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ABSTRACT
The last years have seen a major trend towards the no-
tion of quantitative security assessment and the use of em-
pirical methods to analyze or predict vulnerable compo-
nents. Many past researches focused on vulnerability dis-
covery models. The common method is to rely upon either
a public vulnerability database (CVE, NVD), or vendor vul-
nerability database. Some combine these databases. Most
of these works address a knowledge problem: can we under-
stand the empirical causes of vulnerabilities? Can we predict
them? Still, if the data sources do not completely capture
the phenomenon we are interested in predicting, then our
predictor might be optimal with respect to the data we have
but unsatisfactory in practice.

In our work, we focus on a more fundamental question:
the quality of vulnerability database. How good we are at
sampling? Or, with respect to the research objectives of cur-
rent papers on empirical study in security, are we sampling
the right data?

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Security

1. INTRODUCTION
Recent years have seen a major trend towards the notion

Quantitative Security Assessment : a number of books on se-
curity metrics [18] and economics of security [16], a workshop
on security and economics (WEIS), a practictional workshop
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Figure 1: The Vulnerability Predictor Experimental
Set-Up

at USENIX (MetriCon), a more scientific one at CCS and
ESEM (QoP, now Metrisec) and a number of papers ap-
pearing in journal and conferences that analyze attacks and
vulnerability trends, correlated vulnerability with character-
istics of components and software evolution.

Most of these works address a knowledge problem: can we
understand the empirical causes of vulnerabilities? Can we
predict them? For example, Meneely and Williams provide
some preliminary evidence that unfocussed developers are a
potential cause for the introduction of vulnerability in Linux
[22].

If we can successfully attain this knowledge, then devel-
opers and tester could concentrate their effort in order to
reduce or eliminate vulnerability on components that are
predicted to be likely vulnerable. Even if we have no expla-
nation capability but at least a black-box that tells us that
empirically component X is likely to be more vulnerability
prone than component Y. Then we could spend our testing
budget on security tests for Y.

Figure 1 illustrates the common schema for most research
papers. The experimenter analyzes the code for source code
metrics, ~S, and then samples one or more vulnerability databases
to determine information of vulnerable code entities, ~V . The
~S and ~V vectors are associated with timestamps, ~t. Most
economics of security papers stops here and just plots data
of correlating information. Other papers go a step further
and feed this information to some magic box (statistical cor-
relation, machine learning etc) that produces a “law of vul-
nerability” i.e., a predictor. The final step is then feeding
new code entities to check whether the predictor is actually
accurate on new data.
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These studies focus on predicting or understanding vul-
nerabilities, and discuss how good they are at solving this
problem but did not provide any claim about the quality of
the data source they use to validate their experiments.

1.1 The Contribution of this paper
It is clear that if the data sources do not completely cap-

ture the phenomenon we are interested in predicting our pre-
dictor might be optimal with respect to the data we have
but unsatisfactory in practice.

The preliminary study that we have done on Mozilla Fire-
fox shows that there are a number of phenomena in the
evolution of code and vulnerabilities that make the choice
of the data source critical: the natural data source might
turn out to be good for answering a research question (e.g.,
the time-to-discovery-time-to-fix) but totally inadequate to
answer another closely related question (e.g., the total vul-
nerabilities of a component).

This motivates our research question Which is the right
source for the analysis of vulnerability?.

In the next section we discuss our research question more
in details and how its answer can impact the “traditional”
research questions in quantitative security assessment. Then
we present a comprehensive description of the public Data
Sources for vulnerabilities (§3) and provide a classification
of the main features they possesses. This information is
the stepping stone to understand on which data a number
of related works in quantitative security assessment has ad-
dressed their own research question (§4). We than discuss
an experimental set-up that integrates these various data
sources (§5) in order to see whether a broader picture can
show some information on the suitability of the various data
sources for one or another research question (6). It turns out
that this is indeed the case. Finally we discuss the threats to
the validity of our experimental findings (§7) and conclude
(§8).

2. RESEARCH QUESTION
As we have already claimed, previous work mostly follows

the empirical approach which firstly collects vulnerability
information from different sources, then works out on the
data to find solutions for their questions, following the path
of Figure 1. These research questions could be categorized
in several research topics. Here after we present some of the
most popular topics in the last decade.

Fact Finding (RP1). Describe the state of practice in the
field [27, 29, 31, 32]. They provide data and aggregate
statistics but not models for prediction. Some research
questions picked from prior studies are “What is the
median lifetime of a vulnerability?” [31], “Are reporting
rate declining?” [31, 32].

