
Technical Report CoSBi 01/2006

Causality and Concurrency in Beta-binders

Maria Luisa Guerriero

University of Trento

guerrier@dit.unitn.it

Corrado Priami

CoSBi

and

DISI, University of Trento

priami@cosbi.eu

Causality and Concurrency in Beta-binders

Maria Luisa Guerriero
University of Trento
guerrier@dit.unitn.it

and
Corrado Priami

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

priami@dit.unitn.it

Abstract

Causal relations allow us to understand the causes of single tran-
sitions/events in a computation and, consequently, to acquire infor-
mation on the whole systems. In this paper a definition of a causal
relation and of an enabling relation for Beta-binders is given, together
with the description of some important properties of these relations;
in particular we show that the concurrency relation is the complement
of the union of causal and enabling relations for each possible com-
putation. The application domains which we are mostly interested in
are biology and medical sciences, thus the application of the defined
relations to a model of the intensively studied ERK/MAPK pathway
is described.

1 Introduction

When analyzing the interactions between different entities in a concurrent
system, it is useful to take into account the causal and temporal relations
between the events. This is becoming particularly relevant in the emergent
field of dynamical modeling of biological systems.

Obviously, the knowledge of the dependencies between some bio-chemical
events could help us in the study of the behavior of complex systems by fixing
the order of some events, and hence by limiting the number of interleaving
interactions to be considered. Moreover, to understand the causes of a given
event (for example a disease) life scientists could take a limited number of
events into account (the ones that exercise some dependence on it), while
they could safely ignore the others.

In particular, causality seems to play a relevant role in understanding
complex biochemical pathways, since it permits to sequence independent
activities and, hence, to simplify the models.

In this paper we define the relations of causality and enabling on actions
in Beta-binders, which is a formalism recently introduced [10] to specify the
interaction of bio-chemical entities.

Intuitively, an activity A causes an activity B if A influences the execu-
tion of B, while an activity A enables an activity B if either A is a necessary
condition for the execution of B or A cannot be executed after B.

1

The union of causality and enabling gives all the possible dependencies
of an action on other actions and hence the concurrency relation is defined
as the complement of the union of causality and enabling relations for each
possible computation. Intuitively, two activities A and B are concurrent if
they can be executed in parallel.

In the literature there are several works on causal and concurrent rela-
tions for other models, such as CCS [3, 5, 9], π-calculus [1, 6, 4, 7, 12] and
Petri Nets [13]; instead, currently there is no related work for Beta-binders.

In this paper we adopt the transition system-based technique used in
[6, 4] to define a causal and an enabling relation for the π-calculus. Since
Beta-binders is an extension of the π-calculus, we basically extend these
relations to address the new Beta-binders operators. Hence, an approach
similar to the one used in [6, 4] is adopted for the operators present in both
languages, while we had to reinterpret the notion of causality with respect to
the operators which are specific to Beta-binders, in particular the splitting
and joining of boxes. The relations we define are not directly comparable
to the ones defined in [6, 4], since the languages they refer to are different.
Nevertheless, the intuitive notions of causality and concurrency for the two
languages are similar; one noteworthy difference is that according to our
definition, contrary to [6], the causal relation is not included in the enabling
one; indeed we show that in our case none of these relations include the
other one.

Examples of use of causal relations in modeling bio-chemical systems are
in [2].

In the next section we briefly describe the language of Beta-binders,
while in Sect. 3 the labeled semantics of Beta-binders is introduced. In
Sect. 4 we concentrate on the definition of the relations, and in Sect. 5
some important properties of the defined relations are studied. Some of the
potential applications are described in Sect. 6 and, in particular, an example
is shown in Sect. 6.1. Finally some concluding remarks are presented.

2 Beta binders and Bio-processes

In this section we briefly recall the syntax and the semantics of Beta-binders
(see [10, 11] for details).

Basically, a Beta-binders process is a π-calculus process enclosed in a
box (or a parallel composition of them) and the actions that such a process
can execute are a superset of those of π-calculus.

2.1 Syntax

An elementary beta binder has the form β(x : ∆), where the name x is the
subject of the beta binder and ∆ is the type of x (it is a non-empty set of
names such that x /∈ ∆).

Composite beta binders are generated by the following BNF-like gram-
mar:

B ::= β(x : ∆) | βh(x : ∆) | β(x : ∆)B | βh(x : ∆)B .

2

Pi-processes, which are referred to with this name because of their simi-
larity to π-calculus processes, are generated by the following BNF-like gram-
mar:

P ::= nil | π. P | P |P | νy P | !P

where π ::= c | b, with c ::= x(w) | xy and b ::= expose(x, ∆) | hide(x) | unhide(x) .
Input x(w), restriction νy and expose(x, ∆) act as binders.
Bio-processes, which realize the encapsulation of pi-processes into boxes

whose interfaces consist of composite beta binders, are generated by the
following BNF-like grammar:

B ::= Nil | B[P] | B ‖ B .

2.2 Semantics

The semantics of bio-processes is given in [10] in terms of a reduction relation
(−→), which uses a structural congruence relation (≡).

We postpone the formal definitions of these relations to the introduction
of the labeling on processes in next section. For their standard definitions,
see [10].

3 Labeled Semantics of Beta-binders

We define ϑ ∈ {‖0, ‖1}∗ and ϕ ∈ {|0, |1, !}∗, and we use them to label bio-
processes and pi-processes respectively. Hence, in the syntactic definition
of pi-processes and bio-processes, we replace each process of the form π.P
with a labeled process ϕπ.P (where ϕ provides a linear encoding of the
syntactical location of the sub-tree of π.P in the syntax tree of the whole pi-
process within a bio-process). Moreover we replace each bio-process B[P]
with ϑB[P]. Intuitively ϑ encodes the parallel structure of bio-processes,
while ϕ encodes the parallel structure of pi-processes taking care of repli-
cations as well. For instance, the bio-process β(x : Γ)βh(y : ∆) [P0|P1] ‖
β(z : ∆) [Q0|Q1] is mapped to ‖0 β(x : Γ)βh(y : ∆) [|0P0||1P1] ‖ ‖1 β(z : ∆) [|0Q0||1Q1].

The set θ of the labels of the transitions is defined by the following
BNF-like grammar:

θ ::= ϑϕµ | ϑρ | ϑϕ〈ϕ0x(w),ϕ1xz〉 | ϑ〈‖iϑ0ϕ0
′x(w)!, ‖1−iϑ1ϕ1

′yz!〉 |
ϑ 〈‖0ϑ0joinP0, ‖1ϑ1joinP1〉

where µ ::= c | i | b with i ::= ′x(w)! | ′xy!, and ρ ::= split〈P0, P1〉 | joinP .
In the above, the first pair of labels is used to denote intra-communications

(communications within one bio-process), while the second one is used to de-
note inter-communications (communications between different bio-processes)
and the last one is used to denote join actions. Note that the definition of
i allows us to distinguish between the input/output actions used in inter-
nal communications (x(w) / xy) and the ones used in inter-communications
(′x(w)! / ′xy!).

3

According to the definition of binders, y is a bound name in x(y), in
′x(y)! and in expose(y, ∆).

We introduce a set of labels with metavariable δ that will be useful in
the following:

δ ::= ϕµ | ϕ〈ϕ0x(w),ϕ1xz〉 .

Definition 1 Structural congruence over pi-processes, denoted by ≡, is the
smallest relation which satisfies the laws in Table 1 (a). Structural congru-
ence over bio-processes, denoted by ≡, is the smallest relation which satisfies
the laws in Table 1 (b) where β̂ ranges over {β, βh}.

