and N , Q |= φ′, the inductive hypothesis gives thatM, P |= φ′,
which combined withM, P |= ¬φ′ givesM, P |= ⊥ - impossible. Hence N , Q |= ¬φ′.
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• The case φ = φ1|φ2: suppose that φi = (hi, wi) for i = 1, 2. Then φ = (max(h1, h2), w1+w2).

Further,M, P |= φ1|φ2 requires P ≡ P1|P2, withM, P1 |= φ1 andM, P2 |= φ2.

As (M, P ) ≈w1+w2

max(h1,h2) (N , Q) we obtain P ≈w1+w2

max(h1,h2) Q. Than, from P ≡ P1|P2, using
theorem 2.2, we obtain Q ≡ Q1|Q2 and Pi ≈wimax(h1,h2) Qi for i = 1, 2. Hence, using theorem
3.1,
(M, Pi) ≈wimax(h1,h2) (N , Qi). Further, using again theorem 3.1, we obtain (M, Pi) ≈wihi
(N , Qi), and using the inductive hypothesis,
N , Q1 |= φ1 and N , Q2 |= φ2. Hence N , Q |= φ.

• The case φ = 〈α〉φ′: suppose that φ′ = (h′, w′). We have 〈α〉φ′ = (1 + h′, 1 + w′).

M, P |= 〈α〉φ′ means that P α−→ P ′ andM, P ′ |= φ′.

Now (M, P ) ≈1+w′

1+h′ (N , Q) gives P ≈1+w′

1+h′ Q, and using theorem 2.2, we obtain thatQ α−→ Q′

and P ′ ≈w′h′ Q′.
But (M, P ) ≈1+w′

1+h′ (N , Q) gives alsoM ≈w′+1
h′+1 N , so using theorem 3.1,M ≈w′h′ N . Hence

(M, P ′) ≈w′h′ (N , Q′).

Now fromM, P ′ |= φ′ and (M, P ′) ≈w′h′ (N , Q′), we obtain, by using the inductive hypothesis,
that N , Q′ |= φ′, and as Q α−→ Q′, we obtain further that N , Q |= φ.

• The case φ = KRφ
′ with R ∈ S: suppose that φ′ = (h′, w′) and R = (hR, wR).

Then KRφ
′ = (1 +max(h′, hR), 1 +max(w′, wR)).

NowM, P |= KRφ
′ gives P ≡ R|P ′ and for any R|S ∈M we haveM, R|S |= φ′.

As (M, P ) ≈1+max(w′,wR)
1+max(h′,hR) (N , Q) then P ≈1+max(w′,wR)

1+max(h′,hR) Q and because P ≡ R|P ′ and R =

(hR, wR) < (1+max(h′, hR), 1+max(w′, wR)), we obtain, using theorem 2.2, thatQ ≡ R|Q′.

LetR|S ′ ∈ N be an arbitrary process. BecauseM≈1+max(w′,wR)
1+max(h′,hR) N we obtain that exists a pro-

cess P ′′ ∈M such that P ′′ ≈1+max(w′,wR)
1+max(h′,hR) R|S ′. ButR < (1+max(h′, hR), 1+max(w′, wR)),

so, using theorem 2.2, P ′′ ≡ R|S ′′.
ThenM, R|S ′′ |= φ′, asM, R|S |= φ′ for any R|S ∈M.

From the other side, (M, P ) ≈1+max(w′,wR)
1+max(h′,hR) (N , Q) gives, using theorem 3.1, (M, P ) ≈w′h′

(N , Q) where from we obtainM≈w′h′ N .

Also R|S ′′ ≈1+max(w′,wR)
1+max(h′,hR) R|S ′ gives R|S ′′ ≈w′h′ R|S ′, i.e. (M, R|S ′′) ≈w′h′ (N , R|S ′).

NowM, R|S ′′ |= φ′ and (M, R|S ′′) ≈w′h′ (N , R|S ′) give, using the inductive hypothesis, that
N , R|S ′ |= φ′.

Concluding, we obtained that Q ≡ R|Q′ and for any R|S ′ ∈ N we have N , R|S ′ |= φ′. These
two give N , Q |= KRφ

′ q.e.d.
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Now, using this lemma, we conclude that if a process, in a context, satisfies φ then by pruning the
process and the context on the size φ, we still have satisfiability for φ.

IfM, P |= φ thenMφ, Pφ |= φ.
Proof Let φ = (h,w). By contexts pruning theorem 3.2, we haveM ≈hw M(h,w). By process

pruning theorem 2.3, we have P ≈hw P(h,w) and P(h,w) ∈M(h,w). Hence (M, P ) ≈hw (M(h,w), P(h,w)).
Further lemma 4.3 establishesM(h,w), P(h,w) |= φ q.e.d. 2

[The set of actions of a formula] We define the set of actions of a formula φ, act(φ) ⊂ A, induc-
tively by:
1. act(0)

def
= ∅ 3. act(φ ∧ ψ) = act(φ|ψ)

def
= act(φ) ∪ act(ψ) 5. act(KRφ)

def
= Act(R) ∪ act(φ)

2. act(>)
def
= ∅ 4. act(¬φ) = act(φ) 6. act(〈α〉φ)

def
= {α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involves more then the
actions in its syntax. Thus ifM, P |= φ then any substitution σ having the elements of act(φ) as fix
points preserves the satisfaction relation, i.e.Mσ, P σ |= φ.

IfM, P |= φ and σ is a substitution with act(σ)
⋂
act(φ) = ∅ thenMσ, P σ |= φ.

Proof We prove, simultaneously, by induction on φ, that

1. ifM, P |= φ then σ(M), σ(P ) |= φ

2. ifM, P 6|= φ then σ(M), σ(P ) 6|= φ

The case φ = 0:

1. M, P |= 0 iff P ≡ 0. Then σ(P ) ≡ 0 and σ(M), σ(0) |= 0 q.e.d.

2. M, P 6|= 0 iff P 6≡ 0, iff σ(P ) 6≡ 0. Hence σ(M), σ(P ) 6|= 0.

The case φ = >:

1. M, P |= > implies σ(M), σ(P ) |= >, because this is happening for any context and process.

2. M, P 6|= > is an impossible case.

The case φ = ψ1 ∧ ψ2:

1. M, P |= ψ1 ∧ ψ2 implies thatM, P |= ψ1 andM, P |= ψ2. Because act(σ) ∩ act(φ) = ∅ we
derive that act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Further, applying the inductive
hypothesis, we obtainMσ, P σ |= ψ1 andMσ, P σ |= ψ2 that impliesMσ, P σ |= ψ1 ∧ ψ2.
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2. M, P 6|= ψ1 ∧ ψ2 implies thatM, P 6|= ψ1 orM, P 6|= ψ2. But, as argued before, act(σ) ∩
act(ψ1) = ∅ and act(σ)∩act(ψ2) = ∅, hence we can apply the inductive hypothesis that entails
Mσ, P σ 6|= ψ1 orMσ, P σ 6|= ψ2. ThusMσ, P σ 6|= ψ1 ∧ ψ2.

The case φ = ¬ψ:

1. M, P |= ¬ψ is equivalent withM, P 6|= ψ and because act(σ) ∩ act(φ) = ∅ guarantees that
act(σ) ∩ act(ψ) = ∅, we ca apply the inductive hypothesis and we obtain σ(M), σ(P ) 6|= ψ
which is equivalent with σ(M), σ(P ) |= ¬ψ.

2. M, P 6|= ¬ψ is equivalent withM, P |= ψ and applying the inductive hypothesis, σ(M), σ(P ) |=
ψ, i.e. σ(M), σ(P ) 6|= ¬ψ.

The case φ = ψ1|ψ2:

1. M, P |= ψ1|ψ2 implies that P ≡ Q|R,M, Q |= ψ1 andM, R |= ψ2. As act(σ) ∩ act(φ) = ∅
we have act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Then we can apply the inductive
hypothesis and obtain σ(M), σ(Q) |= ψ1 and σ(M), σ(R) |= ψ2. But σ(P ) ≡ σ(Q)|σ(R),
hence σ(M), σ(P ) |= φ.

2. M, P 6|= ψ1|ψ2 implies that for any decomposition P ≡ Q|R we have eitherM, Q 6|= ψ1 or
M, R 6|= ψ2. But, as before, from act(σ) ∩ act(φ) = ∅ guarantees that act(σ) ∩ act(ψ1) = ∅
and act(σ)∩ act(ψ2) = ∅. Hence, we can apply the inductive hypothesis and consequently, for
any decomposition P ≡ Q|R we have either σ(M), σ(Q) 6|= ψ1 or σ(M), σ(R) 6|= ψ2.
Consider any arbitrary decomposition σ(P ) ≡ P ′|P ′′. By theorem 2.4, there exists P ≡ Q|R
such that σ(Q) ≡ P ′ and σ(R) ≡ P ′′. Thus either σ(M), P ′ 6|= ψ1 or σ(M), P ′′ 6|= ψ2. Hence
σ(M), σ(P ) 6|= ψ1|ψ2.

The case φ = 〈γ〉ψ:

1. M, P |= 〈γ〉ψ means that there is a transition P
γ

toQ and M, Q |= ψ. Because act(σ) ∩
act(〈γ〉ψ) = ∅ implies act(σ) ∩ act(ψ) = ∅. We can apply the inductive hypothesis and

derive σ(M), σ(Q) |= ψ. As P
γ

toQ we have P ≡ γ.P ′|P ′′ and Q ≡ P ′|P ′′. This mean that
σ(P ) ≡ σ(γ).σ(P ′)|σ(P ′′). Now act(σ) ∩ act(〈γ〉ψ) = ∅ ensures that σ(γ) = γ. So σ(P ) ≡
γ.σ(P ′)|σ(P ′′) and σ(Q) ≡ σ(P ′)|σ(P ′′). Hence σ(P )

γ

toσ(Q). Now because σ(M), σ(Q) |=
ψ, we derive σ(M), σ(P ) |= 〈γ〉ψ.

2. M, P 6|= 〈γ〉ψ implies one of two cases: either there is no transition of P by γ, or there is such

a transition and for any transition P
γ

toQ we haveM, Q 6|= ψ.
If there is no transition of P by γ then P ≡ α1.P1|...|αk.Pk with αi 6= γ for each i 6= 1..k.
Because σ(P ) ≡ σ(α1).σ(P1)|...|σ(αk).σ(Pk), and because γ 6= αi, and γ 6∈ act(σ), we can
state that γ 6= σ(αi), hence σ(P ) cannot perform a transition by γ. Thus σ(M), σ(P ) 6|= 〈γ〉ψ.

If there are transitions of P by γ, and for any such a transition P
γ

toQ we have M, Q 6|= ψ:
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then, because from act(σ) ∩ act(〈γ〉ψ) = ∅ we can derive act(σ) ∩ act(ψ) = ∅, the inductive
hypothesis can be applied and we obtain σ(M), σ(Q) 6|= ψ. But because γ 6∈ act(σ) we obtain

σ(γ) = γ and σ(P )
γ

toσ(Q). Hence σ(M), σ(P ) 6|= 〈γ〉ψ.

