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Abstract. We define a type and effect system for a λ-calculus extended
with side effects, in the form of primitives for creating and accessing
resources. The analysis correctly over-approximates the sequences of re-
source accesses performed by a program at run-time. To accurately anal-
yse the binding between the creation of a resource and its accesses, our
system exploits a new class of types. Our ν-types have the form νN. τ⊲H ,
where the names in N are bound both in the type τ and in the effect H ,
that represents the sequences of resource accesses.

1 Introduction

The paramount goal of static analysis is that of constructing sound, and as
precise as possible, approximations to the behaviour of programs. Various kinds
of behaviour have been studied, to guarantee that the analysed programs enjoy
some properties of interest: for instance, that a program has no type errors,
that communication channels are used correctly, that the usage of resources
respects some prescribed policy, etc. In the classical approach to type systems,
one approximates values and expressions as types, and at the same time checks
the desired property over the constructed abstraction.

Separating the concerns of constructing the approximation and of verifying
it has some advantages, however. First, once the first step is done, one can
check the same abstract behaviour against different properties. Second, one can
independently improve the accuracy of the first analysis and the efficiency of the
verification algorithm. Third, if we devise a complete verification technique (for
a given abstraction), then we have a good characterization of the accuracy of
the abstraction with respect to the property of interest.

In this paper, we propose a new sort of types (called ν-types) for classifying
programs according to their abstract behaviour, that we define as follows. Call
resource any program object (a variable, a channel, a kernel service, etc.) relevant
for the property of interest, and call event any action performed on a resource (a
variable assignment, an output along a channel, a system call, etc.). Then, the
abstract behaviour we are concerned with is the set of all the possible sequences
of events (histories) that can result from the execution of a program.

Our reference program model is a call-by-value λ-calculus extended with side
effects, that model events, and with a primitive for creating new resources. Our
ν-types have the form νN. τ ⊲ H , where the names n ∈ N are bound both in
the type τ and in the effect H , that is a history expression that represents the



possible histories. Essentially, history expressions are Basic Process Algebra [6]
processes extended with name restriction à la π-calculus [13]. We showed in [5]
that history expressions are a suitable model upon which one can develop sound
and complete techniques for verifying history-based usage policies of programs.

The possibility of creating new resources poses the non-trivial problem of
correctly recording the binding of a fresh name with its possible uses in types
and effects. For instance, consider the following function:

f = λy.new x in α(x); x

Each application of f creates a new resource r, fires the event α(r), and finally
returns r. A suitable ν-type for f would then be (1 → (νn.{n} ⊲ α(n))) ⊲ ε.
The unit type 1 for the parameter y is irrelevant here. Since f is a function,
the actual effect is empty, denoted by the history expression ε. The return type
νn. {n} ⊲ α(n) correctly predicts the behaviour of applying f . The binder νn
guarantees the freshness of the name n in the type {n} – which indicates that
f will return a fresh resource r – and in the history expression α(n). Indeed,
νn. α(n) abstracts from any sequence α(r), where r is a fresh resource.

Consider now the following term:

let f = λy.new x in α(x); x in β(f∗; f∗)

Here we apply f twice to the value ∗, and we fire β on the resource that results
from the second application of f . A suitable ν-type for the above would be:

1 ⊲ (νn. α(n)) · (νn′. α(n′) · β(n′))

The first part νn. α(n) of the history expression describes the behaviour of the
first application of f , while the second part νn′. α(n′) · β(n′) approximates the
second application, and firing β on the returned name n′. The binders ensure
that the resources represented by n and n′ are kept distinct.

As a more complex example, consider the following recursive function (where z
stands for the whole function g within its body):

g = λzx.new y in (α(y); if b(x) then x else if b′(y) then z y else z x)

The function g creates a new resource upon each loop; if g ever terminates, it
either returns the resource passed as parameter, or one of the resources created.
If no further information is known about the boolean predicates b and b′, we
cannot statically predict which resource is returned. A suitable ν-type for g is:

({?} → ({?} ⊲ µh. νn. α(n) · (h + ε))) ⊲ ε

Being g a function, its actual effect is ε. Its functional type is {?} → {?}, meaning
that g takes as parameter any resource, and it returns an unknown resource. The
latent effect µh. νn. α(n)·(h+ε) represents the possible histories generated when
applying g, i.e. any finite sequence α(r0) · · ·α(rk) such that ri 6= rj for all i 6= j.

The examples given above witness some inherent difficulties of handling new
names in static analysis. We take as starting point the type and effect system
of [17], which handles a λ-calculus with side effects, but without resource cre-
ation. We extend the calculus of [17] with the new primitive, and we give it a
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big-step operational semantics. We then define effects (i.e. history expressions)
and our ν-types, together with a subtyping/subeffecting relation. We introduce
then a type and effect system for our calculus, which associates any well-typed
term with a ν-type that correctly approximates the possible run-time histories.
We finally present some possible extensions to our work. Two Appendixes con-
tain further typing examples and the proofs of our statements.

Related work. Our investigation started in [1] to deal with history-based ac-
cess control in a calculus with side effects, but without creation of resources. In
a subsequent paper [3] we featured a preliminary treatment of resource creation,
through a conservative extension of simple types. The idea was that of using a
special event new(n) as a “weak” binder – a sort of gensym() – instead of using
explicit ν-binders. While this allowed for reusing some of the results of [17], e.g.
type inference, it also required a further analysis step, called “bindification” to
place the ν-binders at the right points in the inferred effect. A first drawback
of this approach is that bindification is not always defined, because the intro-
duced scopes of names may interfere dangerously, e.g. in new(n) · new(n) · α(n).
A second, more serious, drawback is that our theory of weak binders resulted
too complex to be usable in practice [4]. Several definitions (e.g. the bound and
free names, the semantics of history expressions, and the subeffecting relation)
needed particular care to deal with the corner cases, so leading to extremely
intricate proofs. The ν-types presented here are an attempt to solve both these
problems. For the first problem, bindification is no longer needed, because ν-
binders are already embodied into types. For the second problem, we found the
proofs about ν-types, although not immune from delicate steps (e.g. checking
capture avoidance in α-conversions) are far easier than those with weak binders.
Another technical improvement over [3] is the Subject Reduction Lemma. Ac-
tually, in [3] we used a small-step semantics, which “consumes” events as they
are fired. As a consequence, the effect of an term cannot be preserved under
transitions. To prove type soundness, we had then to deal with a weak version of
Subject Reduction, where the effects before and after a transition are in a some-
what convoluted relation. The proof of this statement was extremely complex,
because of the weak induction hypothesis. Unlike [3], here we adopt a big-step
semantics, which does not consume events. This allows us to establish Subject
Reduction in the classical form, where the type is preserved under transitions.

In [2] we combined a type and effect analysis and a model-checking technique
in a unified framework, to statically verify history-based policies of programs, in
a λ-calculus enriched with primitives to create and use resources, and lexically-
scoped usage policies. The present paper extends some results of [2] by presenting
further technical achievements about the type and effect system and its relation
with the program semantics, in a cleaner setting.

A number of formal techniques have been developed to handle binding and
freshness of names. The language FreshML [16] has constructors and destruc-
tors for handling bound names. This allows for elegantly manipulating object-
level syntactical structures up-to α-conversion, so relieving programmers from
the burden of explicitly handling capture-avoidance. The FreshML type system
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however has a different goal than ours, since it extends the ML type system,
while it is not concerned with approximating run-time histories like ours.

Skalka and Smith [17, 18] proposed a λ-calculus with local checks that enforce
linear µ-calculus properties [7] on the past history. A type and effect system
approximates the possible run-time histories, whose validity can be statically
verified by model checking µ-calculus formulae over Basic Process Algebras [6, 9].
Compared with our type system, [17] also allows for let-polymorphism, subtyping
of functional types, and type inference – but it does not handle resource creation.
In Sec. 5 we further discuss these issues.

Regions have been used in type and effect systems [19, 14] to approximate
new names in impure call-by-value λ-calculi. The static semantics of [14], simi-
larly to ours, aims at over-approximating the set of run-time traces, while that
of [19] only considers flat sets of events. A main difference from our approach is
that, while our ν-types deal with the freshness of names, both [19] and [14] use
universal polymorphism for typing resource creations. Since a region n stands
for a set of resources, in an effect α(n) · β(n) their static approximation does
not ensure that α and β act on the same resource. This property can instead be
guaranteed in our system through the effect νn.(α(n) ·β(n)). This improvement
in the precision of approximations is crucial, since it allows us to model-check
in [5] regular properties of traces (e.g. permit read(file) only after an open(file))
that would otherwise fail with the approximations of [19, 14].

Igarashi and Kobayashi [11] extended the λ-calculus with primitives for cre-
ating and accessing resources, and for defining their permitted usage patterns.
An execution is resource-safe when the possible patterns are within the permit-
ted ones. A type system guarantees well-typed expressions to be resource-safe.
Types abstract the usages permitted at run-time, while typing rules check that
resource accesses respect the deduced permitted usages. Since the type system
checks resource-safety while constructing the types, type inference is undecidable
in the general case. Separating the analysis of effects from their verification, as
we did here, led to a simpler model of types. Also, it allowed us to obtain in [5] a
sound, complete and PTIME verification algorithm for checking approximations
against usage policies. Clearly, also [11] would be amenable to verification, pro-
vided that one either restricts the language of permitted usages to a decidable
subset, or one uses a sound but incomplete algorithm.

The λν-calculus of [15] extends the pure λ-calculus with names. In contrast
to λ-bound variables, nothing can be substituted for a name, yet names can
be tested for equality. Reduction is confluent, and it allows for deterministic
evaluation; also, all the observational equivalences of the pure λ-calculus still hold
in λν. Unlike our calculus, names cannot escape their static scope, e.g. νn.n is
stuck. Consequently, the type system of λν is not concerned with name extrusion
(and approximation of traces), which is a main feature of ours.

Types and effects are also successfully used in process calculi. Honda, Yoshida
and Carbone [10] defined multi-party session types to ensure a correct orchestra-
tion of complex systems. Unlike ours, their types do not contain ν binders: the
main feature there is not tracking name flow, but reconciling global and local
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views of multi-party protocols. Igarashi and Kobayashi [12] and Chaki, Raja-
mani and Rehof [8] defined behavioural types for the π-calculus. In both these
proposals, a π-calculus process is abstracted into a CCS-like processes, with no
operators for hiding or creating names. Abstractions with ν-binders, however,
make it possible to statically verify relevant usage properties about the fresh
resources used by a program (see e.g. [5]).

2 A calculus for resource access and creation

In our model, resources are system objects that can either be statically available
in the environment (Ress, a finite set), or be dynamically created (Resd, a de-
numerable set). Resources are accessed through a given finite set of actions. An
event α(r) abstracts from accessing the resource r through the action α. When
the target resource of an action α is immaterial, we stipulate that α acts on some
special (static) resource, and we write just α for the event. A history is a finite
sequence of events. In Def. 1 we introduce the needed syntactic categories.

Definition 1. Syntactic categories

r, r′, . . . ∈ Res = Ress ∪ Resd resources (static/dynamic)
α, α′, . . . ∈ Act actions (a finite set)
α(r), . . . ∈ Ev = Act × Res events (η, η′, . . . ∈ Ev

∗ are histories)
x, x′, . . . ∈ Var variables
n, n′, . . . ∈ Nam names

We consider an impure call-by-value λ-calculus with primitives for creating
and accessing resources. The syntax is in Def. 2. Variables, abstractions, applica-
tions and conditionals are as expected. The definition of guards b in conditionals
is irrelevant here, and so it is omitted. The variable z in λzx. e is bound to the
whole abstraction, so to allow for an explicit form of recursion. The parameter
of an event may be either a resource or a variable. The term new represents the
creation of a fresh resource. The term ! models an aborted computation.

Definition 2. Syntax of terms

e, e′ ::= x variable
r resource
if b then e else e′ conditional
λzx. e abstraction (x, z ∈ Var)
e e′ application
α(ξ) event (ξ ∈ Var ∪ Res)
new resource creation
! aborted computation
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Values v, v′, . . . ∈ Val are variables, resources, abstractions, and the term ! . We
write ∗ for a fixed, closed value. We shall use the following abbreviations, the
first four of which are quite standard:

λz . e = λzx. e if x 6∈ fv(e) λx. e = λzx. e if z 6∈ fv (e)

e; e′ = (λ. e′) e (let x = e in e′) = (λx. e′) e

new x in e = (λx. e) (new) α(e) = (let z = e in α(z))

Some auxiliary notions are needed to define the operational semantics of terms.
A history context is a finite representation of an infinite set of histories that
only differ for the choice of fresh resources. For instance, the set of histories
{α(r) | r ∈ Res } is represented by the context new x in α(x); •. Contexts
composition is crucial for obtaining compositionality.

Definition 3. History contexts

A history context C is inductively defined as follows:

C ::= • | α(ξ); C | new x in C

The free and the bound variables fv(C) and bv (C) of C are defined as expected.

We write C[C′] for C[C′[•]], also assuming the needed α-conversions of vari-
ables so to ensure bv(C) ∩ bv(C′) = ∅ (note that bn(C) ∩ fn(C′) 6= ∅ is ok).

We specify in Def. 4 our operational semantics of terms, in a big-step style.

Transitions have the form e
C

==⇒ v, meaning that the term e evaluates to the
value v, while producing a history denoted by C.

Definition 4. Big-step semantics of terms

The big-step semantics of a term e is defined by the relation e
C

==⇒ v, which is
the least relation closed under the rules below.

E-Val v
•

==⇒ v E-Bang e
•

==⇒ ! E-If

eB(b)
C

==⇒ v

if b then ett else eff
C

==⇒ v

E-Ev α(ξ)
α(ξ); •

====⇒ ∗ E-New new
new x in •

=======⇒ x

E-Beta

e
C

==⇒ λzx. e′′ e′
C′

==⇒ v′ 6= ! e′′{v′/x, λzx. e′′/z}
C′′

==⇒ v

e e′
C[C′[C′′]]

======⇒ v

E-BetaBang1

e
C

==⇒ !

e e′
C

==⇒ !

E-BetaBang2

e
C

==⇒ v 6= ! e′
C′

==⇒ !

e e′
C[C′]

====⇒ !
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The rules (E-Val) and (E-Ev) are straightforward. The rule (E-Bang) aborts
the evaluation of a term, so allowing us to observe the finite prefixes of its
histories. For conditionals, the rule (E-If) assumes as given a total function
B that evaluates the boolean guards. The rule (E-New) evaluates a new to
a variable x, and records in the context new x in • that x may stand for
any (fresh) resource. The last three rules are for β-reduction of an application
e e′. The rule (E-Beta) is used when both the evaluations of e and e′ terminate;
(E-BetaBang1) is for when the evaluation of e has been aborted; (E-BetaBang2)
is used when the evaluation e terminates while that of e′ has been aborted.

Example 1. Let e = (λy. α(y))new. We have that:

λy. α(y)
•

==⇒ λy. α(y) new
new x in •

=======⇒ x α(x)
α(x);•

====⇒ ∗

e
new x in α(x);•

==========⇒ ∗

Consider now the following two recursive functions:

f = λzx. (α; zx) g = λzx.new y in if b(x) then y else z∗

The function f fires the event α and recurse. The function g creates a new
resource upon each loop; if it ever terminates, it returns the last resource created.
For all k ≥ 0 and for all contexts C, let Ck be inductively defined as C0 = • and

Ck+1 = C[Ck]. Then, for all k ≥ 0, we have that f∗
(α;•)k

====⇒ ! , and, assuming

b(x) non-deterministic, g∗
(new w in •)k

=========⇒ ! and g∗
(new w in •)k[new y in •]

=================⇒ y. ⊓⊔

We now define the set of histories H(e) that a term e can produce at run-time.
To this purpose, we exploit the auxiliary operator H(C, R), that constructs the
set of histories denoted by the context C under the assumption that R is the set of
available resources (Def. 5). Note that all the histories in H(e) are “truncated”
by a !. Only looking at H(e), gives then no hint about the termination of e.
However, this is not an issue, since our goal is not checking termination, but
approximating all the possible histories a term can produce.

Definition 5. Run-time histories

For each history context C such that fv (C) = ∅, for all R ⊆ Res, and for all
terms e, we define H(C, R) and H(e) inductively as follows:

H(•, R) = { !}

H(α(r); C, R) = { !} ∪ {α(r)η | η ∈ H(C, R) }

H(new x in C, R) = { !} ∪
⋃

r 6∈R∪Ress
H(C{r/x}, R ∪ {r})

H(e) = { η ∈ H(C, ∅) | e
C

==⇒ v }

Example 2. Recall from Ex. 1 the term e = (λy. α(y))new. All the possible
observations (i.e. the histories) of the runs of e are represented by H(e) =
H(new x in α(x); •, ∅) = { !} ∪

⋃

r∈Res
{α(r) !}. Note how the variable x in

C was instantiated with all the possible fresh resources r. ⊓⊔
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3 Effects and subeffecting

History expressions are used to approximate the behaviour of terms. They in-
clude ε, representing the empty history, variables h, events α(ρ), resource cre-
ation νn.H , sequencing H ·H ′, non-deterministic choice H +H ′, recursion µh.H ,
and !, a nullary event that models an aborted computation. Hereafter, we as-
sume that actions can also be fired on a special, unknown resource denoted by
“?”, typically due to approximations made by the type and effect system. In
νn. H , the free occurrences of the name n in H are bound by ν; similarly acts
µh for the variable h. The free variables fv (H) and the free names fn(H) are
defined as expected. A history expression H is closed when fv (H) = ∅ = fn(H).

Definition 6. Syntax of history expressions

H, H ′ ::= ε empty
! truncation
h variable
α(ρ) event (ρ ∈ Res ∪ Nam ∪ {?})
νn.H resource creation
H · H ′ sequence
H + H ′ choice
µh.H recursion

We define below a denotational semantics of history expressions. Compared
with [17, 3], where labelled transition semantics were provided, here we find a
denotational semantics more suitable, e.g. for reasoning about the composition
of effects. Some auxiliary definitions are needed.

The binary operator ⊙ (Def. 7) composes sequentially a history η with a set
of histories X , while ensuring that all the events after a ! are discarded. For
instance, H = (µh. h) ·α(r) will never fire the event α(r), because of the infinite
loop that precedes the event. In our semantics, the first component µh. h will
denote the set of histories { !}, while α(r) will denote { ! , α(r), α(r) !}. Combining
the two semantics results in { !} ⊙ { ! , α(r), α(r) !} = { !}.