Table 1: Laws for structural congruence.
(a) Pi-processes (b) Bio-processes
P1 ≡ P2 provided P1 is an α-converse of P2 B[P1] ≡ B[P2] provided P1 ≡ P2

P1|(P2|P3) ≡ (P1|P2)|P3 B1 ‖ (B2 ‖ B3) ≡ (B1 ‖ B2) ‖ B3

P1|P2 ≡ P2|P1 B1 ‖ B2 ≡ B2 ‖ B1

P | nil ≡ P B ‖ Nil ≡ B
νz νw P ≡ νw νz P B1B2[P] ≡ B2B1[P]
νz nil ≡ nil B∗β̂(x : Γ)[P] ≡ B∗β̂(y : Γ)[P{y/x}]
νz (P1|P2) ≡ P1|νz P2 provided z (∈ fn(P1) provided y fresh in the system

Definition 2 The reduction relation −→ is the smallest relation over bio-
processes obtained by applying the axioms and rules in Table 2.

4 Causality, Enabling and Concurrency

We first introduce two auxiliary functions, l and subj, to simplify the pre-
sentation of our subsequent treatment. For each action µ and ρ, the function
l specifies its type, while the function subj specifies the name it operates
on (i.e. for input/output actions it is the name of the channel on which it
receives/sends, while for expose/hide/unhide actions it is the subject of the
beta binder).

l(x(w)) = in l(′x(w)!) = in inter
l(xw) = out l(′xw!) = out inter
l(expose(x, ∆)) = expose l(join P) = join
l(hide(x)) = hide l(split〈P0, P1〉) = split
l(unhide(x)) = unhide

subj(x(w)) = subj(xw) = subj(′x(w)!) = subj(′xw!) = {x}
subj(expose(x, ∆)) = subj(hide(x)) = subj(unhide(x)) = {x}
subj(join P) = subj(split〈P0, P1〉) = ⊥

Hereafter, we assume that all the bound names in the system are not
used except for their bound occurrences. In general it is possible to modify
any system to satisfy this constraint by applying α-conversion. We also

4

Table 2: Axioms and rules for the reduction relation.

(intra)
P ≡ νũ (ϕϕ0x(w). P0|ϕϕ1xz. P1|P2)

ϑB[P]
ϑϕ〈ϕ0x(w),ϕ1xz〉

−→ ϑB[νũ (ϕϕ0P0{z/w}|ϕϕ1P1|P2)]

(inter)
P ≡ νũ (ϕ0x(w). P1|P2) Q ≡ νṽ (ϕ1yz. Q1|Q2)

X
ϑ〈‖iϑ0ϕ0

′x(w)! ,‖1−iϑ1ϕ1
′yz!

−→ Y
where X = ϑ‖iϑ0 β(x : Γ)B∗

0[P] ‖ ϑ‖1−iϑ1 β(y : ∆)B∗
1[Q],

Y = ϑ‖iϑ0 β(x : Γ)B∗
0[P ′] ‖ ϑ‖1−iϑ1 β(y : ∆)B∗

1[Q′],
P ′ = νũ (ϕ0P1{z/w}|P2) and Q′ = νṽ (ϕ1Q1|Q2)

provided Γ ∩∆ (= ∅ and x, z /∈ ũ and y, z /∈ ṽ

(expose)
P ≡ νũ (ϕ expose(x, Γ) . P1|P2)

ϑB[P]
ϑϕ expose(x, Γ)−→ ϑBβ(y : Γ) [νũ (ϕP1{y/x}|P2)]

provided y fresh in the system

(hide)
P ≡ νũ (ϕ hide(x) . P1|P2)

ϑB∗ β(x : Γ) [P]
ϑϕ hide(x)−→ ϑB∗ βh(x : Γ) [νũ (ϕP1|P2)]

provided x /∈ ũ

(unhide)
P ≡ νũ (ϕ unhide(x) . P1|P2)

ϑB∗ βh(x : Γ) [P]
ϑϕ unhide(x)−→ ϑB∗ β(x : Γ) [νũ (ϕP1|P2)]

provided x /∈ ũ

(join) ϑ‖0ϑ0B0[P0] ‖ ϑ‖1ϑ1B1[P1]
ϑ 〈‖0ϑ0join P0,‖1ϑ1join P1〉−→ Y

where Y = ϑ‖0ϑ0B[|0P0σ0||1P1σ1] ‖ ϑ‖1ϑ1 Nil
provided that fjoin is defined in (B0,B1, P0, P1)
and with fjoin(B0,B1, P0, P1) = (B,σ0,σ1)

(split) ϑB[P0|P1]
ϑ split〈P0,P1〉−→ ϑ‖0B0[P0σ0] ‖ ϑ‖1B1[P1σ1]

provided that fsplit is defined in (B, P0, P1)
and with fsplit(B, P0, P1) = (B0,B1,σ0,σ1)

(bang)
ϑB[P |Q] θ−→ ϑB′[P ′|Q′]

ϑB[!P |Q] !θ−→ ϑB′[!P |P ′|Q′]

(redex)
B

θ−→ B′

B ‖ B′′ θ−→ B′ ‖ B′′
(struct)

B1 ≡ B′
1 B′

1
θ−→ B2

B1
θ−→ B2

5

assume that all the names in the system are marked by an index and that
at the beginning of the computation its value is 0. Moreover, the new name
introduced by the expose operation is the same as the bound name in the
primitive with the index incremented by one (e.g. B[expose(xn, ∆) .P] −→
Bβ(xn+1 : ∆) [P{xn+1/xn}]).

4.1 Causal Relation

Now we can define the causal relation between pairs of transitions in a
computation. Recall that an activity A causes an activity B if A influences
the execution of B. Our labels allow us to use them as unique names for the
transitions as they are linearizations encoding the position of the prefixes
and processes originating the transitions in the syntax tree.

Definition 3 (Immediate causal relation) Given a computation B0
θ0−→

B1
θ1−→ · · · θn−→ Bn+1, we say that θn immediately depends on θh (or, sym-

metrically, θh immediately causes θn) if h < n and θh ! θn can be derived
by repeated applications of the following rules, where i, j ∈ {0, 1}.

1. ‖iθ ! ‖iθ′ if θ ! θ′

2. |iδ ! |iδ′ if δ ! δ′

3. !δ ! |0δ′

4. !δ ! |1δ′ if δ ! δ′

5. θ ! 〈θ′0, θ′1〉 if ∃i.θ ! θ′i

6. 〈θ0, θ1〉! θ′ if ∃i.θi ! θ′

7. 〈θ0, θ1〉! 〈θ′0, θ′1〉 if ∃i, j.θi ! θ′j

8. µ ! ϕµ′ if (l(µ) = in ∨ l(µ) = in inter ∨ l(µ) = expose)

9.

ϕµ ! ϕ′µ′ if (subj(µ) = subj(µ′) ∧
((l(µ)=hide ∧ l(µ′)=unhide) ∨
(l(µ)=unhide ∧ l(µ′)=hide) ∨
(l(µ)=unhide ∧ (l(µ′)= in inter ∨ l(µ′)=out inter))))

10. ϕµ ! ρ

11. ρ ! ϕµ

12. ρ ! ϑρ

The rules listed above are applied recursively to a pair of actions θh, θn

in order to verify if there is a structural dependency between them.
The recursive step is implemented by removing the common prefixes of

θh and θn through rules 1 and 2. First, rule 1 is applied since it concerns the
labels of the bio-processes; then, if θh and θn refer to the same bio-process,
rule 2 is applied. Note that for π-calculus only one such rule is defined [6],

6

while for Beta-binders two levels of recursion are needed to take into account
the parallel structure of both bio-processes and pi-processes.

Rules 3 and 4 take into account the replication operator and are analo-
gous to the ones for the π-calculus, as described in [4].

Rules 5, 6 and 7 state that a coupled action (a communication or a join)
is caused by/causes another action if one of the two partners of the coupled
action is caused by/causes the other action.