Modeling (RP2). Find mathematical models for vulnera-
bility study [1–7,32]. Working on the topic researchers
raise mathematical descriptions of the evolution of vul-
nerability, and collect facts to validate their proposal.

Prediction (RP3). Predict defected/vulnerable component
[9,13,15,19,23,25,27,29,33–35,39,40]. The main con-
cern of these papers is to find a metric or a set of
metrics that correlate with vulnerability in order to
predict vulnerable components. Based on this, several

predictor models are generated to measure the vulner-
able levels of new components.

If we look at the issue of median lifetime of vulnerability,
papers in the first group will produce statistics on various
software and the related vulnerability lifetime. Meanwhile,
papers in the second group will identify a mathematical law
that describes the lifetime of a vulnerability e.g., thermo-
dynamic model [7], logistics model [3]. The good papers in
the group will provide experimental evidences that support
the model, e.g., [2, 3,5]. Studies on this topic aim to obtain
increase the goodness-of-fit of their models, or they try to
answer the question “How good does our model fit the fact?”.

The last group will identify a software characteristics (or
attributes) that correlate with the lifetime of the vulnerabil-
ity, use this attributes to predict whether a software compo-
nent will exhibit a vulnerability during its lifetime. These
papers usually use statistics and machine learning methods
and back up their claim with some empirical evidence. These
studies focus on the attribute and the quality of prediction,
and they aim to answer the question “How good we are at
predicting?”

Papers in the two last areas only focused on the objectives,
but did not give (or limit) any discussion about the quality
of the vulnerability their researches are built on. In fact, the
quality of the data sources directly affects the goodness-of-
fit as well as the quality of prediction. If the mathematical
model fits the data very well, and the prediction quality is
very high, but the underlying vulnerability database con-
tains some “unreal” data, the predictor makes no sense.

In this work, we want to discuss “How good we are at
sampling?”, Or with respect to the research objective, “Are
we sampling the right data?”. More concretely, we aim to
identify:

• The vulnerability database.

• Which features of vulnerability are needed (useful) to
answer some research questions.

• If there are aspects of the underlying evolution of soft-
ware and vulnerabilities that require different features
beside the natural ones to answer some research ques-
tions.

3. DATA SOURCES
There are hundreds of databases that keep track of secu-

rity related issues for different software applications: just by
navigating on SecurityTracker (www.securitytracker.com),
we found over 157 databases and security advisories. These
databases can be classified by some criteria such at free or
not free, public or private, and vendor or third party. Un-
fortunately, many of them lack detailed information and are
out of date, which significantly restrict the choice of data
sources to assess. Hereafter, we describe some of the most
popular (and usable) vulnerability databases and some of
the less popular ones that are related to our study.

We classify databases in three classes based on their target
products, they are: multi-vendor databases, vendor databases,
and others. Here, we just briefly present these databases.

The first class is the multi-vendor databases, which in-
cludes:

• Bugtraq is an electronic mailing list about computer
security, which publishes information about vulnera-
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# ID/Title x x x x x x x x x x x x x

R
ef

. R1 Reporter x x x x x x
R2 CVE ID x x x x x x x x x
R3 References Link x x x x x x x x x

T
im

e

T1 Injection date x x
T2 Discovery date x x x x x
T3 Fixed date x x x x
T4 Published Date x x x x x x x x x x
T5 Exploit publish date x
T6 Updated Date x x x x x
T7 Recorded Date x x

Im
p
a
ct I1 Description x x x x x x x x x x x x

I2 Classifcation/Category x x x x
I3 Impact/Severity/CVSS Score x x x x x x x x
I4 Solution x x x

C
o
d
e

C1 Version at discovery x x x* x x
C2 First vulnerable version x x
C3 Other affected versions x x x x x x x x
C4 Non Vulnerable/Fixed versions x x x x x
C5 Reference to codebase x x x
C6 Source code metrics x x
C7 Component x x x

*: this information is depend on software vendor e.g., in RedHat Bugzilla, this feature is the software version. Meanwhile, in Mozilla Bugzilla,
this feature is the branch version in source control.

Table 1: The common features of vulnerability databases

bilities of many products, regardless of software vendor
response.

• Common Vulnerabilities Exposure (CVE) is just a global
identifier dictionary for vulnerability.

• National Vulnerability Database (NVD) provides ex-
panded information and references to vulnerable soft-
ware for CVE vulnerability.

• Open Source Vulnerability Database (OSVDB) is an-
other public open vulnerability database created by
and for the security community.