Definition 7. Let X ⊆ Ev
∗ ∪ Ev

∗ ! , and x ∈ Ev ∪ { !}. We define x⊙X and its
homomorphic extension η ⊙ X, where η = a1 · · ·an, as follows:

x ⊙ X =

{

{ x η | η ∈ X } if x 6= !

{x} if x = !
η ⊙ X = a1 ⊙ · · · ⊙ an ⊙ X

The operator � (Def. 8) defines sequential composition between semantic
functions, i.e. functions from (finite) sets of resources to sets of histories. To do
that, it records the resources created, so to avoid that a resource is generated
twice. For instance, let H = (νn. α(n)) · (νn′. α(n′)). The component νn′. α(n′)
must not generate the same resources as the component νn. α(n), e.g. α(r0)α(r0)
is not a possible history of H . The definition of � exploits the auxiliary function
R, that singles out the resources occurring in a history η. Also, ↓∈ R(η) indicates
that η is terminating, i.e. it does not contain any !’s denoting its truncation.
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Definition 8. Let Y0, Y1 : Pfin(Res) → P(Ev
∗∪Ev

∗ !). The composition Y0 �Y1

is defined as follows:

Y0 � Y1 = λR.
⋃

{ η0 ⊙ Y1(R ∪ R(η0)) | η0 ∈ Y0(R) }

where, for all histories η, R(η) ⊆ Res ∪ {↓} is defined inductively as follows:

R(ε) = {↓} R(η α(ρ)) =

{

R(η) ∪ {r} if ρ = r and ! 6∈ η

R(η) if ρ =?
R(η !) = R(η)\{↓}

The denotational semantics JHKθ of history expressions (Def. 9) is a function
from finite sets of resources to the cpo D0 of sets X of histories such that (i)
! ∈ X , and (ii) η ! ∈ X whenever η ∈ X . The finite set of resources collects
those already used, so making them unavailable for future creations. As usual,
the parameter θ binds the free variables of H (in our case, to values in D0).
Note that the semantics is prefix-closed, i.e. for each H and R, the histories in
JHK(R) comprise all the possible truncated prefixes.

Definition 9. Denotational semantics of history expressions

Let D0 be the following cpo of sets of histories ordered by set inclusion: D0 =
{X ⊆ Ev

∗ ∪ Ev
∗ ! | ! ∈ X ∧ ∀η ∈ X : η ! ∈ X }. The set { !} is the bottom

element of D0. Let Dden = Pfin(Res) → D0 be the cpo of functions from the
finite subsets of Res to D0. Note that the bottom element ⊥ of Dden is λR. { !}.
Let H be a history expression such that fn(H) = ∅, and let θ be a mapping from
variables h to functions in Dden such that dom(θ) ⊇ fv (H). The denotational
semantics JHKθ is a function in Dden, inductively defined as follows.

JεKθ = λR. { ! , ε} J !Kθ = ⊥ JhKθ = θ(h) JH · H ′Kθ = JHKθ � JH ′Kθ

Jνn. HKθ = λR.
⋃

r 6∈R∪Ress
JH{r/n}Kθ(R ∪ {r}) JH + H ′Kθ = JHKθ ⊔ JH ′Kθ

Jα(ρ)Kθ = λR. { ! , α(ρ), α(ρ) !} Jµh.HKθ =
⊔

i≥0 f i(⊥) f(Z) = JHKθ{Z/h}

The first three rules are straightforward. The semantics of H · H ′ combines
the semantics of H and H ′ with the operator �. The semantics of νn. H joins
the semantics of H , where the parameter R is updated to record the binding of
n with r, for all the resources r not yet used in R. The semantics of H + H ′ is
the least upper bound of the semantics of H and H ′. The semantics of an event
comprises the possible truncations. The semantics of a recursion µh. H is the
least upper bound of the ω-chain f i(λR.{ !}), where f(Z) = JHKθ{Z/h}.

We first check that the above semantics is well-defined. First, the image of
the semantic function is indeed in D0: it is easy to prove that, for all H , θ and R,
! ∈ JHKθ(R) and η ! ∈ JHKθ(R) whenever η ∈ JHKθ(R). Lemma B3 guarantees
that the least upper bound in the last equation exists (since f is monotone).
Also, since f is continuous and ⊥ is the bottom of the cpo Dden, by the Fixed
Point theorem the semantics of µh. H is the least fixed point of f .
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Example 3. Consider the following history expressions:

H0 = µh. α(r) · h H1 = µh. h · α(r) H2 = µh. νn. (ε + α(n) · h)

Then, JH0K(∅) = α(r)∗!, i.e. H0 generates histories with an arbitrary, finite num-
ber of α(r). Note that all the histories of H0 are non-terminating (as indicated
by the !) since there is no way to exit from the recursion. Instead, JH1K(∅) = {!},
i.e. H1 loops forever, without generating any events. The semantics of JH2K(∅)
consists of all the histories of the form α(r1) · · ·α(rk) or α(r1) · · ·α(rk)!, for all
k ≥ 0 and pairwise distinct resources ri. ⊓⊔

We now define a preorder H ⊑ H ′ betweeen history expressions, that we
shall use in subtyping. Roughly, when H ⊑ H ′ holds, the histories of H are
included in those of H ′. The preorder ⊑ includes equivalence, and it is closed
under contexts. A history expression H can be arbitrarily “weakened” to H+H ′.
An event α(ρ) can be weakened to α(?), as ? stands for an unknown resource.

Definition 10. Subeffecting

The relation = over history expressions is the least congruence including
α-conversion such that the operation + is associative, commutative and idem-
potent; · is associative, has identity ε, and distributes over +, and:

µh.H = H{µh. H/h} µh.µh′.H = µh′.µh.H νn.νn′.H = νn′.νn.H

νn.ε = ε νn.(H + H ′) = (νn.H) + H ′ if n 6∈ fn(H ′)

νn.(H · H ′) = H · (νn.H ′) if n 6∈ fn(H) νn.(H · H ′) = (νn.H) · H ′ if n 6∈ fn(H ′)

The relation ⊑ over history expressions is the least precongruence such that:

H ⊑ H ′ if H = H ′ H ⊑ H + H ′ α(ρ) ⊑ α(?)

We now formally state that the subeffecting relation agrees with the semantics
of history expressions, i.e. it implies trace inclusion. Actually, this turns out to
be a weaker notion than set inclusion, because the rule α(ρ) ⊑ α(?) allows for
abstracting some resource with a ?. We then render trace inclusion with the
preorder ⊆? defined below. Intuitively, η ⊆? η′ means that η concretizes each
unknown resource in η′ with some r ∈ Res.

Definition 11. The preorder ⊆? between histories is inductively defined as:

ε ⊆? ε η α(ρ) ⊆? η′ α(ρ′) if η ⊆? η′ and ρ′ ∈ {ρ, ?} η ! ⊆? η′ ! if η ⊆? η′

The preorder ⊆? is extended to sets of histories as follows:

I ⊆? J if ∀η ∈ I : ∃η′ ∈ J : η ⊆? η′

The correctness of subeffecting is stated in Lemma 1 below. When H = H ′

(resp. H ⊑ H ′), the histories of H are equal to (resp. are ⊆? of) those of H ′.

Lemma 1. For all closed history expressions H, H ′ and for all R ⊆ Res:

– if H = H ′ then JHK(R) = JH ′K(R)
– if H ⊑ H ′ then JHK(R) ⊆? JH ′K(R).
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4 ν-types and type and effect system

In this section we introduce ν-types, and we use them to define a type and effect
system for the calculus of Section 2 (Def. 14). Informally, a term with ν-type
ζ = νN. τ ⊲ H will have the pure type τ , and the effect of its evaluation will be
a history included in the denotation of the history expression H . The heading
νN is used to bind the names n ∈ N both in τ and H . Pure types comprise:

– the unit type 1, inhabited by the value ∗ (and by !).
– sets S, to approximate the possible targets of actions. Sets S either contain

resources and (possibly) one name, or we have S = {?}, meaning that the
target object is unknown.

– functional types τ → ζ. The type ζ is a ν-type, that may comprise the latent
effect associated with an abstraction.

Example 4. The term e = if b then r else r′ has type {r, r′} ⊲ ε (we omit the
νN when N = ∅). The pure type {r, r′} means that e evaluates to either r or r′,
while producing an empty history (denoted by the history expression ε).

The term e′ = new x in α(x); x creates a new resource r, fires on it the action
α, and then evaluates to r. A suitable type for e′ is then νn. {n} ⊲ α(n).

The function g = λzy.new x in (α(x); if b then x else z x), instead, has type
1 → ({?} ⊲ µh. νn. α(n) · (ε + h)) ⊲ ε. The latent effect µh. νn. α(n) · (ε + h)
records that g is a recursive function that creates a fresh resource upon each
recursion step. The type {?} says that g will return a resource with unknown
identity, since it cannot be predicted when the guard b will become true. ⊓⊔

Type environments are finite mappings from variables and resources to pure
types. Roughly, a typing judgment ∆ ⊢ e : νN. τ ⊲ H means that, in a type
environment ∆, the term e evaluates to a value of type νN. τ , and it produces a
history represented by νN. H . Note however that the ν-type νN. τ ⊲ H is more
precise than taking νN. τ and νN. H separately. Indeed, in the ν-type the names
N indicate exactly the same fresh resources in both τ and H .

Definition 12. Types, type environments, and typing judgements

S ::= R | R ∪ {n} | {?} R ⊆ Res, n ∈ Nam, S 6= ∅ resource sets

τ ::= 1 | S | τ −→ ζ pure types

ζ ::= νn. ζ | τ ⊲ H ν-types

∆ ::= ∅ | ∆; r : {r} | ∆; x : τ x 6∈ dom(∆) type environments

∆ ⊢ e : ζ typing judgements

We also introduce the following shorthands (we write N 6∩ M for N ∩M = ∅):

νN. ζ = νn1 · · · νnk. ζ if N = {n1, . . . nk}

H · ζ = νN. τ ⊲ H · H ′ if ζ = νN. τ ⊲ H ′ and N 6∩ fn(H)

We say νN. τ ⊲ H is in ν-normal form (abbreviated νNF) when N ⊆ fn(τ).

11



We now define the subtyping relation ⊑ on ν-types. It builds over the subeffecting
relation between history expressions (Def. 10). The first equation in Def. 13
below is a variant of the usual name extrusion. The first two rules for ⊑ allow
for weakening a pure type S to a wider one, or to the pure type {?}. The last
rule extends to ν-types the relations ⊑ over pure types and over effects.

Definition 13. Subtypes

The equational theory of types includes that of history expressions (if H = H ′

then τ ⊲ H = τ ⊲ H ′), α-conversion of names, and the following equation:

νn. (τ ⊲ H) = τ ⊲ (νn. H) if n 6∈ fn(τ)

The relation ⊑ over pure types is the least preorder including = such that:

S ⊑ S′ if S ⊆ S′ and S 6= {?} S ⊑ {?}

νN. τ ⊲ H ⊑ νN. τ ′
⊲ H ′ if τ ⊑ τ ′ and H ⊑ H ′ and (fn(τ ′) \ fn(τ))6∩ N

Note that the side condition in the last rule above prevents from introducing
name captures. For instance, let ζ = νn. {r} ⊲ α(n) and ζ′ = νn. {r, n} ⊲ α(n).
Since n ∈ fn({r, n}) \ fn({r}), then ζ 6⊑ ζ′. Indeed, by the equational theory:

ζ = {r} ⊲ νn. α(n) = {r} ⊲ νn′. α(n′)

After an α-conversion, the subtyping ζ ⊑ ζ′′ = {r, n}⊲ νn′. α(n′) holds. Indeed,
in ζ′′ the name n′ upon which α acts has nothing to do with name n in the pure
type {r, n}, while in ζ′ both α and the pure type refer to the same name.

Remark 1. Note that it is always possible to rewrite any type νN. τ ⊲H in νNF.
To do that, let N̂ = N ∩ fn(τ), and let Ň = N \ fn(τ). Then, the equational
theory of types gives: νN. τ ⊲ H = νN̂ . τ ⊲ (νŇ .H).

We now state in Lemma 2 a fundamental result about subtyping of ν-types.
Roughly, whenever ζ ⊑ ζ′, it is possible to α-convert the names of ζ so to
separately obtain subtyping between the pure types of ζ and ζ′, and subeffecting
between their effects. Note that Remark 1 above enables us to use Lemma 2 on
any pair of types, after rewriting them in νNF.

Lemma 2. Let νN. τ ⊲ H ⊑ νN ′. τ ′
⊲ H ′, where both types are in νNF.

– If τ ′ 6= {?}, then there exists a bijective function σ : N ↔ N ′ such that
τσ ⊑ τ ′ and Hσ ⊑ H ′.

– If τ ′ = {?}, then τ ⊑ τ ′ and νN.H ⊑ H ′.

Example 5. Let ζ = νn. {n} ⊲ α(n), let ζ′ = νn′. {n′, r} ⊲ α(n′) + α(r), and let
ζ′′ = {?}⊲νn′′. α(n′′)+α(?). By using Lemma 2 on ζ ⊑ ζ′, we obtain σ = {n′/n}
such that {n}σ ⊑ {n′, r} and α(n)σ ⊑ α(n′) + α(r). By Lemma 2 on ζ′ ⊑ ζ′′,
we find {n′, r} ⊑ {?} and νn′. α(n′) + α(r) ⊑ νn′′. α(n′′) + α(?). ⊓⊔
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Definition 14. Type and effect system

Typing judgements are inductively defined through the following inference rules:

T-Unit ∆ ⊢ ∗ : 1 ⊲ ε T-Bang ∆ ⊢ ! : ζ T-Var ∆; ξ : τ ⊢ ξ : τ ⊲ ε

T-New ∆ ⊢ new : νn. {n} ⊲ ε T-Ev ∆; ξ : S ⊢ α(ξ) : 1 ⊲

∑

ρ∈S α(ρ)

T-AddVar

∆ ⊢ e : ζ

∆; ξ : τ ⊢ e : ζ
T-Abs

∆; x : τ ; z : τ −→ ζ ⊢ e : ζ

∆ ⊢ λzx.e : (τ −→ ζ) ⊲ ε

T-Wk

∆ ⊢ e : ζ

∆ ⊢ e : ζ′
ζ ⊑ ζ′ T-If

∆ ⊢ e : ζ ∆ ⊢ e′ : ζ

∆ ⊢ if b then e else e′ : ζ

T-App

∆ ⊢ e : νN.(τ → ζ) ⊲ H ∆ ⊢ e′ : νN ′.(τ ⊲ H ′)

∆ ⊢ e e′ : ν(N ∪ N ′). (H · H ′ · ζ)

N 6∩ N ′

N 6∩ fn(∆) 6∩ N ′

N 6∩ fn(H ′)

Here we briefly comment on the most peculiar typing rules.

– (T-Bang) An aborted computation can be given any type, modelling the fact
that nothing is known about the behaviour of the term that was aborted.

– (T-New) The type of a new is a set {n}, where n is bound by an outer νn,
and the actual effect is empty. (We could instead record the resource creation
in the effect, by handling new as we currently do for (λx. αcreated(x); x)new.)

– (T-Ev) An event α(ξ) has type 1, provided that the type of ξ is a set S. The
effect of α(ξ) can be any of the accesses α(ρ) for ρ included in S.

– (T-Abs) The actual effect of an abstraction is the empty history expression,
while the latent effect (included in the type ζ) is equal to the actual effect
of the function body. Note that ζ occurs twice in the premise: to unify those
occurrences, usually one has to resort to recursive history expressions µh. H .

– (T-Wk) This rule allows for weakening of ν-types, according to Def. 13.
– (T-App) The effects in the rule for application are concatenated according

to the evaluation order of the call-by-value semantics (function, argument,
latent effect). The side conditions ensure that there is no clash of names. In
particular, the disjointness condition makes sure that the names created by
the function are never used by the argument.

Example 6. We have the following typing judgements, in the (omitted) empty
typing environment (see App. A for the detailed typing derivations):

⊢ e1 = if b then λzx. α else λzx. β : (1 → (1 ⊲ α + β)) ⊲ ε

⊢ e2 = λgx. if b′ then ∗ else g(e1 x) : (1 → (1 ⊲ µh. ε + (α + β) · h)) ⊲ ε

⊢ e3 = α(new x in if b then x else r) : 1 ⊲ νn. (α(n) + α(r))

⊢ e4 = let f = (λx.new y in α(y); y) in β(f∗; f∗) : 1 ⊲ (νn. α(n)) · (νn′. α(n′) · β(n′))

⊢ e5 = let g = (new y in λx. α(y); y) in β(g∗; g∗) : 1 ⊲ νn. α(n) · α(n) · β(n)

⊢ e6 = (λzx.new y in if b then α(y) else β(y); zx) ∗ : 1 ⊲ µh. νn. (α(n) + β(n) · h)

⊢ e7 = α((λzx.new y in if b then y else β(y); zx) ∗) : 1 ⊲ (µh. νn. (ε + β(n) · h)) · α(?)
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The effects of e4 and e5 correctly represent the fact that two distinct resources
are generated by e4, while the evaluation of e5 creates a single fresh resource.
The effect of e6 is a recursion, at each step of which a fresh resource is generated.
The effect of e7 is more peculiar: it behaves similarly to e6 until the recursion is
left, when the last generated resource is exported. Since its identity is lost, the
event α is fired on the unknown resource “?”. ⊓⊔

The following lemma relates the histories denoted by a context C with the
typing of any term of the form C[v]. More precisely, the histories of C are included
(modulo concretization of ?) in those denoted by the effect in the ν-type. Since
the big-step semantics of terms produces both a value v and a context C, this
result will be pivotal in proving the correctness of our type and effect system.

Lemma 3. For all closed history contexts C, values v, and sets of resources R:

∆ ⊢ C[v] : νN. τ ⊲ H =⇒ H(C, R) ⊆? JνN. HK(R)

We now establish a fundamental result about typing, upon which the proof of
the Subject Reduction lemma is based. Roughly, given a history context C and a
term e, it allows for constructing a type for C[e] from a type for e, and viceversa.
The information needed to extend/reduce a type is contained in T (C, ∆), that
extracts from C a set of binders, a history expression, and a type environment.

