
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
SYNTACTIC MATCHING OF TRAJECTORIES 
FOR AMBIENT INTELLIGENCE APPLICATIONS 
 
N. Piotto, N. Conci and F.G.B. De Natale 
 
 
August 2009 
 
Technical Report # DISI-09-044 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



1

Syntactic matching of trajectories

for ambient intelligence applications
N. Piotto, Student Member, IEEE,N. Conci,Member, IEEE,and F.G.B. De Natale,Senior

Member, IEEE

Abstract

In this paper we propose a novel approach for syntactic description and maching of object trajectories

in digital video, suitable for classification and recognition purposes. Trajectories are first segmented by

detecting the meaningful discontinuities in time and space, and are successively expressed through an ad-

hoc syntax. A suitable metric is then proposed, which allowsdetermining the similarity among trajectories,

based on the so-called inexact or approximate matching. Themetric mimics the algorithms used in bio-

informatics to match DNA sequences, and returns a score, which allows identifying the analogies among

different trajectories on both global and local basis. The tool can therefore be adopted for the analysis,

classification, and learning of motion patterns, in activity detection or behavioral understanding.

Index Terms

trajectory analysis, trajectory representation, trajectory matching, ambient intelligence, visual surveil-

lance.

I. INTRODUCTION

The growing interest in ambient-intelligence and the significant reduction in the price of image capture

devices and digital signal processing systems, has contributed to the widespread adoption of video

technologies in most monitoring and surveillance applications. On the other hand, large and distributed

sensing architectures provide human operators with huge amounts of data (mostly real-time video) that

quickly overwhelm the ability of the security personnel to analyze and react to events, especially in

safety-critical applications. As a matter of fact, most of the available consumer products mainly focus on

the recording of video sequences for after-event analysis that are useful as forensic tool, but disregard the

primary benefit of surveillance systems as active and real-time prevention instruments. More sophisticated

systems attempt to process data in real-time in order to detect significant events that need to be promptly
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reported to the operator. This is the case of systems for decision support, where the automation of

certain procedures allows real-time detection of relevantevents. Such events are typically related to

changes detected in the monitored area, which can be caused by human actions (e.g., entering/exiting

the scene, accessing some specific areas), modifications of the environmental conditions (e.g., objects

relocation, objects left unattended, changes in illumination, presence of shimmering lights or fire), or

suspect behaviors (e.g., identification of specific movement patterns, interaction with objects in the scene).

Most of these events are associated with the presence of moving entities like people and/or other objects

in the scene. Nowadays, sophisticated and reliable object trackers can be found in the literature that make

it possible to extract an accurate representation of the spatio-temporal trajectory of each object in a video

sequence (see [1] [2]) also in very complex scenarios. Starting from the acquired trajectory, a common

way to detect activities or behaviors consists in translating the trajectories of the moving objects into

sets of descriptors, and successively comparing such descriptors with predefined (or learned) models.

This approach has been widely used in many application fieldssuch as smart environments (motion is

analyzed to understand people presence and behaviors [3] [4] [5]), content-based video indexing and

retrieval [6], gesture and gait analysis [7], and biometry [8].

Starting from a preliminary study proposed in [9], we present in this work a complete representation

and matching framework, and provide an in-depth description of the relevant processing techniques and

a thorough experimental validation, also in comparison with state-of-art approaches of the same class.

The paper presents some related works in Section II, while Section III concentrates on the proposed

architecture. Section IV focuses on the experimental validation on two different sets of trajectories in

different indoor scenarios. Concluding remarks are drawn in Section V.

II. RELATED WORK

The algorithms used to describe and compare trajectories can be divided into three main categories:

dynamic matching, statistical matching, and vector matching. Within the first category, dynamic time

warping (DTW) is typically used in time-series comparison,but it has been successfully applied also

to human trajectory matching because of its conceptual simplicity and versatility [1]. Very simple yet

effective, DTW has a major drawback in its sensitivity to time differences, which leads to unreliable

results when the trajectories to be matched are sampled at different temporal rates. Furthermore, DTW

demonstrates a limited robustness also to noise and outliers as well as to shifts and scaling.

