

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

BarterCell: an Agent-based Bartering Service
for Users of Pocket Computing Devices.

SAMEH ABDEL-NABY, OLEKSIY CHAYKA, PAOLO GIORGINI.

September 2009

Technical Report # DISI-09-053

.

A Decentralized Approach to Optimize the Negotiation of
Agents in Wireless Networks

Sameh Abdel-Naby
Dipartimento di Ingegneria e

Scienza dell’Informazione
Via Sommarive, 14

Trento, Italy
sameh@disi.unitn.it

Oleksiy Chayka
Dipartimento di Ingegneria e

Scienza dell’Informazione
Via Sommarive, 14

Trento, Italy
oleksiy.chayka@dit.unitn.it

Paolo Giorgini
Dipartimento di Ingegneria e

Scienza dell’Informazione
Via Sommarive, 14

Trento, Italy
paolo.giorgini@unitn.it

ABSTRACT
On behalf of nomadic users and through the use of com-
puting pocket devices, agents can efficiently operate in wire-
less networks, cooperate to resolve complex tasks and ne-
gotiate to reach agreements while attempting to maximize
their utilities. However, the negotiation protocols intelligent
agents use are hardly considering several of the requirements
evolved after the increasing reliance on mobility. In this pa-
per we present a new negotiation protocol that avoids the
use of mediating agents and applies a voting-like mechanism
to handle service requests of nomadic users in wireless net-
works. We examine our approach in a scenario where it
is essential for a multi-agent system to establish a chain of
mutually attracted agents seeking to fulfill different barter-
ing desires. We compare the results obtained with those
produced after using an adjusted version of the Strategic
Negotiation Model.

1. INTRODUCTION
The existence of heavyweight computing devices has once

encouraged different organizations to address their necessity
to process and manage their data. Efforts on that direction
were concluded in Data Processing Systems (DPS) that are
enhancing the way organizations interact with any of their
focal information. Eventually, these applications were called
Information Systems [11], and it started to play a major role
in the way an organization emerges to an industry, sees the
achievement of its goals, or studies the improvement of its
future state.

Intelligent information agents [8] are those capable of in-
teracting with several distributed or heterogeneous informa-
tion systems representing end-users in obtaining data and
overcoming information overload. In [7] authors have re-
lied on information agents, data acquisition agents and rule-
based reasoning agents to build a multi-agent system (MAS)
[21] capable of receiving data from a legacy information sys-
tem - Enterprise Resource Planning (ERP) - and control the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’08, September 8–12, 2008, San Francisco, USA.
Copyright 2008 ACM 978-1-60558-096-8/08/09 ...$5.00.

extracted information using AI techniques. That effort has
added the possibility of an existing information system to
be customized according to the new preferences of end-users
without any re-engineering processes.

Using ubiquitous agents, another approach was taken in
[3] to allow mobile devices to access Web Information Sys-
tems (WIS) depending on their location. Authors have used
agents to represent the goals nomadic users would like to
achieve, store the exact location and connection features of
each user and then migrate these agents to different informa-
tion systems (or other mobile devices) to find relevant data
or another information agent capable of answering user’s
requests. In PUMAS, the agents negotiation was imple-
mented using standard distributed systems technique - mes-
sage passing and recommendations - in spite of the dynam-
icity of mobile users and the limited resources of a mobile
network.

Negotiation protocols are easing the tasks distributed in-
formation systems are concerned with, such as reaching agree-
ments and sharing resources. Assuming that each indepen-
dent information system is an autonomous agent, scholars
have attempted to address the significance of a proper ne-
gotiation model in multi-agent systems using different ap-
proaches (see [15] for an overview). For example, some of
the negotiation protocols used in e-commerce or data allo-
cation applications are inspired from actual auctioning [12],
others by the notion of contracting [17] and even politics
and economics in [6].