Definition 15. For all C and ∆, we inductively define T (C, ∆) as follows:

T (•, ∆) = (ε, ∅)

T (α(ξ); C′, ∆) = (
∑

ρ∈∆(ξ) α(ρ) · H ′, ∆′) if T (C′, ∆) = (H ′, ∆′)

T (new x in C′, ∆) = (νn. H ′, ∆′; x : {n}) if T (C′, ∆; x : {n}) = (H ′, ∆′), n 6∈ ∆

Hereafter, when writing T (C, ∆) = (νN. H, ∆′) we always assume N = fn(∆′).
This is always possible by the equational theory of history expressions (Def. 10).

Lemma 4. Let T (C, ∆) = (νN. H, ∆′). Then, for all terms e:

– ∆; ∆′ ⊢ e : ζ′ =⇒ ∆ ⊢ C[e] : νN. H · ζ′

– ∆ ⊢ C[e] : ζ =⇒ ∃ζ′ : ∆; ∆′ ⊢ e : ζ′ and νN. H · ζ′ ⊑ ζ

We state below the Subject Reduction Lemma, crucial for proving our type
and effect system correct. We state it in the traditional form where the type is
preserved under computations. This was made possible by the big-step semantics
of terms, where all the information about the generated histories is kept in a
history context. Note instead this were not the case for a small-step operational
semantics, like the one in [3], where histories grow along with computations.
This would require Subject Reduction to “consume” the target type, to render
the events fired, and the resources created, in execution steps. Not preserving
the type would make the inductive statement harder to to write and to prove.

Lemma 5 (Subject Reduction). If ∆ ⊢ e : ζ and e
C

==⇒ v, then ∆ ⊢ C[v] : ζ.

Theorem 1 below guarantees that our type and effect system correctly ap-
proximates the dynamic semantics, i.e. the effect of a term e represents all the
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possible run-time histories of e. As usual, precision is lost with conditionals and
with recursive functions. Also, you may lose the identity of names exported by
recursive functions (see e.g. the type of e7 in Ex. 6).

Theorem 1 (Correctness of effects). For all closed terms e:

∆ ⊢ e : νN. τ ⊲ H =⇒ H(e) ⊆? JνN. HK(∅)

Proof. By Def. 5, H(e) =
⋃

e
C

==⇒v
H(C, ∅). Let C and v be such that e

C
==⇒ v.

By Lemma 5, ∆ ⊢ C[v] : νN. τ ⊲ H . By Lemma 3, H(C, ∅) ⊆? JνN. HK(∅).
Therefore, H(e) ⊆? JνN. HK(∅). ⊓⊔

5 Conclusions

We studied how to correctly and precisely record creation and use of resources
in a type and effect system for an extended λ-calculus. To do that, we used the
ν-quantifier for denoting freshness in types and effects. The main technical result
is Theorem 1, which guarantees the type of a program correctly approximates
its run-time histories. This enables us to exploit the model-checking technique
of [2] to verify history-based usage policies of higher-order programs.

Future work. To improve the accuracy of types, we plan to relax the constraint
that a single name can appear in pure types S. For instance, consider the term:

e = new x in new y in (β(x); β(y); if b then x else y))

Currently, we have the judgements ⊢ e : {?} ⊲ νn. νn′. β(n) · β(n′), and thus
⊢ α(e) : 1 ⊲ νn. νn′. β(n) · β(n′) · α(?) whereas by relaxing the single-name
assumption on pure types S, we would have the more precise judgements ⊢ e :
ν{n, n′}. {n, n′}⊲β(n) ·β(n′) and ⊢ α(e) : 1⊲νn.νn′. β(n) ·β(n′) ·(α(n)+α(n′)).

A further improvement would come from allowing subtyping of functional
types, e.g. by extending Def. 13 with the rule τ → ζ ⊑ τ ′ → ζ′ if τ ′ ⊑ τ
and ζ ⊑ ζ′ (i.e. contravariant in the argument and covariant in the result).
Let e.g. f = λx. (if b then λ. α else x); x. With the current definition, we have
⊢ f (λ. β) : (1 → (1 ⊲ α + β)) ⊲ ε. Note that the function λ. α is discarded, and
so we would like to have instead ⊢ f (λ. β) : (1 → (1 ⊲ β)) ⊲ ε, which is more
accurate. Subtyping of functional types would allow for such a judgement, using
the weakening 1 → (1⊲β) ⊑ 1 → (1⊲α+β) within the typing judgement of f .

The above constraints have been introduced in our model in order to simplify
the proofs, only (for instance, the restriction about the number of names in set
types helps in the proof of Lemma B20). Even when exploiting these constraints,
the technical burden in our proofs is still quite heavy: yet, we conjecture that
these restrictions could be lifted without invalidating our main results.

We plan to develop a type and effect inference algorithm, taking [18] as a
starting point. The subtype relation of [18] enjoys some nice properties, e.g.
principal types, which we expect to maintain in our setting. The main differ-
ence is that, while [18] constructs and resolves separately type constraints and
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effect constraints, ours demands for dealing with subtyping constraints between
whole ν-types. The key issue is unifying α-convertible terms, which we expect
to manage by exploiting nominal unification [20].
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A Typing examples

In the following examples, we will silently weaken H to H ′ when H = H ′.

Example 1. Let e1 = if b then λzx. α else λzx. β. Recall that 0-adic events like
α are intended to act on a fixed, static resource. Let τ1 = 1 → (1 ⊲ α + β), and
let ∆′ = {x : 1, z : τ1}. Then, we have the following typing derivation:

T-If

T-Abs

T-Wk

T-Ev

∆′ ⊢ α : 1 ⊲ α

∆′ ⊢ α : 1 ⊲ α + β

∅ ⊢ λzx. α : τ1 ⊲ ε
T-Abs

T-Wk

T-Ev

∆′ ⊢ β : 1 ⊲ β

∆′ ⊢ β : 1 ⊲ α + β

∅ ⊢ λzx. β : τ1 ⊲ ε

∅ ⊢ e1 : τ1 ⊲ ε
1A

Example 2. Let e2 = λgx. if b′ then ∗ else g(e1 x). Let H = µh. ε + (α + β) · h,
and let ∆ = {g : 1 → (1 ⊲ H), x : 1}. We have the following derivations:

T-App

T-App

1A

∆ ⊢ e1 : τ1 ⊲ ε
T-Var

∆ ⊢ x : 1 ⊲ ε

∆ ⊢ e1 x : 1 ⊲ α + β

∆ ⊢ g(e1 x) : 1 ⊲ (α + β) · H
2B

T-Abs

T-Wk

T-If

T-Unit

∆ ⊢ ∗ : 1 ⊲ ε
2B

∆ ⊢ if b′ then ∗ else g(e1 x) : 1 ⊲ ε + (α + β) · H

∆ ⊢ if b′ then ∗ else g(e1 x) : 1 ⊲ H

∅ ⊢ e2 : 1 → (1 ⊲ H) ⊲ ε

Example 3. Let e3 = α(new x in if b then x else r), In the desugared syntax,
e3 is equivalent to:

(λz. α(z)) (λx. if b then x else r)(new)

Let 3A be the following typing derivation:

∆; x : {n} ⊢ x : {n} ⊲ ε

∆; x : {n} ⊢ x : ({n, r}) ⊲ ε

∆; x : {n} ⊢ r : {r} ⊲ ε

∆; x : {n} ⊢ r : {n, r} ⊲ ε

∆; x : {n} ⊢ if b then x else r : {n, r} ⊲ ε

∆ ⊢ (λx. if b then x else r) : {n} → {n, r} ⊲ ε) ⊲ ε

Let then 3B be the following typing derivation:

T-App

3A ∆ ⊢ new : νn. {n} ⊲ ε

∆ ⊢ (λx. if b then x else r)(new) : νn. {n, r} ⊲ ε
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Then, we have the following typing derivation:

T-App

T-Abs

∆; z : {n, r} ⊢ α(z) : 1 ⊲ α(n) + α(r)

∆ ⊢ λz. α(z) : {n, r} → (1 ⊲ α(n) + α(r)) ⊲ ε
3B

∆ ⊢ e3 : νn.1 ⊲ α(n) + α(r)

Example 4. Let e4 = let f = (λx.new y in α(y); y) in β(f∗; f∗). In the desug-
ared syntax, we write e4 as follows:

e4A = λw. f∗

e4B = e4A (f∗)

e4C = λf. (λz. β(z)) e4B

e4D = λy. (λ. y)α(y)

e4 = e4C ((λx. e4D)new)

Let τf = 1 → νn. ({n} ⊲ α(n)), and let ∆ = f : τf . Let 4A be the following
typing derivation:

T-Abs

T-App

∆; w : {n′} ⊢ f : τf ⊲ ε ∆; w : {n′} ⊢ ∗ : 1 ⊲ ε

∆; w : {n′} ⊢ f∗ : νn. {n} ⊲ α(n)

∆ ⊢ e4A : {n′} → (νn. {n} ⊲ α(n)) ⊲ ε

Let then 4B be the following typing derivation:

T-App

4A T-App

∆ ⊢ f : τf ⊲ ε ∆ ⊢ ∗ : 1 ⊲ ε

∆ ⊢ f∗ : νn′. {n′} ⊲ α(n′)

∆ ⊢ e4B : ν{n, n′}. {n} ⊲ α(n′) · α(n)

Let ζA = ν{n, n′}. {n} ⊲ α(n′) · α(n). Then, let 4C be the following typing
derivation:

T-Abs

T-App

T-Abs

T-Ev

∆; z : {n} ⊢ β(z) : 1 ⊲ β(n)

∆ ⊢ (λz. β(z)) : {n} → (1 ⊲ β(n)) ⊲ ε
4B

∆ ⊢ (λz. β(z)) e4B : ν{n, n′}.1 ⊲ α(n′) · α(n) · β(n)

⊢ e4C : τf → (ν{n, n′}.1 ⊲ α(n′) · α(n) · β(n)) ⊲ ε

Let ∆xy = x : 1; y : {n}. Then, let 4D be the following typing derivation:

T-Abs

T-App

∆xy ⊢ (λ. y) : 1 → {n} ⊲ ε ∆xy ⊢ α(y) : 1 ⊲ α(n)

∆xy ⊢ (λ. y)α(y) : {n} ⊲ α(n)

x : 1 ⊢ e4D : {n} → ({n} ⊲ α(n)) ⊲ ε
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In conclusion, we have that:

T-App

4C T-Abs

T-App

4D T-New

x : 1 ⊢ new : νn.{n} ⊲ ε

x : 1 ⊢ e4D (new) : νn. {n} ⊲ α(n)

⊢ λx. e4D (new) : 1 → (νn. {n} ⊲ α(n)) ⊲ ε

⊢ e4 : 1 ⊲ ν{n, n′}. α(n′) · α(n) · β(n)

Example 5. Let e5 = let g = (new y in λx. α(y); y) in β(g∗; g∗). In the desug-
ared syntax, we write e5 as:

(λg. (λz.β(z)) ((λw. g∗)g∗)) ((λy. λx. ((λ. y)α(y)))new)

Let τg = 1 → ({n} ⊲ α(n)), and let ∆ = g : τg. Then, let 5A be the following
typing derivation:

T-App

T-Var

∆ ⊢ g : τg ⊲ ε
T-Unit

∆ ⊢ ∗ : 1 ⊲ ε

∆ ⊢ g∗ : {n} ⊲ α(n)

Let then 5B be the following typing derivation:

T-App

T-Abs

T-App

T-Var

∆; w : {n} ⊢ g : τg ⊲ ε
T-Unit

∆; w : {n} ⊢ ∗ : 1 ⊲ ε

∆; w : {n} ⊢ g∗ : {n} ⊲ α(n)

∆ ⊢ λw. g∗ : {n} → ({n} ⊲ α(n)) ⊲ ε
5A

∆ ⊢ (λw. g∗) g∗ : {n} ⊲ α(n) · α(n)

Let then 5C be the following typing derivation:

T-Abs

T-App

T-Abs

T-Ev

∆; z : {n} ⊢ β(z) : 1 ⊲ β(n)

∆ ⊢ λz.β(z) : {n} → (1 ⊲ β(n)) ⊲ ε
5B

∆ ⊢ (λz.β(z)) ((λw. g∗)g∗) : 1 ⊲ α(n) · α(n) · β(n)

⊢ λg. (λz.β(z)) ((λw. g∗)g∗) : τg → (1 ⊲ α(n) · α(n) · β(n)) ⊲ ε

Let 5D be the following typing derivation:

T-Abs

T-Abs

T-App

T-Abs

y : {n}; x : 1 ⊢ λ. y : 1 → {n} ⊲ ε
T-Ev

y : {n}; x : 1 ⊢ α(y) : 1 ⊲ α(n)

y : {n}; x : 1 ⊢ (λ. y)α(y) : {n} ⊲ α(n)

y : {n} ⊢ λx. ((λ. y)α(y)) : 1 → ({n} ⊲ α(n)) ⊲ ε

⊢ λy. λx. ((λ. y)α(y)) : ({n} → (1 → ({n} ⊲ α(n)) ⊲ ε)) ⊲ ε
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In conclusion, we have that:

T-App

5C T-App

5D T-New

⊢ new : νn. {n} ⊲ ε

⊢ (λy. λx. ((λ. y)α(y)))new : νn. τg ⊲ ε

⊢ e5 : 1 ⊲ νn. α(n) · α(n) · β(n)

Example 6. Let e6 = (λzx.new y in if b then α(y) else β(y); zx) ∗, In the desug-
ared syntax, e6 is written as:

e6A = (λw. zx)β(y)

e6B = λy.if b then α(y) else e6A

e6C = e6B (new)

e6 = (λzx. e6C) ∗

Let H = µh. νn. (α(n) + β(n) · h), and let ∆ = {z : 1 → (1 ⊲ H); x : 1}, and let

∆′ = ∆; y : {n}. Let 6A be the following typing derivation:

T-Wk

T-App

T-Abs

T-App

∆′; w : 1 ⊢ zx : 1 ⊲ H

∆′ ⊢ λw. zx : 1 → (1 ⊲ H) ⊲ ε
T-Ev

∆′ ⊢ β(y) : 1 ⊲ β(n)

∆′ ⊢ (λw. zx)β(y) : 1 ⊲ β(n) · H

∆′ ⊢ e6A : 1 ⊲ α(n) + β(n) · H

Let then 6B be the following typing derivation:

T-Abs

T-If

T-Wk

T-Ev

∆′ ⊢ α(y) : 1 ⊲ α(n)

∆′ ⊢ α(y) : 1 ⊲ α(n) + β(n) · H
6A

∆′ ⊢ if b then α(y) else e6A : 1 ⊲ α(n) + β(n) · H

∆ ⊢ e6B : {n} → (1 ⊲ α(n) + β(n) · H) ⊲ ε

Let then 6C be the following typing derivation:

T-Wk

T-App

6B T-New

∆ ⊢ new : νn. {n} ⊲ ε

∆ ⊢ e6B (new) : 1 ⊲ νn. (α(n) + β(n) · H)

∆ ⊢ e6C : 1 ⊲ H

In conclusion, we have that:

T-App

T-Abs

6C

⊢ λzx. e6C : 1 → (1 ⊲ H) ⊲ ε
T-Unit

⊢ ∗ : 1 ⊲ ε

⊢ e6 : 1 ⊲ H
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Example 7. Let e7 = α((λzx.new y in if b then y else β(y); zx) ∗), In the desug-
ared syntax, e7 is written as follows:

e7A = (λu. zx)β(y)

e7B = λy. if b then y else e7A

e7C = (λzx. e7B (new)) ∗

e7 = (λw. α(w)) e7C

Let H = µh. νn. (ε + β(n) · h), let ∆ = {x : 1; z : 1 → ({?} ⊲ H)}, and

∆′ = ∆; y : {n}. Let 7A be the following typing derivation:

T-Wk

T-App

T-Abs

T-App

∆′; u : 1 ⊢ zx : {?} ⊲ H

∆′ ⊢ λu. zx : 1 → ({?} ⊲ H) ⊲ ε
T-Ev

∆′ ⊢ β(y) : 1 ⊲ β(n)

∆′ ⊢ e7A : {?} ⊲ β(n) · H

∆′ ⊢ e7A : {?} ⊲ ε + β(n) · H

Let then 7B be the following typing derivation:

T-Abs

T-If

T-Wk

T-Var

∆′ ⊢ y : {n} ⊲ ε

∆′ ⊢ y : {?} ⊲ ε + β(n) · H
7A

∆′ ⊢ if b then y else e7A : {?} ⊲ ε + β(n) · H

∆ ⊢ e7B : {n} → ({?} ⊲ ε + β(n) · H) ⊲ ε

Let 7C be the following typing derivation (the use of T-Unit is omitted):

T-App

T-Abs

T-Wk

T-App

7B T-Ev

∆ ⊢ new : νn. {n} ⊲ ε

∆ ⊢ e7B (new) : {?} ⊲ νn. (ε + β(n) · H)

∆ ⊢ e7B (new) : {?} ⊲ H

⊢ λzx. e7B (new) : 1 → ({?} ⊲ H) ⊲ ε

⊢ e7C : {?} ⊲ H

In conclusion, we have that:

T-App

T-Abs

T-Ev

w : {?} ⊢ α(w) : 1 ⊲ α(?)

⊢ λw. α(w) : {?} → (1 ⊲ α(?)) ⊲ ε
7C

⊢ e7 : 1 ⊲ H · α(?)

21



B Proofs

B.1 History expressions

The main result of this Section is Theorem 2. It states that the subeffecting
relation preserves the inclusion (modulo ?-concretization) of the semantics. To
prove this, a number of intermediate definitions and lemmata are necessary, the
proofs of which are contained herewith.

Lemma B1 The structure (Dden,⊔, �, id⊔, id�), where id⊔ = ⊥ and id� =
λR.{ ! , ε} is a semi-ring. Furthermore, ⊔ is idempotent.