Statistical matching refers to methods that jointly process a wide set of trajectories to determine

their distribution in a given feature space (e.g., spatial location, moving direction, speed, etc.). High
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matching scores are assigned to trajectories whose behavior fits a prototype distribution. If the statistics

of a given trajectory do not fit any of the prototypes, it is classified as anomalous. Johnson et al. [10]

employed a sequence of flow vectors to represent the trajectory of the tracked object. An estimation of

the statistical spatial distribution of these vectors is achieved by applying a vector quantizer. In particular,

two concurrent neural networks are employed: the first processing stage identifies the sequence of vectors

that best represents the target trajectory; in the second stage, the clustering is performed to group similar

tracks. The major drawback of this technique is that it cannot handle partial tracks. An improved version

of the algorithm has been developed in [11]; here, an autonomous tool that learns anomalous movements

is conceived. The authors provide a learning module similarto the one used in [10], but ensuring higher

accuracy in the clustering phase, and allowing for an automatic setup of the trajectory prototypes (clusters).

Each prototype isassumed to havea Gaussian distribution, and the anomaly detection is carried out by

statistically checking the fitness of the incoming track over the prototype model. As anticipated above,

also clustering techniques for trajectory description andmatching can be included within this category of

approaches. A few meaningful examples are briefly summarized hereafter. The work in [12] describes a

strategy for trajectory distance measurement and clustering based on a Hidden Markov Model (HMM).

The track evolution and dynamic properties are captured within a state transition matrix by a continuous

chain of HMMs. Through this approach the categorization of the paths can be achieved by taking into

account the speed affinity together with the geometrical/spatial features. Another benefit is represented by

the capability of the system to cope with the so-called uneven sampling instances (non-uniform sampling

between consecutive points), which are typical of real-time tracking applications. In [13], thegoal is

to achieve a hierarchical clustering strategy that first identifies global similarities (referred to as general

trend) and then performs a refined analysis of each coarse cluster. In this approach, wavelet decomposition

is employed to tackle the presence of noise in the raw trajectory: after smoothing, a feature extraction

phase is carried out, in which the trajectory resampling point set (TRPS) and the trajectory directional

histogram (TDH) are retrieved. TDH is used to identify coarse trajectory clusters, while TRPS is used to

refine them. More recently, the approach in [14] was proposed, which performs better than [13] in the

presence of noise. It is based on an unsupervised clusteringalgorithm that uses a mean-shift to detect

coarse clusters, followed by a merging procedure in which adjacent blobs are grouped and outliers are

detected and deleted. Also in this case, the resampling algorithm does not allow identifying the local

variations in terms of time and speed. Another trajectory clustering approach can be found in [15], where

trajectories are organized in a tree structure, along with the corresponding occurrences that are used to

detect anomalies.
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Finally, vector-based matching techniques define similarities among trajectories on the basis of the

distance between the feature vectors associated to each track [16]. The matching requires the mapping

of each trajectory into a set of features, and a metric (e.g.,Euler, Minkovsky, Hausdorff distances) as a

measure of similarity [17]. Among the most interesting techniques that employ this approach, Chen et

al. [18] introduced a trajectory retrieval system using a symbolic representation called movement pattern

string (MPS). MPS approximates the real trajectory according to a predefined space quantization map and

specific symbols are used to characterize the motion patterns. The authors also defined a similarity metric

for trajectory matching, based on the edit-distance [19]. The work in [20] introduces another interesting

video retrieval system that compares video clips accordingto the similarity of the trajectories of moving

objects in the scene. Similarly to [18], the authors proposea hybrid method to capture the semantic

meaning and the geometrical characteristics of each trajectory; the comparison is then performed through

string matching. Since the above methods are thought for pure video retrieval, none of them takes into

consideration the temporal references in encoding and matching the symbolic trajectories, although the

temporal evolution of the track may represent a critical factor to characterize the behavior of a moving

object. This problem is solved only partially in the retrieval system proposed in [21], where the goal is

to bridge the semantic gap between the user queries and the trajectory representation. Here, the incoming

samples are filtered and spatio-temporally clustered in order to learn activity models; the acquired models

are then indexed in a hierarchical tree, where each child inherits the parents properties. The trajectory

query interface is provided to final users at semantic level.

A more recent implementation that exploits the edit-distance is presented in [22]. Here, the object

trajectories are processed and represented by a chain of symbols indicating the direction and velocity

components (sampling time is assumed unitary and constant): the symbolic mapping of the path is then

achieved by quantizing each component, in order to reduce the redundancy. Since no resampling or

trajectory smoothing is applied, the symbolic mapping may lead to long symbol chains where each

sample is encoded as a symbol.