Rules 8, 9, 10, 11 and 12 are applied at the end of the recursive steps and
are peculiar to Beta-binders, since they are relative to the operators which
are peculiar in Beta-binders.

Rule 8 describes the causal dependency imposed by the sequential struc-
ture of the pi-processes: an action θh = ϑϕµ causes an action θn whose label
has ϑϕ as a prefix if θh is a binder (i.e. if θh is an input action (either in an
internal or in an inter-communication) or an expose operation). The idea
which lead to the definition of this rule is that all binder operators cause
a flow of information to their suffix, so they must cause them. The third
case, the expose operator, is peculiar to Beta-binders: since it introduces a
new beta binder on the interface of the process, the rest of the process is
considered to be necessarily caused by it.

Rule 9 describes how the operations on the interfaces influence each
other: an hide causes an unhide of the same beta binder; an unhide causes
an hide of the same beta binder or an inter-communication on it; this causal
dependency holds both if the address label of θh is a prefix of the one of θn

and if they just refer to the same bio-process.
Rules 10, 11 and 12 are relative to the causal relation between actions

happening within a bio-process and join/split functions involving that bio-
process.

Rule 10 states that an operation that involves one of the bio-processes
later merged by a join or divided by a split causes the execution of that
function; for example the introduction of a new binder in the interface of a
bio-process can be fundamental for the subsequent application of fjoin and
fsplit functions.

Rule 11 and 12 state that join and split operations cause all the opera-
tions that involve the bio-processes obtained after their execution (commu-
nications, operations on the interfaces, join and split operations).

The definition of the causal relation between two transitions of a com-
putation is obtained by taking into account the transitive closure of the
immediate causal relation.

Definition 4 (Causal relation) Let < ! (!)∗ be the transitive closure of
!. Then, given a computation B0

θ0−→ B1
θ1−→ · · · θn−→ Bn+1, we say that θn

depends on θh (or, symmetrically, θh causes θn) if θh < θn.

4.2 Enabling Relation

In this section we define the enabling relation between pairs of transitions
in a computation. Recall that an activity A enables an activity B if either

7

A is a necessary condition for the execution of B or A cannot be executed
after B.

Definition 5 (Immediate enabling relation) Given a computation B0
θ0−→

B1
θ1−→ · · · θn−→ Bn+1, we say that θn is immediately enabled by θh (or, sym-

metrically, θh immediately enables θn) if h < n and θh /· θn can be derived
by repeated applications of the following rules, where i, j ∈ {0, 1}.

1. ‖iθ /· ‖iθ′ if θ /· θ′

2. |iδ /· |iδ′ if δ /· δ′

3. !δ /· |0δ′

4. !δ /· |1δ′ if δ /· δ′

5. θ /· 〈θ′0, θ′1〉 if ∃i.θ /· θ′i

6. 〈θ0, θ1〉 /· θ′ if ∃i.θi /· θ′

7. 〈θ0, θ1〉 /· 〈θ′0, θ′1〉 if ∃i, j.θi /· θ′j

8. µ /· ϕµ′

9. ϕi /· ϕ′b if (l(b) = hide ∧ subj(i) = subj(b))

10. ϕµ /· ρ

Rules 1-7 are analogous to rules 1-7 in Def. 3 for causality.
Rule 8 describes the temporal dependency imposed by the sequential

structure of the pi-processes: every action θh = ϑϕµ causes an action θn

whose label has ϑϕ as a prefix. This rule is a generalization of the respective
one for causality, without the constraint on the type of the action µ.

Rules 9 and 10 are peculiar to Beta-binders.
Rule 9 describes the temporal dependency between an inter-communication

and an hide operation on the same beta binder: in fact it is not possible to
execute the inter-communication after the beta binder is hidden.

Rule 10 is analogous to rule 10 in Def. 3 for causality.

The definition of the enabling relation between two transitions of a com-
putation is obtained by taking into account the transitive closure of the
immediate enabling relation.

Definition 6 (Enabling relation) Let / ! (/·)∗ be the transitive closure
of /·. Then, given a computation B0

θ0−→ B1
θ1−→ · · · θn−→ Bn+1, we say that

θn is enabled by θh (or, symmetrically, θh enables θn) if θh / θn.

We decided to keep the relation of causality and that of enabling distinct
because they are logically different and, moreover, to be consistent with
the analogous definitions for π-calculus proposed in the literature. In the
following part, however, we will merge them in a single relation (their union)
and we will only consider the latter.

8

The following propositions show that causality and enabling are distinct
relations.

Proposition 1 < " /.

Proof. Consider θ0 = ϑϕ hide(x) and θ1 = ϑϕ′ unhide(x). It is θ0 < θ1 but
θ0 (/ θ1.

Proposition 2 / " <.

Proof. Consider θ0 = ϑϕ hide(x) and θ1 = ϑϕ′〈ϕ0y(w),ϕ1yz〉, where ϕ =
ϕ′ϕ0. It is θ0 / θ1 but θ0 ≮ θ1.

4.3 Concurrency Relation

Recall that two activities A and B are concurrent if they can be executed
in parallel.

Definition 7 (Concurrency relation) Let ≺ ! (< ∪ /)∗. Then, given
a system B, we say that θn and θh are concurrent (i.e. they can be exe-
cuted simultaneously, written θn + θh) if ∀ computation ξ = B −→∗ B′ s.t.
θn, θh ∈ ξ . θn ⊀ θh and θh ⊀ θn.

5 Properties of the Concurrency Relation

In this sections we state two lemmas and two corollaries and one theorem
derived from them.

The first lemma states that if two consecutive transitions in a compu-
tation are concurrent, then they form a diamond in the proved transition
system.

Lemma 1 Given a computation B0
θ0−→ B1

θ1−→ B2, if θ0 ⊀ θ1 ⇒ ∃B′
1.B0

θ1−→
B′

1
θ0−→ B2. In other words, the following diagram exists:

B0
θ0↙ ↘θ1

B1 B′
1

θ1↘ ↙θ0

B2

Proof. We have by hypothesis that B0
θ0−→ B1

θ1−→ B2 and θ0 ⊀ θ1 (in
particular, since θ0 and θ1 are consecutive transactions, we have that θ0 (! θ1

and θ0 (/· θ1).
The proof is done by cases on the labels of the transitions.

1. θ0 = ϑϕ expose(x, ∆):

9

(a) θ1 = ϑ′ϕ′ expose(y, Γ): by Def. 3, θ0 ! θ1 iff ϑϕ is a prefix of ϑ′ϕ′

(rule 8); by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′ (rule 8); by
hypothesis θ0 (! θ1 and θ0 (/· θ1, hence ϑϕ is not a prefix of ϑ′ϕ′;
if ϑ (= ϑ′, then θ0 and θ1 refer to different bio-processes, so it
is possible to exchange their order without any consequence; if,
otherwise, ϑ = ϑ′ and ϕ is not a prefix of ϕ′, then θ0 and θ1 refer
to the same bio-process but to different pi-processes, so they can
be exchanged as well (recall that we have assumed that x (= y, so
the two expose operations do not influence each other);

(b) θ1 = ϑ′ϕ′ hide(y): by Def. 3, θ0 ! θ1 iff ϑϕ is a prefix of ϑ′ϕ′

(rule 8); by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′ (rule 8);
hence ϑϕ is not a prefix of ϑ′ϕ′, so θ0 and θ1 refer to different
beta binders (recall that x is only available for actions with the
same prefix as θ0, so x (= y); so they can be exchanged;

(c) θ1 = ϑ′ϕ′ unhide(y): by Def. 3, θ0 ! θ1 iff ϑϕ is a prefix of ϑ′ϕ′

(rule 8); by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′ (rule 8);
hence ϑϕ is not a prefix of ϑ′ϕ′, so θ0 and θ1 refer to different
beta binders (again, x is only available for actions with the same
prefix as θ0, so x (= y); so they can be exchanged;