Applications that consider agent-oriented approaches to
offer mobile services [10] are likely to guarantee a level of
reliability that is not achieved alternatively. The ongoing
research on MAS negotiation protocols is considering the
partial physical linkage of users to large number of ISs [13].
However, none is broadly considering active Mobile Infor-
mation Systems (MIS) [19] that are delivering services to
nomadic users and, the differences it would make on the ne-
gotiation scenario occurring among cooperative, intelligent
and autonomous agents. For example, in order to avoid the
unavailability of users within a specific service coverage area
and, apart from the little attention paid to limited resources
and data traffic rate in mobile networks, the speed of re-
action a modern information system should address varies
according to the area size it serves.

In order to minimize the amount of interactions between
system components and adjust the use of resources, we present
a negotiation protocol that manages the interactions of agents
performing in dynamic mobile networks and, it avoids the

BarterCell: Agent-based Bartering Service for Users of
Pocket Computing Devices.

central management of any service request and instead; it
establishes an election process among concerned agents to fi-
nally come up with a mutually benefiting agent - that varies
- to match pending requests.

We use an agent-based mobile bartering application to
examine the performance of our protocol. We simulate the
behavior of agents in strict situations where time and net-
work resources are limited. We adjust another negotiation
protocol from existing literature, simulate the behavior of
agents in the same bartering application, and we compare
the results obtained in both scenarios.

The paper is organized as follows. Section 2 gives an
overview of the related literature. Section 3 introduces our
negotiation protocol. In section 4 we present BarterCell,
which is a case study that applies our protocol. Section 5
introduces a customized version of the Strategic Negotiation
Model [14] that we adapted and simulated to evaluate ours.
Section 6 concludes.

2. RELATED WORK
In [16] they define a negotiation protocol in multi-agent

systems as ”the public rules by which agents will come to
agreements, including the kinds of deals agents can make
and the sequence of offers/counter-offers that are allowed”.
Same authors have distinguished between high-level negoti-
ation protocol like those in multi-agent systems and, low-
level negotiation protocols like those in networks (e.g., Ap-
pleTalk). In fact, high-level protocols are concerned with
the content of the communication and not the mechanism
that these content use to transfer.

R. G. Smith [17] has stressed the same distinction showing
ARPANET and other similar protocols at this time as ex-
amples of high-level negotiations. He showed his standpoint
by considering the high-level protocols as methods that lead
system designers to decide ”what [agents] should say to each
other”. And low-level protocols make system designers de-
cide ”how [agents] should talk to each other”. The Contract-
Net protocol Smith presented assumes the simultaneous op-
eration of both; agents asking to execute tasks and agents
ready to handle it. The asking agents broadcast a call for
proposals, and the helping agents submit their offers and
then one is granted the pending task.

Eventually, four different types of auctions [4] were widely
considered in the literature of agents; 1) English, 2) Dutch
3) First-price Sealed-bid, 4) Second-price Sealed-bid. These
auction types share the same goal, which is granting a single
item (sometimes combinatorial) to a single agent (sometime
a coalition) in a limited resources environment. An agent
may participate in an auction so one of the carried ”personal”
tasks can be accomplished, or - like in cooperative systems-
a learning behavior can be implemented so agents are able to
predict the future importance of this item to another agent,
which is known as commonvalue.

In [20] proposed model of a coalition formation enables
each agent to select individually its allies or coalition. There-
fore, the model supports the formation of any coalition struc-
ture, and it does not require any extra communication or
central coordination entity or agent. However, the model
results in increased processing for each of the negotiating
agents. Moreover it does not consider overall coalition in-
terest during its creation.

Definition of an optimal coalition in [18] is based on Pareto
dominance and distance weighting algorithm. Instance-based

Figure 1: Electing a manager agent in diverse sce-

narios.

learning algorithm is used to select an optimal coalition from
set of coalitions. Optimal coalition determination became
a multi-objective optimization problem because they take
each agent in the coalition with abilities represented by mul-
tiple metrics while we use coalition formation mechanism
based on resources available to each agent.