In our paper we propose a new paradigm based on the edit-distance [19], which does not require the

resampling of the trajectory and allows taking into accountthe time component as a key feature to describe

the object motion. A selection of experimental tests will bepresented, to demonstrate the effectiveness

of the method. Furthermore, a comparison with state-of-artapproaches will be proposed, referring in

particular to Longest Common Sub-Sequence (LCSS, [17]) anda more recent method presented in [22].
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A. General overview of the system

The implementation of an effective trajectory similarity metric requires a few preliminary considera-

tions. The extraction of object trajectories from video data is typically imprecise due to environmental

noise, segmentation errors, and occlusions: these uncertainties typically produce unreliable tracks con-

taining gaps and misplacements. Moreover, the same spatialtrajectory could be associated to different

duration, speed and acceleration patterns. A good representation and matching strategy should be able to

catch similarities and differences in all these respects, assigning the appropriate weight to each parameter.

According to these considerations, the key idea of the matching scheme proposed in this work has been

inspired by the alignment procedure adopted in bio-informatics to match genomic sequences [23] [24],

also referred to as inexact or approximate matching. These techniques do not provide a hard matching (i.e.,

point by point as in DTW), since they rely on modifications of the edit-distance [19]. The edit-distance is

based on the combination of elementary operations, such as deletion, insertion and substitution, together

with the assignment of specific scores to each of them. These algorithms can be applied on different

scales, and in Fig. 1 an example is shown where two different matching results are obtained over the same

pair of genetic sequences considering the global and local alignment, respectively. The global alignment

determines the score corresponding to the matching result over the whole sequence, while the local

alignment calculates the score considering the most similar subsequence.

HEAGAWGHEEAHGEGAE

--|-||-|-||--|-||

--P-AW-H-EA--E-HE

AWGHEEAH

||-|||||

AW-HEAEH

HEAGAWGHEEAHGEGAE

PAWHEAEHE

input

string

Global alignment Local alignment

Fig. 1. Global and local alignments of a pair of DNA sequences.

Accordingly, we propose to segment the track in syntactic elements that represent significant substrings

of the original trajectory which are used as basic symbols ofa string representation. The structure of the

symbols has been arranged according to a set of rules that ensure a flexible representation, as we will

discuss in the following sections. The string-based representations are then aligned according the above

strategies. An overview of the processing flow is shown in Fig. 2: raw trajectories are pre-processed to

detect the spatio-temporal discontinuities, thus identifying a reduced set of meaningful trajectory segments.

The concatenation of the obtained segments can thus be assumed to be an approximation of the original
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trajectory. The quantization of each segment in terms of direction, velocity and time, lets mapping each

level into a symbol, selected from a pre-defined codebook. Then, the matching between two trajectories

can be expressed as the cost of aligning the corresponding strings of symbols. The major advantages of

this representation and the matching strategy we propose, can be summarized in two main points:

• reduction in the complexity of representation and matchingand capability of considering the invari-

ance to scale, rotation, temporal or spatial shifts;

• temporal and spatial features jointly contribute to the score calculation, thus leading to a more

accurate alignment, able to detect similarities on both global and local level.

Additionally, we highlight the capability of building the symbol stringon-the-fly, thus making it possible

to analyze the sequence and to evaluate the matching score inreal-time, even if the complete trajectory

is not available yet. The nature of the edit-distance turns out to be effective also in tackling the local

noise; in fact, the best match is found when coupling close symbols and discarding the outliers, which

are handled at the syntactic level. An outlier in the trajectory may generate a very brief sequence of

wrong symbols (1-2) associated to gaps in the alignment process (dashed lines in Fig. 1).

Fig. 2. Application flowchart.

III. T HE PROPOSED APPROACH

In this section we describe the proposed trajectory representation and matching algorithm. We would

like to point out that video object tracking is beyond the scope of this paper. We therefore adopted a state

of art methodology. The trajectories we use consist of the projection of the objectscentroidon the floor,

which represent the top-view of the object displacement in the environment. The tracking module we

used is based on [25] for the background suppression stage, while the tracking algorithm uses a proximity

criteria to detect adjacent blobs across frames based on their color appearance and distance. Since this

would result in an inaccurate discrimination of objects in the presence of occlusions, we adopted a stereo
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camera to derive the depth information, through which it is possible to project the blobs on the ground

floor and merge them accordingly. Analogous results can be obtained by using multicamera systems.

Fig. 3 shows an example of a moving object detection and the corresponding top-view trajectory (x− z

plane), where the coordinate (0,0) refers to the camera position.

z[m]

x[m]

Fig. 3. Object tracking and top-view trajectory.