(d) θ1 = ϑ′ϕ′〈ϕ0y(t),ϕ1yz〉: by Def. 3, θ0 ! θ1 iff ϑϕ is a prefix of
ϑ′ϕ′ϕ0 or of ϑ′ϕ′ϕ1 (rule 8); by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix
of ϑ′ϕ′ϕ0 or of ϑ′ϕ′ϕ1 (rule 8); hence ϑϕ is a prefix of none of
them, so θ0 and θ1 can be exchanged since expose operations and
internal communications do not influence each other;

(e) θ1 = ϑ′〈‖iϑ0ϕ0y(t), ‖1−iϑ1ϕ1wz〉: by Def. 3, θ0 ! θ1 iff ϑϕ is a
prefix of ϑ′‖iϑ0ϕ0 or of ϑ′‖1−iϑ1ϕ1 (rule 8); by Def. 5, θ0 /· θ1

iff ϑϕ is a prefix of ϑ′‖iϑ0ϕ0 or of ϑ′‖1−iϑ1ϕ1 (rule 8); hence ϑϕ
is a prefix of none of them, so θ0 and θ1 do not influence each
other since they refer to different beta binders (again, x is only
available for actions with the same prefix as θ0, so x (= y and
x (= w); so they can be exchanged;

(f) θ1 = ϑ′ 〈‖0ϑ0joinQ0, ‖1ϑ1joinQ1〉: by Def. 3, θ0!θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); by Def. 5, θ0 /· θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); hence θ0 and θ1 refer to different bio-
processes, so they can be exchanged;

(g) θ1 = ϑ′ split〈Q0, Q1〉: by Def. 3, θ0 ! θ1 iff ϑ = ϑ′ (rule 10); by
Def. 5, θ0 /· θ1 iff ϑ = ϑ′ (rule 10); hence θ0 and θ1 refer to
different bio-processes, so they can be exchanged;

2. θ0 = ϑϕ hide(x):

(a) θ1 = ϑ′ϕ′ expose(y, ∆): by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of
ϑ′ϕ′ (rule 8); hence ϑϕ is not a prefix of ϑ′ϕ′, so θ0 and θ1 refer to
different beta binders (again, y is only available for actions with
the same prefix as θ1, so x (= y); so they can be exchanged;

(b) θ1 = ϑ′ϕ′ hide(y): by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′

(rule 8); hence ϑϕ is not a prefix of ϑ′ϕ′; moreover, x (= y (since

10

it is not possible to execute two hide operations on the same beta
binder consecutively), so they can be exchanged;

(c) θ1 = ϑ′ϕ′ unhide(y): by Def. 3, θ0!θ1 iff ϑ = ϑ′ and x = y (rule 9);
by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′ (rule 8); hence ϑϕ is
not a prefix of ϑ′ϕ′ and x (= y, so they can be exchanged, since
the two operations do not influence each other;

(d) θ1 = ϑ′ϕ′〈ϕ′
0y(t),ϕ′

1yu〉: by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of
ϑ′ϕ′ϕ′

0 or of ϑ′ϕ′ϕ′
1 (rule 8); hence ϑϕ is a prefix of none of them,

so θ0 and θ1 can be exchanged since hide operations and internal
communications do not influence each other;

(e) θ1 = ϑ′〈‖iϑ0ϕ′
0y(t), ‖1−iϑ1ϕ′

1vu〉: by Def. 5, θ0 /· θ1 iff ϑϕ is
a prefix of ϑ′‖iϑ0ϕ′

0 or of ϑ′‖1−iϑ1ϕ′
1 (rule 8); hence ϑϕ is a

prefix of none of them; moreover, x (= y and x (= v (since it
is not possible to execute an inter-communication immediately
after an hide operation on the same beta binder), so they can be
exchanged;

(f) θ1 = ϑ′ 〈‖0ϑ0joinQ0, ‖1ϑ1joinQ1〉: by Def. 3, θ0!θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); by Def. 5, θ0 /· θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); hence θ0 and θ1 refer to different bio-
processes, so they can be exchanged;

(g) θ1 = ϑ′ split〈Q0, Q1〉: by Def. 3, θ0 ! θ1 iff ϑ = ϑ′ (rule 10); by
Def. 5, θ0 /· θ1 iff ϑ = ϑ′ (rule 10); hence θ0 and θ1 refer to
different bio-processes, so they can be exchanged;

3. θ0 = ϑϕ unhide(x):

(a) θ1 = ϑ′ϕ′ expose(y, ∆): by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of
ϑ′ϕ′ (rule 8); hence ϑϕ is not a prefix of ϑ′ϕ′, so θ0 and θ1 refer to
different beta binders (again, y is only available for actions with
the same prefix as θ1, so x (= y); so they can be exchanged;

(b) θ1 = ϑ′ϕ′ hide(y): by Def. 3, θ0 ! θ1 iff ϑ = ϑ′ and x = y (rule 9);
by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′ (rule 8); hence ϑϕ is
not a prefix of ϑ′ϕ′ and x (= y, so they can be exchanged, since
the two operations do not influence each other;

(c) θ1 = ϑ′ϕ′ unhide(y): by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix of ϑ′ϕ′

(rule 8); hence ϑϕ is not a prefix of ϑ′ϕ′; moreover, x (= y (since
it is not possible to execute two unhide operations on the same
beta binder consecutively), so they can be exchanged;

(d) θ1 = ϑ′ϕ′〈ϕ′
0y(t),ϕ′

1yu〉: by Def. 5, θ0 /· θ1 iff ϑϕ is a prefix
of ϑ′ϕ′ϕ′

0 or of ϑ′ϕ′ϕ′
1 (rule 8); hence ϑϕ is a prefix of none of

them, so θ0 and θ1 can be exchanged since unhide operations and
internal communications do not influence each other;

(e) θ1 = ϑ′〈‖iϑ0ϕ′
0y(t), ‖1−iϑ1ϕ′

1vu〉: by Def. 3, θ0!θ1 iff (ϑ = ϑ′‖iϑ0

and x = y) or (ϑ = ϑ′‖1−iϑ1 and x (= v) (rule 9); by Def. 5,
θ0 /· θ1 iff ϑϕ is a prefix of ϑ′‖iϑ0ϕ′

0 or of ϑ′‖1−iϑ1ϕ′
1 (rule 8);

hence ϑϕ is a prefix of none of them and θ0 and θ1 refer to different
beta binders, so they can be exchanged;

11

(f) θ1 = ϑ′ 〈‖0ϑ0joinQ0, ‖1ϑ1joinQ1〉: by Def. 3, θ0!θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); by Def. 5, θ0 /· θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); hence θ0 and θ1 refer to different bio-
processes, so they can be exchanged;

(g) θ1 = ϑ′ split〈Q0, Q1〉: by Def. 3, θ0 ! θ1 iff ϑ = ϑ′ (rule 10); by
Def. 5, θ0 /· θ1 iff ϑ = ϑ′ (rule 10); hence θ0 and θ1 refer to
different bio-processes, so they can be exchanged;

4. θ0 = ϑϕ〈ϕ0x(w),ϕ1xz〉:

(a) θ1 = ϑ′ϕ′ expose(y, ∆): by Def. 3, θ0 ! θ1 iff ϑϕϕ0 is a prefix of
ϑ′ϕ′ (rule 8); by Def. 5, θ0 /· θ1 iff either ϑϕϕ0 or ϑϕϕ1 is a prefix
of ϑ′ϕ′ (rule 8); hence θ0 and θ1 can be exchanged, since the two
operations do not influence each other;