The case φ = KRψ:

1. M, P |= KRψ implies P ≡ R|S and for any R|S ′ ∈ M we have M, R|S ′ |= ψ. From
act(σ) ∩ act(φ) = ∅ we derive act(σ) ∩ act(ψ) = ∅ and act(σ) ∩ Act(R) = ∅. So, we
can apply the inductive hypothesis that gives Mσ, σ(R|S ′) |= ψ and, because σ(R) ≡ R,
Mσ, R|σ(S ′) |= ψ.
Consider an arbitrary process R|S ′′ ∈ Mσ. There exists a process Q ∈ M such that σ(Q) ≡
R|S ′′. Thus, by theorem 2.4, Q ≡ R′|S ′′′ with σ(R′) = R and σ(S ′′′) = S ′′. But Act(R) ∩
act(σ) = ∅ implies Act(R) ∩ obj(σ) = ∅, so applying the theorem 2.4, we derive R ≡ R′.
Thus Q ≡ R|S ′′′ and becauseMσ, R|σ(S ′) |= ψ for any S ′, we deriveMσ, R|S ′′ |= ψ.

Because R|S ′′ ∈ Mσ was arbitrarily chosen, and because σ(P ) = σ(R|S) = R|σ(S), we
obtainMσ, P σ |= KRψ.

2. M, P 6|= KRψ implies that either P 6≡ R|S for any S, or P ≡ R|S for some S and there exists
a process R|S ′ ∈M such thatM, R|S ′ 6|= ψ.
If P 6≡ R|P ′, because act(σ)∩Act(R) = ∅ implies obj(σ)∩Act(R) = ∅we derive, by theorem
2.4, that σ(P ) 6≡ R|S for any S. Hence, we can state thatMσ, P σ 6|= KRψ.
If P ≡ R|S for some S and there exists a process R|S ′ ∈ M such that M, R|S ′ 6|= ψ,
then the inductive hypothesis gives Mσ, σ(R)|σ(S ′) 6|= ψ. But σ(R)|σ(S ′) ≡ R|σ(S ′), and
σ(P ) ≡ R|σ(S) thus σ(M), R|σ(S ′) 6|= ψ implies σ(M), σ(P ) 6|= KRψ.

2

We suppose to have defined on A a lexicographical order�. So, for a finite set A ⊂ A we can
identify a maximal element that is unique. Hence the successor of this element is unique as well. We
convey to denote by A+ the set obtained by adding to A the successor of its maximal element.

[Finite model property]

IfM, P |= φ then ∃N ∈M
act(φ)+
φ and Q ∈ N such that N , Q |= φ

Proof Consider the substitution σ that maps all the actions α ∈ A \ act(φ) in the successor
of the maximum element of act(φ) (it exists as act(φ) is finite). Obviously act(σ) ∩ act(φ) = ∅,
hence, using theorem 4.3 we obtain Mσ, P σ |= φ. Further we take N = Mσ

(h,w) ∈ M
act(φ)+

(h,w) and

Q = P σ
(h,w) ∈M

act(φ)+

(h,w) , and theorem 4.3 proves the finite model property. 2

Because act(φ) is finite implying act(φ)+ finite, we apply theorem 3.2 ensuring that M
act(φ)+
φ is

finite and any contextM∈M
act(φ)+
φ is finite as well. Thus we obtain the finite model property for our
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logic. A consequence of theorem 4.3 is the decidability for satisfiability, validity and model checking
against the process semantics.

[Decidability] For LS
DES validity, satisfiability and model checking are decidable against the pro-

cess semantics.

4.4 Axioms of LS
DES

Now we propose a Hilbert-style axiomatic system for Dynamic Epistemic Spatial Logic, LS
DES . The

system will be constructed in top of the classical propositional logic. Hence all the axioms and rules
of propositional logic are available. In addition we will have a class of spatial axioms and rules that
describes, mainly, the behavior of the parallel operator, a class of dynamic axioms and rules regarding
the behavior of the dynamic operators, and a class of epistemic axioms and rules focusing on the
behavior of epistemic operators. In the next subsections we will prove that the system is sound and
complete with respect to process semantics.

We begin by defining, inductively on processes, some special classes of formulas that, will be
proved further, characterize processes and finite contexts.

[Characteristic formulas for processes] We define a class of formulas (cP )P∈P, indexed by (≡-
equivalence classes of) processes, as follows:

1. c0
def
= 0 2. cP |Q

def
= cP |cQ 3. cα.P

def
= 〈!α〉cP

[Characteristic formulas for contexts] IfM is a finite context, we define its characteristic formula
by:

cM = K0(
∨
Q∈M

cQ) ∧ (
∧
Q∈M

∼
K0cQ) (2)

Spatial axioms
` >|⊥ → ⊥
` φ|0↔ φ
` φ|ψ → ψ|φ
` (φ|ψ)|ρ→ φ|(ψ|ρ)
` φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)
` (cP ∧ φ|ψ)→

∨
P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Spatial rules
If ` φ→ ψ then ` φ|ρ→ ψ|ρ

Axiom E4.4 states the propagation of the inconsistency from a subsystem to the upper system.
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Axioms E4.4, E4.4 and E4.4 depict the structure of abelian monoid projected by the parallel
operator on the class of processes.

Concerning axiom E4.4, observe that the disjunction involved has a finite number of terms, as
we considered the processes up to structural congruence level. The theorem states that if system
has a property expressed by parallel composition of specifications, then it must have two parallel
complementary subsystems, each of them satisfying one of the specifications.

Rule ER4.4 states a monotony property for the parallel operator.

Dynamic axioms
` 〈α〉φ|ψ → 〈α〉(φ|ψ)
` [α](φ→ ψ)→ ([α]φ→ [a]ψ)
` 0→ [α]⊥
If β 6= αi for i = 1..n then ` 〈!α1〉>|...|〈!αn〉> → [β]⊥
` 〈!α〉φ→ [α]φ

Dynamic rules
If ` φ then ` [α]φ

If ` φ→ [α]φ′ and ` ψ → [α]ψ′ then ` φ|ψ → [α](φ′|ψ ∨ φ|ψ′).
If `

∨
M∈M

act(φ)+
φ

cM → φ then ` φ.

The first dynamic axiom, axiom E4.4, presents a domain extrusion property for the dynamic
operator. It expresses the fact that if an active subsystem of a bigger system performs the action
α, then the bigger system performs it as a whole.

Axiom E4.4 is just the (K)-axiom for the dynamic operator.
Axiom E4.4 states that an inactive system cannot perform any action.
Given a complex process that can be exhaustively decomposed in n parallel subprocesses, each

of them being able to perform one action only, αi, for i = 1..n, axiom E4.4 ensures us that the entire
system, as a whole, cannot perform another action β 6= αi for i = 1..n.

Recalling that the operator 〈!α〉 describes processes guarded by α, axiom E4.4 states that a system
described by a guarded process can perform one and only one action, the guarding one.

Rule ER4.4 is the classic necessity rule used for the dynamic operator.
Rule ER4.4 is, in a sense, a counterpart of axiom E4.4 establishing the action of the operator [α]

in relation to the parallel operator.
Rule ER4.4 comes as a consequence of the finite model property and provides a rule that charac-

terizes, in a finite manner, the validity of a formula. Observe that the disjunction in the first part of
the rule has a finite number of terms.
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Epistemic axioms
If P ∈ S then ` KP> ↔ cP |>
` KQφ ∧KQ(φ→ ψ)→ KQψ
` KQφ→ φ
` KQφ→ KQKQφ.
` KQ> → (¬KQφ→ KQ¬KQφ)
` KQφ↔ (KQ> ∧K0(KQ> → φ))
` K0φ ∧ ψ|ρ→ (K0φ ∧ ψ)|(K0φ ∧ ρ)
` K0φ→ [α]K0φ
` K0φ→ (KQ> → KQK0φ)

Epistemic rules
If ` φ then ` KQ> → KQφ.

IfM3 P is a finite context and ` cM ∧ cP → K0φ then ` cM → φ.
Axiom E4.4 states the equivalence between to be active and to know for the epistemic agents.

IndeedM, Q |= KP> means exactly P is an active subsystem of Q and nothing more. The same can
be expressed byM, Q |= cP |>.

Axiom E4.4 is the classical (K)-axiom stating that our epistemic operator is a normal one. This is
an expected axiom as all the epistemic logics have it.

The same remark on axiom E4.4 which is just the axiom (T) - necessity axiom, for the epistemic
operator.

Also axiom E4.4 is well known in epistemic logics. It states that our epistemic agents satisfy the
positive introspection property, i.e. if P knows something then it knows that it knows that thing.

Axiom E4.4 states a variant of the negative introspection, saying that if an agent P is active and if
it doesn’t know φ, then it knows that it doesn’t know φ. The novelty in our axiom is the precondition
KP> of the negative introspection. This precondition guarantees that the agent really exists, i.e. it is
active. Such a precondition does not appear in the other epistemic logics for the reason that, in those
cases, the agents exists always and they knows, always, at least the tautologies.

Axiom E4.4 provides a full description of the KQ operator by means of K0 and KQ>. As, by
axiom E4.4, KQ> can be expressed by the epistemic operators, our system might be reduced to one
epistemic operator only, K0. We leave for future work the analysis of minimality for our axiomatic
system. For the moment we consider it interesting to have all these epistemic operators that provide
links with the rest of epistemic logics.

Axioms E4.4, E4.4 and E4.4 present K0φ as a syntactic encryption of validity, stating that once
K0φ can be stated for a real system, it will be propagated to all the levels of it.

Rule ER4.4 states that any active agent knows all the tautologies. As in the case of the negative
introspection, we deal with a well known epistemic rule, widely spread in epistemic logics, but our
rules work under the assumption that the agent is active.
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Also rule ER4.4 depicts the fact that K0φ is an encoding of the validity in a given context.

4.5 The soundness of LS
DES against the process semantics

In this section we will motivate the choice of the axioms by proving the soundness of our system with
respect to process semantics. In this way we will prove that everything expressed by our axioms and
rules about the process semantics is correct and, in conclusion, using our system, we can derive only
theorems that can be meaningfully interpreted.

[Process-Soundness] The system LS
DES is sound against the process semantics.

Proof The soundness of LS
DES will be sustained by the soundness of all spatial, dynamic and

epistemic axioms and rules. 2

Soundness of the spatial axioms and rules
We start with proving the soundness of the spatial axioms and rules.