A. Trajectory segmentation and characterization

Starting from the raw trajectory extracted by the tracker, an on-line filtering is applied in order to

identify the spatio-temporal discontinuities in the path (trajectory pre-processing in Fig. 2). The input of

the pre-processor unit is:

Ti = {xi
j , z

i
j , tj}; j = 0...N (1)

wherexi
j and zi

j determine the top-view position of thei-th tracked object at the timetj as shown

in Fig. 3, andN is the number of trajectory samples. To detect sharp velocity discontinuities in the

object motion, and in particular stops/re-start events, the coordinates of the object
(

xi
k, z

i
k

)

are evaluated

in the time window[tk, tk+l]. If the object position does not change within the selected time interval,

P i
k = (xi

k, z
i
k, tk) is marked as atemporal breakpoint. Since thecentroid of the object is subjected to

small position variations due to noise, a guard area of radius ρ proportional to the object size, is used to

check the stop condition [26]. Considering an indoor scene,the characteristics of human motion, and an

acquisition rate of 25 samples per second, in our tests we setthe radiusρ in the range[0.5, 1] meters,

and a time framel in the range[50, 75] frames (equivalent to 2-3 sec).

As far as the spatial analysis is concerned, two separate procedures are implemented (Fig. 4). The former

detects sharp direction variations by analyzing a temporalwindow of three consecutive samples: the cur-

rent pointP i
k(x

i
k, z

i
k, tk) and two previous observationsP i

k−1(x
i
k−1, z

i
k−1, tk−1) andP i

k−2(z
i
k−2, y

i
k−2, tk−2).
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The interpolating linesrk−1(x) andrk(x) are then calculated, being the lines passing throughP i
k−2-P i

k−1

andP i
k−1-P i

k:

rk−1(x) = mk−1x+ qk−1 (2)

rk(x) = mkx+ qk (3)

wheremk−1 andmk represent the slope of the lines connecting the two points, and qk−1 andqk are the

corresponding offsets.

Then, the angleβk (Fig. 4(a)), is calculated according to (4) and it is compared with a predefined

thresholdβth: if the angle exceeds the threshold,P i
k is marked as aspatial breakpoint.

βk = tan−1

∣

∣

∣

∣

mk−1 −mk

1 −mk−1mk

∣

∣

∣

∣

(4)

z = r(x)

Fig. 4. (a) Local variation angle and (b) cumulative variations leading to a significant direction change.

The above criterion (derivative) cannot detect cumulativechanges in direction generated by successive

small variations, (Fig. 4(b)). An integrative criterion has been therefore implemented to calculate the area

γ subtended by the trajectory, starting from the last breakpoint up to the current sample:

γ(k−g,k) =
1

2

k
∑

q=k−g

[(hi
q + hi

q+1)(
∣

∣Ri
q+1 −Ri

q

∣

∣)] (5)

In (5), hi
q is the Euclidean distance between the current sampleP i

q and the liner that connectsP i
k−g

(last breakpoint) withP i
k(current sample);Ri

q is the projection of the sampleP i
q on r. Again, if the

resulting areaγ(k−g,k) exceeds a given threshold (γth), the sampleP i
k is marked as a spatial breakpoint

(filled dots in Fig. 4(b)). The choice of the two thresholdsβth andγth will be analyzed in the Section
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IV based on the evaluation of the accuracy of the system on a set of training sequences. As a rule of

thumb, we can state thatβth determines the reactivity to local variations, whileγth affects the sensitivity

to long-term deviations. Since pedestrians tend in generalto walk along smooth trajectories, the most

important threshold is usuallyγth.

B. Key points symbolic mapping

The above described spatio-temporal analysis identifies a chain of breakpointsBi
m (beingm = 1...M

the number of detected breakpoints for thei-th object), along the original trajectory. Each pair of

successive breakpoints identifies a rectilinear segmentSi
m = Bi

m ↔ Bi
m+1 that approximates a portion

of the original path. Accordingly, the approximated trajectory can be represented (and reconstructed) by

an appropriate description of the segment chain{Si
m} : m = 1 . . .M − 1. In this representation, each

segmentSi
m is characterized by its orientationθi

m, its velocity vi
m, and the relevant temporal interval

∆tm.

The above parameters are determined as follows: direction and duration are calculated with respect

to the previous segment (6) (7), while speed is computed as the length of the segment divided by its

duration (8).

θi
m = βi

m (6)

∆tm = tm − tm−1 (7)

vi
m =

d(Bi
m,Bi

m−1
)

∆tm
(8)

βi
m is calculated according to (4) inBi

m; tm−1 andtm are the absolute time references corresponding to

Bi
m−1 andBi

m, respectively, andd(a, b) is the Euclidean distance. The approximated trajectory description

for the i-th object is then given by (9):

T ∗

i = {θi
m, v

i
m,∆tm}; m = 1...M (9)

This representation is inherently invariant to rotation and translation and fulfills several requirements.