• ISS/XForce is another multi-target vulnerability database
run by IBM. Each entry of ISS/XForce contains almost
the same information as Bugtraq.

The second class includes databases maintained by soft-
ware vendors, in which they announce bug and security in-
formation about their product. Among of them, they are:

• OpenBSD errata bulletin is the security bulletin for
OpenBSD.

• Microsoft Security bulletin is the security bulletin for
many products of Microsoft e.g., Windows, Internet
Explorer.

• Mozilla Foundation Security Advisories (MFSA) is the
vulnerability report for Mozilla products

• Bugzilla is a web-based application that keeps track
of programming bugs. In this work, we consider two
instances of Bugzilla, which are Mozilla Bugzilla and
RedHat Linux Bugzilla. The former is a defect database
of all Mozilla products, and the later includes RedHat
Linux.

The third class includes all other databases that do not
belong to above. Mostly, they are sanitized defected data
of anonymous applications. These databases are essential
suited for testing purpose. These databases include:

• Predictor Models In Software Engineering (PROMISE)
is a repository hosting many data sets used in many
predictive models. PROMISE data sets are contributed
by researchers in field.

• NASA IV&V Facility Metrics Data Program (MDP)
is a sanitized repository that stores defected data and
metrics data for several products.

• OpendBSD Vulnerability Database (NVDB) [30]: is a
vulnerability database of OpenBSDB constructed for
studying vulnerability discovery process.

To sum up this section, a comparison of their features is
shown in Table 1.

The features fall into four groups, except the very basic
ID/Title one.

The first one, Reference, describes the source of the vul-
nerability or cross references to other databases. Almost
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databases credit vulnerability reporters and have reference
to the global dictionary, CVE.

The second group, Time, includes several features describ-
ing life-cycle of vulnerabilities e.g., the time when vulnera-
ble code is inserted into code base, Injection date, time when
vulnerability is discovered, Discovery date. Two other addi-
tional dates denote the time when a vulnerability report is
recorded in the database, and the time when this report is
updated i.e, new affected version is added. All these time in-
formation is crucial for vulnerability analysis. For example,
in vulnerability lifetime analysis, the Injection date is very
important, but most databases do not provide this infor-
mation. Therefore, the vulnerabilities appear younger than
they are. This may bias the analysis.

The third group, Impact, depicts the impact of a vulner-
ability, which are the short description, the classification,
the severity and solution for the vulnerability. The impact
value is not standardized. So it is not clear whether having
a critical vulnerability compare with one having high im-
pact and which was the underlying criteria. The existing
Common Vulnerability Scoring System (CVSS) provides a
list of criteria, and calculates the score for each vulnerabil-
ity. However, it highly depend on human judgement and it
is not truly reproducible.

The last group, Code, is about the software versions and
code base related to a vulnerability. Software version data
include version where a vulnerability is discovered; list of
versions which are/are not vulnerable by the vulnerability,
and the earliest version. Related code base data are affected
component, references to source modules (e.g., classes, files)
containing fix, and static code metrics of defected code. Cer-
tainly, none of multi-target databases like Bugtraq, NVD
provides this data since it requires access permission to the
code base. These information is essentially required in any
vulnerability prediction models, but may be unnecessary in
other analysis.

4. DATA USAGE BY OTHER RESEARCH
The work by Frei and others [10] can be easily described as

the representative of the ethnographic and security and eco-
nomics fields. It offers a detail landscape of which security
vulnerabilities affect which systems and when, but do not
provide a concrete answer to any of the research questions
we have listed in Section 2.

The two first research topics (RP1, RP2) have a close re-
lationship. Normally, researchers observe the world (finding
facts) then introduce models describing observed phenom-
ena and predicting the future trend.

Among of papers in these topic, Rescorla [32] focuses on
the discoveries of vulnerability. Although Rescorla points
out many shortcomings of of NVD, his study still heavily
relies on NVD. By studying vulnerability reports of several
applications in NVD, Rescorla introduces two mathemati-
cal models, called Linear model and Exponential model, to
identify trends in vulnerability discovery.

Alhazmi et al. [2,3] observe vulnerabilities of Windows and
Linux systems from different sources. For Windows systems,
the data sources are mostly from NVD, other papers, and
private source. For Linux systems, data come from CVE and
Bugzilla for Linux. The authors try to model the cumula-
tive vulnerabilities of these system into two models: logistic
model and linear model. Based on the goodness of fit on
each model, the authors give a forecast about the number

of undiscovered vulnerabilities, and emphasize the applica-
bility of the new metric called vulnerability density obtained
by dividing the total of vulnerabilities by the size of the
software systems. Also based on these vulnerability data,
in [5] Alhazmi et al. compare their proposed models with
Rescorla’s and Anderson’s [7]. The result shows that their
logistic model has a better goodness of fit than others.