Proof. It is easy to check that ⊔ and � are associative, id⊔, id� are their
identities, and that, for all X, Y, Z ∈ Dden, (X ⊔ Y ) � Z = X � Z ⊔ Y � Z and
Z � (X ⊔ Y ) = (Z � X) ⊔ (Z � Y ). ⊓⊔

Lemma B2 Let {Yi}i and {Zi}i be subsets of Dden. Then:

⊔

i

(Yi � Zi) =
(

⊔

i

Yi

)

�
(

⊔

i

Zi

)

Proof. We prove the following two facts. For all W ∈ Dden:

W �
⊔

i

Zi =
⊔

i

(W � Zi)(1a)

(
⊔

i

Zi) � W =
⊔

i

(Zi � W )(1b)

For (1a), we have that:

W �
⊔

i

Zi = λR.
⋃

{ η0 ⊙ (
⊔

i

Zi)(R ∪ R(η0)) | η0 ∈ W (R) }

= λR.
⋃

{ η0 ⊙
⋃

i

Zi(R ∪ R(η0)) | η0 ∈ W (R) }

= λR.
⋃

{
⋃

i

η0 ⊙ Zi(R ∪ R(η0)) | η0 ∈ W (R) }

= λR.
⋃

i

⋃

{ η0 ⊙ Zi(R ∪ R(η0)) | η0 ∈ W (R) }

=
⊔

i

λR.
⋃

{ η0 ⊙ Zi(R ∪ R(η0)) | η0 ∈ W (R) }

=
⊔

i

(W � Zi)
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For (1b), we have that:

(
⊔

i

Zi) � W = λR.
⋃

{ η0 ⊙ W (R ∪ R(η0)) | η0 ∈ (
⊔

i

Zi)(R) }

= λR.
⋃

{ η0 ⊙ W (R ∪ R(η0)) | η0 ∈
⋃

i

Zi(R) }

= λR.
⋃

i

⋃

{ η0 ⊙ W (R ∪ R(η0)) | η0 ∈ Zi(R) }

=
⊔

i

λR.
⋃

{ η0 ⊙ W (R ∪ R(η0)) | η0 ∈ Zi(R) }

=
⊔

i

(Zi � W )

Summing up:

(

⊔

i

Yi

)

�
(

⊔

i

Zi

)

=
⊔

j

(

⊔

i

Yi

)

� Zj by (1a)

=
⊔

j

⊔

i

(Yi � Zj) by (1b)

=
⊔

i

(Yi � Zi)

which concludes the proof. ⊓⊔

Lemma B3 For all history expressions H and for all θ such that dom(θ)∪{h} ⊇
fv (H), let fH be the function defined as:

fH(Y ) = JHKθ{Y/h}

Then, fH is continuous.

Proof. By induction on the size of H . Let {Yi}i be a ω-chain of elements in Dden.
We have the following cases:

– if H = ε, H = α(ρ), or H = !, trivial.

– if H = νn. H ′, then:

fH(
⊔

i

Yi) = λR.
⋃

r 6∈R

fH′{r/n}(
⊔

i

Yi)(R ∪ {r})
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Then, by the induction hypothesis:

= λR.
⋃

r 6∈R

(

⊔

i

fH′{r/n}(Yi)
)

(R ∪ {r})

= λR.
⋃

r 6∈R

⋃

i

fH′{r/n}(Yi)(R ∪ {r})

= λR.
⋃

i

⋃

r 6∈R

fH′{r/n}(Yi)(R ∪ {r})

=
⊔

i

λR.
⋃

r 6∈R

fH′{r/n}(Yi)(R ∪ {r})

=
⊔

i

fH(Yi)

– if H = H ′ · H ′′, then:

fH(
⊔

i

Yi) = JH ′ · H ′′Kθ{
F

i
Yi/h}

= JH ′Kθ{
F

i
Yi/h} � JH ′′Kθ{

F

i
Yi/h}

= fH′(
⊔

i

Yi) � fH′′(
⊔

i

Yi)

and, by the induction hypothesis:

=
⊔

i

fH′(Yi) �
⊔

i

fH′′(Yi)

=
⊔

i

JH ′Kθ{Yi/h} �
⊔

i

JH ′′Kθ{Yi/h}

by Lemma B2:

=
⊔

i

(

JH ′Kθ{Yi/h} � JH ′′Kθ{Yi/h}

)

=
⊔

i

JHKθ{Yi/h}

=
⊔

i

fH(Yi)

– if H = H ′ + H ′′, trivial.

– if H = µh′. H ′, then:

fH(
⊔

i

Yi) =
⊔

n≥0

(λY ′. JH ′Kθ{
F

i
Yi/h}{Y ′/h′})

n(⊥)
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if h = h′, then:

=
⊔

n≥0

(λY ′. JH ′Kθ{Y ′/h′})
n(⊥)

=
⊔

i

⊔

n≥0

(λY ′. JH ′Kθ{Y ′/h′})
n(⊥)

=
⊔

i

⊔

n≥0

(λY ′. JH ′Kθ{Yi/h}{Y ′/h′})
n(⊥)

=
⊔

i

fH(Yi)

otherwise, if h 6= h′, then:

=
⊔

n≥0

(λY ′. JH ′Kθ{Y ′/h′}{
F

i
Yi/h})

n(⊥)

and by the induction hypothesis:

=
⊔

n≥0

(λY ′.
⊔

i

JH ′Kθ{Y ′/h′}{Yi/h})
n(⊥)

=
⊔

n≥0

(
⊔

i

λY ′. JH ′Kθ{Y ′/h′}{Yi/h})
n(⊥)

by the induction hypothesis on H ′, fH′ is continuous – and hence monotone
– then {λY ′. JH ′Kθ{Yi/h}}i is an ω-chain, and so:

=
⊔

i

⊔

n≥0

(λY ′. JH ′Kθ{Y ′/h′}{Yi/h})
n(⊥)

=
⊔

i

⊔

n≥0

(λY ′. JH ′Kθ{Yi/h}{Y ′/h′})
n(⊥)

=
⊔

i

fH(Yi)

⊓⊔

Lemma B4 (Substitution) For all H, H ′ such that H{H ′/h} is capture-avoiding
on names, and for all θ such that dom(θ) ⊇ fv (H) ∪ fv (H ′):

JH{H ′/h}Kθ = JHK
θ{JH ′Kθ/h}

Proof. We proceed by induction on the size of H . Let θ′ = θ{JH ′Kθ/h}.

– If H = ε, H = α(ρ) or H = !, the thesis follows trivially, because the
substitution is vacuous.
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– If H = h′, there are two subcases. If h′ = h, then:

Jh{H ′/h}Kθ = JH ′Kθ = JhKθ′

Otherwise, if h′ 6= h, then H{H ′/h} = H .
– If H = νn. H̄ , then:

Jνn. H̄{H ′/h}Kθ = λR.
⋃

r 6∈R

JH̄{H ′/h}{r/n}Kθ(R ∪ {r})

since the substitution is capture-avoiding, then n 6∈ fn(H ′), which implies
H ′{r/n} = H ′. Then:

= λR.
⋃

r 6∈R

JH̄{r/n}{H ′/h}Kθ(R ∪ {r})

and, by the induction hypothesis:

= λR.
⋃

r 6∈R

JH̄{r/n}Kθ′(R ∪ {r})

= Jνn. H̄Kθ′

– If H = H0 · H1, then:

J(H0 · H1){H ′/h}Kθ = JH0{H ′/h} · H1{H ′/h}Kθ

= JH0{H ′/h}Kθ � JH1{H ′/h}Kθ

= JH0Kθ′ � JH1Kθ′

= JHKθ′

– If H = H0 + H1, then by the induction hypothesis:

J(H0 + H1){H ′/h}Kθ = JH0{H ′/h}Kθ ⊔ JH1{H ′/h}Kθ

= JH0Kθ′ ⊔ JH1Kθ′

= JHKθ′

– If H = µh′. H̄ , there are two subcases. If h′ = h, then H{H ′/h} = H , and
so the statement holds trivially. Otherwise h′ 6= h, and so we have:

Jµh′. H̄{H ′/h}Kθ =
⊔

n≥0

(

λY. JH̄{H ′/h}Kθ{Y/h′}

)n
(⊥)

and, by the induction hypothesis:

=
⊔

n≥0

(

λY. JH̄Kθ′{Y/h′}

)n
(⊥)

= Jµh′. H̄Kθ′

which concludes the proof. ⊓⊔
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Lemma B5 (Unfolding) For all H and for all θ:

Jµh. HKθ = JHK
θ{Jµh. HKθ/h}

Proof. By Def. 9, Jµh. HKθ =
⊔

i≥0 f i(⊥), where f(Y ) = JHKθ{Y/h}. Since the

substitution H{µh. H/h} is capture-avoiding on names, we have that:

JH{µh. H/h}Kθ = JHK
θ{Jµh. HKθ/h}

by Lemma B4

= f(Jµh. HKθ) by def. of f

= f(
⊔

i≥0

f i(⊥))

=
⊔

i≥0

f i(⊥)
⊔

i≥0

f i(⊥) is a fixed point of f

= Jµh. HKθ ⊓⊔

Lemma B6 If H = H ′, then, for all θ and R, JHKθ(R) = JH ′Kθ(R).

Proof. The first seven cases of Def. 10 follow by Lemma B1. The eight rule
(unfolding), is implied by Lemma B5. Rearranging µ- and ν-binders and the
extrusion laws for ν-binders (last three rules) are straightforward. ⊓⊔

Definition 16. We say Y ∈ Dden anti-monotone when R ⊆ R′ implies Y (R) ⊇
Y (R′) for all R, R′. We say θ anti-monotone when θ(h) is such ∀h ∈ dom(θ).

Lemma B7 For all H and anti-monotone θ, JHKθ is anti-monotone.

Proof. Let R′ ⊆ R. By induction on the size of H , there are the following
exhaustive cases:

– if H = ε, H = !, H = α(ρ), trivial.
– if H = h, the thesis is implied by the anti-monotonicity of θ.
– if H = H0 ·H1 and H = H0+H1, straightforward application of the induction

hypothesis.
– if H = νn. H ′, we have that:

JHKθ(R) =
⋃

r 6∈R

JH{r/n}Kθ(R ∪ {r})

⊆
⋃

r 6∈R′

JH{r/n}Kθ(R ∪ {r})

and by the induction hypothesis, since R′ ∪ {r} ⊆ R ∪ {r}:

⊆
⋃

r 6∈R′

JH{r/n}Kθ(R
′ ∪ {r})

= JHKθ(R
′)
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– if H = µh. H ′, we prove that if Y is anti-monotone, then also f(Y ) =
JH ′Kθ{Y/h} is anti-monotone. Since θ and Y are anti-monotone, then θ{Y/h}
is such, so by the induction hypothesis:

f(Y )(R) = JH ′Kθ{Y/h}(R) ⊇ JH ′Kθ{Y/h}(R
′) = f(Y )(R′)

From here it is simple to check that for all n, fn(⊥) is anti-monotone, then
also JHKθ is such. ⊓⊔

Definition 17. For all Y, Z ∈ Dden, we write Y ⊆? Z whenever Y (R) ⊆? Z(R)
for all R. For all θ, θ′, we write θ ⊆? θ′ when θ(h) ⊆? θ′(h) for all h ∈ dom(θ′).

Lemma B8 For all Y, Y ′, Z ∈ Dden:

Y ⊆? Y ′ =⇒ Y � Z ⊆? Y ′ � Z

Proof. For all R ⊆ Res, we have to prove (Y �Z)(R) ⊆? (Y ′�Z)(R). By Def. 8,
we have that:

(Y � Z)(R) = { η0 ⊙ η1 | η0 ∈ Y (R), η1 ∈ Z(R ∪ R(η0)) }

Since Y ⊆? Y ′, by Def. 17 there exists η′
0 ∈ Y ′(R) such that η0 ⊆? η′

0. Since
R(η0) ⊇ R(η′

0), then by Lemma B7, η1 ∈ Z(R ∪ R(η′
0)). Therefore, η′

0 ⊙ η1 ∈
(Y ′ � Z)(R). ⊓⊔

Lemma B9 For all H, θ, θ′ such that θ ⊆? θ′, JHKθ ⊆? JHKθ′ .

Proof. Straightforward structural induction. ⊓⊔

Lemma B10 For all history expressions H, and for all n, ρ:

H ⊑ H ′ =⇒ H{ρ/n} ⊑ H ′{ρ/n}

Proof. Straightforward structural induction. ⊓⊔

Theorem 2 (Monotonicity of subeffecting). For all closed history expres-
sions H, H ′, and for all θ:

H ⊑ H ′ =⇒ JHKθ ⊆? JH ′Kθ

Proof. We proceed by induction on the size of the proof of H ⊑ H ′:

– H = H ′. The thesis follows from Lemma B6.
– H ′ = H + H ′′. Then, for all R:

JHKθ(R) ⊆ JHKθ(R) ∪ JH ′′Kθ(R) = JH ′Kθ(R)

– H = α(r), H ′ = α(?). Then, for all R:

JHKθ(R) = { ! , α(r) ! , α(r)} ⊆? { ! , α(?) ! , α(?)} = JH ′Kθ(R)
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– H ⊑ H ′′ and H ′′ ⊑ H ′. The thesis follows because the relation ⊆? on
histories is a preorder.

– H = C(H̄) ⊑ C(H̄ ′) and H̄ ⊑ H̄ ′. There are the following cases:
• C = H ′′ ·•. Let η ∈ JH ′′ · H̄Kθ(R). Then, η = η0⊙η1, with η0 ∈ JH ′′Kθ(R)

and η1 ∈ JH̄Kθ(R ∪ R(η0)). There are two subcases.
If ! ∈ η0, then η = η0 ∈ JH ′′ · H̄ ′Kθ(R).
If ! 6∈ η0, then η = η0η1. Since H̄ ⊑ H̄ ′, by the induction hypothesis
there exists η′

1 such that η1 ⊆? η′
1 and:

η′
1 ∈ JH̄ ′Kθ(R ∪ R(η0))

Since η0η1 ⊆? η0η
′
1, this implies the thesis:

η ⊆? η0η
′
1 ∈ JH ′Kθ(R)

• C = • ·H ′′. Let η ∈ JH̄ · H ′′Kθ(R). Then, η = η0 ⊙ η1, with η0 ∈ JH̄Kθ(R)
and η1 ∈ JH ′′Kθ(R ∪ R(η0)). By the induction hypothesis, there exists
η′
0 ∈ JH̄ ′Kθ(R) such that η0 ⊆? η′

0. There are the following two subcases.
If ! ∈ η0, then ! ∈ η′

0, η0 ⊙ η1 = η0 and η′
0 ⊙ η1 = η′

0, which implies the
thesis.
If ! 6∈ η0, then ! 6∈ η′

0, η0 ⊙ η1 = η0η1 and η′
0 ⊙ η1 = η′

0η1. We have that
R(η′

0) ⊆ R(η0) ∪ {?}. By Lemma B7, it follows that:

η1 ∈ JH ′′Kθ(R ∪ R(η′
0))

Therefore, the thesis follows from η0η1 ⊆? η′
0η1, and:

η = η0 ⊙ η1 ⊆? η′
0 ⊙ η1 ∈ JH ′Kθ(R)

• C = νn. •. Since H̄ ⊑ H̄ ′, then by Lemma B10 H̄{r/n} ⊑ H̄ ′{r/n},
for all r 6∈ R. Then, by the induction hypothesis JH̄{r/n}Kθ(R) ⊆?

JH̄ ′{r/n}Kθ(R). The thesis follows from Def. 9.
• C = µh. •. By definition, JHKθ =

⊔

i≥0 f i(⊥) and JH ′Kθ =
⊔

i≥0 gi(⊥),

where f(Y ) = JH̄Kθ{Y/h} and g(Y ) = JH̄ ′Kθ{Y/h}. It suffices proving

that, for all i ≥ 0, f i(⊥) ⊆? gi(⊥). The base case i = 0 is trivial. For the
inductive case, we have that:

f i+1(⊥) = f(f i(⊥))

= JH̄Kθ{fi(⊥)/h}

⊆? JH̄Kθ{gi(⊥)/h} by the ind. hyp. on i and Lemma B9

⊆? JH̄ ′Kθ{gi(⊥)/h} by the induction hypothesis on H̄ ⊑ H̄ ′

= g(gi(⊥))

= gi+1(⊥)

• the other contexts, • + H ′′ and H ′′ + • are trivial. ⊓⊔
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B.2 Basic properties of types and subtyping

Lemma B11 For all pure types τ , and for all n, ρ:

τ ⊑ τ ′ =⇒ τ{ρ/n} ⊑ τ ′{ρ/n}

Proof. Follows directly from Def. 13. ⊓⊔

Lemma B12 Let νN. τ ⊲ H ⊑ νN ′. τ ′
⊲ H ′.

– If τ ′ 6= {?}, then:

∃σ : N ∩ fn(τ) ↔ N ′ ∩ fn(τ ′) : τσ ⊑ τ ′ ∧

(ν(N \ fn(τ)).H)σ ⊑ ν(N ′ \ fn(τ ′)). H ′

– If τ ′ = {?}, then τ ⊑ τ ′ and νN. H ⊑ νN ′. H.

Proof. Consider the derivation used to deduce νN. τ ⊲ H ⊑ νN ′. τ ′
⊲ H ′. We

proceed by induction on the number of steps in this derivation, without counting
the α-conversion steps.

If α-conversion was used, then there exist n ∈ N and n′ ∈ N ′ such that
N{n′/n} = N ′, τ{n′/n} = τ ′ and H{n′/n} = H ′, and thesis follows directly by
choosing σ = id(N∩fn(τ))\{n} ◦ {n 7→ n′}.