(b) θ1 = ϑ′ϕ′ hide(y): by Def. 3, θ0 ! θ1 iff ϑϕϕ0 is a prefix of ϑ′ϕ′

(rule 8); by Def. 5, θ0 /· θ1 iff either ϑϕϕ0 or ϑϕϕ1 is a prefix of
ϑ′ϕ′ (rule 8); hence θ0 and θ1 can be exchanged;

(c) θ1 = ϑ′ϕ′ unhide(y): by Def. 3, θ0 ! θ1 iff ϑϕϕ0 is a prefix of ϑ′ϕ′

(rule 8); by Def. 5, θ0 /· θ1 iff either ϑϕϕ0 or ϑϕϕ1 is a prefix of
ϑ′ϕ′ (rule 8); hence θ0 and θ1 can be exchanged;

(d) θ1 = ϑ′ϕ′〈ϕ′
0y(t),ϕ′

1yu〉: by Def. 3, θ0 ! θ1 iff ϑϕϕ0 is a prefix of
ϑ′ϕ′ϕ′

0 or of ϑ′ϕ′ϕ′
1 (rule 8); by Def. 5, θ0 /· θ1 iff either ϑϕϕ0 or

ϑϕϕ1 is a prefix of ϑ′ϕ′ϕ′
0 or of ϑ′ϕ′ϕ′

1 (rule 8); hence θ0 and θ1

can be exchanged;

(e) θ1 = ϑ′〈‖iϑ0ϕ′
0y(t), ‖1−iϑ1ϕ′

1vu〉: by Def. 3, θ0 ! θ1 iff ϑϕϕ0 is a
prefix of ϑ′‖iϑ0ϕ′

0 or of ϑ′‖1−iϑ1ϕ′
1 (rule 8); by Def. 5, θ0 /· θ1

iff either ϑϕϕ0 or ϑϕϕ1 is a prefix of ϑ′‖iϑ0ϕ′
0 or of ϑ′‖1−iϑ1ϕ′

1

(rule 8); hence θ0 and θ1 can be exchanged;

(f) θ1 = ϑ′ 〈‖0ϑ0joinQ0, ‖1ϑ1joinQ1〉: by Def. 3, θ0!θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); by Def. 5, θ0 /· θ1 iff ϑ = ϑ′‖0ϑ0

or ϑ = ϑ′‖1ϑ1 (rule 10); hence θ0 and θ1 refer to different bio-
processes, so they can be exchanged;

(g) θ1 = ϑ′ split〈Q0, Q1〉: by Def. 3, θ0 ! θ1 iff ϑ = ϑ′ (rule 10); by
Def. 5, θ0 /· θ1 iff ϑ = ϑ′ (rule 10); hence θ0 and θ1 refer to
different bio-processes, so they can be exchanged;

5. θ0 = ϑ〈‖iϑ0ϕ0x(w), ‖1−iϑ1ϕ1yz〉:

(a) θ1 = ϑ′ϕ′ expose(t, ∆): by Def. 3, θ0 !θ1 iff ϑ‖iϑ0ϕ0 is a prefix of
ϑ′ϕ′ (rule 8); by Def. 5, θ0 /· θ1 iff either ϑ‖iϑ0ϕ0 or ϑ‖1−iϑ1ϕ1

is a prefix of ϑ′ϕ′ (rule 8); hence θ0 and θ1 can be exchanged;

(b) θ1 = ϑ′ϕ′ hide(t): by Def. 3, θ0 ! θ1 iff ϑ‖iϑ0ϕ0 is a prefix of ϑ′ϕ′

(rule 8); by Def. 5, θ0 /· θ1 iff (either ϑ‖iϑ0ϕ0 or ϑ‖1−iϑ1ϕ1 is a
prefix of ϑ′ϕ′) (rule 8) or (ϑ‖iϑ0 = ϑ′ and x = t) or (ϑ‖1−iϑ1 = ϑ′

and y = t) (rule 9); hence θ0 and θ1 refer to pi-processes and
different binders, so they can be exchanged;

12

(c) θ1 = ϑ′ϕ′ unhide(t): by Def. 3, θ0 ! θ1 iff ϑ‖iϑ0ϕ0 is a prefix of
ϑ′ϕ′ (rule 8); by Def. 5, θ0 /· θ1 iff either ϑ‖iϑ0ϕ0 or ϑ‖1−iϑ1ϕ1

is a prefix of ϑ′ϕ′ (rule 8); moreover, θ0 and θ1 refer to differ-
ent binders (since it is not possible to execute an unhide opera-
tion immediately after an inter-communication on the same beta
binder), so they can be exchanged;

(d) θ1 = ϑ′ϕ〈ϕ′
0v(t),ϕ′

1vu〉: by Def. 3, θ0 ! θ1 iff ϑ‖iϑ0ϕ0 is a prefix
of ϑ′ϕϕ′

0 or of ϑ′ϕϕ′
1 (rule 8); by Def. 5, θ0 /· θ1 iff either ϑ‖iϑ0ϕ0

or ϑ‖1−iϑ1ϕ1 is a prefix of ϑ′ϕϕ′
0 or of ϑ′ϕϕ′

1 (rule 8); hence θ0

and θ1 can be exchanged;
(e) θ1 = ϑ′〈‖iϑ′

0ϕ
′
0v(t), ‖1−iϑ′

1ϕ
′
1ru〉: by Def. 3, θ0 ! θ1 iff ϑ‖iϑ0ϕ0

is a prefix of ϑ′‖iϑ′
0ϕ

′
0 or of ϑ′‖1−iϑ′

1ϕ
′
1 (rule 8); by Def. 5, θ0 /

· θ1 iff either ϑ‖iϑ0ϕ0 or ϑ‖1−iϑ1ϕ1 is a prefix of ϑ′‖iϑ′
0ϕ

′
0 or of

ϑ′‖1−iϑ′
1ϕ

′
1 (rule 8); hence θ0 and θ1 can be exchanged;

(f) θ1 = ϑ′ 〈‖0ϑ′
0joinQ0, ‖1ϑ′

1joinQ1〉: by Def. 3, θ0 ! θ1 iff ϑ‖iϑ0

or ϑ‖1ϑ1 are equal to ϑ′‖0ϑ′
0 or to ϑ′‖1ϑ′

1 (rule 10); by Def. 5,
θ0 /· θ1 iff ϑ‖iϑ0 or ϑ‖1ϑ1 are equal to ϑ′‖0ϑ′

0 or to ϑ′‖1ϑ′
1

(rule 10); hence θ0 and θ1 refer to different bio-processes, so they
can be exchanged;

(g) θ1 = ϑ′ split〈Q0, Q1〉: by Def. 3, θ0!θ1 iff ϑ‖iϑ0 = ϑ′ or ϑ‖1−iϑ1 =
ϑ′ (rule 10); by Def. 5, θ0 /· θ1 iff ϑ‖iϑ0 = ϑ′ or ϑ‖1−iϑ1 = ϑ′

(rule 10); hence θ0 and θ1 refer to different bio-processes, so they
can be exchanged;

6. θ0 = ϑ 〈‖0ϑ0joinQ0, ‖1ϑ1joinQ1〉:

(a) θ1 = ϑ′ϕ expose(x, ∆): by Def. 3, θ0 ! θ1 iff ϑ‖0ϑ0 = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(b) θ1 = ϑ′ϕ hide(x): by Def. 3, θ0 ! θ1 iff ϑ‖0ϑ0 = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(c) θ1 = ϑ′ϕ unhide(x): by Def. 3, θ0 ! θ1 iff ϑ‖0ϑ0 = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(d) θ1 = ϑ′ϕ〈ϕ0y(w),ϕ1yz〉: by Def. 3, θ0!θ1 iff ϑ‖0ϑ0 = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(e) θ1 = ϑ′〈‖iϑ′
0ϕ0y(t), ‖1−iϑ′