In fact, only the coordinates and orientation of the first segment refer to an absolute positioning, then

this information can be easily discarded to achieve invariance to translation and orientation. Similarly, if

the temporal discontinuities of the trajectory are not relevant, stops can be removed by simply dropping

samples with null speed. As it can be noticed, these featuresallow performing different types of matching

such as, for instance, identifying trajectories with similar geometry but different speed, or detecting similar

behaviors (e.g.,zig-zagmoving patterns) in different locations of the room.

August 7, 2009 DRAFT



10

TABLE I

QUANTIZATION LEVELS .

Variable Range Quantization Levels

θm [−180◦ + 180◦] θ0 ... θ11

vm [0 vmax] v0 ... v3

∆tm ]0 ∞] τ0 ... τ3

The last step to achieve a complete syntactic representation consists in mapping each segment into

symbols. This can be obtained by properly quantizing the parameters{θi
m, v

i
m,∆tm}, in order to make

the symbols enumerable. Sincethe application we addressin our tests is people tracking in indoor

environments, owing to the limited speed and typical movements of the target, we quantized the direction

θm in 12 non-uniform levels, while speed and time components have been quantized in 4 levels (see

Table I). The choice of the values associated to each level are discussed in Section IV.

Fig. 5 shows a time-space diagram, in which the original and the reconstructed trajectories are plotted.

Markers represent the breakpoints detected by the segmentation algorithm.

-1 0 1 2

 3
 4

 5
 6

 7
 8

 0
 2

 4

 6
t[s]

x[m]

z[m]

 Raw

Segmented

Fig. 5. Path segmentation.

C. Trajectory alignment and matching

The goal of the syntactic matching engine is to find the best alignment among strings that represent

different trajectories, and to calculate the corresponding similarity score. Depending on the application,

the trajectories to be matched can be part of a pre-defined database (e.g., knowledge-based behavioral

analysis), queries sketched by the user (e.g., content-based video retrieval), or actions automatically
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learned by the system (e.g., behavior classification and automatic detection of anomalous events). Thanks

to the syntactic representation of the object paths, the proposed matching procedure is very fast and

efficient, similarly to what text processors do in detectingand correcting errors.

The alignment algorithm we present in this paper relies on the so-called edit-distance. Basically, the

difference between two strings of symbols is measured as theminimum-cost set of elementary actions

(i.e., insertion, deletion and substitution) required to transform one sequence into the other. To achieve

this goal, a cost (weight) is associated to each operation according to its relevance in the transformation.

This makes it possible to assign different weights to different types of actions (e.g., a substitution can

have higher impact than a deletion) and to the symbols involved in the action. The association of an

operation to a weight is achieved by using a substitution matrix (i.e. a look-up-table). The total cost of the

transformation is the sum of the single weights. The edit-distance has been chosen against other metrics

because of its flexibility, and in particular the possibility of easily adapting the matching to different

application requirements. In fact, any kind of matching rule can be implemented by properly adjusting the

substitution matrix. Another significant advantage of the selected approach is the capability of operating

on-the-fly, i.e., processing the samples as soon as they are acquired. As to the specific implementation, we

introduce a modified version of the theory presented in [23] and [24]. The concept we apply is similar,

in the sense that we assign a score to each symbols pair: the higher the score, the better the matching

(equal symbols receive maximum score). The best global matching is the one that maximizes the global

score. The identification of the most suitable substitutionmatrix is application-dependent: for instance,

the entries in the matrix employed in [23] (DNA sequences alignment) are defined on the basis of the

biological similarity among amino-acids (A, T, G, C). The alignment procedure adopted in this work

provides the simultaneous matching in three different domains, namely space, speed, and time. Since

these three parameters have different impact on the matching, the score is calculated starting from three

separate substitution matrices, one for each parameter, and then adding the single scores to achieve the

overall substitution cost.

As far as the substitution matrices are concerned, we provide here a simple example that can explain

the rationale behind the choice of the entries. Let us assume that a trajectory is described through five

symbols: move forward (f ), slight turn right (str), slight turn left (stl), sharp turn right (Str), and sharp

turn left (Stl). While performing the matching, it is likely that the cost of substitutingf with str is larger

than the cost of substitutingf with Str, since a slight turn is more similar to a straight path than toa

sharp turn. The cost of substitution pairStr-Stl should be clearly even larger. Time and speed parameters

behave a little differently, since they have theoreticallyno upper bound. In this case, we assume that the
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score drops down to zero, once exceeding a given distance, meaning that the two symbols are no more

correlated. It has to be pointed out that the tuning of the matrices has an important semantic impact:

for instance, if speed should be ignored in the matching, thecorresponding matrix will have the same

value for all entries, thus becoming irrelevant in the comparison phase. Section IV provides a detailed

explanation of our experimental setup, together with actual examples of matrix configurations. Given

the matrices, the alignment procedure can be described as follows. Let us take two generic strings of

symbols, A and B, of lengthNA andNB, respectively. A two-dimensional array, commonly calledF

matrix, is created with dimensionNA ×NB. TheF matrix is iteratively filled by assigning to each entry