Otherwise, there are the following cases on the last rule used:

– if transitivity was used, then there exist νN ′′.(τ ′′
⊲ H ′′) such that:

νN.(τ ⊲ H) ⊑ νN ′′.(τ ′′
⊲ H ′′) ⊑ νN ′.(τ ′

⊲ H ′)

Without loss of generality, we can α-convert N ′′ so to obtain N ′′ 6∩ fn(H).
There are two subcases, depending on whether τ ′ 6= {?} or not.
• case τ ′ 6= {?}. By the induction hypothesis applied on the second in-

equality, we find:

∃σ′′ : N ′′ ∩ fn(τ ′′) ↔ N ′ ∩ fn(τ ′) :

τ ′′σ′′ ⊑ τ ′ ∧

(ν(N ′′ \ fn(τ ′′)). H ′′)σ′′ ⊑ ν(N ′ \ fn(τ ′)). H ′

By the induction hypothesis applied on the first inequality, we find:

∃σ′ : N ∩ fn(τ) ↔ N ′′ ∩ fn(τ ′′) :

τσ′ ⊑ τ ′′ ∧

(ν(N \ fn(τ)). H)σ′ ⊑ ν(N ′′ \ fn(τ ′′)). H ′′

Let σ = σ′′ ◦ σ′. Then, σ is a bijection from N ∩ fn(τ) into N ′ ∩ fn(τ ′),
and by Lemma B10 we have that:

τσ = (τσ′)σ′′ ⊑ τ ′′σ′′ ⊑ τ ′

(ν(N \ fn(τ)). H)σ ⊑ (ν(N ′′ \ fn(τ ′′)). H ′′)σ′′ ⊑ ν(N ′ \ fn(τ ′)). H ′
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• case τ ′ = {?}. By the induction hypothesis applied on the second in-
equality, we have that:

(2) τ ′′ ⊑ τ ′ νN ′′. H ′′ ⊑ νN ′. H ′

There are two subcases, depending on whether τ ′′ 6= {?} or not.
∗ case τ ′′ 6= {?}. By the induction hypothesis on the first inequality,

we have that:

∃σ′ : N ∩ fn(τ) ↔ N ′′ ∩ fn(τ ′′) :

τσ′ ⊑ τ ′′ ∧

(ν(N \ fn(τ)). H)σ′ ⊑ ν(N ′′ \ fn(τ ′′)). H ′′(3)

For the subtyping relation, we have that:

τ = (τσ′)σ′−1

⊑ τ ′′σ′−1 by Lemma B11

⊑ τ ′σ′−1 by Lemma B11

= τ ′ since τ ′ = {?}

For the subeffecting relation, we have that:

νN. H ⊑ νNσ′. Hσ′ by ran(σ′)6∩ fn(H)

= ν(N ∩ fn(τ))σ′.ν(N \ fn(τ))σ′. Hσ′

= ν(N ′′ ∩ fn(τ ′′)).ν(N \ fn(τ)). Hσ′ by def. σ′

= ν(N ′′ ∩ fn(τ ′′)).(ν(N \ fn(τ)). H)σ′ by ran(σ′)6∩ fn(H)

⊑ ν(N ′′ ∩ fn(τ ′′)).ν(N ′′ \ fn(τ ′′)). H ′′ by (3)

= νN ′′. H ′′

⊑ νN ′. H ′ by (2)

∗ case τ ′′ = {?}. By the induction hypothesis on the first inequality,
we have τ ⊑ τ ′′ and νN. H ⊑ νN ′′. H ′′. The thesis follows from
τ ⊑ τ ′′ ⊑ τ ′ and by νN. H ⊑ νN ′′. H ′′ ⊑ νN ′. H ′.

– if ν-extrusion was used, then there exists some n 6∈ fn(τ) such that either
N = N ′ ∪ {n} and H ′ = νn. H , or vice versa if the rule is applied from
right to left. In both cases we have N ∩ fn(τ) = N ′ ∩ fn(τ), and so the thesis
follows trivially by choosing σ = idN∩fn(τ).

– if the last rule in Def. 13 was used, then N = N ′, τ ⊑ τ ′ and H ⊑ H ′, with
(fn(τ ′) \ fn(τ))6∩ N . There are two subcases.
• If τ ′ = {?}, then since the relation ⊑ on effects is precongruence, from

H ⊑ H ′ it follows that νN.H ⊑ νN.H ′.
• If τ ′ 6= {?}, let σ be the identity. By the condition (fn(τ ′) \ fn(τ))6∩ N , it

follows that N ∩ fn(τ) = N ∩ fn(τ ′), and so σ : N ∩ fn(τ) ↔ N ∩ fn(τ ′).
The item τσ ⊑ τ ′ is straightforward by τ ⊑ τ ′. The remaining item is
implied by N \ fn(τ) = N \ fn(τ ′) and by H ⊑ H ′.

⊓⊔
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⊓⊔

Lemma 2. Let νN. τ ⊲ H ⊑ νN ′. τ ′
⊲ H ′, where both types are in νNF.

– If τ ′ 6= {?}, then there exists a bijective function σ : N ↔ N ′ such that
τσ ⊑ τ ′, and Hσ ⊑ H ′.

– If τ ′ = {?}, then τ ⊑ τ ′ and νN.H ⊑ H ′.

Proof. Immediate from Lemma B12. ⊓⊔

Lemma B13 For all ζ, ζ′, n, ρ:

ζ ⊑ ζ′ =⇒ ζ{ρ/n} ⊑ ζ′{ρ/n}

Proof. Let ζ = νN.τ ⊲ H and let ζ′ = νN ′.τ ′
⊲ H ′. Without loss of generality,

we can assume n, ρ 6∈ N ∪ N ′. By Remark 1, we have the following νNFs:

ζ = νN̂ .τ ⊲ (νŇ .H) N̂ = N ∩ fn(τ) Ň = N \ fn(τ)

ζ′ = νN̂ ′.τ ′
⊲ (νŇ ′.H ′) N̂ ′ = N ′ ∩ fn(τ ′) Ň ′ = N ′ \ fn(τ ′)

By Lemma 2, there are two cases.

If τ ′ 6= {?}, then:

∃σ : N̂ ↔ N̂ ′ : τσ ⊑ τ ′ ∧ (νŇ .H)σ ⊑ (νŇ ′.H ′)

Since N̂ ⊆ fn(τ), then N̂σ ⊆ fn(τ)σ, and so N̂ ′ ⊆ fn(τσ). Also, n 6∈ N̂ ′ implies
N̂ ′ ⊆ fn(τσ{ρ/n}). Therefore, we have that:

(4) (fn(τ ′{ρ/n}) \ fn(τσ{ρ/n})) ∩ N̂ ′ = ∅

Since ρ 6∈ dom(σ) = N̂ and n 6∈ ran(σ) = N̂ ′, then:

{ρ/n}σ = σ{ρ/n}

We also have that:

ζ{ρ/n} = νN̂ . τ{ρ/n} ⊲ (νŇ .H){ρ/n}

ζ′{ρ/n} = νN̂ ′. τ ′{ρ/n} ⊲ (νŇ ′.H ′){ρ/n}

By α-converting ζ{ρ/n}, we obtain:

ζ{ρ/n} = νN̂σ. τ{ρ/n}σ ⊲ (νŇ .H){ρ/n}σ

= νN̂σ. τσ{ρ/n} ⊲ (νŇ .H)σ{ρ/n}

= νN̂ ′. τσ{ρ/n} ⊲ (νŇ .H)σ{ρ/n}

⊑ νN̂ ′. τ ′{ρ/n} ⊲ (νŇ ′.H ′){ρ/n}

= ζ′{ρ/n}

32



where the ⊑-step follows by (4), and by Lemma B11.

If τ ′ = {?}, then N̂ ′ = ∅, and by Lemma 2, τ ⊑ τ ′ and νN.H ⊑ νŇ ′.H ′. Thus:

ζ{ρ/n} = νN̂ . τ{ρ/n} ⊲ (νŇ .H){ρ/n}

⊑ νN̂ . τ ′{ρ/n} ⊲ (νŇ .H){ρ/n}

= {?} ⊲ (ν(N̂ ∪ Ň).H){ρ/n}

⊑ {?} ⊲ (νŇ ′.H ′){ρ/n}

= ζ′{ρ/n}

⊓⊔

Definition 18. Let ζ = νN. τ ⊲ H. We define t(ζ) = τ and fnt(ζ) = fn(τ) \ N .

Lemma B14 For all H, H ′, ζ, ζ′ and N :

H ⊑ H ′ =⇒ νN. H · ζ ⊑ νN. H ′ · ζ(14a)

ζ ⊑ ζ′ ∧ (fnt(ζ′) \ fnt(ζ))6∩ N =⇒ νN. H · ζ ⊑ νN. H · ζ′(14b)

Proof. For (14a), let ζ = νN̄ . τ̄ ⊲ H̄ , where we choose N̄ 6∩ (N ∪ fn(H)∪ fn(H ′)).
By Def. 13, since (fn(τ̄ ) \ fn(τ̄))6∩ (N ∪ N̄) and H · H̄ ⊑ H ′ · H̄ , it follows that:

(5) νN. H · ζ = ν(N ∪ N̄). τ̄ ⊲ H · H̄ ⊑ ν(N ∪ N̄). τ̄ ⊲ H ′ · H̄ = νN. H ′ · ζ

For (14b), let ζ = νN̄ . τ̄ ⊲ H̄ and ζ′ = νN̄ ′. τ̄ ′
⊲ H̄ ′ be in νNF, where, without

loss of generality, we choose N̄ , N̄ ′ such that:

N̄ , N̄ ′ 6∩ (N ∪ fn(H)) N̄ 6∩ N̄ ′ N̄ 6∩ fn(τ̄ ′) N̄ ′ 6∩ fn(τ̄ )

There are two subcases.

If τ̄ ′ 6= {?}, then by Lemma 2:

(6) ∃σ : N̄ ↔ N̄ ′ : τ̄σ ⊑ τ̄ ′ ∧ H̄σ ⊑ H̄ ′

The following inclusion holds:

(fn(τ̄ ′) \ fn(τ̄σ)) ∩ (N ∪ N̄ ′)

⊆ (fn(τ̄ ′) \ (fn(τ̄ ) \ dom(σ))) ∩ (N ∪ N̄ ′)

= (fn(τ̄ ′) \ (fn(τ̄ ) \ N̄)) ∩ (N ∪ N̄ ′)

= (fn(τ̄ ′) \ fn(τ̄ )) ∩ (N ∪ N̄ ′) by (5)

= (fn(τ̄ ′) \ fn(τ̄ )) ∩ N by N̄ ′ ⊆ fn(τ̄ ′)

Since by hypothesis fn(τ̄ ′) \ fn(τ̄ )6∩ N , this proves the following fact:

(7) fn(τ̄ ′) \ fn(τ̄σ)6∩ (N ∪ N̄ ′)
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Therefore, we have that:

νN. H · ζ = ν(N ∪ N̄). τ̄ ⊲ H · H̄

= ν(N ∪ N̄)σ. τ̄σ ⊲ (H · H̄σ) by (5), fn(τ̄ ) \ (N ∪ N̄)6∩ N̄ ′

= νN ∪ N̄σ. τ̄σ ⊲ H · H̄σ

⊑ ν(N ∪ N̄ ′). τ̄ ′
⊲ H · H̄ ′ by (7) and (6)

= νN. H · ζ′

If τ̄ ′ = {?}, the proof is similar, yet simpler. ⊓⊔

Definition 19. For all ζ and M, U ⊂ Nam, we define WM,U (ζ) as follows:

WM,U (τ) =

{

(S ∪ M){?/U} if τ = S

τ{?/U} otherwise

WM,U (νN. τ ⊲ H) = νN. WM,U (τ) ⊲ H{?/U} if M, U 6∩ N

where we assume that S ∪ {?} = {?}, for all S.

Lemma B15 For all M, U and ζ = νN. τ ⊲ H, if M = ∅ or τ = S 6= {?}, then
fn(WM,U (ζ)) = (fn(ζ) ∪ M) \ U , and fnt(WM,U (ζ)) = (fnt(ζ) ∪ M) \ U .

Proof. Straightforward by Def. 19. ⊓⊔

Lemma B16 For all ζ, ζ′, M, U :

ζ ⊑ ζ′ =⇒ WM,U (ζ) ⊑ WM,U (ζ′)(16a)

M 6∩N =⇒ νN. H · WM,U (ζ) ⊑ WM,U (νN. H · ζ)(16b)

Proof. Straightforward by Def. 19. ⊓⊔

Lemma B17 Let ζ ⊑ ζ′. Then, there exist M ⊆ fnt(ζ′) \ fnt(ζ) and U ⊆ fn(ζ) \
fn(ζ′) such that:

ζ ⊑ WM,U (ζ) ⊑ ζ′

fn(WM,U (ζ)) ⊆ fn(ζ′)

fnt(ζ′) ⊆ fnt(WM,U (ζ))

Proof. Take M = fnt(ζ′)\ fnt(ζ) and U = fn(ζ)\ fn(ζ′). This implies M 6∩U and
ζ′{?/U} = ζ′. We let ζ = νN.τ ⊲ H and ζ′ = νN ′.τ ′

⊲ H ′ with N, N ′ pairwise
disjoint from M, U .

We now prove the first item. By Lemma B13 and ζ ⊑ ζ′ we have ζ{?/U} ⊑
ζ′{?/U} = ζ′. This implies that

νN.τ{?/U} ⊲ H{?/U} ⊑ νN ′.τ ′
⊲ H ′
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If τ 6= S for all S, this concludes by Def. 19. Otherwise, τ = S, and τ ′ = S′ for
some S, S′. If τ ′ = {?} we can then augment with M the right hand side of the
inequality above and have

νN.(τ{?/U} ∪ M) ⊲ H{?/U} ⊑ νN ′.τ ′
⊲ H ′

So, we conclude by M 6∩U implying τ{?/U} ∪ M = (τ ∪ M){?/U}. Otherwise,
if τ ′ = S′ 6= {?}, we can still have the inequality above by M ⊆ S′ = τ ′. We
conclude similarly.

For the second item, we note that

fn(WM,U (ζ)) ⊆ (fn(ζ) ∪ M) \ U

⊆ fn(ζ) \ U

⊆ fn(ζ) \ (fn(ζ) \ fn(ζ′))

⊆ fn(ζ′)

For the third item, fnt(ζ) = fn(τ) \ N and fnt(ζ′) = fn(τ ′) \ N ′. If τ ′ = {?},
the thesis trivially holds; otherwise we consider three subcases:

– If τ = {?}, then τ ′ = {?}, contradicting the above assumption.
– If τ = S for some S 6= {?}, we have

fnt(WM,U (ζ)) = ((fn(τ) ∪ M) \ U) \ N

= ((fn(τ) \ N) ∪ M) \ U

= (fnt(ζ) ∪ (fnt(ζ′) \ fnt(ζ))) \ U

= (fnt(ζ) ∪ fnt(ζ′)) \ U

⊇ fnt(ζ′) \ U

= fnt(ζ′)

where the last step follows from the definition of U .
– If τ 6= S for all S, then a simple inductive argument on the derivation of

ζ ⊑ ζ′ shows fnt(ζ) = fnt(ζ′). Hence,

fnt(WM,U (ζ)) = (fn(τ) \ U) \ N

= (fn(τ) \ N) \ U

⊇ fnt(ζ) \ (fn(ζ) \ fn(ζ′))

= (fnt(ζ) \ fn(ζ)) ∪ (fnt(ζ) ∩ fn(ζ′))

= fnt(ζ) ∩ fn(ζ′)

= fnt(ζ′) ∩ fn(ζ′)

= fnt(ζ′)

This concludes the proof. ⊓⊔
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B.3 Typing and history contexts

Lemma B18 (Substitution) For all ∆, e, τ, ζ, x, v, ρ, n:

∆; x : τ ⊢ e : ζ, ∆ ⊢ v : τ ⊲ ε =⇒ ∆ ⊢ e{v/x} : ζ(18a)

∆ ⊢ e : ζ =⇒ ∆{ρ/n} ⊢ e : ζ{ρ/n}(18b)

∆; x : R ∪ {n} ⊢ e : ζ =⇒ ∆{r/n} ⊢ e{r/x} : ζ{r/n}(18c)

∆; x : N ∪ R ⊢ e : ζ =⇒ ∆; x : N ⊢ e : ζ(18d)

∆; x : {?} ⊢ e : ζ =⇒ ∆ ⊢ e{r/x} : ζ(18e)

∆; x : {?} ⊢ e : ζ =⇒ ∆; x : S ⊢ e : ζ(18f)

Proof. For (18a) we proceed by induction on the typing derivation for ∆′ ⊢ e : ζ,
where ∆′ = ∆; x : τ . There are the following cases, according to the last rule
used in the derivation (the trivial cases are omitted):

– case (T-App). Straightforward by the induction hypothesis.
– case (T-Abs). In this case e = λzy. e′ and ζ = τ ′ → ζ′. If x = y, then the

thesis trivially holds. Otherwise:

∆′; y : τ ′; z : τ ′ → ζ′ ⊢ e′ : ζ′

∆′ ⊢ λzy.e′ : τ ′ → ζ′ ⊲ ε

Let ∆′′ = ∆; y : τ ′; z : τ ′ → ζ′. By the rule (T-AddVar), ∆′′ ⊢ v : τ ⊲ ε.
Then, by the induction hypothesis:

∆′′ ⊢ e′{v/x} : ζ′

By (T-Abs):
∆ ⊢ λzy. e′{v/x} : τ ′ → ζ′ ⊲ ε

The conclusion follows by the fact that e{v/x} = λzy.(e′{v/x}).
– case (T-Var). In this case e = ξ ∈ Var ∪ Res, ζ = τ ′

⊲ ε, and:

∆′; ξ : τ ′ ⊢ ξ : τ ′
⊲ ε

If ξ 6= x, the substitution is vacuous. Otherwise, e{v/x} = v, and τ = τ ′.
So, the thesis follows directly from the hypothesis.

– case (T-AddVar). In this case ∆′ = ∆̄; ξ : τ ′, and:

∆̄ ⊢ e : ζ

∆̄; ξ : τ ′ ⊢ e : ζ

There are two cases. If x 6= ξ, then, ∆̄ = ∆′′; x : τ for some ∆′′, and by the
induction hypothesis:

∆′′ ⊢ e{v/x} : ζ

Then, by (T-AddVar), ∆′′; ξ : τ ′ ⊢ e{v/x} : ζ, where ∆ = ∆′′; ξ : τ ′.
Otherwise, if x = ξ, then τ = τ ′ and ∆ = ∆̄. A simple inductive argument
shows that x does not occur free in e, because x = ξ 6∈ dom(∆) and e is
typable in the environment ∆. Therefore the substitution is vacuous.
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For (18b) we proceed by induction on the typing derivation for ∆ ⊢ e : ζ. There
are the following cases, according to the last rule used in the derivation:

– case (T-Ev). We have that ∆ ⊢ α(ξ) : 1 ⊲

∑

ρ′∈∆(ξ) α(ρ′). Thus:

∆{ρ/n} ⊢ α(ξ) : 1 ⊲

∑

ρ′∈∆{ρ/n}(ξ) α(ρ′) =
(
∑

ρ′∈∆(ξ) α(ρ′)
)

{ρ/n}

– case (T-Wk). The thesis follows from the induction hypothesis and Lemma B13.
– The remaining cases are either trivial or directly follow from the induction

hypothesis.