[Soundness of axiom E4.4] |= >|⊥ → ⊥
Proof Suppose that it exists a contextM and a process P ∈ M such thatM, P |= >|⊥. Then

P ≡ Q|R withM, Q |= > andM, R |= ⊥; i.e. M, R 6|= >. But this is not possible. Hence, there is
no contextM and process P ∈ M such thatM, P |= >|⊥, i.e. for any contextM and any process
P ∈M we haveM, P |= ¬(>|⊥), i.e.M, P |= >|⊥ → ⊥. 2

[Soundness of axiom E4.4] |= φ|0↔ φ.
Proof M, P |= φ|0 iff P ≡ Q|R,M, Q |= φ andM, R |= 0. Then R ≡ 0, so P ≡ Q, hence

M, P |= φ.
IfM, P |= φ, becauseM, 0 |= 0 and P ≡ P |0 ∈M we obtain thatM, P |= φ|0. 2

[Soundness of axiom E4.4] |= φ|ψ → ψ|φ.
Proof M, P |= φ|ψ means that P ≡ Q|R,M, Q |= φ andM, R |= ψ. But P ≡ R|Q ∈ M,

henceM, P |= ψ|φ. 2

[Soundness of axiom E4.4] |= (φ|ψ)|ρ→ φ|(ψ|ρ).
Proof M, P |= (φ|ψ)|ρ implies that P ≡ Q|R,M, Q |= φ|ψ andM, R |= ρ. Then Q ≡ S|V

withM, S |= φ andM, V |= ψ. But P ≡ (S|V )|R ≡ S|(V |R), whereM, S |= φ andM, V |R |=
ψ|ρ. HenceM, P |= φ|(ψ|ρ). 2

[Soundness of axiom E4.4] |= φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)
Proof M, P |= φ|(ψ ∨ ρ) means that P ≡ Q|R,M, P |= φ andM, R |= ψ ∨ ρ, i.e.M, R |= ψ

orM, R |= ρ. HenceM, P |= φ|ψ orM, P |= φ|ρ. SoM, P |= (φ|ψ) ∨ (φ|ρ). 2
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On this point we have enough information to prove two expected results: first that cP is, indeed,
satisfied by the process P and second, that the formula cP is satisfied by the whole ≡-equivalence
class of P . These results will be useful in proving the rest of the soundness lemmas.

If P ∈M, thenM, P |= cP .
Proof We prove it by induction on the structure of the process P .

The case P ≡ 0:M, 0 |= c0, because 0 ∈M, c0 = 0 andM, 0 |= 0.
The case P ≡ Q|R: we have Q,R ∈ M and cP = cQ|cR. By the inductive hypothesisM, Q |= cQ
andM, R |= cR, soM, Q|R |= cQ|cR. HenceM, P |= cP .
The case P ≡ α.Q: we have P α−→ Q, hence Q ∈M. Moreover, cP = 〈α〉cQ ∧ 1. By the inductive
hypothesisM, Q |= cQ. Because P α−→ Q, we obtainM, P |= 〈α〉cQ, and because P ≡ α.Q is a
guarded process, we have alsoM, P |= 1. HenceM, P |= cP . 2

M, P |= cQ iff P ≡ Q.
Proof (⇐) We prove it by verifying thatM, P |= cQ for any P,Q involved in the equivalence

rules.

• if P = R|S and Q = S|R, we haveM, R|S |= cR|cS and using the soundness of axiom E4.4,
we obtainM, R|S |= cS|cR, i.e.M, P |= cQ

• if P = (R|S)|U and Q = R|(S|U) we have M, P |= (cR|cS)|cU . Using the soundness of
axiom E4.4, we obtain M, P |= cQ. Similarly M, Q |= cP , using the soundness of axioms
E4.4 and E4.4.

• if P = Q|0 then M, P |= cQ|0, i.e., by using the soundness of axiom E4.4, M, P |= cQ.
Similarly reverse, formM, Q |= cQ we derive, by using the soundness of axiom E4.4,M, Q |=
cQ|0, i.e.M, Q |= cP .

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ andM, P ′ |= cQ′ , becauseM, R |= cR, we obtain
thatM, P |= cQ′|cR, i.e.M, P |= cQ.

• if P = α.P ′ andQ = α.Q′ with P ′ ≡ Q′ andM, P ′ |= cQ′ , as P α−→ P ′, thenM, P |= 〈α〉cQ′ .
ButM, P |= 1, because P is a guarded process, henceM, P |= 〈α〉cQ′ ∧ 1, i.e.M, P |= cQ.

(⇒) We prove the implication in this sense by induction on the structure of Q.

• if Q ≡ 0, thenM, P |= c0, meansM, P |= 0. Hence P ≡ 0.

• ifQ ≡ R|S thenM, P |= cQ is equivalent withM, P |= cR|cS . So P ≡ U |V ,M, U |= cR and
M, V |= cS . By the inductive hypothesis we obtain that U ≡ R and V ≡ S. Hence P ≡ Q.

• if Q ≡ α.R, then M, P |= cQ is equivalent with M, P |= 〈α〉cR ∧ 1. So P α−→ P ′ with
M, P ′ |= cR. By the inductive hypothesis, P ′ ≡ R. And becauseM, P |= 1 we obtain that
P ≡ α.R, i.e. P ≡ Q.
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2

[Soundness of axiom E4.4] |= (cP ∧ φ|ψ)→
∨
P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Proof Suppose that M, S |= cP ∧ φ|ψ. Then S ≡ P (by theorem 4.5) and S ≡ S1|S2 with
M, S1 |= φ andM, S2 |= ψ.
ButM, S1 |= cS1 andM, S2 |= cS2 , by theorem 4.5.
HenceM, S1 |= φ ∧ cS1 andM, S2 |= ψ ∧ cS2 .
And because P ≡ S ≡ S1|S2, we obtainM, P |= (φ∧ cS1)|(ψ ∧ cS2), henceM, P |=

∨
P≡Q|R(cQ ∧

φ)|(cR ∧ ψ), q.e.d. 2

[Soundness of rule ER4.4] If |= φ→ ψ then |= φ|ρ→ ψ|ρ
Proof If M, P |= φ|ρ then P ≡ Q|R, M, Q |= φ and M, R |= ρ. But from the hypothesis,

M, Q |= φ→ ψ, henceM, Q |= ψ. ThenM, P |= ψ|ρ, so |= φ|ρ→ ψ|ρ. 2

Soundness of the dynamic axioms and rules
We prove now the soundness for the class of dynamic axioms and rules.

[Soundness of axiom E4.4] |= 〈α〉φ|ψ → 〈α〉(φ|ψ).
Proof IfM, P |= 〈α〉φ|ψ, then P ≡ R|S,M, R |= 〈α〉φ andM, S |= ψ. So ∃R α−→ R′ and

M, R′ |= φ. So ∃P ≡ R|S α−→ P ′ ≡ R′|S andM, P ′ |= φ|ψ. HenceM, P |= 〈α〉(φ|ψ). 2

[Soundness of axiom E4.4] |= [α](φ→ ψ)→ ([α]φ→ [α]ψ)
Proof LetM, P |= [α](φ → ψ) andM, P |= [α]φ. If there is no P ′ such that P α−→ P ′, then

M, P |= [α]ψ. Suppose that exists such P ′. Then for any such P ′ we haveM, P ′ |= φ → ψ and
M, P ′ |= φ. HenceM, P ′ |= ψ, i.e.M, P |= [α]ψ. 2

[Soundness of axiom E4.4] |= 0→ [α]⊥
Proof IfM, P |= 0 then P ≡ 0 and there is no transition 0

α−→ P ′, henceM, P 6|= 〈α〉>, i.e.
M, P |= [α]⊥. 2

[Soundness of axiom E4.4]

If β 6= αi for i = 1..n, then |= 〈!α1〉>|...|〈!αn〉> → [β]⊥

Proof Suppose thatM, P |= 〈!α1〉>|...|〈!αn〉>. Then necessarily P ≡ α1.P1|...|αn.Pn. But if
αi 6= β for i = 1..n, there is no transition

α1.P1|...|αn.Pn
β−→ P ′

henceM, P 6|= 〈β〉>, i.e.M, P |= [β]⊥. 2
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[Soundness of axiom E4.4] |= 〈!α〉φ→ [α]φ
Proof Suppose that M, P |= 〈!α〉φ, then M, P |= 1 and M, P |= 〈α〉φ. Then necessarily

P ≡ α.P ′ andM, P ′ |= φ. But there is only one reduction that P can do, P α−→ P ′. So, for any
reduction P α−→ P ′′ (because there is only one), we haveM, P ′′ |= φ, i.e.M, P |= [α]φ 2

[Soundness of rule ER4.4] If |= φ then |= [α]φ.
Proof Let M be a context and P ∈ M a process. If there is no P ′ such that P α−→ P ′, then

M, P |= [α]φ. Suppose that exists such P ′ (obviously P ′ ∈ M). Then for any such P ′ we have
M, P ′ |= φ, due to the hypothesis |= φ. HenceM, P |= [α]φ. 2

[Soundness of rule ER4.4]

If |= φ→ [α]φ′ and |= ψ → [α]ψ′ then |= φ|ψ → [α](φ′|ψ ∨ φ|ψ′)

Proof Suppose that M, P |= φ|ψ, then P ≡ Q|R, M, Q |= φ and M, R |= ψ. Because
|= φ → [α]φ′ and |= ψ → [α]ψ′, we deriveM, Q |= [α]φ′ andM, R |= [α]ψ′. We analyze some
cases:

• if P cannot perform a transition by α, thenM, P |= [α]⊥, and using the soundness of axiom
E4.4 and rule ER4.4 we derive

|= [α]⊥ → [α](φ′|ψ ∨ φ|ψ′)

hence, we obtain in the endM, P |= [α](φ′|ψ ∨ φ|ψ′).

• if Q
α

toQ′ and R cannot perform a transition by α, then Q|R
α

toQ′|R and the transitions of P ≡
Q|R by α have always this form.
But M, Q |= [α]φ′, so for any such Q′ we have M, Q′ |= φ′, thus M, Q′|R |= φ′|ψ, i.e.
M, Q′|R |= (φ′|ψ ∨ φ|ψ′).

Hence for any transition P
α

toP ′ we have M, P ′ |= (φ′|ψ ∨ φ|ψ′). In conclusion, M, P |=
[α](φ′|ψ ∨ φ|ψ′).

• if Q cannot perform a transition by α and R
α

toR′, similarly as in the previous case, we can
deriveM, P |= [α](φ′|ψ ∨ φ|ψ′).

• ifQ
α

toQ′ andR
α

toR′ then P
α

toP ′ has either the formQ|R
α

toQ′|R orQ|R
α

toQ|R′. ButM, Q′|R |=
φ′|ψ, henceM, Q′|R |= (φ′|ψ ∨ φ|ψ′) andM, Q|R′ |= φ|ψ′, henceM, Q|R′ |= (φ′|ψ ∨ φ|ψ′).

Thus, for any transition P
α

toP ′ we haveM, P ′ |= (φ′|ψ ∨ φ|ψ′), i.e.M, P |= [α](φ′|ψ ∨ φ|ψ′).

So, in any caseM, P |= [α](φ′|ψ ∨ φ|ψ′), that concludes the proof. 2

[Soundness of rule ER4.4] If |=
∨
M∈M

act(φ)+
φ

cM → φ then |= φ.
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Proof Suppose that |=
∨
M∈M

act(φ)+
φ

cM → φ but it exists a model N and a process Q ∈ N with

N , Q 6|= φ. Then N , Q |= ¬φ.
Further, using the finite model property, theorem 4.3, we obtain that it exists a contextN ′ ∈M

act(φ)+
φ

and a process R ∈ N ′ with N ′, R |= ¬φ.
But φ = ¬φ, and act(φ) = act(¬φ) so it exists a context N ′ ∈M

act(φ)+
φ and a process R ∈ N ′ with

N ′, R |= ¬φ. Because N ′, R |= cN ′ , we derive N ′, R |=
∨
M∈M

act(φ)+
φ

cM.

But |=
∨
M∈M

act(φ)+
φ

cM → φ implies N ′, R |=
∨
M∈M

act(φ)+
φ

cM → φ, hence N ′, R |= φ.