F (i, j) the score of the optimum alignment between the symbols of string A and string B, according to

the following algorithm:

F(0,0) = 0

F(0,j) = w * j

F(i,0) = w * i

foreach (i,j)

F(i,j) = max(F(i-1,j-1)+S(A(i),B(j)),

F(i,j-1)+w,

F(i-1,j)+w)

whereS(A(i), B(j)) represents the function that calculates (for example) the orientation score between

A(i) = {θi} andB(j) = {θj}.

At the end of the process, the last entryF (NA, NB) returns the best global alignment between the

two strings. Successively, a trace-back procedure allows retrieving the sequence of elementary operations

that lead to the specific alignment (i.e., the best path to go back toF (0, 0)).

The calculation of theF matrix is the most computationally expensive phase: dynamic programming

techniques have been introduced to reach a good trade-off between space and time complexities. In our

solution the running time and the used memory isO(nm), even though more efficient implementations

can lead to significant reductions in complexity.

The adopted cost function is expressed in (10) and (11):

δk = Fk(i, j); k = θ, t, v (10)

Ψ(i, j) =
αθδθ

Qθ

+
αtδt

Qt
+
αvδv

Qv
with αθ + αt + αv = 1 (11)

whereαθ, αt, andαv are the feature weighting coefficients,Qθ, Qt, Qv, are normalization factors

August 7, 2009 DRAFT



13

corresponding to the maximum score associated to each feature, andδθ, δt andδv are global scores for

each single feature, obtained by applying the substitutionmatrices. As the alignment algorithm proceeds,

the temporary score is normalized over the whole number of elementary operations required to align the

substrings. It is to be noticed that (10) and (11) provide theglobal alignment without considering the

initial rotation and translation. In order to retrieve the absolute direction and position and use them as

inputs to the alignment algorithms, two additional parametersΨpos andΨdir need to be considered:

Ψpos = T
Qpos

(12)

Ψdir = R
Qdir

(13)

T = Fpos(1, 1) (14)

R = Fdir(1, 1) (15)

Qpos and Qdir represent again normalization factors (the maximum score for initial direction and

translation alignment, respectively), whileT and R correspond to the score for initial position and

direction variations, respectively.T and R are calculated using appropriate substitution matrices that

specifically match the first point of the trajectory.

Finally, the final spatio-temporal matching is achieved by combining (12), (13), (14), (15) in a weighted

sum, as in (16).

Ψglobal(Na, Nb) = ψΨ(Na, Nb)+

ψposΨpos+

ψdirΨdir

(16)

where againψ + ψpos + ψdir = 1.

According to the application requirements, the roto-translation parameters can be appropriately weighted.

In the specific case whereψpos = ψdir = 0, only the general shape of the trajectory is considered, no

matter its absolute positioning and orientation.

As far as the score functionS(A,B) is concerned, we have imposed a non-linear distribution. The score

evaluation is performed using the recursive function reported in (17) that calculates the score between two

symbolsA(i) andB(j), wherei andj are the symbol quantization levels. Through this representation it

is possible to fill the matrix entries for each feature. As expected, the highest values are along the main

diagonal, gradually decreasing as soon as the distance between symbols increases, in a cyclic fashion.

S(A(i), B(j)) = S(i, j) = S(i, j − 1) + |i− j| (17)
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The above weight assignment produces symmetric matrices, so that the cost of inverting a symbol pair

is equivalent in the two directions.

IV. EXPERIMENTAL RESULTS

The proposed strategy has been tested in an indoor environment, using a standard PC connected to a

stereo camera. The tests concerned human activity monitoring. The acquired trajectories refer to a 2D

top-view of the person motion as detected by the tracker, i.e., the location of the person with respect

to the floor of the observed room.To validate the proposed method we adopted two different data sets.

The first data set (MMlab) refers to relatively simple trajectories where the starting point is common for

all sequences. It is composed by 112 tracks divided in 6 different actions and including 35 anomalous

paths. The environment used for testing is shown in Fig. 6(a)and the set of trajectories is reported in Fig.