For (18c) we proceed by induction on the typing derivation for ∆′ ⊢ e : ζ, where
∆′ = ∆; x : R ∪ {n}. There are the following cases, according to the last rule
used in the derivation (the trivial cases are omitted):

– case (T-Ev). In this case e = α(y). Let ∆′ = ∆′′; y : S. We have that:

∆′′; y : S ⊢ α(y) : 1 ⊲

∑

ρ∈S α(ρ)

There are two cases.
If x 6= y, then the thesis follows from (18b).
If x = y, then S = R ∪ {n}, and so:

∆{r/n} ⊢ α(r) : 1 ⊲

∑

ρ∈R∪{r} α(ρ)

– case (T-Var). In this case e = ξ ∈ Var ∪ Res, ζ = τ ⊲ ε, and:

∆; ξ : τ ⊢ ξ : τ ⊲ ε

If ξ 6= x, the thesis follows from (18b). If ξ = x, τ = R ∪ {n}, and:

T-Wk

∆ ⊢ r : {r} ⊲ ε

∆ ⊢ r : R ∪ {r} ⊲ ε

– case (T-Wk). In this case we have that:

∆; x : R ∪ {n} ⊢ e : ζ′

∆; x : R ∪ {n} ⊢ e : ζ
ζ′ ⊑ ζ

By the induction hypothesis, ∆{r/n} ⊢ e{r/x} : ζ′{r/n}. The thesis follows
from Lemma B13.

– The remaining cases are either trivial or directly follow from the induction
hypothesis.

For (18e) we proceed by induction on the typing derivation for ∆′ ⊢ e : ζ, where
∆′ = ∆; x : {?}. There are the following cases, according to the last rule used in
the derivation (the trivial cases are omitted):
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– case (T-Ev). In this case e = α(y). We have that:

∆′ ⊢ α(y) : 1 ⊲

∑

ρ∈S α(ρ)

There are two cases.
If x 6= y, then ∆′ = ∆′′; y : S; x : {?} for some ∆′′, and so by (T-Ev):

∆′′; y : S ⊢ α(y) : 1 ⊲

∑

ρ∈S α(ρ)

If x = y, then ζ = 1⊲α(?), and the thesis follows from (T-Ev) and (T-Wk):

T-Wk

∆ ⊢ α(r) : 1 ⊲ α(r)

∆ ⊢ α(r) : 1 ⊲ α(?)

– case (T-Var). In this case e = ξ ∈ Var ∪ Res, ζ = τ ⊲ ε, and:

∆; ξ : τ ⊢ ξ : τ ⊲ ε

If ξ 6= x, trivial. If ξ = x, then τ = {?}, and:

T-Wk

∆ ⊢ r : {r} ⊲ ε

∆ ⊢ r : {?} ⊲ ε

– The remaining cases are either trivial or directly follow from the induction
hypothesis.

For (18f) we proceed by induction on the typing derivation for ∆′ ⊢ e : ζ, where
∆′ = ∆; x : {?}. There are the following cases, according to the last rule used in
the derivation (the trivial cases are omitted):

– case (T-Ev). In this case e = α(y). We have that:

∆′ ⊢ α(y) : 1 ⊲

∑

ρ∈S′ α(ρ)

There are two cases.
If x 6= y, then ∆′ = ∆′′; y : S′; x : {?} for some ∆′′, and so by (T-Ev):

∆′′; y : S′; x : S ⊢ α(y) : 1 ⊲

∑

ρ∈S′ α(ρ)

If x = y, then ζ = 1⊲α(?), and the thesis follows from (T-Ev) and (T-Wk):

T-Wk

∆; x : S ⊢ α(x) : 1 ⊲

∑

ρ∈S α(ρ)

∆; x : S ⊢ α(x) : 1 ⊲ α(?)

– case (T-Var). In this case e = ξ ∈ Var ∪ Res, ζ = τ ⊲ ε, and:

∆; ξ : τ ⊢ ξ : τ ⊲ ε

If ξ 6= x, trivial. If ξ = x, then τ = {?}, and:

T-Wk

∆; x : S ⊢ x : S ⊲ ε

∆; x : S ⊢ x : {?} ⊲ ε
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– The remaining cases are either trivial or directly follow from the induction
hypothesis. ⊓⊔

Lemma B19 Let ∆ ⊢ v : ζ, with v 6= ! . Then, there exist τ and H ⊒ ε such
that ζ = τ ⊲ H and ∆ ⊢ v : τ ⊲ ε.

Proof. By induction on the derivation of ∆ ⊢ v : ζ = νN.(τ ⊲ H), written
w.l.o.g. in νNF. There are the following cases on the last rule used:

– (T-Unit), (T-Var), (T-Abs). By definition.
– (T-AddVar). By straightforward induction on the derivation.
– (T-Wk). Here the derivation has the following form:

T-Wk

...

∆ ⊢ v : ζ′

∆ ⊢ v : νN.(τ ⊲ H)
ζ′ ⊑ νN.(τ ⊲ H)

Let ζ′ = νN ′. τ ′
⊲ H ′. By the induction hypothesis, N ′ = ∅ and ε ⊑ H ′.

By Lemma 2, there are two subcases. If τ 6= {?}, it follows that N = ∅ and
H ′ ⊑ H , which implies the thesis. If τ = {?}, then νN.H ′ ⊑ H . Remark 1
gives N = ∅, which concludes. ⊓⊔

Lemma B20 Let T (C, ∆) = (νN. H, ∆′). Then, for all e and v 6= ! :

∆; ∆′ ⊢ e : ζ′ =⇒ ∆ ⊢ C[e] : νN. H · ζ′(20a)

∆ ⊢ C[e] : ζ =⇒ ∃ζ′ : ∆; ∆′ ⊢ e : ζ′(20b)

∧ νN. H · ζ′ ⊑ ζ

∧ fn(ζ′) ⊆ N ∪ fn(ζ)

∧ fnt(ζ) ⊆ fnt(ζ′)

∆ ⊢ C[v] : ζ =⇒ ∃τ : ∆; ∆′ ⊢ v : τ ⊲ ε ∧ νN. τ ⊲ H ⊑ ζ(20c)

Proof. We first prove (20a) and (20b) by induction on the structure of C. There
are the following cases:

– C = •. In this case ∆′ = ∅, N = ∅ and H = ε. Point (20a) is trivial; for
point (20b) choosing ζ′ = ζ suffices.

– C = α(ξ); C′. Hence, T (C, ∆) = (
∑

ρ∈∆(ξ) α(ρ) · H ′, ∆′), where T (C′, ∆) =

(H ′, ∆′). Let H ′ = νN̄ .H̄ . Then, N = N̄ and H =
∑

ρ∈∆(ξ) α(ρ) · H̄ .

For (20a), by the induction hypothesis it follows that ∆ ⊢ C′[e] : νN. H̄ ·
ζ′. We then have the following typing derivation for C[e] = α(ξ); C′[e] =
(λy. C′[e])α(ξ):

∆; y : 1 ⊢ C′[e] : νN. H̄ · ζ′

∆ ⊢ λy. C′[e] : 1 → (νN. H̄ · ζ′) ⊲ ε ∆ ⊢ α(ξ) : 1 ⊲

∑

ρ∈∆(ξ) α(ρ)

∆ ⊢ (λy. C′[e])α(ξ) : (
∑

ρ∈∆(ξ) α(ρ)) · (νN. H̄ · ζ′)
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The thesis follows from two further applications of (T-Wk):

(
∑

ρ∈∆(ξ) α(ρ)) · (νN. H̄ · ζ′)

= νN.
(

(
∑

ρ∈∆(ξ) α(ρ)) · H̄ · ζ′
)

since N ∩ fn(∆) = ∅

= νN. H · ζ′ since H =
∑

ρ∈∆(ξ) α(ρ)) · H̄

For (20b), any typing derivation for ∆ ⊢ C[e] : ζ has the following form,
where we assume that all the types in the premises are in νNF:

T-Wk

T-Wk

∆; y : 1 ⊢ C′[e] : ζC′

∆ ⊢ λy. C′[e] : 1 → ζC′ ⊲ ε

∆ ⊢ λy. C′[e] : 1 → ζC′ ⊲ H0

T-Wk

∆ ⊢ α(ξ) : 1 ⊲

∑

ρ∈∆(ξ) α(ρ)

∆ ⊢ α(ξ) : 1 ⊲ H1

∆ ⊢ (λy. C′[e])α(ξ) : H0 · H1 · ζC′

∆ ⊢ (λy. C′[e])α(ξ) : ζ

Let ζ̄ = H0 · H1 · ζC′ . By the three weakenings in the derivation, we have
ζ̄ ⊑ ζ, ε ⊑ H0, and

∑

ρ∈∆(ξ) α(ρ) ⊑ H1. Without loss of generality we

choose N 6∩ fn(∆). By Lemma B17, there exist M ⊆ fnt(ζ) \ fnt(ζ̄) and U ⊆
fn(ζ̄) \ fn(ζ) such that:

ζ̄ ⊑ WM,U (ζ̄) ⊑ ζ(8)

fn(WM,U (ζ̄)) ⊆ fn(ζ)(9)

fnt(ζ) ⊆ fnt(WM,U (ζ̄))(10)

Without loss of generality, we can assume M, U 6∩ N̄ .

By the induction hypothesis, there exists ζ̄′ such that:

∆; ∆′ ⊢ e : ζ̄′(11)

νN̄ . H̄ · ζ̄′ ⊑ ζC′(12)

fn(ζ̄′) ⊆ N̄ ∪ fn(ζC′)(13)

fnt(ζC′) ⊆ fnt(ζ̄′)(14)

We now prove the following two facts:

fn(WM,U (ζ̄)) = (fn(ζ̄) ∪ M) \ U(15)

fnt(WM,U (ζ̄′)) = (fnt(ζ̄′) ∪ M) \ U(16)

If M = ∅, then Lemma B15 implies both the equations. Otherwise, ∅ 6= M ⊆
fnt(ζ) \ fnt(ζ̄), and so t(ζ) = S and t(ζ̄) = S̄ for some S̄ ⊆ S 6= {?}. Then,
Lemma B15 implies (15). For (16), by (12) we have that νN̄ . H̄ ·ζ̄′ ⊑ ζC′ , and
so since t(ζC′) = t(ζ̄) 6= {?}, then t(ζ̄′) 6= {?}. Therefore, the equation (16)
follows by Lemma B15.
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Let ζ′ = WM,U (ζ̄′). We have that:

νN. H · ζ′ = νN. (
∑

ρ∈∆(ξ) α(ρ)) · H̄ · ζ′

= (
∑

ρ∈∆(ξ) α(ρ)) · νN. H̄ · ζ′ by N 6∩ fn(∆)

⊑ H1 · νN. H̄ · ζ′ by
∑

ρ∈∆(ξ) α(ρ) ⊑ H1

⊑ H0 · H1 · νN. H̄ · ζ′ by ε ⊑ H0

= H0 · H1 · νN. H̄ · WM,U (ζ̄′)

⊑ WM,U (H0 · H1 · νN. H̄ · ζ̄′) by Lemma 16b

⊑ WM,U (H0 · H1 · ζC′) by (12) + Lemma 16a

⊑ ζ by (8)

Also, we have that:

fn(ζ′) = fn(WM,U (ζ̄′))

⊆ (fn(ζ̄′) ∪ M) \ U by Def. 19

⊆ (N̄ ∪ fn(ζC′) ∪ M) \ U by (13)

⊆ (N̄ ∪ fn(ζ̄) ∪ M) \ U

= N̄ ∪ (fn(ζ̄) ∪ M) \ U by N̄ 6∩ U

= N̄ ∪ fn(WM,U (ζ̄)) by (15)

⊆ N ∪ fn(ζ) by (9)

Finally, we have that:

fnt(ζ) ⊆ fnt(WM,U (H0 · H1 · ζC′)) by (10)

= fnt(WM,U (ζC′))

⊆ (fnt(ζC′) ∪ M) \ U

⊆ (fnt(ζ̄′) ∪ M) \ U by (14)

= fnt(WM,U (ζ̄′)) by (16)

= fnt(ζ′)

– C = new x in C′. In this case T (C, ∆) = (νn. H ′, ∆′), where ∆′ = ∆′′; x :
{n} for some ∆′′ such that T (C′, ∆; x : {n}) = (H ′, ∆′′) and n 6∈ ∆. Let
H ′ = νN̄ . H̄ . Then, N = N̄ ∪ {n}, and H = H̄ .

For (20a), by the induction hypothesis it follows that ∆; x : {n} ⊢ C′[e] :
νN̄ . H̄ ·ζ′. We then have the following typing derivation for C[e] = new x in C′[e] =
(λx. C′[e])new:

T-App

∆; x : {n} ⊢ C′[e] : νN̄ . H̄ · ζ′

∆ ⊢ λx. C′[e] : {n} → (νN̄ . H̄ · ζ′) ⊲ ε ∆ ⊢ new : νn. {n} ⊲ ε

∆ ⊢ (λx. C′[e])new : νn. ε · (νN̄ . H̄ · ζ′)
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To conclude, just note that:

νn. ε · (νN̄ . H̄ · ζ′) = ν{n} ∪ N̄. H̄ · ζ′ = νN. H · ζ′

For (20b), any typing derivation for ∆ ⊢ C[e] : ζ has the following form:

T-Wk

T-Wk

∆; x : R ⊢ C′[e] : ζC′

∆ ⊢ λx. C′[e] : R → ζC′ ⊲ ε

∆ ⊢ λx. C′[e] : R → ζC′ ⊲ H0

T-Wk
∆ ⊢ new : νm. {m} ⊲ ε

∆ ⊢ new : νM̄. R ⊲ H1

∆ ⊢ (λx. C′[e])new : νM̄. H0 · H1 · ζC′

∆ ⊢ (λx. C′[e])new : ζ

Let ζ̄ = νM̄. H0 · H1 · ζC′ . Then, by the three weakenings in the derivation
we have that ζ̄ ⊑ ζ, ε ⊑ H0, and νm. {m} ⊲ ε ⊑ νM̄. R ⊲ H1. We assume
that the types in the premises are in νNF (thus, M̄ = R ∩ Nam). Also, by
the side conditions of (T-App), M̄ 6∩ fn(∆).
By Lemma B17, there exist M ⊆ fnt(ζ) \ fnt(ζ̄), U ⊆ fn(ζ̄) \ fn(ζ) such that:

ζ̄ ⊑ WM,U (ζ̄) ⊑ ζ(17)

fn(WM,U (ζ̄)) ⊆ fn(ζ)(18)

fnt(ζ) ⊆ fnt(WM,U (ζ̄))(19)

Without loss of generality, we can assume M, U 6∩ (N ∪ M̄).
By Lemma 2 used on the premise νm. {m} ⊲ ε ⊑ νM̄. R ⊲ H1:

(20) ∃σ : {m} ↔ M̄ : {m}σ ⊑ R ∧ εσ ⊑ H1

Since σ is a bijection, then M̄ = {m̄} for some name m̄. Without loss of
generality, we can suitably choose the fresh names in T (C, ∆) and in the
rule (T-New) to be such that:

(21) N 6∩ (M̄ ∪ {m} ∪ fn(ζC′)) m 6∈ fn(∆) ∪ fn(ζC′) ∪ M̄

There are now two cases, depending on whether R 6= {?} or R = {?}.

Case R 6= {?}. Since the above derivation does not depend on the choice of
n, without loss of generality we assume n 6∈ fn(ζC′). By Lemma 18b used on
the premise ∆; x : R ⊢ C′[e] : ζC′ , it follows that:

∆; x : R{n/m̄} ⊢ C′[e] : ζC′{n/m̄}

Then, by Lemma 18d:

∆; x : R{n/m̄} ∩ Nam ⊢ C′[e] : ζC′{n/m̄}

Since set types contain at most one name, and m̄ ∈ R by M̄ ⊆ R, then:

∆; x : {n} ⊢ C′[e] : ζC′{n/m̄}
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By the induction hypothesis, there exists ζ̄′ such that:

∆; ∆′′; x : {n} ⊢ e : ζ̄′(22)

νN̄ . H̄ · ζ̄′ ⊑ ζC′{n/m̄}(23)

fn(ζ̄′) ⊆ N̄ ∪ fn(ζC′{n/m̄})(24)

fnt(ζC′{n/m̄}) ⊆ fnt(ζ̄′)(25)

Let σ′ = {m/n} (so, σ ◦ σ′ = {m̄/n}).

We now prove the following facts:

{m}6∩ fn(νN̄ .H̄ · ζ̄′)(26)

{m̄}6∩ fn((νN̄ .H̄ · ζ̄′)σ′)(27)

{m̄}6∩ (fnt(ζC′) \ fnt((νN̄ . H̄ · ζ̄′){m̄/n}))(28)

fn(WM,U (ζ̄)) = (fn(ζ̄) ∪ M) \ U(29)

fnt(WM,U (ζ̄′)) = (fnt(ζ̄′) ∪ M) \ U(30)

To prove (26), we have that:

{m} ∩ fn(νN̄ .H̄ · ζ̄′)

= {m} ∩ fn((νN̄ .H̄ · ζ̄′)) by (21)

= {m} ∩ (fn(∆; x : {n}) ∪ (fn(ζ̄′) \ N̄)) by Def. 15

= {m} ∩ (fn(ζ̄′) \ N̄) by (21)

⊆ {m} ∩ ((N̄ ∪ fn(ζC′{n/m̄})) \ N̄) by (24)

⊆ {m} ∩ (fn(ζC′) ∪ {n})

= ∅ by (21)

To prove (27), we have that:

{m̄} ∩ fn((νN̄ .H̄ · ζ̄′)σ′)

= {m̄} ∩ fn((νN̄ .H̄ · ζ̄′)σ′) by (21)

= {m̄} ∩ (fn(H̄ · ζ̄′)σ′ \ N̄) by N̄σ′ = N̄

⊆ {m̄} ∩ (((fn(H̄ · ζ̄′) \ {n}) ∪ {m}) \ N̄) by def. σ′

⊆ {m̄} ∩ ((N̄ ∪ fn(∆) ∪ {n}) ∪ fn(ζ̄′) \ {n}) by Def. 15 and (21)

⊆ {m̄} ∩ fn(ζ̄′) by (21)

⊆ {m̄} ∩ (N̄ ∪ fn(ζC′{n/m̄}) by (24)

⊆ {m̄} ∩ ((fn(ζC′) \ {m̄}) ∪ {n}) by (21)

= ∅ by (21)
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To prove (28), we have that:

{m̄} ∩ (fnt(ζC′) \ fnt((νN̄ . H̄ · ζ̄′){m̄/n}))

= {m̄} ∩ (fnt(ζC′) \ (fnt(ζ̄′) \ N̄){m̄/n})

= {m̄} ∩ (fnt(ζC′) \ (fnt(ζ̄′{m̄/n}) \ N̄))

= {m̄} ∩ (fnt(ζC′) \ fnt(ζ̄′{m̄/n})) by (21)

⊆ {m̄} ∩ (fnt(ζC′) \ fnt(ζC′{n/m̄}{m̄/n})) by (25)

= {m̄} ∩ (fnt(ζC′) \ fnt(ζC′))

= ∅

For (29) and (30), if M = ∅, then Lemma B15 implies both the equations.
Otherwise, ∅ 6= M ⊆ fnt(ζ) \ fnt(ζ̄), and so t(ζ) = S and t(ζ̄) = S̄ for some
S̄ ⊆ S 6= {?}. Then, Lemma B15 implies (29). For (30), by (23) we have that
νN̄ . H̄ · ζ̄′ ⊑ ζC′{n/m̄}, and so since t(ζC′) = t(ζ̄) 6= {?}, then t(ζ̄′) 6= {?}.
Therefore, the equation (30) follows by Lemma B15.