As we also have N ′, R |= ¬φ, we obtain N ′, R |= ⊥ - impossible!
Then, for any model N and any process P ∈ N we have N , P |= φ, i.e. |= φ.

2

Soundness of the epistemic axioms and rules
Hereafter we prove the soundness for the epistemic axioms and rules.

[Soundness of axiom E4.4] If Q ∈ S then |= cQ|> ↔ KQ>
Proof IfM, P |= cQ|> then P ≡ R|S, withM, S |= cQ. Then theorem 4.6 gives S ≡ Q, hence

P ≡ Q|R. And because for any Q|R′ ∈M we haveM, Q|R′ |= >, we deriveM, P |= KQ>.
Suppose now the reverse, i.e. that M, P |= KQ>. Then P ≡ Q|R. But M, P |= cP , hence
M, P |= cQ|cR.
Because |= cQ → >, using the soundness of rule ER4.4, we derive |= cQ|cR → cQ|> from where we
conclude thatM, P |= cQ|>. 2

[Soundness of axiom E4.4] |= KQφ ∧KQ(φ→ ψ)→ KQψ
Proof Suppose thatM, P |= KQφ and thatM, P |= KQ(φ → ψ). Then P ≡ Q|R and for any

S such that S|Q ∈ M we haveM, S|Q |= φ andM, Q|S |= φ → ψ. Hence for any such Q|S we
haveM, Q|S |= ψ and because P ≡ Q|R we obtain thatM, P |= KQψ. 2

[Soundness of axiom E4.4] |= KQφ→ φ.
Proof If M, P |= KQφ then P ≡ Q|R and for any Q|S ∈ M we have M, Q|S |= φ, i.e.

M, Q|R |= φ, soM, P |= φ. 2

[Soundness of axiom E4.4] |= KQφ→ KQKQφ.
Proof Suppose thatM, P |= KQφ, then P ≡ Q|R and for any Q|S ∈M we haveM, Q|S |= φ.

Let Q|S ′ ∈ M be arbitrarily chosen. As for any Q|S ∈ M we haveM, Q|S |= φ, we derive that
M, Q|S ′ |= KQφ. But Q|S ′ has been arbitrarily chosen, so for any Q|S ∈ M we haveM, Q|S |=
KQφ, and because P ≡ Q|R we obtainM, P |= KQKQφ. 2

[Soundness of axiom E4.4] |= KQ> → (¬KQφ→ KQ¬KQφ)
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Proof Suppose that M, P |= KQ> and M, P |= ¬KQφ. Then P ≡ Q|R and ∃S such that
M, S|Q |= ¬φ. But then for any U such that U |Q ∈ M we have M, U |Q |= ¬KQφ. Hence
M, P |= KQ¬KQφ. 2

[Soundness of axiom E4.4] |= KQφ↔ (KQ> ∧K0(KQ> → φ))
Proof Suppose thatM, P |= KQφ. Then P ≡ Q|R and for anyQ|S ∈Mwe haveM, Q|S |= φ.

From P ≡ Q|R, because for any Q|S ∈ M we have M, Q|S |= >, we derive M, P |= KQ>.
Consider now an arbitrary process S ∈M. IfM, S 6|= KQ>, thenM, S |= KQ> → φ.
IfM, S |= KQ> we derive that S ≡ Q|S ′, henceM, S |= φ.
So, for an arbitrarily chosen S ∈M we haveM, S |= KQ> → φ.
Because P ≡ P |0 and for any process S ≡ S|0 ∈M we have
M, S |= KQ> → φ, we derive that M, P |= K0(KQ> → φ). Hence |= KQφ → (KQ> ∧
K0(KQ> → φ)).

Suppose now thatM, P |= KQ> ∧K0(KQ> → φ). FromM, P |= KQ> we derive P ≡ Q|R.
BecauseM, P |= K0(KQ> → φ), we obtain that for any process S ∈M we haveM, S |= KQ> →
φ. Hence, for any process S|Q ∈ M we have M, S|Q |= φ (because M, S|Q |= KQ>). And
because P ≡ Q|R, we deriveM, P |= KQφ. 2

[Soundness of axiom E4.4] |= K0φ ∧ ψ|ρ→ (K0φ ∧ ψ)|(K0φ ∧ ρ)
Proof Suppose thatM, P |= K0φ ∧ ψ|ρ thenM, P |= K0φ andM, P |= ψ|ρ.

M, P |= K0φ gives that for any R ∈M we haveM, R |= φ.
M, P |= ψ|ρ gives that P ≡ P ′|P ′′ andM, P ′ |= ψ,M, P ′′ |= ρ. Because P ′, P ′′ ∈M and because
for any R ∈M,M, R |= φ we derive thatM, P ′ |= K0φ andM, P ′′ |= K0φ.
Hence M, P ′ |= ψ ∧ K0φ and M, P ′′ |= ρ ∧ K0φ. As P ≡ P ′|P ′′, we obtain further M, P |=
(K0φ ∧ ψ)|(K0φ ∧ ρ). 2

[Soundness of axiom E4.4] |= K0φ→ [α]K0φ
Proof Suppose thatM, P |= K0φ, then for any R ∈M we have

M, R |= φ.
If P cannot perform a transition by α, we haveM, P |= [α]K0φ.

If P can perform such transitions, then for any P
α

toP ′ we have
M, P ′ |= K0φ (as for any R ∈M we haveM, R |= φ). This meansM, P |= [α]K0φ. 2

[Soundness of axiom E4.4] |= K0φ→ (KQ> → KQK0φ)
Proof Suppose thatM, P |= K0φ andM, P |= KQ>.

M, P |= K0φ gives that for any R ∈M we haveM, R |= φ.
M, P |= KQ> means that P ≡ Q|S. Because for any R ∈ M we haveM, R |= φ, we obtain that
for any Q|S ′ ∈ M we haveM, Q|S ′ |= K0φ, and because P ≡ Q|S we obtainM, P |= KQK0φ.

2

[Soundness of rule ER4.4] If |= φ then |= KQ> → KQφ
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Proof If |= φ then for any contextM and any process P ∈ M we haveM, P |= φ. Suppose
now thatM, P |= KQ>. Then P ≡ Q|R. BecauseM, S |= φ for each S ∈ M, we derive that for
any S|Q ∈M we haveM, S|Q |= φ. HenceM, P |= KQφ. 2

[Soundness of rule ER4.4]

IfM3 P is a finite context and |= cM ∧ cP → K0φ then |= cM → φ

Proof Suppose that |= cM ∧ cP → K0φ and N is an arbitrary context with Q ∈ N .
If N , Q 6|= cM then N , Q |= cM → φ.
If N , Q |= cM, then N = M. Further M, P |= cP ∧ cM gives M, P |= K0φ, i.e. for each
S|0 ≡ S ∈ M we have M, S |= φ. Now, because N = M and Q ∈ M we obtain N , Q |= φ.
Hence, also in this case N , Q |= cM → φ. Thus |= cM → φ. 2

Hence we have a sound system and all the theorems that can be proved with it are sound results
with respect to process semantics.

4.6 Characteristic formulas
In this subsection we use the peculiarities of the dynamic and epistemic operators to prove that the
characteristic formulas for processes and for finite contexts introduced before can identify the pro-
cesses and the finite contexts respectively.

We begin by restating some relevant results, proved before, in order to offer to the reader a full
picture of the problem.
M, P |= cP .
Proof It has been proved as theorem 4.5. 2

M, P |= cQ iff P ≡ Q.
Proof It has been proved as theorem 4.5. 2

The next theorems show that cP could provide a syntactic characterization of the process P , stat-
ing that the conjunction of two such formulas, cP and cQ, is inconsistent if the indexes are not struc-
turally congruent, and respectively that two structurally congruent indexes generate logical equivalent
formulas.

If P 6≡ Q then ` cP → ¬cQ.
Proof We prove it by induction on P .

• the case P ≡ 0: as P 6≡ Q we obtain that Q ≡ α.R|S. So cQ = 〈α〉cR ∧ 1|cS that implies,
using theorem 4.7, ` cQ → 〈α〉cR|cS , and applying axiom E4.4, ` cQ → 〈α〉(cR|cS).
But ` cR|cS → > and applying theorem 4.8, we obtain
` 〈α〉(cR|cS)→ 〈α〉>.
Hence, ` cQ → 〈α〉>. Then ` ¬〈α〉> → ¬cQ.
Axiom E4.4 gives ` 0→ ¬〈α〉> hence, in the end, ` 0→ ¬cQ, i.e. ` cP → ¬cQ.
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• the case P ≡ P ′|P ′′: we have cP = cP ′|cP ′′ . Because P 6≡ Q, we obtain that for any decom-
position Q ≡ Q′|Q′′ we have either P ′ 6≡ Q′ or P ′′ 6≡ Q′′. Using the inductive hypothesis,
we derive that either ` cQ′ → ¬cP ′ or ` cQ′′ → ¬cP ′′ . Because this is happening for any
decomposition of Q, we can apply theorem 4.7 and we obtain
` cQ → ¬(cP ′|cP ′′), i.e. ` cQ → ¬cP . Hence ` cP → ¬cQ.

• the case P ≡ α.P ′: cP = 1 ∧ 〈α〉cP ′ , so ` cP → 1 ∧ 〈α〉>.
But axiom E4.4 gives ` 〈α〉> ∧ 1→ ¬〈β〉> for any β 6= α.
Hence, for any β 6= α we have ` cP → ¬〈β〉>.

– if Q ≡ 0 we already proved that ` cQ → ¬cP (because P 6≡ 0), so ` cP → ¬cQ
– if Q ≡ β.Q′|Q′′ for some β 6= α, then ` cQ → 〈β〉>, hence ` ¬〈β〉> → ¬cQ. But we

proved that ` cP → ¬〈β〉>. Hence ` cP → ¬cQ.

– if Q ≡ α.Q1|...|α.Qk for k > 1, then ` cQ → ¬0|¬0 (as ` 0 → ¬cα.Q1 and ` 0 →
¬cα.Q2|...|α.Qk). Then ` cQ → ¬1, i.e.
` 1→ ¬cQ. But ` cP → 1. Hence ` cP → ¬cQ.

– ifQ ≡ αQ′: then P 6≡ Q gives P ′ 6≡ Q′. For this case we can use the inductive hypothesis
and we obtain ` cQ′ → ¬cP ′ . Further, applying theorem 4.8, we obtain ` [α]cP ′ →
[α]¬c′Q, i.e.
` [α]cP ′ → ¬〈α〉cQ′ that gives, because cQ = 1 ∧ 〈α〉cQ′ ,
` [α]cP ′ → ¬cQ.
Now, using axiom E4.4, ` 1∧〈α〉cP ′ → [α]cP ′ , so ` cP → [α]cP ′ , and, combining it with
the previous result, we derive ` cP → ¬cQ.

2

If P ≡ Q then ` cP ↔ cQ.
Proof We prove it verifying the congruence rules:

• if P = R|S and Q = S|R then ` cR|cS ↔ cS|cR from theorem 4.7, i.e. ` cP ↔ cQ

• if P = (R|S)|U and Q = R|(S|U) then theorem 4.7 we have
` (cR|cS)|cU ↔ cR|(cS|cU), i.e. ` cP ↔ cQ

• if P = Q|0 then axiom E4.4 gives ` cQ|0↔ cQ, i.e. ` cP ↔ cQ.