In [2] it concentrates on trusted kernel-based mechanism
of making a coalition rather than on efficiency of a common
task solving. Common task is then distributed among agents
of a formed coalition. The most complex task in our work
lies on top-view agents’ organizational level rather than on
task-solving abilities of all agents in a coalition. One central
agent that will manage other agents from top-view level can
find a way to best organize agents of a given community and
satisfy their needs in a best possible way.

3. THE WISE NEGOTIATION
For one computational unit it is sometimes impossible to

achieve a given task due to many obstacles, such as lack of
resources (e.g., information, hardware power, etc.). These
complex situations can be resolved if cooperation among sys-
tem entities is achieved so that each is able to solve a part of
the overall goal. Solving a joint problem means that there
must be correct negotiation mechanism between all of the
units involved into the same process.

In a decentralized environment it is hard for all peer units
to organize themselves in a way to effectively solve a given
problem. It is even harder when those units are asked to
find definite structure (sequence of their cooperation). In
order to choose the optimal cooperation scheme in a given
set of peer units at particular time, we made agents orga-

nize themselves to choose the group manager that will ”see”
the overall picture and decides the best possible cooperation
scheme.

We assume that each of those peers trusts each other and
has the same criteria of solution optimality and group man-
ager selection. The only difference it can be found in the
resources available to each unit separately. Among agents in
a group, the initial phase of cooperation includes the discov-
ery of all available peers. Then, an exchange of information
on available resources will take place between all of them.
Based on this information, each unit will compute to find
the agent eligible to manage and further define the optimal
cooperation scheme.

The managing agent is the one involved into the next
optimal solution processes with the highest probability to
achieve the foreseen task. This can be defined according
to the resources it has in that exact moment. The manager
agent first notifies all other agents of its role acceptance then
it implements an algorithm to find an optimal solution for
group activities.

This algorithm relies on resources of the group and is not
requiring any extra communication between group members.
Once a solution is found, the manager agent notices all listed
units whether they are involved in the optimal solution or
not. If an agent must take part in a foreseen solution, it will
”know”the overall cooperation mechanism between agents in
that scenario (set of units of the system involved, sequence
of their cooperation and resources that they should give to
others or get from them). Group manager will have a short-
term list of solutions that were proposed and refused by
other units. Newly selected manager unit will start tracking
such list from scratch.

To update the list of available resources, group manager
will search for optimal solution until it can find any. As far as
a manager agent is having its interests in group cooperation
and it will be able to carry out its role, so it will keep its main
task. As soon as a group manager refuses its role or due to
a sudden occurrence of malfunction, all other agents choose
another manager by restarting the negotiation process with
discovery and information exchange phase.

Other units can join existing group at run-time by notify-
ing the manager agent. Eventually, after the manager agent
finishes its current cycle for optimal solution discovery, it
will report the solution to involved agents and then it will
inform all agents of negotiation process to restart. From the
discovery phase, recently arrived agents will take part of the
new cycle.

As shown in figure 1, depending on the resources available
for each involved agent in phase I, agent (3) was elected
to match the service requests among interested agents. In
phase II, and after the involvement of new comers, agent (5-
7), the manager agent has decided that agents in light-gray
circles (4, 1 and 6) including himself can all build a chain of
mutual interest. Then, the mismatching agents have decided
to restart, and then the same initial process was repeated
in phase I-B where agent (2) with resources = 7 was elected
to manage the matching process that involved new comers
too, and resulted in phase II-B.

4. A CASE STUDY
Introducing the application we developed to examine our

negotiation protocol relies on defining first Bartering as well
as Swapping. Barter is a disappearing type of trade where

Figure 2: The architecture of BarterCell.

none of the recognized monetary systems are used in ex-
change of products or services, and only items of similar
value are exchanged. Swapping is the modern approach to
replace the ancient bartering services with websites that en-
courage users of computing devices to build virtual com-
munities and share similar interests. BarterCell is our ap-
proach to provide users of recent and portable computing
devices a barter service on the go. Based on the location and
characteristics of a specific community, BarterCell would use
agents to build the chain of exchange connecting several fre-
quenters of the same area.