Ozment [30,31] points out many problems that NVD database
suffered, which are chronological inconsistency, inclusion,
separation of events and documentation. The chronologi-
cal inconsistency refers to the inaccuracy in the versions af-
fected by a vulnerability. The second problem is that NVD
does not cover every vulnerability detected in a software sys-
tem. In fact, only vulnerabilities that are discovered after
1999 and assigned CVE identifiers are included. The third
problem refers to the duplication of vulnerability. The last
problem is the lack of documentation. Many data fields of
NVD are not well documented, particularly, the meaning of
the data field and how the data is collected or calculated.
Also, [30,31] discuss technique to address the first problem,
in which the actual bug’s birth date is obtained by analyzing
the log of the source version control. As a demonstration,
the authors set up a vulnerability database of OpenBSD.
Based on this data, Ozment [27] conducts an experiment to
test various the fitness of various vulnerability vulnerability
discovery models. Moreover, in [29], the authors discuss
the assumptions of existing vulnerability discover models
(VDM), in which the data source of many VMDs do not
meet their assumption.

Works focussing on the prediction capability (RP3) are
the most frequent ones. We focus mainly on studies after
2006, and only a few in 2005. For other older studies, inter-
ested reader can find more detail in the review of Cata and
Diri [8].

Nagappan and Ball [24] present a prediction model using
code churn for system defect density. The experiment data
come from source version control log and the defected data
of Windows 2003.

Neuhaus et al. [25] construct a tool called Vulture to pre-
dict vulnerable components for Mozilla products with the
accuracy of 50%. Vulture uses a vulnerability database for
Mozilla products for training its predictor. This database is
compiled upon three main different sources: MFSA, Mozilla
Bugzilla and CVS archive. Vulture collects the import pat-
terns and function-call patterns in many known vulnera-
ble modules and then applies a machine learning technique
called Support Vector Machine to classify new modules.

Menzies et al. [23] claim that choosing attribute metrics is
less significant than choosing how to use these metric values.
In the experiment on MDP data sets, [23] ranks different
metrics by using their InformationGain values to select the
metrics for the predictor. The ranking value of a metric
is different from projects. The accuracy of the predictor is
evaluated by probability of prediction, pd, and probability of
false alarm, pf. However, Zhang et al. [37] point out the
assessment using precision, recall rate, which is poplular in
Information Retrieval, is better than pd,pf. Zhang et al. [38]
replicate work in [23], but using the combination of three
function-level complexity metrics to do the prediction.

In other work, Olague et al. [26] make the comparison
of prediction power of three different metric suites: CK,
MOOD and QMOOD. Their experiment is conducted on
six versions of Rhino, an open-source JavaScript implemen-
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Alhazmi et al. [1, 2] x T4,
C1, C3

T2,
C1

?

Ozment et al. [27] † x R3,
T4, C3

# R3,
T4, C3

T4,
C1

R1,
T4

T1, C2 ?

Nagappan et al. [24] x ?

Rescorla [32] † x x T4, C3

Manadhata et al. [21] # # #

Menzies et al. [23] x C6

Neuhaus et al. [25] x R3 #

Olague et al. [26] x T2,
C1

Ozment et al. [28–31] x R3,
T4, C3

R3,
T4, C3

R3,
T4, C3

R3,
T4, C3

T4,
C1

T1,T2,T4,
C2,C4

Zhang et al. [38] x C6

Zimmerman et al. [40] x C6

Alhazmi et al. [5] x T4,
C1, C3

T2,
C1

?

Gegick et al. [15] x ?

Jiang et al. [19] x C6

Shin et al. [33–35] x R3,
C1

C5

Gegick et al. [12, 13] x ?

Zimmerman et al. [39] x ?

Chowhury et al. [9] x R3,
C1

C5

Ours C3 T4,
C4

R3,
T2,
C5

†: Papers that explicitly discuss about which features are used. #: Counting of total number of vulnerability reports. ?: unknown features.

Table 2: Databases as used in recent works.

tation of Mozilla. The defect data are collected from Mozilla
Bugzilla. The authors use logistic regression methods to per-
form the prediction for each metric suite. In the result, CK
suite is the superior prediction method for Rhino.