7(a). A second data set (Application Lab) refers to more complex trajectories acquired in an experimental

smart environment, dedicated to develop technologies for assisted living. The laboratory is fully equipped

with furniture, in order to simulate real moving patterns corresponding to typical activities (e.g., move

from the sofa to the kitchen, bring an object and take it back to the sofa). In this case the set includes

100 trajectories grouped into 4 different clusters (see Fig. 6(b) and Fig. 7(b)) and including 42 anomalous

paths. In both figures the coordinates (0,0) refer to the camera position and the coordinates of the points

always refer to thex − z plane, namely, the top-view of the room. The two sets of anomalous paths

are shown in Fig. 8. Experiments required the proper setup of the parameters, and in particular the

(a) (b)

Fig. 6. Snapshots of the environments used for validation.

thresholds for trajectory segmentation.As anticipated in Section III-A, spatial and temporal thresholds are

chosen in order to maximize the accuracy of the classification of activities. To this purpose, a prototype

is defined for each class as the cluster medoid (i.e., the pathwith average minimum distance from all the

others in the same cluster) and the patterns are classified according to the minimum distance prototype.
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Fig. 7. (a) Known actions for MMLab and (b) Application Lab data sets.
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Fig. 8. (a) Anomalous paths for MMLab and (b) Application Labdata sets.

In the application domain we address, it can be observed thathumans tend to perform smooth

trajectories instead of abrupt sharp turns within small time windows. Therefore, we have studied the

performance of the segmentation scheme by varyingγth for a fixedβth = 30 degrees and selected the

value, which returned the highest classification accuracy.To this purpose we employed the first data set.

Results are plotted in Fig. 9 and report the accuracy in termsof recall and precision at different values

of γth, the former corresponding to the average true positive rate, while the latter being TP/(TP+FP),

where TP and FP are the numbers of true and false positives, respectively.In our scenarios, in order to

discriminate among different actions, the resulting threshold is very small and it basically imposes to
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fragment the trajectory in segments of around half meter. Such a fine segmentation is due to the specific

geometry of the environment, which does not impose any constraint in movement (unlike for example in

vehicular applications, where cars move along specific directions), and the detection of specific actions

must be carried out with a finer granularity.

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

Recall

Precision

[ m  ]2

Fig. 9. Performance vs.γth variation

The correct setup of the parameters for spatial segmentation are clearly the most significant, since they

refer to the geometrical displacement of the object in the scene; the choice of the temporal thresholds is

instead more arbitrary. In our experiments an object is considered stopped if itscentroid remains within

the same guard area (of radiusρ = 0.3m), for at least 2 seconds.

To determine the symbols, and referring to the direction, weadopted a non-uniform quantization for

a better description of small direction variations. This isa reasonable assumption, considering that in

normal walking, sharp direction changes are more unlikely.Fig. 10 sketches the adopted quantization

scheme where the bold arrow refers to the incoming direction. The deviation with respect to the outgoing

sector is depicted with increasing gray levels. Each level is then associated to the corresponding symbol

(see table in Fig. 10 (b)).

As far as speed is concerned, and referring to Table I, one level has been reserved for the null velocity

(stop), while the last level covers the range fromv3 up to vmax, which specifies the maximum possible

velocity. Since no maximum value can be foreseen, the level is used to discriminate velocities that exceed

5 km/h. A similar approach is applied to time, where the maximum level is set for temporal intervals

exceeding the stop threshold (2 seconds in our case). The selected symbols for speed and time are{Q, R,

S, T} and{W, X, Y, Z}, respectively. According to the functionS(·) of (17), the resulting substitution

matrices are shown in Fig. 11. Again, different scenarios such as vehicular applications would require

appropriate settings (for instance much higher velocity threshold). It is to be pointed out, however, that
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Fig. 10. (a) Quantization levels for direction and (b) the corresponding symbols.

the selection of parameters used for human targets proved tobe very robust across different tests in

different environmental situations as shown in the following results.

Fig. 11. (a) Direction, (b) speed, and (c) time substitutionmatrices.

We present hereafter a selection of results to demonstrate the capability of the system to identify simi-

larities among trajectories, with different spatio-temporal configurations enabling/disabling the invariance

to rotation and translation.In the first set of tests we compare two paths that are: (i) similar in space but

denoting minor differences in time (T1, Fig. 12-a); (ii) similar in space but with remarkable differences

in time (T2, Fig. 12-b); (iii) significantly different in both space and time (T3, Fig. 12-c). In particular,

comparing T1 and T2 it is possible to notice that the execution of the same path at different speed results

in a compression of the graph in the time axis.