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ and ` cP ′ ↔ cQ′ then rule ER4.4 gives ` cP ′ |cR ↔
cQ′|cR. Hence ` cP ↔ cQ.

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ and ` cP ′ ↔ cQ′ then theorem 4.8 gives ` 〈α〉cP ′ ↔
〈α〉cQ′ , so ` (〈α〉cP ′ ∧ 1)↔ (〈α〉cQ′ ∧ 1). Hence ` cP ↔ cQ.
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2

We prove now that the intuition behind the definition of characteristic formulas for contexts is
correct and, indeed, cM can be used to characterizeM.

IfM is a finite context and P ∈M thenM, P |= cM.
Proof ObviouslyM, P |= cP , henceM, P |=

∨
Q∈M cQ.

Similarly, for any R ∈ M we have M, R |=
∨
Q∈M cQ, and because R ≡ R|0 and P ≡ P |0, we

deriveM, P |= K0(
∨
Q∈M cQ).

As for any R ∈ M there exists a process U ∈ M (more exactly U = R) such thatM, U |= cR, we
obtain that for each R ∈M we have
M, P |=

∼
K0cR, henceM, P |=

∧
Q∈M

∼
K0cQ. 2

IfM is a finite context and P ∈M then

M, P |= cM ∧ cP

IfM, P |= cN then N =M.
Proof Suppose that M, P |= cN , then M, P |= K0(

∨
Q∈N cQ), i.e. for any R ∈ M we have

M, R |=
∨
Q∈N cQ. Hence, for any R ∈ M there exists a process Q ∈ N with M, R |= cQ, or

equivalently, R ≡ Q.

NowM, P |=
∧
Q∈N

∼
K0cQ gives that for any Q ∈ N we have

M, P |=
∼
K0cQ, i.e. there exists a process R ∈M such thatM, R |= cQ, or equivalently, R ≡ Q.

Hence, we proved that for any R ∈ M there exists Q ∈ N such that R ≡ Q, and for any Q ∈ N
there exists R ∈M such that R ≡ Q. Because we identify processes up to structural congruence, we
decide that M = N . 2

4.7 Theorems of LS
DES

In this section we will derive some theorems for LS
DES . As, by soundness, the theorems specify

“facts” about processes, we will try to interpret the nontrivial ones.

Spatial results
We start with the results that can be proved on the basis of the spatial theorems and rules only. They
reflect the behavior of the parallel operator in relation to the operators of the classical logic.

` >|> ↔ >
Proof Obviously ` >|> → >. As ` 0→ >, using rule ER4.4, we obtain ` >|0→ >|>. Further

axiom E4.4 gives us ` > → >|>. 2
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If ` φ then ` θ|ρ→ φ|ρ
Proof Because ` φ implies ` θ → φ, using rule ER4.4 we obtain the result. 2

` φ|ψ ↔ ψ|φ
Proof We use axiom E4.4 in both directions. 2

` (φ|ψ)|ρ↔ φ|(ψ|ρ)
Proof We use axiom E4.4 and theorem 4.7. 2

` φ|(ψ ∨ ρ)↔ (φ|ψ) ∨ (φ|ρ)
Proof ` ψ → ψ ∨ ρ so, using rule ER4.4, ` φ|ψ → φ|(ψ ∨ ρ). Similarly, ` φ|ρ → φ|(ψ ∨ ρ).

Hence ` (φ|ψ) ∨ (φ|ρ)→ φ|(ψ ∨ ρ). The other direction is stated by axiom E4.4. 2

` φ|(ψ ∧ ρ)→ (φ|ψ) ∧ (φ|ρ)
Proof Because ` ψ ∧ ρ → ψ, by applying rule ER4.4, we have ` φ|(ψ ∧ ρ) → φ|ψ. Similarly

` φ|(ψ ∧ ρ)→ φ|ρ. 2

The next result proves a strong version of monotonicity of the parallel composition.

If ` φ→ ρ and ` ψ → θ then ` φ|ψ → ρ|θ.
Proof If ` φ → ρ then rule ER4.4 gives us ` φ|ψ → ρ|ψ. If ` ψ → θ, then the same rule gives

` ρ|ψ → ρ|θ. Hence ` φ|ψ → ρ|θ. 2

The next result speaks about the negative parallel decomposition of a specification. It states that,
given two specifications, φ and ψ, if considering any parallel decomposition of our system (process)
P ≡ Q|R, we obtain that either Q doesn’t satisfy φ or R doesn’t satisfy ψ, then our system P does
not satisfy the parallel composition of the two specifications, φ|ψ.

If for any decomposition P ≡ Q|R we have ` cQ → ¬φ or ` cR → ¬ψ then ` cP → ¬(φ|ψ).
Proof ` cQ → ¬φ is equivalent with ` cQ ∧ φ → ⊥ and because ` cR ∧ ψ → >, we obtain, by

theorem 4.7 ` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥|>. And using axiom E4.4, we derive

` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥

Similarly, from ` cR → ¬ψ we can derive

` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥

Hence, the hypothesis of the theorem says that for any decomposition P ≡ Q|R we have ` (cQ ∧
φ)|(cR ∧ ψ)→ ⊥, i.e.

`
∨

P≡Q|R

(cQ ∧ φ)|(cR ∧ ψ)→ ⊥
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But axiom E4.4 gives
` (cP ∧ φ|ψ)→

∨
P≡Q|R

(cQ ∧ φ)|(cR ∧ ψ)

hence
` (cP ∧ φ|ψ)→ ⊥, i.e. ` cP → ¬(φ|ψ).

2

Related to the same topic of the relation between negation and the parallel operator, observe that
the negation is not distributive with respect to parallel. This is the reason why, in the previous theorem,
we had to ask in the premises that the condition ` cQ → ¬φ or ` cR → ¬ψ be fulfilled by all the
possible decompositions of P . If only a decomposition P ≡ Q|R exists such that ` cQ → ¬φ or
` cR → ¬ψ, this is not enough to derive M, P |= ¬(φ|ψ). Indeed suppose that M, Q |= φ but
M, Q 6|= ψ and M, R |= ψ but M, R 6|= φ. Then from M, Q |= φ and M, R |= ψ we derive
M, P |= φ|ψ. It is not the case that, from the additional informationM, Q 6|= ψ andM, R 6|= φ,
M, P |= ¬(φ|ψ) to be derived. All we can derive from the unused information is that M, P |=
¬φ|¬ψ, which does not contradictM, P |= φ|ψ.

4.8 Dynamic results
Now we focus of the theorems that derive from the class of dynamic axioms and rules. Remark the
modal behaviors of the dynamic operators.

The next result states the monotonicity of the diamond operator.
[Monotonicity] If ` φ→ ψ then ` 〈α〉φ→ 〈α〉ψ.
Proof ` φ→ ψ implies ` ¬ψ → ¬φ. Using rule ER4.4 we obtain

` [α](¬ψ → ¬φ) and axiom E4.4 gives ` [α]¬ψ → [α]¬φ. This is equivalent with ` ¬〈α〉ψ →
¬〈α〉φ, i.e. ` 〈α〉φ→ 〈α〉ψ. 2

If ` φ→ ψ then ` [α]¬ψ → [α]¬φ.
Proof If ` φ→ ψ then, by theorem 4.8, ` 〈α〉φ→ 〈α〉ψ, hence

` ¬〈α〉ψ → ¬〈α〉φ, that gives ` [α]¬ψ → [α]¬φ. 2

The next theorems confirm the intuition that the formulas cP , in their interrelations, mimic the
transitions of the processes (the dynamic operators mimic the transition labeled by the action it has as
index).

If P cannot do any transition by α then ` cP → [α]⊥.
Proof We prove it by induction on the structure of P .

The case P ≡ 0: axiom E4.4 implies ` 0→ [α]⊥ which proves this case, because c0 = 0.
The case P ≡ α1.P1|...|αn.Pn: as P cannot perform α we have α 6= αi for i = 1..n. We have
cP = (〈α1〉cP1∧1)|...|(〈αn〉cPn∧1). From ` cPi → >we derive, using theorem 4.8, ` (〈αi〉cPi∧1)→
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(〈αi〉> ∧ 1). Further, we apply theorem 4.7 and obtain ` cP → (〈α1〉> ∧ 1)|...|(〈αn〉> ∧ 1). Axiom
E4.4 gives that for α 6= αi, ` (〈α1〉> ∧ 1)|...|(〈αn〉> ∧ 1)→ [α]⊥. Hence ` cP → [α]⊥. 2

` cP → [α]
∨
{cQ | P

α−→ Q}
Proof We prove it by induction on P .
The case P 6≡ α.P ′|P ′′ for some P ′, P ′′: then P cannot preform a transition by α, hence, by

theorem 4.8, ` cP → [α]⊥. But
` ¬

∨
{cQ | P

α−→ Q} → >, and using theorem 4.8, we derive

` [α]⊥ → [α]
∨
{cQ | P

α−→ Q}

Combining this with ` cP → [α]⊥, we derive

` cP → [α]
∨
{cQ | P

α−→ Q}

The case P ≡ α.P ′: then {cQ | P
α−→ Q} = {cP ′} and cP = 〈α〉cP ′ ∧ 1. Applying axiom E4.4

we obtain ` cP → [α]cP ′ . Hence

` cP → [α]
∨
{cQ | P

α−→ Q}

The case P ≡ α.P ′|P ′′ with P ′′ 6≡ 0: we apply the inductive hypothesis to α.P ′ and P ′′ respec-
tively, and we obtain

` cα.P ′ → [α]
∨
{cQ′ | α.P ′

α−→ Q′}

and
` cP ′′ → [α]

∨
{cQ′′ | P ′′

α−→ Q′′}

We apply rule ER4.4 and obtain

` cP → [α](cα.P ′ |
∨
{cQ′′ | P ′′

α−→ Q′′} ∨
∨
{cQ′ | α.P ′

α−→ Q′}|cP ′′)

Using theorem 4.7, we obtain this result equivalent with

` cP → [α]
∨
{cQ | P

α−→ Q}

2

If `
∨
{cQ | P

α−→ Q} → φ then ` cP → [α]φ

Proof If `
∨
{cQ | P

α−→ Q} → φ then rule ER4.4 gives

` [α](
∨
{cQ | P

α−→ Q} → φ)

and further axiom E4.4 gives ` [α]
∨
{cQ | P

α−→ Q} → [α]φ. But theorem 4.8 gives ` cP →
[α]

∨
{cQ | P

α−→ Q}, hence ` cP → [α]φ. 2
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Epistemic results
We begin by stating that 0 is always an active agent: it always performs its “inactivity” expressed by
0. ` K0>.

Proof Trivial consequence of axiom E4.4 and axiom E4.4. 2

The next result states that an agent knows something only if it is active. Hence to know implies to be.
` KPφ→ KP>.
Proof Trivial consequence of axiom E4.4. 2

Further we prove another obvious property of knowledge: if Q knows φ and Q knows ψ, this is
equivalent with Q knows φ ∧ ψ.