4.1 Motivation
The three key motives behind the development of Barter-

Cell are: 1) reviving the idea of bartering within members of
a specific community and promoting the benefits of location-
based services, 2) to test the new negotiation protocol we in-
troduce later on in this paper, 3) motivating existing users
of pocket devices, and attracting new ones to benefit from
recent advanced technologies by widening the range of ser-
vices that can be offered to them on the go.

4.2 Architecture
The architecture of BarterCell, as shown in figure 2, relies

on the user’s capable pocket devices or PC to accomplish a
successful bartering task. Via the preinstalled java applica-
tion, users start by creating their own profiles using simple
and user-friendly interface, insert their preferences, and add
details related to the kind of items they are exchanging. If
a PC is used, the user will be asked to directly upload the
saved data to a central server which, in return, make it avail-
able to agents running on Jack [5], which is an interactive

Figure 3: BarteringService Builder

platform for creating and executing multi-agent systems us-
ing a component-based approach.

Currently, our system is deployed using distributed Blue-
tooth access points that are all located within a specific en-
vironment (e.g., university). Due to some technology lim-
itations, users are asked to be present within the coverage
of any connecting spot in order to transmit their data files
to the central server. Regardless of the methods used to
transmit the data, the processing and sequence of system
instructions from this point on will be the same.

Once received from a user, the message or file content is
made available to the multi-agent system, thus it can create
a delegated agent that carries the particular characteristics
of each system user. This agent is identified using the Media
Access Control (MAC) address of the device used to commu-
nicate user’s data with the server. On behalf of users, agents
start to interact, cooperate and negotiation with other sys-
tem actors in order to achieve the predefined objectives in
the given time frame. These objectives are related to partic-
ular bartering services, which make them complicated and
hardly realized in real life scenario without involving sophis-
ticated technology.

Among other benefits, JACK was chosen to handle all of
the agent’s interactions because of its ability to meet the
requirements of large dynamic environments, which allow
programmers of agents to enrich their implementations with
the possibility to compatibly access several of the system re-
sources. JACK has also made the communication language
applied among involved agents with no restrictions, which
made any high-level communication protocol such as KQML
[9] or FIPA ACL easily accepted by the running architecture.

4.3 The algorithm
Upon user request, a personal agent will be activated and

algorithm 1 is starts to execute. Agent will be registered
in available multiagent system and will stay active until a
suspension by its user.

The agent created uses these variables: list of demands
for all agents of a given system (cDList), list of offers for
all agents of a given system (cOList), ID of an agent that
will make bartering chains (ChainMaker), most demanded
item in a system at a given time (currentMDItem), ID of
an agent running (currentAgent), list of all available agents
(agentsList), set of agents which offers currently most de-
manded item (dG) and set of agents which seeks for cur-
rently most offered item (oS), set of agents that are able
to make an optimal bartering chain in a given system at
particular time (optimalChain).

Being activated, agent will try to get information of other
agents in the system (Line 5). If all other agents will be
already involved into process of chain creation, the newly
arrived agent will get ID of the system’s ChainMaker and
notify of its desire to join to established group of agents.
ChainMaker will finalize its ongoing computational cycle
and inform all agents of service finish (see ”ChainMaker Op-
eration”). After this point all agents will start new cycle for
search of optimal bartering chain.

The new cycle of bartering chain creation will start from
discovery of all available agents in the system (Line 5) and
creation of list of those agents. For each of those agents
every other agent will send its demanded and offered items.
Thus all agents of the system will have common demands
list (cDList) and common offers list (cOList) (Lines 6-10).