The results obtained by applying equations (10) and (11) arereported in Table II in terms of normalized

score in space, space-speed and full space-temporal domains, respectively. The scores are obtained by

setting different weights in (11) as shown in Table III. The final values are normalized with respect to

the total number of elementary operations required to transform one symbolic string into the other.
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Fig. 12. Sample trajectories with different space (left) and time (right) characteristics: (a) similar paths in both spatial and

temporal domain; (b) remarkable differences in time; (c) remarkable differences in space and time.

TABLE II

MATCHING SCORES IN DIFFERENT SPATIO-TEMPORAL CONFIGURATIONS.

Trajectories Space Space-Speed Spatio-Temp.

Reference vs T1 0.88 0.76 0.75

Reference vs T2 0.88 0.57 0.54

Reference vs T3 0.55 0.36 0.4
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TABLE III

WEIGHTS ASSOCIATED TO DIFFERENT MATCHING SCHEMES.

αθ αv αt

Space 1 0 0

Space-speed 0.5 0.5 0

Spatio-temp. 0.33 0.33 0.33

The second set of tests aims at demonstrating the effectiveness of the described method while con-

sidering global rotation and/or translation. To this purpose, a random path (purple) has been selected as

reference and compared with equally shaped paths that differ in: (i) initial direction (Fig. 13-a), and (ii)

initial position (Fig. 13-b). Numerical scores are reported in Table IV and Table V.
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Fig. 13. (a) Copies of same paths with different initial directions, and (b) different locations.

TABLE IV

MATCHING SCORES FOR ROTATION INVARIANCE.

Ψdir Ψglobal

TARGET vs ROT1 0.91 0.96

TARGET vs ROT2 0 0.5

TARGET vs ROT3 0.41 0

In this last part of the section, we present the results achieved by processing the two data sets with the

objective of detecting anomalies. The setup of the experiments reflects the same parameters configuration

adopted to derive the best segmentation thresholds, as explained in the first part of this section. In this

case, after finding the best match with the available classes, the matching score is evaluated. If it exceeds
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TABLE V

MATCHING SCORES FOR TRANSLATION INVARIANCE.

Ψpos Ψglobal

TARGET vs SHIFT1 0.2 0.6

TARGET vs SHIFT2 0.2 0.6

TARGET vs SHIFT3 0.8 0.9

a given threshold (set to 70% in our tests) the trajectory is assumed to belong to the cluster; otherwise

the path is tagged as anomalous.

We compared the performances of our method with two different state-of-art algorithms. The first is the

one in [17] and refers to a common metric for sequence comparisons using the Longest Common Sub-

Sequence. The second method is the one in [22], due to the factthat it shares some common principles

with our work. It is to be noted that our technique does not require a uniform sampling of the points as

required by the other two methods. Furthermore, it exploitsthe temporal information as a critical data

for trajectory segmentation and matching.

TABLE VI

PERFORMANCE COMPARISONS FOR PATHS IN THEMML AB DATA SET.

method in [17] method in [22] proposed method

Recall 0.97 0.92 1

Precision 0.69 0.72 0.78

Accuracy 0.79 0.82 0.87

TABLE VII

PERFORMANCE COMPARISONS FOR PATHS IN THEAPPLICATION LAB DATA SET.

method in [17] method in [22] proposed method

Recall 0.94 0.91 0.97

Precision 0.67 0.69 0.83

Accuracy 0.75 0.76 0.88
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In Table VI and Table VII we report the numerical results obtained from the two data sets and applying

the three methods. Again, the evaluation parameters reported are Recall and Precision. Additionally, being

the anomaly detection a binary classification problem, we show also the Accuracy, defined as (TP +

TN)/(TP + TN + FP + FN). As it can be observed, the proposed method performs in general better than

the competitors. In particular, the improvements in terms of accuracy are of 8% and 5% with respect to

[17] and [22] in theMMLab data set. For more complex trajectories (Application Lab), the improvements

are more consistent: 13% and 12%.

V. CONCLUSIONS

In this paper we presented a new approach to perform syntactic matching of trajectories, as a basis for

applications such as activity detection, event analysis, or content-based video retrieval. Starting from the

acquisition of the path in thex− z plane, the meaningful spatio-temporal discontinuities are identified.

Trajectory segments are then quantized and converted into symbols corresponding to the variations in

terms of direction, speed, and time, with respect to the previous sample. The resulting syntax is used

to compare different trajectories, adopting a bio-inspired approximate matching algorithm based on the

so-callededit-distance. Experimental validation concerned the analysis of human walk patterns in indoor

environments. Results confirm the good performance of the method in dealing with different data sets,

and its flexibility in managing the invariance to translation and rotation. Moreover, the comparison with

state of art approaches of the same class showed a significantperformance enhancement.
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