Zimmerman et al. [40] build a logistic regression model to
predict post-release defects of Eclipse using several metrics
in different levels of code base i.e., methods, classes, files and
packages. The defect data are obtained by analyzing the
log of the source version control. This method is detailed
in [41], and used by [25]. The final dataset is put in the
PROMISE repository. In an other work, Zimmerman and
Nagappan [39] exploit program dependencies as metrics for
their predictor. However, they did not state clearly where
the defect data come from in their study.

Shin and Williams [33–35] raise a research question about
the correlation between complexity and software security.
In order to validate these hypotheses, the authors conduct
an experiment on the JavaScript Engine (JSE) component
of the Mozilla Firefox browser. They mine the code base
of four JSE’s versions for complexity metric values. Mean-
while, faults and vulnerabilities for these versions are col-
lected from MFSA and Bugzilla. Their prediction model is
based on nesting level metric and logistic regression meth-
ods. Although the overall accuracy is quite high, their ex-
periment still misses a large portion of vulnerabilities.

Jiang et al. [19], in their work, study the predictive power
of machine learning based vulnerability discovery models.

Their experiments are based on the MDP data sets, using
many metrics belonging to three categories: code level, de-
sign level and combination of code and design level, as well
as several machine learning methods. The experiment re-
sults show that the metrics strongly impact the power of the
models, while, there is not much difference among learning
methods. Also, the most powerful metric is the combination
of both code and design level metrics, and the design metrics
are the most inferior ones.

Gegick et al. [11, 14, 15] employ automatic source anal-
ysis tools (ASA) warnings, code churn and total line of
code to implement their prediction model. However, the
conducted experiments are based on private defected data
sources. Their studies are not reproducible, and hence are
less convincing.

Chowdhury and Zulkernine [9] combine complexity, cou-
pling and cohesion metrics in building vulnerability predic-
tion model, in which the authors analyze source code for
measuring many complexity, coupling and cohesion metrics.
These values are then fed to a trained classifier to deter-
mine whether the source code is vulnerable. In their ex-
periment, the authors conducted a vulnerability dataset for
Mozilla Firefox, which is assembled from MFSA and Mozilla
Bugzilla.

Table 2 summarizes papers discussed above. This table
has two parts: the research problem of each paper, and the
features of which database are used in each paper. The used
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features are listed at the cross between database and paper.
As one can see at the first right, most of the papers do not
explicitly discuss the database features they use (except the
ones denoted).

5. INTEGRATING EMPIRICAL DATA
In this section we describe the method as well as the data

sources that we use to conduct our experiment.
We first retrieve all advisories for Mozilla Firefox to ex-

tract their features. Since these advisories are written man-
ually, one HTML page for each advisory entry, they are not
organized in any form of data structure. Therefore, informa-
tion extraction is done by a crawler application that parses
and extracts data from web pages. An MFSA entry itself
does not provide much value information, but the announced
date when the vulnerability goes to public and the references
linking Bugzilla and CVE. Next, more detail information is
extracted from the bug detail in the Bugzilla. The way to
access this information is discussed in section 3. Here, the
interesting features are bug identifier, CVE identifier (op-
tional), status, resolution and reported date. The reported
date is the discovery date in the bug life cycle.

To collect the information about affected versions, we re-
lies on the NVD by the CVE identifier. Since this infor-
mation may not be correct, we only use this information as
part of vulnerability-version mapping process. Many other
information could also be found in NVD such as CVSS as-
sessment, but it is not the focus of this study.

The relationship between bugs and and CVEs is obtained
by two ways: automatic mapping and manual mapping. The
automatic mapping is relied on the explicit CVE references
in bug details, or implicit one described in the MFSA which
contains only one bug and one CVE closed together. The
manual mapping requires human effort to understand the
links between bug and CVE, and map them together if rel-
evant. These cases happen to the MFSA entries that have
more than one bug and CVE.

In the following, we describe common layouts in which
bugs and CVEs usually appear in an MFSA entry. To clarify,
we use the term BUG to denote a link to bugzilla, and term
CVE for link to CVE. If more than one similar terms appears
in sequence, we use the star symbol (*) e.g., BUG*.

• BUG*: there is no reference to CVE, so we could not
make the map. This layout only appears in Firefox 1.0
MFSAs1.

• BUG CVE: only one bug and one CVE. It is truly the
case that this bug refers to this CVE, and the mapping
is done automatically. This layout happens in most of
MFSAs.