Let ζ′ = WM,U (ζ̄′). We have the following subtyping relation (below we
silently use Lemma 16a in every weakening step under the WM,U ):

νN. H · ζ′ ⊑ WM,U (νN. H · ζ̄′) by Lemma 16b

= WM,U (ν{n} ∪ N̄ . H̄ · ζ̄′)

= WM,U (νn. ε · (νN̄ . H̄ · ζ̄′)) by n 6∈ N̄

⊑ WM,U (νnσ′. εσ′ · (νN̄ . H̄ · ζ̄′)σ′) by (26)

= WM,U (νm. ε · (νN̄ . H̄ · ζ̄′)σ′)

⊑ WM,U (νmσ. εσ · (νN̄ . H̄ · ζ̄′)(σ ◦ σ′)) by (27)

= WM,U (νm̄. εσ · (νN̄ . H̄ · ζ̄′){m̄/n})

⊑ WM,U (νm̄. H1 · (νN̄ . H̄ · ζ̄′){m̄/n}) by (20)

by (23), νN̄ . H̄ ·ζ̄′ ⊑ ζC′{n/m̄}. Then, by Lemma 18b, it follows that (νN̄ . H̄ ·
ζ̄′){m̄/n} ⊑ ζC′ . By (28), we can then apply Lemma 14b, and so:

⊑ WM,U (νm̄. H1 · ζC′)

⊑ WM,U (νM̄. H0 · H1 · ζC′) by ε ⊑ H0

⊑ ζ by (17)
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Also, we have that:

fn(ζ′) = fn(WM,U (ζ̄′))

⊆ (fn(ζ̄′) ∪ M) \ U by Def. 19

⊆ (N̄ ∪ fn(ζC′{n/m̄}) ∪ M) \ U by (24)

⊆ (N̄ ∪ (fn(ζC′) \ {m̄}) ∪ {n} ∪ M) \ U

= (N ∪ (fn(ζC′) \ {m̄}) ∪ M) \ U by N = N̄ ∪ {n}

= N ∪ (((fn(ζC′) \ {m̄}) ∪ M) \ U) by N 6∩U

⊆ N ∪ ((fn(ζ̄) ∪ M) \ U) by ζ̄ = νm̄. H0 · H1 · ζC′

= N ∪ fn(WM,U (ζ̄)) by (29)

⊆ N ∪ fn(ζ) by (18)

Finally, we have that:

fnt(ζ) ⊆ fnt(WM,U (ζ̄)) by (19)

⊆ (fnt(νM̄ . H0 · H1 · ζC′) ∪ M) \ U by Def. 19

= ((fnt(ζC′) \ M̄) ∪ M) \ U

⊆ (fnt(ζC′{n/m̄}) ∪ M) \ U

⊆ (fnt(ζ̄′) ∪ M) \ U by (25)

= fnt(WM,U (ζ̄′)) by (30)

= fnt(ζ′)

Case R = {?}. By Lemma 2, M̄ = ∅ and νn.ε ⊑ H1. Without loss of
generality, we can assume N 6∩ fn(ζC′). By Lemma 18f applied to ∆; x : {?} ⊢
C′[e] : ζC′ , it follows that:

(31) ∆; x : {n} ⊢ C′[e] : ζC′

By the induction hypothesis, there exists ζ̄′ such that:

∆; ∆′′; x : {n} ⊢ e : ζ̄′(32)

νN̄ . H̄ · ζ̄′ ⊑ ζC′(33)

fn(ζ̄′) ⊆ N̄ ∪ fn(ζC′)(34)

fnt(ζC′) ⊆ fnt(ζ̄′)(35)

Therefore:

νN. H · ζ̄′ = ν({n} ∪ N̄). H̄ · ζ̄′

= νn. ε · (νN̄ . H̄ · ζ̄′) by n 6∈ N̄
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by N 6∩ fn(ζC′) and (35), it follows that {n}6∩ (fnt(ζC′) \ fnt(νN̄ . H̄ · ζ̄′)).
Therefore, by (33) and Lemma 14b, it follows that:

⊑ νn. ε · ζC′

= (νn. ε) · ζC′ by n 6∈ fn(ζC′)

⊑ H1 · ζC′ by νn. ε ⊑ H1

⊑ H0 · H1 · ζC′ by ε ⊑ H0

= νM̄. H0 · H1 · ζC′ by M̄ = ∅

Also, we have that:

fn(ζ̄′) ⊆ N̄ ∪ fn(ζC′) by (34)

⊆ N ∪ fn(H0 · H1 · ζC′) by N = N̄ ∪ {n}

= N ∪ fn(ζ) by M̄ = ∅

Finally, we have that:

fnt(ζ) = fnt(H0 · H1 · ζC′)

= fnt(ζC′)

⊆ fnt(ζ̄′) by (35)

To prove (20c), let ∆ ⊢ C[v] : ζ with v 6= ! . By (20b), there exists ζ̄′ such that
∆; ∆′ ⊢ v : ζ̄′ and νN. H · ζ̄′ ⊑ ζ. By Lemma B19, there exists τ and H ′ ⊒ ε
such that ζ̄′ = τ ⊲ H ′ and ∆; ∆′ ⊢ v : τ ⊲ ε. To conclude, note that:

νN.τ ⊲ H ⊑ νN.τ ⊲ H · H ′ = νN.H · ζ̄′ ⊑ ζ

⊓⊔

Lemma 4. Let T (C, ∆) = (νN. H, ∆′). Then, for all terms e:

– ∆; ∆′ ⊢ e : ζ′ =⇒ ∆ ⊢ C[e] : νN. H · ζ′

– ∆ ⊢ C[e] : ζ =⇒ ∃ζ′ : ∆; ∆′ ⊢ e : ζ′ and νN. H · ζ′ ⊑ ζ

Proof. Straightforward from Lemma B20. ⊓⊔

B.4 Subject reduction

Lemma 5. If ∆ ⊢ e : ζ and e
C

==⇒ v, then ∆ ⊢ C[v] : ζ.

Proof. By induction on the size of derivation of e
C

==⇒ v. There are the following
exhaustive cases.

– (E-Val). Trivial.
– (E-Bang). The thesis follows directly from the rule (T-Bang).
– (E-If). Straightfoward application of the induction hypothesis.
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– (E-Ev). Here we have e = α(ξ), C = α(ξ); •, and v = ∗. Any typing deriva-
tion for α(ξ) has the following form:

T-Wk

T-Ev

∆ ⊢ α(ξ) : 1 ⊲

∑

ρ∈∆(ξ) α(ρ)

∆ ⊢ α(ξ) : 1 ⊲ H

∑

ρ∈∆(ξ) α(ρ) ⊑ H

Thus, we have the following typing derivation for C[v] = (λy. ∗)α(ξ):

T-App

T-Abs

∆; y : 1 ⊢ ∗ : 1 ⊲ ε

∆ ⊢ λy. ∗ : 1 → (1 ⊲ ε) ⊲ ε
∆ ⊢ α(ξ) : 1 ⊲ H

∆ ⊢ (λy. ∗)α(ξ) : H · (1 ⊲ ε)

The thesis follows from H · (1 ⊲ ε) = 1 ⊲ H .
– (E-New). Here we have e = new, C = new x in •, and v = x. Any typing

derivation for new has the following form:

T-Wk

T-New

∆ ⊢ new : νn. {n} ⊲ ε

∆ ⊢ new : νM. R ⊲ H

where νn. {n}⊲ε ⊑ νM. R⊲H . Thus, we have the following typing derivation
for C[v] = new x in x = (λx. x)new:

T-App

T-Abs

∆; x : R ⊢ x : R ⊲ ε

∆ ⊢ λx. x : R → (R ⊲ ε) ⊲ ε
∆ ⊢ new : νM. R ⊲ H

∆ ⊢ (λx. x)new : νM. H · (R ⊲ ε)

The thesis follows from νM. H · (R ⊲ ε) = νM. R ⊲ H .
– (E-Beta). Here we have e = e0 e1, and:

e0
C0==⇒ λzx. e′0 e1

C1==⇒ v1 e′0{v1/x, λzx. e′0/z}
C2==⇒ v

e0 e1
C0[C1[C2]]

=======⇒ v

with bv (C0), bv (C1), bv(C2) pairwise disjoint. By (T-App), we have that:

∆ ⊢ e0 : νN0. (τ0 → ζ0) ⊲ H0 ∆ ⊢ e1 : νN1. τ0 ⊲ H1

∆ ⊢ e0 e1 : ν(N0 ∪ N1). H0 · H1 · ζ0

with N0 6∩ N1, N0 6∩ fn(∆), N1 6∩ fn(∆), N0 6∩ fn(H1), and by Remark 1 we
assume both νN0. (τ0 → ζ0) ⊲ H0 and νN1. τ0 ⊲ H1 be in νNF. By the
induction hypothesis applied to the first two premises of (E-Beta):

∆ ⊢ C0[λzx. e′0] : νN0. (τ0 → ζ0) ⊲ H0(36)

∆ ⊢ C1[v1] : νN1. τ0 ⊲ H1(37)
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Let ζ0 = νN̄0. τ̄0 ⊲ H̄0, where we choose N̄0 such that:

(38) N̄0 6∩ (fn(∆) ∪ N0 ∪ N1 ∪ fn(H0) ∪ fn(H1))

Let T (C0, ∆) = (νN ′
0.H

′
0, ∆0), let T (C1, ∆) = (νN ′

1.H
′
1, ∆1), where we

choose N ′
0 and N ′

1 such that:

(39) N ′
0 6∩ N ′

1 (N ′
0 ∪ N ′

1)6∩ (N1 ∪ N̄0 ∪ fn(∆, τ̄0, τ0, H̄0, H1))

Then, from (36) and Lemma 20c, there exists τ ′
0 such that:

∆; ∆0 ⊢ λzx. e′0 : τ ′
0 ⊲ ε(40)

νN ′
0. τ

′
0 ⊲ H ′

0 ⊑ νN0. (τ0 → ζ0) ⊲ H0(41)

From (37) and Lemma 20c, there exists τ ′
1 such that:

∆; ∆1 ⊢ v1 : τ ′
1 ⊲ ε(42)

νN ′
1. τ

′
1 ⊲ H ′

1 ⊑ νN1. τ0 ⊲ H1(43)

By Remark 1, we have the following νNFs:

νN ′
0.τ

′
0 ⊲ H ′

0 = νN̂0.τ
′
0 ⊲ (νŇ0.H

′
0)

N̂0 = N ′
0 ∩ fn(τ ′

0)
Ň0 = N ′

0 \ fn(τ ′
0)

(44)

νN ′
1.τ

′
1 ⊲ H ′

1 = νN̂1.τ
′
1 ⊲ (νŇ1.H

′
1)

N̂1 = N ′
1 ∩ fn(τ ′

1)
Ň1 = N ′

1 \ fn(τ ′
1)

(45)

Hence, by (41) and (43) it follows that:

νN̂0.τ
′
0 ⊲ (νŇ0.H

′
0) ⊑ νN0. (τ0 → ζ0) ⊲ H0(46)

νN̂1.τ
′
1 ⊲ (νŇ1.H

′
1) ⊑ νN1. τ0 ⊲ H1(47)

By Lemma 2 on (46):

(48) ∃σ0 : N̂0 ↔ N0 : τ ′
0σ0 ⊑ τ0 → ζ0 ∧ (νŇ0.H

′
0)σ0 ⊑ H0

By Lemma 2 on (47), there are two cases, i.e. either τ0 6= {?} or τ0 = {?}.

Case τ0 6= {?}. Then, by Lemma 2 on (47):

(49) ∃σ1 : N̂1 ↔ N1 : τ ′
1σ1 ⊑ τ0 ∧ (νŇ1.H

′
1)σ1 ⊑ H1

By Lemma 18b on (40) and on (42):

(∆; ∆0)σ0 ⊢ λzx. e′0 : τ ′
0σ0 ⊲ ε(50)

(∆; ∆1)σ1 ⊢ v1 : τ ′
1σ1 ⊲ ε(51)

By (39), ∆σ0 = ∆σ1 = ∆. By rule (T-Wk), we have that:

∆; ∆0σ0 ⊢ λzx. e′0 : τ0 → ζ0 ⊲ ε
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Inverting the derivation that led to the previous judgement, we obtain:

(52) ∆; ∆0σ0; x : τ0; z : τ0 → ζ0 ⊢ e′0 : ζ0

Also, by (49), (51) and (T-Wk), we have that:

(53) ∆; ∆1σ1 ⊢ v1 : τ0 ⊲ ε

Since by Def. 15 bv (C0) = dom(∆0), bv (C1) = dom(∆1), and bv (C0)6∩ bv (C1),
then dom(∆0)6∩ dom(∆1). Therefore, we can use (T-AddVar) on the premise
of (52) and on (53) to obtain the judgements:

∆; ∆0σ0; ∆1σ1; z : τ0 → ζ0; x : τ0 ⊢ e′0 : ζ0

∆; ∆0σ0; ∆1σ1; z : τ0 → ζ0 ⊢ v1 : τ0 ⊲ ε

From the above typing judgements, Lemma 18a gives:

∆; ∆0σ0; ∆1σ1; z : τ0 → ζ0 ⊢ e′0{v
′/x} : ζ0

By (T-AddVar) used on the judgment (50), we obtain:

∆; ∆0σ0; ∆1σ1 ⊢ λzx. e′0 : (τ0 → ζ0) ⊲ ε

Therefore, a further application of Lemma 18a gives:

∆; ∆0σ0; ∆1σ1 ⊢ e′0{v
′/x, λzx. e′0/z} : ζ0

We can thus apply again the induction hypothesis on the third premise

e′0{v1/x, λzx. e′0/z}
C2==⇒ v of (E-Beta), and obtain:

(54) ∆; ∆0σ0; ∆1σ1 ⊢ C2[v] : ζ0

By Def. 15, applying σ0 and σ1 to T (C0, ∆) and T (C1, ∆; ∆0σ0) gives:

T (C0, ∆) = (νN ′
0σ0.H

′
0σ0, ∆0σ0)(55)

T (C1, ∆; ∆0σ0) = (νN ′
1σ1.H

′
1σ1, ∆1σ1)(56)

From (56) and (54), Lemma 20a yields:

∆; ∆0σ0 ⊢ C1[C2[v]] : νN ′
1σ1. H

′
1σ1 · ζ0

By the above and (55), a further application of Lemma 20a yields:

(57) ∆ ⊢ C0[C1[C2[v]]] : νN ′
0σ0. H

′
0σ0 · (νN ′

1σ1. H
′
1σ1 · ζ0)

Note that by Def. 15, fn(H ′
1) ⊆ fn(∆)∪N ′

1, and so by (45) and (49) it follows
that fn(H ′

1)σ1 ⊆ fn(∆) ∪ N1 ∪ Ň1. Then, by (38) and (39):

(58) N̄0 6∩ fn(H ′
1σ1)
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Similarly, fn(H ′
0) ⊆ fn(∆) ∪ N ′

0, and so by (44) and (48) it follows that
fn(H ′

0)σ0 ⊆ fn(∆) ∪ N0 ∪ Ň0. Then, by (38), (39) and by N1 6∩N0:

(N1 ∪ N̄0)6∩ fn(H ′
0σ0)(59)

N̄0 6∩ (fn(H ′
0σ0) ∪ fn(H1))(60)

Therefore, we have that:

νN ′
0σ0. H

′
0σ0 · (νN ′

1σ1. H
′
1σ1 · ζ0)

= ν(N̂0 ∪ Ň0)σ0. H
′
0σ0 · (ν(N̂1 ∪ Ň1)σ1. H

′
1σ1 · (νN̄0. τ̄0 ⊲ H̄0))

= ν(N̂0 ∪ Ň0)σ0. H
′
0σ0 · (ν((N̂1 ∪ Ň1)σ1 ∪ N̄0). τ̄0 ⊲ H ′

1σ1 · H̄0) by (58)

= ν(N0 ∪ Ň0). H
′
0σ0 · (ν(N̂1σ1 ∪ Ň1σ1 ∪ N̄0). τ̄0 ⊲ H ′

1σ1 · H̄0) by (48)

= ν(N0 ∪ Ň0). H
′
0σ0 · (ν(N1 ∪ Ň1 ∪ N̄0). τ̄0 ⊲ H ′

1σ1 · H̄0) by (49)

= ν(N0 ∪ Ň0). H
′
0σ0 · (ν(N1 ∪ N̄0). τ̄0 ⊲ (νŇ1.H

′
1)σ1 · H̄0) by (39)

⊑ ν(N0 ∪ Ň0). H
′
0σ0 · (ν(N1 ∪ N̄0). τ̄0 ⊲ H1 · H̄0) by (49)

= ν(N0 ∪ Ň0 ∪ N1 ∪ N̄0). τ̄0 ⊲ H ′
0σ0 · H1 · H̄0 by (59)

= ν(N0 ∪ N1 ∪ N̄0). τ̄0 ⊲ (νŇ0.H
′
0)σ0 · H1 · H̄0 by (39)

⊑ ν(N0 ∪ N1 ∪ N̄0). τ̄0 ⊲ H0 · H1 · H̄0 by (48)

= ν(N0 ∪ N1). H0 · H1 · ζ0 by (38)

Applying the above weakening to the type obtained in (57) concludes.