1ϕ1wz〉: by Def. 3, θ0 ! θ1 iff ϑ‖0ϑ0 =
ϑ′‖iϑ′

0 or ϑ‖0ϑ0 = ϑ′‖1−iϑ′
1 (rule 11); hence θ0 and θ1 refer to

different bio-processes and so they can be exchanged;
(f) θ1 = ϑ′ 〈‖0ϑ′

0joinQ′
0, ‖1ϑ′

1joinQ′
1〉: by Def. 3, θ0 ! θ1 iff ϑ‖0ϑ0 =

ϑ′‖iϑ′
0 or ϑ‖0ϑ0 = ϑ′‖1−iϑ′

1 (rule 12); hence θ0 and θ1 refer to
different bio-processes and so they can be exchanged;

(g) θ1 = ϑ′ split〈Q′
0, Q

′
1〉: by Def. 3, θ0 ! θ1 iff ϑ‖0ϑ0 = ϑ′ (rule 12);

hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

13

7. θ0 = ϑ split〈Q0, Q1〉:

(a) θ1 = ϑ′ϕ expose(x, ∆): by Def. 3, θ0 ! θ1 iff ϑ‖j = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(b) θ1 = ϑ′ϕ hide(x): by Def. 3, θ0 ! θ1 iff ϑ‖j = ϑ′ (rule 11); hence
θ0 and θ1 refer to different bio-processes and so they can be ex-
changed;

(c) θ1 = ϑ′ϕ unhide(x): by Def. 3, θ0 ! θ1 iff ϑ‖j = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(d) θ1 = ϑ′ϕ〈ϕ0y(w),ϕ1yz〉: by Def. 3, θ0 ! θ1 iff ϑ‖j = ϑ′ (rule 11);
hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged;

(e) θ1 = ϑ′〈‖iϑ0ϕ0y(t), ‖1−iϑ1ϕ1wz〉: by Def. 3, θ0 ! θ1 iff ϑ‖j =
ϑ′‖iϑ0 or ϑ‖j = ϑ′‖1−iϑ1 (rule 11); hence θ0 and θ1 refer to dif-
ferent bio-processes and so they can be exchanged;

(f) θ1 = ϑ′ 〈‖0ϑ′
0joinQ′

0, ‖1ϑ′
1joinQ′

1〉: by Def. 3, θ0 ! θ1 iff ϑ‖j =
ϑ′‖0ϑ′

0 or ϑ‖j = ϑ′‖1ϑ′
1 (rule 12); hence θ0 and θ1 refer to different

bio-processes and so they can be exchanged;

(g) θ1 = ϑ′ split〈Q′
0, Q

′
1〉: by Def. 3, θ0 ! θ1 iff ϑ‖j = ϑ′ (rule 12);

hence θ0 and θ1 refer to different bio-processes and so they can
be exchanged.

Corollary 1 Given a computation B0
θ0−→ B1

θ1−→ B2, if θ0 + θ1 ⇒
∃B′

1.B0
θ1−→ B′

1
θ0−→ B2.

The second lemma, usually known as permutation of transitions, states
that there always exists a computation in which two concurrent transitions
occur consecutively.

Lemma 2 Given a computation ξ = B0
θ0−→ B1 −→ · · · −→ Bn

θn−→ Bn+1,

if θ0 ⊀ θn ⇒ ∃ a permutation σ : [0..n] → [0..n] and a computation B0
θ′0−→

B′
1

θ′1−→ · · ·B′
n

θ′n−→ Bn+1 such that ∃i ∈ [0..n] .(σ(0) = i ∧ σ(n) = i + 1 ∧
σ(j) = j−1 for 0 < j ≤ i∧σ(m) = m+1 for i+1 ≤ m < n) with θ′σ(l) = θl

for each l ∈ [0..n].

Proof. The proof is by induction on the length n of the computation.

• Induction basis
n = 1 (i.e. ξ = B0

θ0−→ B1
θ1−→ B2 and θ0 ⊀ θ1 (hence θ0 (! θ1 and

θ0 (/· θ1)).
The permutation is σ : [0, 1] → [0, 1] and the computation ξ satisfies
the properties.

14

• Inductive step
Let us assume that the lemma holds for n = k (i.e. k − 1 transitions
between θ0 and θn); now let us consider n = k + 1 (i.e. k transitions
between θ0 and θn).
Let h be the minimum index such that θ0 ⊀ θh; hence θl ⊀ θh holds for
any l < h (because if per absurdum θl ≺ θh (i.e. θl ≮ θh or θl (/ θh),
then, for the transitive property of < and /, θ0 ≺ θh). Hence, by
Lemma 1 we can swap θh and θh−1 in ξ, obtaining ξ1 = B0

θ0−→ · · · −→
Bh−1

θh−→ B′
h

θh−1−→ Bh+1 −→ · · · θn−→ Bn+1. We can then repeat this

procedure h times, until we obtain ξh = B0
θh−→ B′

0
θ0−→ · · · θn−→ Bn+1,

in which there are k − 1 transitions between θ0 and θn, so that it is
possible to apply the inductive hypothesis.

Corollary 2 Given a computation ξ = B0
θ0−→ B1 −→ · · · −→ Bn

θn−→
Bn+1, if θ0 + θn ⇒ ∃ a permutation σ : [0..n] → [0..n] and a computation B0

θ′0−→
B′

1

θ′1−→ · · ·B′
n

θ′n−→ Bn+1 such that ∃i ∈ [0..n] .(σ(0) = i ∧ σ(n) = i + 1 ∧
σ(j) = j−1 for 0 < j ≤ i∧σ(m) = m+1 for i+1 ≤ m < n) with θ′σ(l) = θl

for each l ∈ [0..n].

The following theorem derives from Corollary 1 and Corollary 2 and it
states that if in a computation there are two concurrent transitions, then
there exists another computation in which the two transitions occur in re-
verse order.

Theorem 1 Given a computation B0
θ0−→ · · · θn−→ Bn+1, if θ0 + θn ⇒ ∃ a

computation B0 −→ · · · θn−→ · · · θ0−→ · · · −→ Bn+1.

6 Application to Biology, Pharmacology and Medicine

There are many potential applications of this technology. One interesting
application is in biology: by analysing these properties, life scientists could
obtain interesting predictions on the dynamical behaviour of complex sys-
tems under investigation (for example the interaction of distinct entities in
signalling pathways).

Another application is in pharmacology: causality and concurrency anal-
ysis of a system made up of an ill organism and a new drug to be tested can
assist pharmacologists by identifying the effects (both positive and negative)
of the new drug on the organism. Compared to the traditional method used
in drug discovery, which is to test a new drug on animals and then on a
small number of selected human beings, the method provided by software is
faster and safer, so that “in vivo” tests can be done at a lower risk. Hence,
computer simulation with causality and concurrency analysis can greatly
help pharmacologists, who need to specify the system composed of the ill
organism and the drug, to select a set of relevant tests to be performed on
animals and human beings.

15

Finally, another application is in medicine: causality analysis can assist
doctors in medical diagnosis by allowing them to consider only the events and
the subpart of the organism which are relevant to the abnormal behaviour
under investigation; this is very important in medicine since the organism
under investigation, the human body, is a huge and complex system, which
is definitely intractable altogether.

6.1 An Example: the ERK/MAPK Pathway

In this section we model and analyse the ERK pathway, which is an instance
of the important and intensively studied MAPK pathway. The term ‘MAPK
pathway’ refers to a module of three kinases activated by sequentially phos-
phorylating each other.

Figure 1 shows the Raf/MEK/ERK pathway (see [8] for details).

Figure 1: Structure of the ERK pathway.

The binding of a ligand to RTK (receptor tyrosine kinase) causes the
autophosphorylation of RTK on tyrosine residues, which are docking sites
for adaptor and signalling molecules.