• (CVE BUG*)*: there is a CVE followed by many bugs,
and then other CVE and bugs. In most cases, the CVE
is applied to the following bugs, but it still needs some
effort to check the details of CVE and relevant bugs.
This layout is usually applied for MFSAs reported be-
fore March 2008 (mostly for Firefox 1.52).

• (BUG* CVE)*: there are many bugs followed by a CVE,
and the other bugs and CVE. Similar to the prior case,

1MFSA 2005-58/56/46
2MFSA 2007-12/02/01, 2006-68/64

the CVE is usually referred by precedent bugs, but
manual checking effort is still necessary. This layout is
applied for MFSAs reported after March 2008 (mostly
for Firfox 2.0 and higher3).

The vulnerable modules in code base can be located by
mining the code archive repository, CVS - in case of Mozilla4.
CVS is a source control which records all versions (a.k.a re-
visions) of source files. Each source file revision (revision
for short) is annotated with a committer name, date time
when the revision is committed to the repository, tags and
branches the revision belongs to, and a short description de-
scribing the difference between this revision and its nearest
ancestor. In case of bug fix, the description usually men-
tions the bug identifier with some special keyword such as
Fixes, Fixed, or Bug. Thank to this meaningful and serious
description style, we are able to construct the bridge from
a reported bug to the source modules. The approach map-
ping source modules and bugs by parsing the commitment
description is detailed in [36] and used in [25] to predict
vulnerable software components.

The next cumbersome task is to identify the original revi-
sions that introduce bugs. Obviously, to fix a bug, develop-
ers have to modify one or more source files by deleting old
code fragments, replacing old code fragments with new ones,
or inserting new code fragments. Based on each type of code
modifications, the following rules are applied to determine
the original vulnerable revisions .

• Code deleted : the revision containing deleted lines are
considered as the origins. These revision numbers can
be achieved by analyzing the annotated version5 of the
revision containing fixes.

• Code replaced : as same as the previous case, the revi-
sion containing replaced lines are origins.

• Code inserted : if the code is inside a method, then
the original revision is the one containing the method.
Otherwise we assume that the very first (1.1) revision
of this file is the original revision.

The original date (a.k.a birthday) when the bug is intro-
duced therefore can be determined by the committed date of
the original revisions. Since a bug may have many different
original revisions, we thus have to make a competition to
identify the bug’s birthday. The four strategies, denoted in
Figure 2, deciding the winner are as follows.

1. Optimistic strategy : The latest committed date is the
bug’s birthday.

2. Pessimistic strategy : The earliest committed date is
the bug’s birthday.

3. Optimistic Meantime strategy : The earliest committed
date after the mean time of all committed dates is the
birthday.

4. Pessimistic Meantime strategy : The latest committed
date before the mean time is the birthday.

3MFSA 2008-52/42/41/15
4Mozilla code base, cvs-mirror.mozilla.org
5An annotated version of a revision is obtained by the CVS
annotate command, in which each line of code is associated
with the original revision and its author
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(a) Optimistic strategy (b) Pessimistic strategy

Mean time

(c) Optimistic Meantime
strategy

Mean time

(d) Pessimistic Meantime
strategy

Figure 2: Four strategies for determining the birth
date of a bug. The axis is the date when revisions are
committed to the repository. Each circle represents
to a revision that contains code introducing this bug,
black circles are recognized as original revisions.

In our database, we follow all these four strategies and
maintain separated fields for this birth date, since we ac-
tually do not known which strategy is better than others.
In addition, collecting all of them might help increasing the
data accuracy.

By finding the bug’s birth date, we also found the original
revisions that contain vulnerable code. Further tracking on
software release tags, we are able to determine vulnerable
versions of the software. Since a bug might be fixed in many
modules. It probably leads to different ranges of vulnerable
versions. If it is truly the case, the similar birthday-detection
strategies can be employed to deal with the conflict. We then
obtain a list of affected software versions, a.k.a list of vul-
nerable versions, or CVS-reported vulnerable list. Basically,
the final vulnerable list comes from the CVS-reported one.

This CVS-reported list is then compared with one re-
ported in NVD, the NVD-reported list. If there is any
vulnerable version reported in NVD, but not in the CVS-
reported list but it exists in the potential CVS-reported list,
then we include this version into the final vulnerability list.
Notice that the potential CVS-reported list is exactly the
CVS-reported list in which the pessimistic strategy is ap-
plied.