Based on the list of common demands each agent finds the
most demanded item in a given group of agents at given time
(currentMDItem) and the corresponding set of agents that
proposes that item (Line 12). Most offered item and agents
seeking for it will be selected to further define ChainMaker
(Line 15).

If an agent finds out that it must be the ChainMaker at
that time (Line 16), then it runs ”algorithm 2”, accepting the
role of ChainMaker and thus providing other agents with
corresponding service. If the role must belong to another
agent of the system, current agent will track responses from
ChainMaker (Lines 19-31).

Tracking of ChainMaker’s responses in addition to get-
ting results will also include checking for service availability
(Line 20). This function is designed for both parsing of mes-
sages from ChainMaker and checking whether it can carry
out its role. Every time a ChainMaker finishes creating an
optimal chain, it notifies both agents involved into it and
those agents that will be out of it (in order to let all agents
know the state of ChainMaker).

Timer initialization (Line 19) is done to check Chain-
Maker’s availability by any agent that is not interacted for
a definite period of time. If an agent will find out from re-
sponse of ChainMaker that it belongs to an optimal chain
(Line 22), it will ask its user to accept or reject given chain
(Line 23). If proposed chain will be rejected, it will not be
selected any more until current ChainMaker carries out its
role. Newly selected ChainMaker will start building its own
list of rejected bartering chains. Having a positive decision
as for proposed optimal chain, agents will send to their users
contacts of other users whom they should contact in order
to make barter (Line 27).

Figure 4: ChainMaker Operation

There is a little algorithm - not showed here - that is used
in-between for 2 purposes: for every agent it helps to define
which agent is ChainMaker in a given system (and thus to
wait for informing from it of an optimal bartering chain in a
system) and for ChainMaker it helps to define the root node
of bartering trees. As a result, this algorithm will give ID of
an agent that must be ChainMaker in the system at time of
running the algorithm.

In the second algorithm, the ChainMaker can start giving
its service if it has non-empty list of own demands (Line
3). Provided that it has the list, Chain-Maker starts new
computational cycle (Lines 3-56). The cycle starts with a
search for new agents (Line 5) that might wait to join exist-
ing group of agents (that are in agentsList). If there will be
at least one agent waiting to join, ChainMaker will inform
all known agents of service finish (Lines 7-9). All agents,
including new, will start negotiation process from the be-
ginning (”BarteringService Builder”).

If there are no new agents, ChainMaker will inform all
agents of a new computational cycle, and then checks for
optimal chains in queuedChains[] (Line 16) that it has pro-
posed during previous computational cycles (if there were
any). If at least one of user in some queued optimal chain
has refused to barter in it, the whole chain will be con-
sidered as refused and it will never be proposed again by
current ChainMaker as long as it will carry out its role. Re-
fused chains will be stored in a refusedChains[] set that will
be updated along with queued-Chains[] every time Chain-
Maker gets information of refused chain (Lines 18-22).

Accepted bartering chains will simply removed from queued-
Chains[] (Line 23). After ChainMaker will have a list of
available agents and a treeRootAgent, it will start building

bartering trees. Each tree will begin from treeRootAgent
with every child, representing agent that demands at least
one item from list of its parent’s offers. While analyzing ev-
ery path on such tree the ChainMaker will find repetitions of
agents, it will create a complete set of agents that can barter
between them. The shortest possible chain will be recorded
to chains[] that will consist of shortest bartering chains of 3
types (combinations of demand types): 1) Strict; 2) Strict
+ Flexible; 3) Strict + Flexible + Potential. The shortest
chain selected is built for each corresponding combination
(Lines 26-28).

If ChainMaker will succeed to find one shortest chain at
least, it will select the optimal from chains[] (Line 30). Opti-
mal bartering chain will consider its length and combination
of demand types it’s based on. Considering chain of equal
length, the highest priority is given to a chain that will be
based on Strict demands while the least priority is given to
a chain that will be based on Strict + Flexible + Potential
demands.