` KQφ ∧KQψ ↔ KQ(φ ∧ ψ)
Proof ` φ→ (ψ → (φ ∧ ψ)). Using rule ER4.4, we obtain

` KQ> → KQ[φ→ (ψ → (φ ∧ ψ))]

We apply axiom E4.4 twice, and obtain

` KQ> → [KQφ→ (KQψ → KQ(φ ∧ ψ))]

i.e.
` KQ> ∧KQφ→ [KQψ → KQ(φ ∧ ψ)]

But ` KQφ→ KQ>, hence ` KQφ→ [KQψ → KQ(φ ∧ ψ)], i.e.

` KQφ ∧KQψ → KQ(φ ∧ ψ)

Reverse, we apply rule ER4.4 to ` φ ∧ ψ → ψ and then axiom E4.4, and obtain ` KQ> → (KQ(φ ∧
ψ)→ KQφ). But ` KQ(φ ∧ ψ)→ KQ>, hence ` KQ(φ ∧ ψ)→ KQφ.
Similarly ` KQ(φ ∧ ψ)→ KQψ. 2

The knowledge is redundant and introspective: if Q knows φ this is equivalent with the fact that
Q knows that Q knows φ.
` KQKQφ↔ KQφ.
Proof Axiom E4.4 gives ` KQφ→ KQKQφ, and axiom E4.4 gives ` KQKQφ→ KQφ. 2

[Monotonicity of knowledge]

If ` φ→ ψ then ` KPφ→ KPψ

50



Proof Because ` φ→ ψ, we can use rule ER4.4 and obtain
` KP> → KP (φ → ψ). But theorem 4.8 gives ` KPφ → KP>, hence ` KPφ → KP (φ → ψ)
where from we derive

` KPφ→ (KPφ ∧KP (φ→ ψ))

This entails, using axiom E4.4, ` KPφ→ KPψ. 2

The existence of an agent entails the existence of its active sub-agents, as proved further. This is
a knowledge-like description of the ontological topology of agents. It relies on to be is to know.
` KP |Q> → KP>.
Proof Axiom E4.4 gives ` KP |Q> ↔ cP |cQ|> and ` KP> ↔ cP |>. But ` cQ → > and

applying rule ER4.4, we obtain ` cP |cQ|> → cP |>. Hence ` KP |Q> → KP>. 2

The knowledge of an agent is consistent: if it knows ¬φ (it knows that φ is false) then it cannot
know φ as well. This is proved in the next two theorems.
` KQ¬φ→ ¬KQφ.
Proof Axiom E4.4 gives ` KQ¬φ → ¬φ and ` KQφ → φ. The last is equivalent with ` ¬φ →

¬KQφ, and combined with the first entails ` KQ¬φ→ ¬KQφ. 2

[Consistency theorem] ` KQφ→ ¬KQ¬φ.
Proof By using the negative form of theorem 4.8 2

In the next four theorems we will focus on the knowledge of the agent 0. It represents “the most
ignorant” agent inM in the sense that if it knows something then everybody else knows it as well.
This property might be exploited in the sense that what 0 knows is a validity inM. And the dual of
knowledge operator applied to 0 gives the satisfiability inM.
` K0φ→ (KQ> → KQφ)
Proof Axioms E4.4 gives ` K0φ→ φ and applying the monotonicity of knowledge, ` KQK0φ→

KQφ.
Now axiom E4.4 provides ` K0φ∧KQ> → KQK0φ. Thus ` K0φ∧KQ> → KQφ, that is equivalent
with ` K0φ→ (KQ> → KQφ). 2

`
∼
K0φ↔ K0

∼
K0φ

Proof By definition, we have `
∼
K0φ ↔ ¬K0¬φ, and because ` K0>, we derive `

∼
K0φ →

(¬K0¬φ ∧K0>).
But axiom E4.4 entails ` (¬K0¬φ ∧K0>)→ K0¬K0¬φ, i.e.

` (¬K0¬φ ∧K0>)→ K0

∼
K0φ

Hence `
∼
K0φ→ K0

∼
K0φ.

We have also ` K0

∼
K0φ→

∼
K0φ, by applying axiom E4.4. 2
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`
∼
K0φ ∧ ψ|ρ→ (

∼
K0φ ∧ ψ)|(

∼
K0φ ∧ ρ)

Proof Axiom E4.4 instantiated with φ =
∼
K0φ gives

` K0

∼
K0φ ∧ ψ|ρ→ (K0

∼
K0φ ∧ ψ)|(K0

∼
K0φ ∧ ρ)

Further, using theorem 4.8, we obtain the wanted result. 2

`
∼
K0φ→ [α]

∼
K0φ

Proof Axiom E4.4 instantiated with φ =
∼
K0φ gives

` K0

∼
K0φ→ [α]K0

∼
K0φ

Further, using theorem 4.8, we obtain the wanted result. 2

`
∼
K0φ→ (KQ> → KQ

∼
K0φ)

Proof Axiom E4.4 instantiated with φ =
∼
K0φ gives

` K0

∼
K0φ→ (KQ> → KQK0

∼
K0φ)

Further, using theorem 4.8, we obtain the wanted result. 2

Theorems referring to contexts
In this section we focus on results that involve the characteristic formulas of finite contexts. We try to
show, in this way, how sensitive our system is with respect to contexts. Further, these results will be
used in proving the completeness for LS

DES .
IfM is a finite context and R 6∈ M then ` cM → ¬cR.

Proof Because cM = K0(
∨
P∈M cP ) ∧ (

∧
P∈M

∼
K0cP ) we derive that

` cM → K0(
∨
P∈M

cP )

But from axiom E4.4 ` K0(
∨
P∈M cP ) →

∨
P∈M cP , so ` cM →

∨
P∈M cP . Further theorem 4.6

gives ` cP → ¬cR (as R 6∈ M and P ∈ M implies R 6≡ P ) which implies `
∨
P∈M cP → ¬cR. But

we proved that ` cM →
∨
P∈M cP . Hence ` cM → ¬cR. 2

IfM is a finite context then

` (cM ∧ φ|ψ)→ (cM ∧ φ)|(cM ∧ ψ)
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Proof Observe that, by applying axiom E4.4, we obtain

` (K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3) ∧ φ|ψ → (

∼
K0θ2 ∧

∼
K0θ3) ∧ (K0θ1 ∧ φ)|(K0θ1 ∧ ψ) (3)

If, further, we apply theorem 4.8 once, we obtain

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (K0θ1 ∧ φ)|(K0θ1 ∧ ψ)→

∼
K0θ3 ∧ (

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ2 ∧K0θ1 ∧ ψ)

Hence

` (K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3) ∧ φ|ψ →

∼
K0θ3 ∧ (

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ2 ∧K0θ1 ∧ ψ)

If we apply again theorem 4.8 we obtain

`
∼
K0θ3 ∧ (

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ2 ∧K0θ1 ∧ ψ)→

(
∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ ψ)

hence

` (K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3) ∧ φ|ψ →

(
∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ ψ)

Because cM = K0(
∨
Q∈M cQ) ∧ (

∧
Q∈M

∼
K0cQ), we can use the same idea, applying theorem 4.8

once for each process inM (being finite) and we obtain

` (cM ∧ φ|ψ)→ (cM ∧ φ)|(cM ∧ ψ)

2

IfM is a finite context then ` (cM ∧ φ|ψ)→ (cM ∧ φ)|ψ
Proof From the previous theorem, 4.8, we have

` (cM ∧ φ|ψ)→ (cM ∧ φ)|(cM ∧ ψ)

Theorem 4.7 gives

(cM ∧ φ)|(cM ∧ ψ)→ ((cM ∧ φ)|cM) ∧ ((cM ∧ φ)|ψ))

Hence ` (cM ∧ φ|ψ)→ (cM ∧ φ)|ψ. 2

IfM is a finite context then ` cM → [α]cM
Proof Observe that, by applying axiom E4.4, we obtain

` K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3 → (

∼
K0θ2 ∧

∼
K0θ3) ∧ [α]K0θ1
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If, further, we apply theorem 4.8 once, we obtain

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ [α]K0θ1 →

∼
K0θ3 ∧ [α]

∼
K0θ2 ∧ [α]K0θ1, i.e.

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ [α]K0θ1 →

∼
K0θ3 ∧ [α](

∼
K0θ2 ∧K0θ1)

Hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→

∼
K0θ3 ∧ [α](

∼
K0θ2 ∧K0θ1)

If we apply again theorem 4.8 we obtain

`
∼
K0θ3 ∧ [a](

∼
K0θ2 ∧K0θ1)→ [α](

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)

hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→ [α](

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)

As cM = K0(
∨
Q∈M cQ) ∧ (

∧
Q∈M

∼
K0cQ), we can use the same idea, applying theorem 4.8 once

for each process inM (being finite) and we obtain

` cM → [α]cM

2

IfM is a finite context then ` cM → (KQ> → KQcM)
Proof Observe that, by applying axiom E4.4, we obtain

` K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3 → (

∼
K0θ2 ∧

∼
K0θ3) ∧ (KQ> → KQK0θ1)

If, further, we apply theorem 4.8 once, we obtain

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (KQ> → KQK0θ1)→

∼
K0θ3 ∧ (KQ> → KQ

∼
K0θ2) ∧ (KQ> → KQK0θ1), i.e.

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (KQ> → KQK0θ1)→

∼
K0θ3 ∧ (KQ> → (KQ

∼
K0θ2 ∧KQK0θ1))

i.e., using 4.8,

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (KQ> → KQK0θ1)→

∼
K0θ3 ∧ (KQ> → KQ(

∼
K0θ2 ∧K0θ1))

Hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→

∼
K0θ3 ∧ (KQ> → KQ(

∼
K0θ2 ∧K0θ1))

If we apply again the theorems 4.8 and 4.8 we obtain

` [
∼
K0θ3 ∧ (KQ> → KQ(

∼
K0θ2 ∧K0θ1))]→ [KQ> → KQ(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)]
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hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→ [KQ> → KQ(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)]

Because cM = K0(
∨
Q∈M cQ) ∧ (

∧
Q∈M

∼
K0cQ), we can use the same idea, applying theorem 4.8

once for each process inM (being finite) and we obtain

` cM → (KQ> → KQcM)

2

Now we prove a context sensitive version of rule ER4.4.

IfM is a finite context and ` cM → (φ→ ψ) then ` cM → (φ|ρ→ ψ|ρ).
Proof ` cM → (φ → ψ) implies ` (cM ∧ φ) → ψ where we apply rule ER4.4 and obtain

` (cM ∧ φ)|ρ → ψ|ρ. But theorem 4.8 gives ` (cM ∧ φ|ρ) → (cM ∧ φ)|ρ. Combining these two
results we obtain
` (cM ∧ φ|ρ)→ ψ|ρ, i.e. ` cM → (φ|ρ→ ψ|ρ). 2

A context-sensitive version of theorem 4.7 is also available.

If for a finite contextM3 P and any decomposition P ≡ Q|R we have

` cM → (cQ → ¬φ) or ` cM → (cR → ¬ψ) then ` cM → (cP → ¬(φ|ψ)).

Proof If ` cM → (cQ → ¬φ) then we have, equivalently, ` cM ∧ cQ → ¬φ, i.e. ` cQ → (cM →
¬φ), hence ` cQ → ¬(cM ∧ φ).
Similarly ` cM → (cR → ¬ψ) gives ` cR → ¬(cM ∧ ψ).

Hence the hypothesis of the theorem can be rewritten as: for any decomposition P ≡ Q|R we
have

` cQ → ¬(cM ∧ φ) or ` cR → ¬(cM ∧ ψ).