By means of the adaptor proteins Shc and Grb, Ras recruits SOS (a
GDP/GTP exchange factor), which allows Ras to be activated; symmetri-
cally, by means of the adaptor protein Crk, Rap1 recruits C3G (a GDP/GTP
exchange factor), which allows Rap1 to be activated.

Ras can activate two types of Raf proteins (Raf-1 and B-Raf), while
Rap1 can only activate B-Raf.

Both types of Raf proteins can activate MEK-1/2 by phosphorylation
on two serine residues.

MEK-1/2 can activate ERK-1/2 by phosphorylation on threonine and
tyrosine residues.

16

Upon activation, ERK can phosphorylate over 80 substrates in the cy-
toplasm and the nucleus, and it can regulate gene expression by phosphory-
lating transcription factors such Ets, Elk and Myc.

Negative feedback loops include the induction of MKPs by ERK, and
the inhibitory phosphorylation of Raf-1 and SOS.

6.1.1 Beta-binders Model of the ERK/MAPK Pathway

Sys = (((((‖0‖0‖0‖0‖0‖0RTK ‖ ‖0‖0‖0‖0‖0‖1Ligand) ‖ ‖0‖0‖0‖0‖1SOS) ‖
‖0‖0‖0‖1C3G) ‖ ‖0‖0‖1GDP/GTP) ‖ ‖0‖1GDP/GTP) ‖ (‖1‖0RAS ‖
(‖1‖1‖0RAP1 ‖ (‖1‖1‖1‖0RAF1 ‖ (‖1‖1‖1‖1‖0BRAF ‖ (‖1‖1‖1‖1‖1‖0MEK ‖
(‖1‖1‖1‖1‖1‖1‖0ERK ‖ (‖1‖1‖1‖1‖1‖1‖1‖0MKP ‖ (‖1‖1‖1‖1‖1‖1‖1‖1‖0Ets ‖
(‖1‖1‖1‖1‖1‖1‖1‖1‖1‖0Elk ‖ ‖1‖1‖1‖1‖1‖1‖1‖1‖1‖1MyC)))))))))

where

RTK = β(rcpt : RTK) βh(tyrosine : Shc,Grb, Crk)
[rcpt(ligand). unhide(tyrosine) .(|0|0tyrosine(adpt1). nil |

|0|1tyrosine(adpt2). nil ||1tyrosine(adpt3). nil)]
Ligand = β(bind : RTK) [bindligand. nil]
SOS = βh(SOSact : SOS) β(adpt1 : Shc) β(adpt2 : Grb)

β(exchange : GDP)β(act : SOS ERK)
[|0|0adpt1bind.adpt2bind. unhide(SOSact) . nil |
|0|1SOSactexch.exchangeGTP . unhide(Ras) . nil |
|1! ! act(x). hide(SOSact) . nil]

C3G = βh(C3Gact : C3G) β(adpt : Grk) β(exchange : GDP)
[|0adptbind. unhide(C3Gact) . nil |
|1C3Gactexch.exchangeGTP . unhide(Rap1) . nil]

GDP/GTP = β(GDP/GTP : GDP)
[! ! GDP/GTP (x). hide(GDP/GTP) . expose(GDP/GTP, x) . nil]

Ras = β(exchfact : SOS GDP) βh(Ras : Raf1, BRaf)
[|0|0exchfact(x). nil ||0|1Rasphosphorylate. nil ||1Rasphosphorylate. nil]

Rap1 = β(exchfact : C3G GDP) βh(Rap1 : BRaf)
[|0exchfact(x). nil ||1Rap1phosphorylate. nil]

Raf1 = β(Raf : Raf1) βh(Raf MEK : Raf1 MEK) β(act : Raf1 ERK)
[|0Raf(x). unhide(Raf MEK) .Raf MEKphosphorylate. nil |
|1! ! act(x). hide(Raf1 MEK) . nil]

BRaf = β(Raf : BRaf) βh(Raf MEK : BRaf MEK)
[Raf(x). unhide(Raf MEK) .Raf MEKphosphorylate. nil]

MEK = β(serine : Raf1 MEK, BRaf MEK) β(MEK : MEK1/2)
[serine(x).(|0MEKphosphorylate. nil ||1MEKphosphorylate. nil)]

ERK = β(threonine : MEK1/2) β(tyrosine : MEK1/2)
β(inhibitRaf1 : Raf1 ERK)β(inhibitSOS : SOS ERK)
β(act : ERK MKP) βh(ERK : ERK1/2)
[|0|0|0|0|1threonine(x).tyrosine(y). unhide(ERK) . nil |
|0|0|0|0|1ERKphosphorylatetransfacts. nil ||0|0|1! ! act(x). hide(ERK) . nil|
|0|1! ! inhibitRaf1inhibit. nil|||1! ! inhibitSOSinhibit. nil]

MKP = βh(act : MKP) β(inhibit : ERK MKP) [! ! inhibitinhibitERK. nil]
Ets = β(Ets : ERK1/2) [Ets(x). nil]
Elk = β(Elk : ERK1/2) [Elk(x). nil]
MyC = β(MyC : ERK1/2) [MyC(x). nil]

17

The following join function is also defined:

fjoin(B0,B1, P0, P1) = if (β(x : SOS) ∈ B0 and β(y : SOS GDP) ∈ B1)
or (β(x : C3G) ∈ B0 and β(y : C3G GDP) ∈ B1)
then (B0B1 \ {y}, P0P1{x/y})

One of the possible computations of this system is the following (for the
sake of simplicity we do not consider inhibitory activities):

t1 = ‖0‖0‖0‖0‖0〈‖0rcpt(ligand), ‖1bindligand〉
t2 = ‖0‖0‖0‖0‖0‖0 unhide(tyrosine)
t3 = ‖0‖0‖0‖0〈‖0‖0|0|0tyrosine(adpt1), ‖1|0|0adpt1bind〉
t4 = ‖0‖0‖0〈‖0‖0‖0|1tyrosine(adpt3), ‖1|0adptbind〉
t5 = ‖0‖0‖0‖1|0 unhide(C3Gact)〉
t6 = 〈‖0‖0‖0‖1join |0 nil ||1C3Gactexch.exchangeGTP . unhide(Rap1) . nil,

‖1‖1‖0join |0exchfact(x). nil ||1Rapphosphorylate. nil〉
t7 = ‖0‖0‖0‖1〈|0|1C3Gactexch, |1|0C3Gact(x)〉
t8 = ‖0‖0〈‖0‖1|0|1exchangeGTP , ‖1!GDP/GTP (x)〉
t9 = ‖0‖0‖0‖1|0|1 unhide(Rap1)〉
t10 = 〈‖1‖1‖1‖1‖0Raf(x), ‖0‖0‖0‖1|1|1Rap1phosphorylate〉
t11 = ‖0‖0‖0‖0〈‖0‖0|0|1tyrosine(adpt2), ‖1|0|0adpt2bind〉
t12 = ‖0‖0‖0‖0‖1|0|0 unhide(SOSact)
t13 = 〈‖0‖0‖0‖0‖1join |0|0 nil ||0|1SOSactexch.exchangeGTP . unhide(Ras) . nil |

|1! ! act(x). hide(SOSact) . nil,

‖1‖0join |0|0exchfact(x). nil ||0|1Rasphosphorylate. nil ||1Rasphosphorylate. nil〉
t14 = ‖0‖0‖0‖0‖1〈|0|0|1SOSactexch, |1|0|0SOSact(x)〉
t15 = ‖0〈‖0‖0‖0‖1|0|0|1exchangeGTP , ‖1!GDP/GTP (x)〉
t16 = ‖0‖0‖0‖0‖1|0|0|1 unhide(Ras)
t17 = 〈‖1‖1‖1‖0|0Raf(x), ‖0‖0‖0‖0‖1|1|1Rasphosphorylate〉
t18 = ‖1‖1‖1‖0|0 unhide(Raf MEK)
t19 = ‖1‖1‖1〈‖0|0Raf MEKphosphorylate, ‖1‖1‖0serine(x)〉
t20 = ‖1‖1‖1‖1‖1〈‖1‖0|0|0|0|0|1threonine(x), ‖0|0MEKphosphorylate〉
t21 = ‖1‖1‖1‖1‖1〈‖1‖0|0|0|0|0|1tyrosine(y), ‖0|1MEKphosphorylate〉
t22 = ‖1‖1‖1‖1‖1‖1‖0|0|0|0|0|1 unhide(ERK)
t23 = ‖1‖1‖1‖1‖1‖1〈‖0|0|0|0|1ERKphosphorylatetransfacts, ‖1‖1‖1‖0Elk(x)〉 .