After selecting an optimal bartering chain (at particular
period of time), the ChainMaker will inform all involved
agents at (Line32). Each agent in the chain will have infor-
mation such as which other agents are involved into proposed
optimal chain, which items should be exchanged and cor-
responding contact information of users. ChainMaker will
remove from common demands list and common offers list
those items that will be in proposed optimal chain (and will
be potentially exchanged later) (Lines 33-34). If one of opti-
mal chains will be refused to be executed, ChainMaker will
restore items that were involved into it (Lines 20-21). Every
proposed optimal chain will be placed into queuedChains[]
(Line 36) to further track whether it will be accepted by
users or not. Every agent that will wait for results from
ChainMaker and will not be involved into optimal chain
will get a message ”cycle finished” (Lines 37-39). This will
be indicator that ChainMaker has finished computing opti-
mal chain, during previous computational cycle that agent
wasn’t into it and new computational cycle will be started by
the same ChainMaker. This message will cause every agent’s
timer restart to check chain making service availability.

If ChainMaker fails to achieve a goal, it will notify all in-
volved agents (Lines 41-43). This message will cause the
restart of negotiation process ”BarteringService Builder”. If
optimal chain will consist not only of Strict demands items
then the ChainMaker tries to make it so by changing tree-
RootAgent to the next most appropriate agent (Lines 47-48).
In the rest of the algorithm, if there will not be any agent
for current most demanded item, the next most demanded
item and corresponding treeRootAgent will be chosen. If
finished with the list of demands or a suspension message
received from its user, the ChainMaker will inform all agents
of service termination. Agents still interested in a bartering
service will restart a negotiation process.

4.4 Testing BarterCell
To test our architecture we used a D-Link DBT-900AP

Bluetooth Access Point that is connected to the university
LAN through a standard 10/100 Mbit Ethernet interface.
This device offers a maximum of 20 meters connectivity
range with the maximal bit rate support of 723Kbps, and the
possibility to concurrently connect up to seven Bluetooth-
enabled devices. The same access point is authenticating
pocket devices that have BarterCell previously installed in

Figure 5: Simulating the number of Agents in

BarterCell

Figure 6: System Load Distribution

it and, it works as a deliverer of the service requests and
responses from and to the central servers. On the end-user
side, four competent cell phones were used to communicate
semi-adjusted bartering interests with central servers. These
de- vices are Nokia 6600, 6260, 6630 and XDA Mini. On the
server side, a capable PC was used with JACK 5.0 and Blue-
Cove installed in it.

5. EXPERIMENTAL RESULTS
In setting up our simulation, we chose to compare our pro-

tocol with the Strategic Negotiation Model [14] because of its
approaches to address problems encountered in distributed
data networks that are likely to occur in dynamic mobile
environments. The model uses Rubinstein’s approach of al-
ternating offers [1].

In the strategic model, there are number of agents N =
A1 An, and they are supposed to reach an accepted outcome
on a delegated task within certain predefined times that are
located in a set T = 0, 1, 2. At each time slot t of the overall
process, the algorithm considers the results previously ob-
tained to decide whether to allow another involved agent,
at period t+1, to make a new offer. The protocol keeps

Figure 7: Simulating the number of items at each

agent level

on looping until an offer is accepted by all agents and the
proposed solution is then put into practice.

In our simulation environment, we have adopted and sim-
plified the protocol in the following way: each agent searches
for match of its every Ordered-item with every Demanded-
item of every other agent. Adopted algorithm finishes work-
ing after each agent is able to define the other agent(s) that
it can exchange with (a chain of length max. 3 agents).

As part of our simulation setup, we also used JDots for
tree building that is object oriented software component.
Each node of a tree was built with JDots is representing
an object with its own fields and methods. Our algorithm
works much slower with a huge amount of agents (e.g., >300)
because the main agent needs to build three trees. Neverthe-
less, while testing with less than 200 agents, both algorithms
are giving similar results in time, having variations in quality
of results and further potentialities (e.g., work with object
trees vs. dataset of matching agents pairs).