Then we can apply theorem 4.7 and we obtain

` cP → ¬((cM ∧ φ)|(cM ∧ ψ)) (4)

But theorem 4.8 entails ` cM ∧ φ|ψ → (cM ∧ φ)|(cM ∧ ψ), hence ` ¬((cM ∧ φ)|(cM ∧ ψ)) →
¬(cM ∧ φ|ψ), and applying this result to (4), we obtain

` cP → ¬(cM ∧ φ|ψ) that is equivalent with ` cM → (cP → ¬(φ|ψ))

2

Further we prove a context-sensitive version of rule ER4.4.
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If ` cM → φ then ` cM → [α]φ.
Proof If we apply rule ER4.4 to ` cM → φ we obtain ` [α](cM → φ). But axiom E4.4

gives ` [α](cM → φ) → ([α]cM → [α]φ), hence ` [α]cM → [α]φ. Theorem 4.8 proves that
` cM → [α]cM which gives further ` cM → [α]φ. 2

The next result is a context-sensitive variant of rule ER4.4.

If ` cM → φ then ` cM → (KQ> → KQφ).
Proof If we apply rule ER4.4 to ` cM → φ, we obtain

` KQ> → KQ(cM → φ)

But axiom E4.4 gives further ` KQ(cM → φ)→ (KQcM → KQφ). Hence ` KQ>∧KQcM → KQφ
that is equivalent with

` KQcM → (KQ> → KQφ)

Now, theorem 4.8 ensures that ` cM → (KQ> → KQcM).
Hence ` cM → (KQ> → KQφ). 2

If ` cM → (KQψ → φ) then ` cM → (KQψ → KQφ).
Proof We apply theorem 4.8 to ` cM → (KQψ → φ) and we obtain

` cM → (KQ> → KQ(KQψ → φ)), i.e. ` (cM ∧KQ>)→ KQ(KQψ → φ).
But axiom E4.4 gives ` KQ(KQψ → φ) → (KQKQψ → KQφ). Now if we use theorem 4.8 we
obtain further

` KQ(KQψ → φ)→ (KQψ → KQφ)

All these proved that ` (cM ∧KQ>)→ (KQψ → KQφ), i.e.

` cM → (KQ> → (KQψ → KQφ))

which is equivalent with ` cM → (KQ> ∧KQψ → KQφ).
Theorem 4.8 proved that ` KQψ → KQ>, result which, combined with the previous one, gives
further ` cM → (KQψ → KQφ). 2

If Q|R ∈M then ` cM → (cQ|cR → ¬φ) implies ` cM → ¬KQφ.
Proof Because ` cR → >, rule ER4.4 gives ` cQ|cR → cQ|> that gives further ` cM →

(cQ|cR → cQ|>). Combining this result with the hypothesis of the theorem, ` cM → (cQ|cR → ¬φ),
we obtain

` (cM ∧ cQ|cR)→ (cQ|> ∧ ¬φ), i.e. ` cM → (cQ|cR → (cQ|> ∧ ¬φ))

But ` (cQ|> ∧ ¬φ)↔ ¬(cQ|> → φ), hence

` cM → (cQ|cR → ¬(cQ|> → φ)) (5)
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Axiom E4.4 ensure that ` K0(cQ|> → φ) → (cQ|> → φ) or, equivalently, ` ¬(cQ|> → φ) →
¬K0(cQ|> → φ), that, used in (5) gives

` cM → (cQ|cR → ¬K0(cQ|> → φ)) (6)

But theorem 4.8 gives ` K0>, that can be used in (6) providing

` cM → (cQ|cR → (K0> ∧ ¬K0(cQ|> → φ))) (7)

The negative introspection, axiom E4.4, infers

` (K0> ∧ ¬K0(cQ|> → φ))→ K0¬K0(cQ|> → φ) (8)

Combining (7) and (8) we obtain

` cM → (cQ|cR → K0¬K0(cQ|> → φ)) (9)

But (9) is equivalent with ` (cM ∧ cQ|cR) → K0¬K0(cQ|> → φ), and because Q|R ∈ M, we can
apply rule ER4.4 and obtain

` cM → ¬K0(KQ> → φ) (10)

But from axiom E4.4 we derive ` KQφ→ K0(KQ> → φ), hence

` ¬K0(KQ> → φ)→ ¬KQφ (11)

Combining (10) with (11) we obtain ` cM → ¬KQφ, q.e.d. 2

The next result is a context-sensitive version of theorem 4.7.
If ` cM → (φ→ ψ) and ` cM → (ρ→ θ) then ` cM → (φ|ρ→ ψ|θ).
Proof To ` cM → (φ→ ψ) we can apply theorem 4.8 and we obtain ` cM → (φ|ρ→ ψ|ρ), i.e.

` (cM ∧ φ|ρ)→ ψ|ρ which implies

` (cM ∧ φ|ρ)→ (cM ∧ ψ|ρ) (12)

The same theorem 4.8 can be applied to ` cM → (ρ→ θ) giving ` cM → (ψ|ρ→ ψ|θ), i.e.

` (cM ∧ ψ|ρ)→ ψ|θ (13)

Further, combining (12) and (13) we derive ` (cM ∧ φ|ψ)→ ψ|θ, hence ` cM → (φ|ψ → ψ|θ). 2

We prove further a contextual version of theorem 4.8.
If ` cM → (φ→ ψ) then ` cM → (〈α〉φ→ 〈α〉ψ).
Proof ` cM → (φ → ψ) implies ` cM → (¬ψ → ¬φ) where, applying theorem 4.8, we obtain

` cM → [α](¬ψ → ¬φ). But axiom E4.4 gives ` [α](¬ψ → ¬φ) → ([α]¬ψ → [α]¬φ). Hence `
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cM → ([α]¬ψ → [α]¬φ), i.e. ` cM → (¬〈α〉ψ → ¬〈α〉φ). Concluding, ` cM → (〈α〉φ → 〈α〉ψ).
2

The next result is a variant of theorem 4.8, but sensitive to the context.

If ` cM → (
∨
{cQ | P

α−→ Q} → φ) then ` cM → (cP → [α]φ)

Proof If ` cM → (
∨
{cQ | P

α−→ Q} → φ) then theorem 4.8 gives ` cM → [α](
∨
{cQ | P

α−→
Q} → φ) and further axiom E4.4 gives

` cM → ([α]
∨
{cQ | P

α−→ Q} → [α]φ)

But theorem 4.8 gives
` cP → [α]

∨
{cQ | P

α−→ Q}

hence ` cM ∧ cP → [α]φ, i.e. ` cM → (cP → [α]φ). 2

4.9 Completeness of LS
DES against process semantics

Now we will prove the completeness of LS
DES with respect to process semantics. We recall that

completeness ensures that everything that can be derived in the semantics can be proved in the syntax.
In this way we have the possibility to syntactically verify properties.

In the context of a decidable system, as ours is, the completeness provides a powerful tool for
making predictions on the evolution of the system we analyze. Indeed, knowing the state of our
system, we can characterize it syntactically. And because any other state can be characterized, we
can project our problem into the syntax and verify its satisfiability. Hence if our system can reach
that state, we will obtain that the formula is satisfiable and the method will provide also a minimal
model that satisfies it. Thus we made a prediction without investigating (simulating) the full evolution
of the system that might cause, sometimes, unsolvable computational problems (usually the time is
branching generating exponential complexity).

We start by proving a lemma that provides a syntactic characterization of the satisfiability. The in-
tuition is that, because cP and cM are characteristic formulas, we should have an equivalence between
M, P |= φ and ` cM ∧ cP → φ (of course for finite contexts) as both can be read as the process P in
the contextM has the property φ.

IfM is a finite context thenM, P |= φ iff ` cM ∧ cP → φ.
Proof (=⇒) We prove it by induction on the syntactical structure of φ.

• The case φ = 0: M, P |= 0 implies P ≡ 0. But c0 = 0 and ` 0 → 0, hence ` 0 ∧ cM → 0.
This gives ` cM ∧ cP → φ.

• The case φ = >: we have alwaysM, P |= > and ` cP ∧ cM → >, hence ` cP ∧ cM → φ.
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• The case φ = φ1 ∧ φ2:M, P |= φ iffM, P |= φ1 andM, P |= φ2.
Further, using the inductive hypothesis, we obtain ` cM ∧ cP → φ1 and ` cM ∧ cP → φ2.
Hence ` cM ∧ cP → (φ1 ∧ φ2), i.e. ` cM ∧ cP → φ.

• The case φ = φ1|φ2:M, P |= φ iff P ≡ Q|R,M, Q |= φ1 andM, R |= φ2.
Using the inductive hypothesis,
` cM ∧ cQ → φ1 and ` cM ∧ cR → φ2, i.e.
` cM → (cQ → φ1) and ` cM → (cR → φ2).
Hence, using theorem 4.8 we obtain ` cM → (cQ|cR → φ1|φ2), i.e. ` cM ∧ cP → φ.

• The case φ = KQ>:M, P |= KQ> iff P ≡ Q|R, iff cP = cQ|cR.
Using rule ER4.4 we obtain ` cQ|cR → cQ|>, further using axiom E4.4 ` cQ|cR → KQ>, i.e.
` cP → KQ>. Hence ` cM ∧ cP → φ.

• The case φ = KQψ:M, P |= KQψ, and because ` KQψ → KQ> (by theorem 4.8), using the
soundness, we obtain thatM, P |= KQ>. Now, we apply the previous case that gives

` cM ∧ cP → KQ> (14)

M, P |= KQψ is equivalent with P ≡ Q|R and for any Q|S ∈ M we have M, Q|S |= ψ.
Then the inductive hypothesis gives

for any Q|S ∈M we have ` (cM ∧ cQ|cS)→ ψ (15)

Consider now a process Q|S 6∈ M. Because M is finite, we apply theorem 4.8 and obtain
` cM → ¬(cQ|cS) or equivalent,
` cM ∧ (cQ|cS)→ ⊥. But ` ⊥ → ψ, hence

for any Q|S 6∈ M we have ` (cM ∧ cQ|cS)→ ψ (16)

Now (15) and (16) together give

for any S ∈M we have ` (cM ∧ cQ|cS)→ ψ (17)

i.e., using theorem 4.7,
` (cM ∧ cQ|

∨
S∈M

cS)→ ψ (18)

But
` K0(

∨
S∈M

cS)→
∨
S∈M

cS, hence ` cM →
∨
S∈M

cS

Now, we can apply rule ER4.4 and obtain

` cQ|cM → cQ|
∨
S∈M

cS, hence ` (cQ|cM ∧ cM)→ (cQ|
∨
S∈M

cS ∧ cM)
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In this point, using (18) we obtain

` (cQ|cM ∧ cM)→ ψ (19)

We have ` cM → (> → cM) and ` cM → (cQ → cQ) where from, applying theorem 4.8, we
can derive ` cM → (cQ|> → cQ|cM), i.e. ` cM ∧ cQ|> → cQ|cM and further

` (cM ∧ cQ|>)→ (cM ∧ cQ|cM)

Using this result together with (19), we obtain further

` (cM ∧ cQ|>)→ ψ, i.e. ` cM → (cQ|> → ψ)

where we can apply axiom E4.4 that gives

` cM → (KQ> → ψ)

applying theorem 4.8, we obtain

` cM → (KQ> → KQψ), i.e. ` (cM ∧KQ>)→ KQψ (20)

But (14) gives

` cM ∧ cP → KQ> where from ` (cM ∧ cP )→ (cM ∧KQ>)

and using this in (20),

` (cM ∧ cP )→ KQψ i.e. ` (cM ∧ cP )→ φ.