To sum up, Figure 3 illustrates the general schema of
our vulnerability database for the specific case of Mozilla
Firefox. Our database is compiled based on four different
sources: MFSA, Bugzilla, NVD and CVS archive logs. In
the schema, the SecurityAdvisory table holds list of Firefox-
related advisories. Each advisory entry maintains many
links to Bugzilla and NVD, captured in the table Bug and
CVE, respectively. Also, the VulnerableVersion table holds
the NVD-reported vulnerable list for each CVE entry. By
mining the CVS archive logs, we obtain a list of source files
saved in table File (only *.h, *.cpp and *.c are considered).
Each source file contains several revisions (the Revision ta-
ble), which in turn point to the release tags, and branches
they belong to. Each revision maintains links to its orig-
inated and fixed bugs. Finally, the AffectedVersion table
maintains the final vulnerable list.

6. DATA ANALYSIS
First we look at papers predicting vulnerability compo-

nents. As we mentioned, a large part of the literature stud-
ied the relation of vulnerabilities and software versions, and
that of vulnerabilities and vulnerable source modules. How-

Revision

(File, Branch, Tag, Change Date)

Bug

(ID, Dates, Description, Reporter)

Sec. Advisory
(ID, Vul., Fixed Date)

CVE

(ID, Impact, Date)

* *

*

*

*

*
CVS *

4originates

*

Affected Version

(Version number, Strategy)

4fixes *

*

Vulnerable Version

(Version number)

*

*

BUGZILLA

MFSA

NVD

NVDNVD, CVS

Figure 3: Simplified schema of our vulnerability
database. Rectangles denote tables; icons at the top
left corner of tables denote the source database.

ever, few studies discuss the quality of the vulnerability
databases upon which their findings are based.

The Table 2 shows that the data sources used in predic-
tion mostly come from three different groups. Databases
in the first group come from vendor bug-tracking database
[9, 25, 26, 33–35], some analyze the source version control to
detect source files that contain bug fixes, [25, 26]. The vul-
nerability databases constructed in this way could be repro-
duced by others, and thus they are able to be cross-validated.
Meanwhile, the databases of the second group come from
public repositories (NASA MDP, PROMISE) [23, 26, 38].
These databases are contributed by community. Some of
them are reproducible, and some are not. Obviously, the
quality of these databases is unknown. In the last group, the
databases are obtained from private sources i.e, closed source
like Microsoft [24], Cisco or private company [12,13,15]. We
do not make any discussion on these sources since we do not
have permission to access them.

Let us examine studies that rely on Mozilla Firefox [9,25,
34]. Figure 4(a) presents vulnerabilities reported by MFSA
and Bugzilla for Firefox 1.0 to 3.0. The figure shows a big
jump of the number of vulnerabilities from version 1.0 to ver-
sion 1.5 (+83%). From version 1.5 to version 2.0, the number
of vulnerabilities slightly increases (+9.5%) and decrease a
bit (-25%) in version 3.0. On the other side, Figure 4(b)
displays the vulnerabilities reported by our database. It is
easy to see that the trend from version 1.0 to version 2.0
is more or less as same as one illustrated in Figure 4(a),
but it shows a significant change from version 2.0 to 3.0:
about a half of vulnerabilities is cut. Although more vulner-
abilities of version 3.0 are probably reported in future, Fig-
ure 4(b) shows the big effort from Mozilla group to improve
their product in term of security so far. Figure 4(c) shows
the differences of the number of vulnerabilities reported by
{MFSA, Bugzilla} and our experiment for each version. The
differences are approximate 68% for version 1.0 to 2.0, and
20% for version 3.0. This difference comes from the fact that
MFSA and Bugzilla do not publish any information about
infected versions. People can only see the fixed versions and
make assumption about vulnerable versions e.g., bug fixed
in version 2.0.0.8 is counted for version 2.0.0.x where x < 8.
In fact, bug discovered in version 2.0.0.8 may also affect to
version 1.0.x and 1.5.0.y where x <= 8, y < 12. Therefore,
this bug should be counted for these version.

To better understand the cause, let us see the life cycle of
Firefox 2 and the number of vulnerabilities reported for this
version in Figure 5. There are have two milestones in Firefox
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(a) Bugs reported by MFSA (b) Bugs reported by our experi-
ment

(c) Bugs reported by MFSA and our exper-
iment

Figure 4: The number of security bugs of different Firefox versions reported by MFSA, Buzilla and our
experiment.
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Figure 5: Life cycle of the Mozilla Firefox 2.0 and
cumulative reported security bugs.

2 lifetime: release time, and retirement time. The former
is the time the software is officially released, and the later
is the time it goes beyond unsupported from the software
vendor. These milestones divide the Firefox’s lifetime into
three phases:

• Developing phase: vulnerabilities detected in this phase
should be as much as possible. Vulnerability fixing and
patching are also much easier and cost less than other
phases.