To obtain the results showed in figure 5-10, we have com-
pared results of this protocol implementation with those re-
ceived after implementing our (tree-based) algorithm that
searched for first optimal chain of length 2. During the sim-
ulation we have put number of D-items to 15 and number
of O-items to 5.

Figure 5 shows how fast the main agent finishes searching
for possible optimal chains depending on the total number
of known agents. Here, we assumed that the number of O-
items is 5 and the number of D-items is 15.

Figure 6 shows how fast the main agent will finish search-
ing for all possible optimal chains depending on number of
items that each agent proposes. Total number of offered +
desired items is constant (20). Peak of the graph represents
the most time consuming state when number of offered items
is equal to number of desired items. In this state the main
agent has the biggest number of possible exchange combi-
nations. Assumptions used, Max number of items: 20, Max
number of D-items: 15, and Number of agents: 30.

Figure 7 shows how fast main agent will finish searching
for all possible optimal chains depending on number of items
at each known agent. In Fig. 4, comparison Results particu-
lar case, we assumed that the number of D-items = number
of O-items, the number of D-items are only of ”Strict” type

Figure 8: Agent Satisfaction Level

Figure 9: Processing time representation of agent

satisfaction level

and the number of agents is 30.
Figure 8 represents how many agents would be satisfied

(i.e. involved in one of optimal chains produced by main
agent) until the main agent finishes all possible chain-building
processes. Depending on the trees level (depth) the per-
centage of satisfaction will vary. Here, we assumed that the
number of D-items is 20 and the number of O-items is 5.

In Figure 9, we show the processing time representation
of the simulated agent satisfaction level of figure 8.

Once more, since we have chosen the Strategic Negotiation
protocol [14] as a benchmark to evaluate and measure the
performance of our algorithm with respect to existing ones,
we have made some slight customizations for it in order to
be fulfilling the minimum requirements of our application
and thus comparable to our protocol. We first made each
involved agent seeks to match all of its O-items with other
agent’s D-items.

The adopted algorithm finishes when each concerned agent
has defined its completing agent(s), which it can make the
bartering with (a chain of services exchange with a maxi-
mum length of 2 agents). Searching for the first optimal
chain of length two, in figure 10 we simulated agent’s sat-
isfaction level by comparing the results obtained after im-

Figure 10: Abstract Comparison of the Different Ne-

gotiation Protocols

plementing the strategic negotiation protocol to agents of
BarterCell with our tree-based algorithm. We assumed that
the number of D-items is 15 and the number of O-items is
5.

The table here compares our solution with the Strategic
Negotiation model which made it easy to see how great dif-
ference in number of required interaction between agents is
there. In our approach, interactions between agents are vir-
tual, the same as we showed previously in BarterCell, we
use one agent that builds chains of mutual interest agents.
For example, for creation of a chain of length 3 it must make
O(n7) interactions between agents of a given system, (n2)
(n-2) (n-2) (n-1) (n-1) (n) where: O(n2) agents must com-
municate with each other to exchange the lists of resources.
O(n-2) agents will communicate with their succeeding peers
regarding resources that they can obtain from their preced-
ing peers. O(n-2) if there will be at least one chain of length
3, then during this communication agent that initiated chain
of resources giving will get back information of how its chain
can be executed. O(n-1) that agent will report to every agent
in the chain of coalition formation availability. O(n-1) every
agent received message of the coalition formation availability
will decide whether it will be in the coalition or not; decision
will be sent to every agent of prospective coalition. O(n) all
agents will send message that will initiate their chain.