• The case φ = 〈α〉ψ: M, P |= 〈α〉ψ means that exists P ′ ∈ M such that P α−→ P ′ and
M, P ′ |= ψ. Then the inductive hypothesis gives

` cM ∧ cP ′ → ψ

P
α−→ P ′ means that P ≡ α.R|S and P ′ ≡ R|S, so cP = (〈α〉cR ∧ 1)|cS and cP ′ = cR|cS . So

` cM ∧ cR|cS → ψ, i.e. ` cM → (cR|cS → ψ) and using theorem 4.8

` cM → (〈α〉(cR|cS)→ 〈α〉ψ) (21)

theorem 4.7 gives ` cP → 〈α〉cR|cS ∧ 1|cS , hence

` cP → 〈α〉cR|cS (22)

Axiom E4.4 gives
` 〈α〉cR|cS → 〈α〉(cR|cS) (23)

Hence, from (21), (22) and (23) we derive

` cM → (cP → 〈α〉ψ), i.e. ` (cM ∧ cP )→ 〈α〉ψ
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• The case φ = ¬ψ: we argue by induction on the syntactical structure of ψ.

– the subcase ψ = 0: M, P |= ¬0 means that P 6≡ 0. Then we can apply theorem 4.6 and
obtain ` cP → ¬0.
So ` cM ∧ cP → ¬0.

– the subcase ψ = >: is an impossible one as we cannot haveM, P |= ⊥.

– the subcase ψ = ψ1 ∧ ψ2: M, P |= ¬(ψ1 ∧ ψ2) is equivalent withM, P |= ¬ψ1 ∨ ¬ψ2,
i.e. M, P |= ¬ψ1 orM, P |= ¬ψ2. By the inductive hypothesis, ` cM ∧ cP → ¬ψ1 or
` cM ∧ cP → ¬ψ2, where from we obtain ` cM ∧ cP → ψ

– the subcase ψ = ¬ψ1: M, P |= ¬ψ is equivalent withM, P |= ¬¬ψ1, i.e. M, P |= ψ1

where we can use the inductive hypothesis ` cM ∧ cP → ψ1 which is equivalent with
` cM ∧ cP → φ.

– the subcase ψ = ψ1|ψ2:M, P |= ¬(ψ1|ψ2) means that for any parallel decomposition of
P ≡ Q|R,M, Q |= ¬ψ1 orM, R |= ¬ψ2. These imply, using the inductive hypothesis,
that for any decomposition P ≡ Q|R we have

` cM → (cQ → ¬ψ1) or ` cM → (cR → ¬ψ2)

then we can apply theorem 4.8 that gives

` cM ∧ cP → ¬ψ.

– the subcase ψ = K0ψ1: M, P |= ¬K0ψ1 means ∃R ∈ M such that M, R |= ¬ψ1.
Using the inductive hypothesis,
` cM∧cR → ¬ψ1, i.e. ` cM → (cR|c0 → ¬ψ1). Now theorem 4.8 gives ` cM → ¬K0ψ1,
hence ` cM ∧ cP → ¬K0ψ1.

– the subcase ψ = KQψ1, Q 6≡ 0: we distinguish two cases

∗ the sub-subcase ψ1 = >: M, P |= ¬KQ> implies that Q is not a subprocess of P .
Then for any R ∈ M we have P 6≡ Q|R. Then theorem 4.6 gives us ` cQ|R → ¬cP ,
i.e. ` cQ|cR → ¬cP . From here we can infer

` cQ|
∨
S∈M

cS → ¬cP (24)

But
` K0(

∨
S∈M

cS)→
∨
S∈M

cS, hence ` cM →
∨
S∈M

cS

Now, we can apply rule ER4.4 and obtain

` cQ|cM → cQ|
∨
S∈M

cS
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In this point, using (24) we obtain

` cQ|cM → ¬cP (25)

We have ` cM → (> → cM) and ` cM → (cQ → cQ) where from, applying
theorem 4.8, we can derive ` cM → (cQ|> → cQ|cM), i.e. ` cM ∧ cQ|> → cQ|cM
Using this result together with (25), we obtain further

` (cM ∧ cQ|>)→ ¬cP , i.e. ` cM ∧ cP → ¬(cQ|>)

and axiom E4.4 gives
` cM ∧ cP → ¬KQ>.

∗ the sub-subcase ψ1 6= >: we distinguish two more cases M, P |= ¬KQ> and
M, P |= KQ>.
· ifM, P |= ¬KQψ1 andM, P |= ¬KQ>, we have
` cM ∧ cP → ¬KQ> (proved before). Moreover, because ` KQψ1 → KQ>
(theorem 4.8) we have
` ¬KQ> → ¬KQψ1 which gives ` cM ∧ cP → ¬KQψ1.
· if M, P |= ¬KQψ1 and M, P |= KQ>, ∃Q|S ∈ M with M, S|Q |= ¬ψ1.

Using the inductive hypothesis we obtain ` cM → (cS|cQ → ¬ψ1) and from
theorem 4.8 that ` cM → ¬KQψ1. Hence ` cM ∧ cP → ¬KQψ1.

– the subcase ψ = 〈α〉ψ1:M, P |= ¬〈α〉ψ1 is equivalent withM, P |= [α]¬ψ1.
If there is a process Q ∈ M such that P α−→ Q, then for any Q ∈ M such that P α−→ Q
we haveM, Q |= ¬ψ1. Using the inductive hypothesis we obtain that for any Q ∈ M
such that P α−→ Q we have ` cM ∧ cQ → ¬ψ1, i.e.

` cM ∧
∨
{cQ | P

α−→ Q} → ¬ψ1

or equivalently
` cM → (

∨
{cQ | P

α−→ Q} → ¬ψ1)

Using theorem 4.8, we obtain ` cM ∧ cP → [α]¬ψ1.

If there is no process Q ∈ M such that P
α

toQ then theorem 4.8 gives ` cP → [α]⊥. But
` ψ1 → >, hence ` [α]⊥ → [α]¬ψ1. So, also in this case we have ` cM ∧ cP → [α]¬ψ1.

(⇐=) Let ` cM ∧ cP → φ. Suppose that M, P 6|= φ. Then M, P |= ¬φ. Using the reversed
implication we obtain ` cM ∧ cP → ¬φ, thus
` cM ∧ cP → ⊥. But from corollary 4.6 we have M, P |= cM ∧ cP which, using the soundness,
givesM, P |= ⊥ impossible!
HenceM, P |= φ. 2

We recall the definitions of provability, consistency, satisfiability and validity.
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[Provability and consistency] We say that a formula φ ∈ FS
DES is provable in LS

DES (or LS
DES-

provable for short), if φ can be derived, as a theorem, using the axioms and the rules of LS
DES . We

denote this by ` φ.
We say that a formula φ ∈ FS

DES is consistent in LS
DES (or LS

DES-consistent for short) if ¬φ is not
LS
DES-provable.

[Satisfiability and validity] We call a formula φ ∈ FS
DES satisfiable if there exists a contextM

and a process P ∈M such thatM, P |= φ.
We call a formula φ ∈ FS

DES validity if for any context M and any process P ∈ M we have
M, P |= φ. In such a situation we write |= φ.
Given a contextM, we denote byM |= φ the situation when for any P ∈M we haveM, P |= φ.

φ is satisfiable iff ¬φ is not a validity, and vice versa, φ is a validity iff ¬φ is not satisfiable.
If φ is LS

DES-consistent then exists a contextM and a process P ∈M such thatM, P |= φ.
Proof Suppose that for any context M and any process P ∈ M we do not have M, P |= φ,

i.e. we have M, P |= ¬φ. Hence, for any finite context M and any process P ∈ M we have
M, P |= ¬φ. Using lemma 4.9, we obtain ` cM ∧ cP → ¬φ. Hence ` cM ∧

∨
P∈M cP → ¬φ. But

` cM →
∨
P∈M cP which, combined with the previous result, implies ` cM → ¬φ.

Thus for each finite context M we have ` cM → ¬φ. But then for each context M ∈ M
act(¬φ)+
¬φ

we have ` cM → ¬φ. As M
act(¬φ)+
¬φ is finite, we can infer further `

∨
M∈M

act(¬φ)+
¬φ

cM → ¬φ.

Now, applying rule ER4.4, we obtain ` ¬φ. This contradicts with the hypothesis of consistency of φ.
Hence, it exists a contextM and a process P ∈M such thatM, P |= φ. 2

[Completeness] The LS
DES system is complete with respect to process semantics.

Proof Suppose that φ is a valid formula with respect to our semantics, but φ is not provable in the
system LS

DES . Then neither is ¬¬φ, so, by definition, ¬φ is LS
DES-consistent. It follows, from lemma

4.9, that ¬φ is satisfiable with respect to process semantics, contradicting the validity of φ. 2

5 Concluding remarks
In this paper we developed Dynamic Epistemic Spatial Logic, LS

DES , which extends Hennessy-Milner
logic with the parallel operator and with epistemic operators. The lasts are meant to express global
properties over contexts. We propose these operators as alternative to the guarantee operator of the
classical spatial logics, in order to obtaining a logic adequately expressive and decidable.

Obviously Dynamic Epistemic Spatial Logic is more expressive than guarantee-free Dynamic
Spatial Logic as the first can express global properties. Still our logic is less expressive than the
classic spatial logic. Indeed, using the guarantee operator and the characteristic formulas, we can
express our epistemic operators in classic spatial logic, while guarantee operator cannot be expressed
by using our logic:

KQφ
def
= cQ|> ∧ (¬(cQ|> → φ) .⊥)
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Still, as remarked in section 4.2, validity and satisfiability in a model can be expressed in our
syntax. Combining this feature with the possibility to characterize processes and finite contexts, we
may argue on utility of our logic in most of the CCS-like applications for which classic spatial logic
was proposed.

In the context of decidability, our sound and complete Hilbert-style axiomatic system provides a
powerful tool for making predictions on the evolution of the concurrent distributed systems. Knowing
the current state or a sub-state of a system, we can characterize it syntactically. And because any
other state can be characterized, we can project any prediction-like problem into the syntax and verify
its satisfiability. Hence if the system we considered can reach the state we check, we will obtain
that the formula is satisfiable and this method will provide also a minimal model. Thus we can
make predictions without investigating (simulating) the full evolution of the system that might cause,
sometimes, unsolvable computational problems (usually the time is branching generating exponential
complexity).

The axioms and rules considered are very similar to the classical axioms and rules in epistemic
logic, and some derivable theorems state meaningful properties of epistemic agents. All these re-
lates our logic with the classical epistemic/doxastic logics and focus the specifications on external
observers as epistemic agents. This interpretation is consistent with the spirit of process algebras.

Further researches are to be considered such as adding a Gabbay-Pitts operator [20] for specify
new names and adding location operators. Challenging will be also the perspective of adding recur-
sion in semantics.
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