t1 represents the binding of a ligand to RTK, and t2 is the following
authophosphorylation of RTK.

t3, t4 and t11 are the bindings, respectively, of Shc, Crk and Grb.
The block t4-t10 is the Rap1-subpathway, which is relative to the activa-

tion of C3G, its binding to Rap1 and the following activation of B-Raf.
The block t3, t11-t17 is the Ras-subpathway, which is relative to the

activation of SOS, its binding to Ras and the following activation of Raf-1.
The block t18-t22 is the activation of MEK-1/2, and hence of ERK-1/2,

by means of Raf-1.
Finally, t23 refer to ERK gene expression.

18

6.1.2 Concurrency Analysis in ERK/MAPK Pathway Model

Applying the causality rules, we obtain that:

t1 ! t2, t3, t4, t11 t6 ! t7, t8, t9, t10 t13 ! t14, t15, t16, t17 t19 ! t20, t21
t3 ! t13 t9 ! t10 t16 ! t17 t20 ! t21, t22
t4 ! t6 t11 ! t13 t17 ! t18, t19 t21 ! t22
t5 ! t6 t12 ! t13 t18 ! t19 t22 ! t23

Applying the enabling rules, we obtain that the following relations also
hold:

t1 /· t2, t3, t4, t11 t7 /· t8, t9 t15 /· t16 t21 /· t22
t2 /· t3, t4, t11 t8 /· t9 t17 /· t18, t19
t3 /· t11, t12, t13, t14, t15, t16 t11 /· t12, t13, t14, t15, t16 t18 /· t19
t4 /· t5, t6, t7, t8, t9 t12 /· t13, t14, t15, t16 t19 /· t20, t21
t5 /· t6, t7, t8, t9 t14 /· t15, t16 t20 /· t21, t22

By considering the transitive union ≺ of causality and enabling, we ob-
tain that:

t1 ≺ t2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

t2 ≺ t3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

t3 ≺ t11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

t4 ≺ t5, 6, 7, 8, 9, 10 t14 ≺ t15, 16, 17, 18, 19, 20, 21, 22, 23

t5 ≺ t6, 7, 8, 9, 10 t15 ≺ t16, 17, 18, 19, 20, 21, 22, 23

t6 ≺ t7, 8, 9, 10 t16 ≺ t17, 18, 19, 20, 21, 22, 23

t7 ≺ t8, 9, 10 t17 ≺ t18, 19, 20, 21, 22, 23

t8 ≺ t9, 10 t18 ≺ t19, 20, 21, 22, 23

t9 ≺ t10 t19 ≺ t20, 21, 22, 23

t11 ≺ t12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 t20 ≺ t21, 22, 23

t12 ≺ t13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 t21 ≺ t22, 23

t13 ≺ t14, 15, 16, 17, 18, 19, 20, 21, 22, 23 t22 ≺ t23

We can observe that t1 and t2 cause all the rest of the computation:
this reflects the reality, since the whole pathway is triggered by the ligand
binding to RTK.

We can also notice that the blocks t4-t10 and t3, t11-t17 are unrelated:
in fact the RAS-subpathway and the Rap1-subpathway are independent on
each other.

In the chosen computation Ras activates Raf-1, while Rap1 activates
independently B-Raf. Activation of MEK-1/2 is eventually triggered by
Raf-1, so the following part is not caused by the Rap1-subpathway, while it
is caused by the Ras-subpathway.

In order to analyse concurrency, we need to analyse any possible com-
putation. What results from this analysis, is that the Ras-pathway and the
Rap1-pathway are concurrent: they are independent from each other, and
thus can happen in any order. The following part of the pathway (t18-t23),
instead, is concurrent with neither Ras-subpathway nor Rap1-subpathway,
since there exists a computation in which each of them causes t18-t23: hence
hate formal analysis reflects what we know about reality, that is that both
subpathways can cause the activation of ERK-1/2.

19

7 Conclusions and Further Work

We defined some relations between the transitions of a computation origi-
nated by a Beta-binders process. We showed that the connection between
causality, enabling and concurrency usually defined in process algebras and
the permutation of transitions property are valid for Beta-binders as well.
The bio-inspiration of Beta-binders makes particularly appealing a notion
of causality. In fact, when studying complex biological systems, e.g. the
interaction of a drug with a disease, we have huge systems and only in few
parts the interaction is occurring. Causality can be used to single out the
subsystem of interest, thus reducing the size of the problem to a manageable
one.

Therefore, we plan to apply our definitions to real biological case studies
and to implement a tool for concurrency analysis, which is supposed to be
integrated in a simulator for Beta-binders, that can be used in medical and
pharmacological research to study the interactions of entities in complex
biological systems.

References

[1] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality
in the π-calculus. In Proc. of Symposium on Theoretical Aspects of
Computer Science, volume 900 of LNCS, pages 243–254, 1995.

[2] M. Curti, P. Degano, C. Priami, and C. T. Baldari. Modelling bio-
chemical pathways through enhanced π-calculus. Theor. Comp. Sci.,
325(1):111–140, 2004.

[3] P. Darondeau and P. Degano. Causal Trees. In Proc. of Int. Colloquium
on Automata Languages and Programming, volume 372 of LNCS, pages
234–248, 1989.

[4] P. Degano, F. Gadducci, and C. Priami. Causality and Replication in
Concurrent Processes. In Proc. of Perspectives of System Informatics,
volume 2890 of LNCS, pages 307–318, 2003.

[5] P. Degano, R. De Nicola, and U. Montanari. A Partial Ordering Se-
mantics for CCS. Theor. Comp. Sci., 75(3):223–262, 1990.

[6] P. Degano and C. Priami. Non-interleaving semantics for mobile pro-
cesses. Theor. Comp. Sci., 216(1–2):237–270, 1999.

[7] U. Montanari and M. Pistore. Concurrent Semantics for the π-calculus.
In Proc. of Mathematical Foundations of Programming Semantics, vol-
ume 1 of ENTCS, pages 411–429, 1995.

[8] R. J. Orton, O. E. Sturm, V. Vyshermirsky, M. Calder, D. R. Gilbert,
and W. Kolch. Computational modelling of the receptor-tyrosine-
kinase-activated MAPK pathway. Biochem. J., 392:249–261, 2005.

20

[9] V. R. Pratt. Modelling Concurrency with Partial Orders. Int. J. of
Parallel Programming, 15(1):33–71, 1986.

[10] C. Priami and P. Quaglia. Beta binders for biological interactions. In
Proc. of Computational Methods in Systems Biology, volume 3082 of
LNCS, pages 20–33, 2005.

[11] C. Priami and P. Quaglia. Operational patterns in Beta-binders. Trans-
actions on Computational Systems Biology, 1:50–65, 2005.

[12] D. Sangiorgi. Locality and True-concurrency in Calculi for Mobile Pro-
cesses. In Theor. Aspects of Computer Software, volume 789 of LNCS,
pages 405–424, 1994.

[13] W. Vogler. Modular Construction and Partial Order Semantics of Petri
Nets. Springer-Verlag, 1992.

21