6. CONCLUSIONS
The increasing efforts and interests in the development

of Agent Oriented Software (AOS), and the autonomous be-
havior and level of intelligence Agents are now able to repre-
sent have made it clear that a great potential exists in using
AI techniques to deliver mobile services. Negotiation pro-
tocols used among agents that are representing users of PC
applications differ from those used for users of modern com-
puting pocket devices. The changes observed on the behav-

ior of nomadic users, the level of dynamicity and the number
of constraints applied on the hardly available resources on-
the-move have led us to differently consider architectures of
advanced mobile services.

We introduced a negotiation protocol for agents represent-
ing nomadic users and interacting in dynamic mobile infor-
mation systems. We described the state-of-art of agent’s
negotiation in general and the attempts to enhance them in
specific situations. We propose a new and wiser negotiation
protocol. Then we use BarterCell that is an agent-based
mobile bartering service application to examine the perfor-
mance of this protocol. We simulate the behavior of agents
in strict situations where time and network resources are
limited. We adjust another negotiation protocol from ex-
isting literature, which is the Strategic Negotiation Model
[14]. At last, we simulate the behavior of agents in the same
bartering application, and we compare the results obtained
in both scenarios

7. REFERENCES
[1] R. A. Perfect equilibrium in a bargaining model.

Econometrica, pages 97–109.

[2] e. a. B. Blankenburg. Trusted kernel-based coalition
formation. In AAMAS’05, July 2005.

[3] Carrillo-Ramos, Angela, and et al. Pumas: a
framework based on ubiquitous agents for accessing
web information systems through mobile devices. In
the 20th Annual ACM Symposium on Applied
Computing (SAC2005), New Mexico, 2005.

[4] A. Chavez and P. Maes. Kabash: An agent
marketplace for buying and selling goods. In 1st Int.
Conference on Electronic Commerce, IECE98, Soeul,
Korea, 1998.

[5] M. Clark. Jacktm intelligent agents: An industrial
strength platform. In Multi-Agent Programming, ed.
Rafael H. Bordini., pages 175–193, Soeul, Korea, 2005.

[6] P. Cramton, Y. Shoham, and R. Steinberg.
Combinatorial Auctions. The MIT Press, January
2006.

[7] K. D., C. Chatzidimitriou, A. Symeonidis, and
P. Mitkas. Minformation agents cooperating with
heterogeneous data sources for customer-order
management. In the 19th Annual ACM Symposium on
Applied Computing (AIMS 2004), March.

[8] M. K. (Ed.). Intelligent Information Agents. Springer,
1999.

[9] T. Finin and R. Fritzson. Mckay. a language and
protocol to support intelligent agent interoperability.
In The Proceedings of the CE&CALS Conference,
Washington, USA, June 1992.

[10] A. Inc. Going going gone! In A Survey of Auction
Types.

[11] J. L. King and K. Lyytinen. Information Systems:
The State of the Field. Wiley, 2006.

[12] P. Klemperer. Auction theory : A guide to the
literature. Journal of Economic Surveys, 3(13).

[13] S. Kraus. Negotiation and cooperation in multi-agent
environments. Artificial Intelligence Journal, Special
Issue on Economic Principles of Multi-Agent Systems,
94(1-2):79–98, 1997.

[14] S. Kraus. Strategic Negotiation in Multiagent
Environments. MIT Press, 2001.

[15] H. Raiffa. The Art and Science of Negotiation.
Belknap Press, 1982.

[16] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation
among Computers. The MIT Press, 1994.

[17] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transactions on Computers,
12(C-29):1104–1113, December 1980.

[18] e. a. T. Scully. Coalition calculation in a dynamic
agent environment. In the 21st International
Conference on Machine Learning, Canada, 2004.

[19] J. Walker. Mobile Information Systems. Artech House
Publishers, June 1990.

[20] T. Wanyama and B. H. Far. Negotiation coalitions in
group-choice multi-agent systems. In AAMAS’06, May
2006.

[21] M. Wooldridge. An Introduction to MultiAgent
Systems. John Wiley & Sons, 2002.

	cover.pdf
	paper.pdf