• Support phase: vulnerabilities reported in this phase
will be revised and fixed as soon as possible. These
fixes go to end users through minor version update
i.e., version 2.0.0.x where x between 1 and 20.

• Retired phase: developers are no longer interested in
fixing bug for this version as well as checking whether
this version is affected by any future reported vulner-
abilities.

Bugzilla keeps track of all vulnerabilities event if they are
not fixed, but only authorized people are able to access to
them. When a vulnerability is fixed and patch is released, an
entry about this vulnerability is appeared in MFSA. There-
fore only vulnerabilities discovered during support phase and
fixed in a patch are recorded in MFSA, other ones will not be
published and are considered to be vulnerabilities of future
versions (if any). This is the reason of only 253 security bugs
are reported in version, meanwhile the number is actual 423
(more than 67%) and may increase.

Obviously, any prediction model which relies only on MFSA
and Bugzilla will miss 68% of total vulnerabilities used to
train the model. This is referred to as the Vulnerability
missing phenomenon. This phenomenon describes the fact
that collecting training set too early probably makes our
prediction less accurate because we are going to miss some
data. Meanwhile, a late data collection make no sense since
the software has gone beyond support. This raise another
research question that “How long should we wait for our
training set to be stabilized?”.

7. VALIDITY
In this section we discuss about both internal and external

threats that can affect the validity of our study.

Bug in data collection. We collect data from various sources.
Some of them, MFSA and CVS, requires parsing. The
code that downloaded and parsed MFSA pages and
the code that read the CVS log, parsed for history
data, could contain bugs and thus might produce er-
rors. However, these risks were mitigated by manually
checking for a small amount of data and then correct
the code. After collecting all data, a random check was
carried out to validate the data. If the random check
found an error, the code was then fixed. And then the
collection and random check were repeated until there
was no error.

Missing information in CVS. The mapping between bugs
and code base relies upon conventional patterns in
CVS committed messages. These patterns might be
missed in some messages due to developers’ mistakes.
However, we believe this phenomenon, if exists, rarely
happens and can be ignored since we were able to lo-
cate the corresponding code base for every fixed bug.

Generality. The combination of multi-vendor databases (e.g.,
NVD) and software vendor’s databases (e.g., MFSA,
Bugzilla) only works for products that the vendor main-
tains a vulnerability database and is willing to publish
it. Also, the source control log mining approach only
works if the software vendor grant community access
to the source control, and developers commit changes
that fix vulnerability in a consistent, meaningful fash-
ion i.e., independent vulnerabilities are fixed in differ-
ent commits and each of these commits is associated
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with a message that refers to a vulnerability identifier.
These constraints eventually limit the application of
the proposed approach.

Mapping between CVE and Bugzilla. The Bugzilla and
MFSA themselves do not contain enough information
about affected versions (both ”retrospective”and ”prospec-
tive”). We found this data in NVD, but not all bugs
refer explicitly to CVEs. The missing data is filled
by manually looking at the MFSA. This task , as dis-
cussed in section 5, are laborious, time consuming and
may contain mistakes.

8. CONCLUSION
In this work, we analyzed different research problems in

the emerging trend towards to the quantitative security as-
sessment and the use of empirical methods to analyze or
predict vulnerable components. We identified the databases
used in recent researches, and identified which database fea-
tures are often used to answer some research questions. We
setup an experiment in which we collect vulnerability data
for Mozilla Firefox. This database was a stepping stone to
analyze prior work. Based on it, we discussed issues that
past papers may suffer, which might bias their result.
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APPENDIX
A. TERMINOLOGY

In this work, we use standard software engineering terms
as [29] used. In which, the basic terms are failure, fault,
mistake, error and vulnerability.

A failure is the ”inability of a system or component to
perform its required functions within specified performance
requirements” [17].

A fault is an ”incorrect step, process, or data definition
in a computer program” [17]. Failures are consequence of
faults, but not all fault always produce failures. Faults are
also know as ’bugs’ or ’flaws’ [29].

A mistake is ”a human action that produces an incorrect
result” [17].

An error is ”the difference between a computed, observed,

or measured value or condition and the true, specified, or
theoretically correct value or condition. For example, a dif-
ference of 30 meters between a computed result and the
correct result” [17].

A vulnerability is “an instance of [a mistake] in the specifi-
cation, development, or configuration of software such that
its execution can violate the [explicit or implicit] security
policy” [20].
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