Case τ0 = {?}. Lemma 2 gives:

(61) N1 = ∅ τ ′
1 ⊑ τ0 νN ′

1. H
′
1 ⊑ H1

So, by (T-Wk) on (42), we have that:

(62) ∆; ∆1 ⊢ v1 : τ0 ⊲ ε

Since by Def. 15 bv (C0) = dom(∆0), bv (C1) = dom(∆1), and bv (C0)6∩ bv (C1),
then dom(∆0)6∩ dom(∆1). Therefore, we can use (T-AddVar) on the premise
of (52) and on (62) to obtain the judgements:

∆; ∆0σ0; ∆1; z : τ0 → ζ0; x : τ0 ⊢ e′0 : ζ0

∆; ∆0σ0; ∆1; z : τ0 → ζ0 ⊢ v1 : τ0 ⊲ ε

From the above typing judgements, Lemma 18a gives:

∆; ∆0σ0; ∆1; z : τ0 → ζ0 ⊢ e′0{v
′/x} : ζ0

By (T-AddVar) used on the judgment (40), we obtain:

∆; ∆0σ0; ∆1 ⊢ λzx. e′0 : (τ0 → ζ0) ⊲ ε
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Therefore, a further application of Lemma 18a gives:

∆; ∆0σ0; ∆1 ⊢ e′0{v
′/x, λzx. e′0/z} : ζ0

By the induction hypothesis on the premise e′0{v1/x, λzx. e′0/z}
C2==⇒ v of

(E-Beta), we obtain:

(63) ∆; ∆0σ0; ∆1 ⊢ C2[v] : ζ0

From T (C1, ∆; ∆0σ0) = (νN ′
1.H

′
1, ∆1) and (63), Lemma 20a yields:

∆; ∆0σ0 ⊢ C1[C2[v]] : νN ′
1. H

′
1 · ζ0

By the above and (55), a further application of Lemma 20a yields:

(64) ∆ ⊢ C0[C1[C2[v]]] : νN ′
0σ0. H

′
0σ0 · (νN ′

1. H
′
1 · ζ0)

Therefore, we have that:

νN ′
0σ0. H

′
0σ0 · (νN ′

1. H
′
1 · ζ0)

= νN ′
0σ0. H

′
0σ0 · ((νN ′

1. H
′
1) · ζ0) by (39)

⊑ νN ′
0σ0. H

′
0σ0 · H1 · ζ0 by (61)

= ν(N̂0 ∪ Ň0)σ0. H
′
0σ0 · H1 · ζ0 by (44)

= ν((N̂0 ∪ Ň0)σ0 ∪ N̄0). τ̄0 ⊲ H ′
0σ0 · H1 · H̄0 by (60)

= ν(N0 ∪ Ň0 ∪ N̄0). τ̄0 ⊲ H ′
0σ0 · H1 · H̄0 by (48)

= ν(N0 ∪ N̄0). τ̄0 ⊲ (νŇ0.H
′
0)σ0 · H1 · H̄0 by (39)

⊑ ν(N0 ∪ N̄0). τ̄0 ⊲ H0 · H1 · H̄0 by (48)

= ν(N0 ∪ N1 ∪ N̄0). τ̄0 ⊲ H0 · H1 · H̄0 by (61)

= ν(N0 ∪ N1). H0 · H1 · ζ0 by (38)

Applying the above weakening to the type obtained in (64) concludes.
– (E-BetaBang1). Here we have e = e0 e1, and:

e0
C

==⇒ !

e0 e1
C

==⇒ !

By the rule (T-App), we have that:

(65)
∆ ⊢ e0 : νN0. (τ0 → ζ0) ⊲ H0 ∆ ⊢ e1 : νN1. τ0 ⊲ H1

∆ ⊢ e0 e1 : ν(N0 ∪ N1). H0 · H1 · ζ0

with N0 6∩N1, N0 6∩ fn(∆), N1 6∩ fn(∆), N0 6∩ fn(H1), and we assume the types
in the premise are in νNF. By the induction hypothesis:

(66) ∆ ⊢ C[! ] : νN0. (τ0 → ζ0) ⊲ H0
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Let T (C, ∆) = (νN ′.H ′, ∆′), where we choose N ′ such that:

(67) N ′ 6∩ (fn(∆) ∪ fn(H1) ∪ fn(ζ0) ∪ N0)

By Lemma 20b, there exists ζ̄ such that:

νN ′. H ′ · ζ̄ ⊑ νN0. (τ0 → ζ0) ⊲ H0(68)

Let ζ̄ = νN̄ . τ̄ ⊲ H̄ be in νNF (i.e. N̄ ⊆ fn(τ̄ )), with N̄ chosen such that:

(69) N̄ 6∩ (N ′ ∪ N0 ∪ N1 ∪ fn(∆; ∆′) ∪ fn(H1) ∪ fn(H ′))

Since N̄ 6∩ fn(H ′) by (69), then:

νN ′. H ′ · ζ̄ = ν(N ′ ∪ N̄). τ̄ ⊲ H ′ · H̄

By Remark 1, we have the following νNF (recall that N̄ ⊆ fn(τ̄ )):

νN ′. H ′ · ζ̄ = νN̂ . τ̄ ⊲ (νŇ . H ′ · H̄)
N̂ = (N ′ ∩ fn(τ̄ )) ∪ N̄
Ň = N ′ \ fn(τ̄ )

(70)

Therefore, by Lemma 2:

(71) ∃σ : N̂ ↔ N0 : τ̄σ ⊑ τ0 → ζ0 ∧ (νŇ .H ′ · H̄)σ ⊑ H0

By the rule (T-Bang), we have:

∆; ∆′σ ⊢ ! : ν(N̄σ ∪ N1). H̄σ · H1 · ζ0

By Def. 15, we have T (C, ∆) = (νN ′σ.H ′σ, ∆′σ). Then, by Lemma 20a:

∆ ⊢ C[! ] : νN ′σ. H ′σ · (ν(N̄σ ∪ N1). H̄σ · H1 · ζ0)

Note that, by Def. 15, fn(H ′σ) ⊆ fn(∆) ∪ N ′σ. By the side conditions of
(T-App) in (65), fn(∆)6∩ N̄σ ⊆ N0 and fn(∆)6∩ N1. Since N 6∩N ′ and σ is
bijective, then N ′σ 6∩ N̄σ. Also, by N ′σ ⊆ N0 and by N0 6∩ N1, it follows that
N ′σ 6∩ N1. Therefore, we have proved that:

(72) fn(H ′σ)6∩ (N̄σ ∪ N1)

To conclude, a further application of (T-Wk) is in order:

νN ′σ. H ′σ · (ν(N̄σ ∪ N1). H̄σ · H1 · ζ0)

= ν(N ′σ ∪ N̄σ ∪ N1). H
′σ · H̄σ · H1 · ζ0 by (72)

= ν((N ′ ∩ fn(τ̄ ))σ ∪ (N ′ \ fn(τ̄ ))σ ∪ N̄σ ∪ N1). H
′σ · H̄σ · H1 · ζ0

= ν(N̂σ ∪ Ň ∪ N1). H
′σ · H̄σ · H1 · ζ0 by (70)

= ν(N̂σ ∪ N1). (νŇ . H ′σ · H̄σ) · H1 · ζ0 by (67)

= ν(N̂σ ∪ N1). (νŇ . H ′ · H̄)σ · H1 · ζ0 by (70)

⊑ ν(N0 ∪ N1). H0 · H1 · ζ0 by (71)
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– (E-BetaBang2). Here we have e = e0 e1, and:

e0
C0==⇒ v0 e1

C1==⇒ !

e0 e1
C0[C1]

====⇒ !

By the rule (T-App), we have that:

∆ ⊢ e0 : νN0. (τ0 → ζ0) ⊲ H0 ∆ ⊢ e1 : νN1. τ0 ⊲ H1

∆ ⊢ e0 e1 : ν(N0 ∪ N1). H0 · H1 · ζ0

where N0 6∩ N1, N0 6∩ fn(∆), N1 6∩ fn(∆) N0 6∩ fn(H1), and we assume the types
in the premise are in νNF. By the induction hypothesis applied on both the
premises of (E-BetaBang2):

∆ ⊢ C0[v0] : νN0. (τ0 → ζ0) ⊲ H0(73)

∆ ⊢ C1[! ] : νN1. τ0 ⊲ H1(74)

Let T (C0, ∆) = (νN ′
0.H

′
0, ∆0) and let T (C1, ∆) = (νN ′

1.H
′
1, ∆1), where we

choose N ′
0 and N ′

1 such that:

(75) N ′
0 6∩ N ′

1 (N ′
0 ∪ N ′

1)6∩ (fn(∆) ∪ N0 ∪ N1 ∪ fn(ζ0) ∪ fn(H1))

By Lemma 20c used on (73) and Lemma 20b used on (74), there exist τ ′
0

and ζ̄1 such that:

∆; ∆0 ⊢ v0 : τ ′
0 ⊲ ε νN ′

0. τ
′
0 ⊲ H ′

0 ⊑ νN0.τ0 → ζ0 ⊲ H0(76)

∆; ∆1 ⊢ ! : ζ̄1 νN ′
1. H

′
1 · ζ̄1 ⊑ νN1. τ0 ⊲ H1(77)

fn(ζ̄1) ⊆ N ′
1 ∪ fn(νN1. τ0 ⊲ H1)

Let ζ̄1 = νN̄1. τ̄1 ⊲ H̄1, where we choose N̄1 such that:

(78) N̄1 6∩ (fn(H̄1) ∪ fn(∆) ∪ fn(H ′
1) ∪ fn(ζ0) ∪ N0 ∪ N1)

Since N̄1 6∩ fn(H ′
1) by (78), we have that:

νN ′
1.H

′
1 · ζ̄1 = ν(N ′

1 ∪ N̄1). τ̄1 ⊲ H ′
1 · H̄1

By Remark 1, we have the following νNFs:

νN ′
0.τ

′
0 ⊲ H ′

0 = νN̂ ′
0.τ

′
0 ⊲ (νŇ ′

0.H
′
0)

N̂ ′
0 = N ′

0 ∩ fn(τ ′
0)

Ň ′
0 = N ′

0 \ fn(τ ′
0)

(79)

νN ′
1.H

′
1 · ζ̄1 = νN̂ ′

1.τ̄1 ⊲ (νŇ ′
1.H

′
1 · H̄1)

N̂ ′
1 = (N ′

1 ∩ fn(τ̄1)) ∪ N̄1

Ň ′
1 = N ′

1 \ fn(τ̄1)
(80)

Thus, we have the following subtype relations between types in νNF:

νN̂ ′
0.τ

′
0 ⊲ (νŇ ′

0.H
′
0) ⊑ νN0.τ0 → ζ0 ⊲ H0(81)

νN̂ ′
1.τ̄1 ⊲ (νŇ ′

1.H
′
1 · H̄1) ⊑ νN1. τ0 ⊲ H1(82)

By Lemma 2 on (81):

(83) ∃σ0 : N̂ ′
0 ↔ N0 : τ ′

0σ0 ⊑ τ0 → ζ0 ∧ (νŇ ′
0.H

′
0)σ0 ⊑ H0

There are now two cases, depending on whether τ0 6= {?} or τ0 = {?}.
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Case τ0 6= {?}. By Lemma 2 used on (82):

(84) ∃σ1 : N̂ ′
1 ↔ N1 : τ̄1σ1 ⊑ τ0 ∧ (νŇ ′

1. H
′
1 · H̄1)σ1 ⊑ H1

By (84) and (80), dom(σ1) ⊆ N ′
1∪N̄1. Then, since N ′

1 6∩ fn(∆) and N̄1 6∩ fn(∆)
by (75) and (78), it follows that ∆σ1 = ∆. Let σ̂1 = σ1|N̄1

and let σ̌1 =

σ1|dom(σ1)\N̄1
. Let N1 = N̂1 ∪ Ň1, where N̂1 = ran(σ̂1) and Ň1 = ran(σ̌1)

and N̂1 6∩ Ň1. By the rule (T-Bang), we have that:

∆; ∆0σ0; ∆1σ1 ⊢ ! : νN̄1σ̂1. H̄1σ1 · ζ0

By Def. 15 we have T (C0, ∆) = (νN ′
0σ0.H

′
0σ0, ∆0σ0), and T (C1, ∆; ∆0σ0) =

(νN ′
1σ1.H

′
1σ1, ∆1σ1). By Lemma 20a on the above judgement we have:

∆; ∆0σ0 ⊢ C1[! ] : νN ′
1σ1. H

′
1σ1 · (νN̄1σ̂1. H̄1σ1 · ζ0)

A further application of Lemma 20a then yields:

∆ ⊢ C0[C1[! ]] : νN ′
0σ0. H

′
0σ0 · (νN ′

1σ1. H
′
1σ1 · (νN̄1σ̂1. H̄1σ1 · ζ0))

We now prove the following facts:

N̄1σ̂1 6∩ fn(H ′
1σ1)(85)

N1 6∩ fn(H ′
0σ0)(86)

To prove (85), note that:

N̄1σ̂1 ∩ fn(H ′
1σ1) = N̂1 ∩ fn(H ′

1)σ1

⊆ N̂1 ∩ (fn(∆)σ1 ∪ N ′
1σ1)

⊆ N̂1 ∩ (fn(∆) ∪ N ′
1 ∪ Ň1)

= ∅

To prove (86), note that:

N1 ∩ fn(H ′
0σ0) ⊆ N1 ∩ (fn(∆)σ0 ∪ N ′

0σ0)

⊆ N1 ∩ (fn(∆) ∪ N ′
0 ∪ N0)

= ∅

To conclude, a further application of (T-Wk) suffices, because:

νN ′
0σ0. H

′
0σ0 · (νN ′

1σ1. H
′
1σ1 · (νN̄1σ̂1. H̄1σ1 · ζ0))

= νN ′
0σ0. H

′
0σ0 · (ν(N ′

1σ1 ∪ N̄1σ̂1). H
′
1σ1 · H̄1σ1 · ζ0) by (85)

= νN ′
0σ0. H

′
0σ0 · (ν(N̂1 ∪ Ň1). (νŇ ′

1. H
′
1σ1 · H̄1σ1) · ζ0)

= νN ′
0σ0. H

′
0σ0 · (νN1. (νŇ ′

1. H
′
1 · H̄1)σ1 · ζ0)
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by (82), we have that (νŇ ′
1. H

′
1 · H̄1)σ1 ⊑ H1. Therefore, by Lemma 14a,

(νŇ ′
1. H

′
1 · H̄1)σ1 · ζ0 ⊑ H1 · ζ0. We can then apply twice Lemma 14b – the

disjointness conditions of which are easy to check – and obtain:

⊑ νN ′
0σ0. H

′
0σ0 · (νN1. H1 · ζ0)

= ν(N ′
0σ0 ∪ N1). H

′
0σ0 · H1 · ζ0 by (86)

since N ′
0σ0 = (N ′

0 \ fn(τ ′
0))σ0 ∪ (N ′

0 ∩ fn(τ ′
0))σ0 = Ň ′

0 ∪ N0:

= ν(N0 ∪ Ň ′
0 ∪ N1). H

′
0σ0 · H1 · ζ0

= ν(N0 ∪ N1). (νŇ ′
0. H

′
0σ0) · H1 · ζ0 by (75)

= ν(N0 ∪ N1). (νŇ ′
0. H

′
0)σ0 · H1 · ζ0

⊑ ν(N0 ∪ N1). H0 · H1 · ζ0 by (81)

Case τ0 = {?}. We have N1 = ∅, and by Lemma 2 used on (82):

(87) τ̄1 ⊑ τ0 ν(N ′
1 ∪ N̄1). H

′
1 · H̄1 ⊑ H1

By the rule (T-Bang), we have that:

∆; ∆0σ0; ∆1 ⊢ ! : νN̄1. H̄1 · ζ0

By Lemma 20a, from the above judgement we obtain:

∆; ∆0σ0 ⊢ C1[! ] : νN ′
1. H

′
1 · (νN̄1. H̄1 · ζ0)

By Def. 15, we have T (C0, ∆) = (νN ′
0σ0. H

′
0σ0, ∆0σ0). Thus, a further ap-

plication of Lemma 20a yields:

∆ ⊢ C0[C1[! ]] : νN ′
0σ0.H

′
0σ0 · (νN ′

1. H
′
1 · (νN̄1. H̄1 · ζ0))

To conclude, a further application of (T-Wk) suffices, because:

νN ′
0σ0. H

′
0σ0 · (νN ′

1. H
′
1 · (νN̄1. H̄1 · ζ0))

= νN ′
0σ0. H

′
0σ0 · (ν(N ′

1 ∪ N̄1). H
′
1 · H̄1) · ζ0 by (78)

by (87), we have that ν(N ′
1 ∪ N̄1). H

′
1 · H̄1 ⊑ H1. Therefore, by Lemma 14a,

(ν(N ′
1 ∪ N̄1). H

′
1 · H̄1) · ζ0 ⊑ H1 · ζ0. We can then apply Lemma 14b – the

disjointness condition of which is easy to check – and obtain:

⊑ νN ′
0σ0. H

′
0σ0 · H1 · ζ0

= ν(N0 ∪ Ň ′
0). H

′
0σ0 · H1 · ζ0

= νN0. (νŇ ′
0. H

′
0σ0) · H1 · ζ0 by (75)

= νN0. (νŇ ′
0. H

′
0)σ0 · H1 · ζ0

⊑ ν(N0 ∪ N1). H0 · H1 · ζ0 by (81)

⊓⊔
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B.5 Correctness of effects

Lemma 3. For all closed history contexts C, values v, and sets of resources R:

∆ ⊢ C[v] : νN. τ ⊲ H ∧ fn(νN. H) = ∅ =⇒ H(C, R) ⊆? JνN. HK(R)

Proof. By induction on the structure of C, there are the following three cases:

– C = •. Trivial, since H(•, R) = { !}.

– C = α(ξ); C′. Any typing derivation for C[v] = (λy. C′[v])α(ξ) has the
following form:

T-Wk

...

∆; y : 1 ⊢ C′[v] : ζ

∆ ⊢ λy. C′[v] : 1 → ζ ⊲ ε
T-Wk

∆ ⊢ α(ξ) : 1 ⊲

∑

ρ∈∆(ξ) α(ρ)

∆ ⊢ α(ξ) : 1 ⊲ H ′

∆ ⊢ (λy. C′[v])α(ξ) : H ′ · ζ

∆ ⊢ (λy. C′[v])α(ξ) : νN. τ ⊲ H

where
∑

ρ∈∆(ξ) α(ρ) ⊑ H ′. Let ζ = νN̄ . τ̄ ⊲ H̄, where w.l.o.g. we choose N̄

disjoint from fn(H ′). Also, w.l.o.g. assume that both ζ and νN. τ ⊲H are in
νNF, and that N 6∩ fn(H̄ · H ′).

Let U = fn(H̄) \ N̄ . By Lemma B17, ζ ⊑ W∅,U (ζ), and by using (T-Wk) on
the judgement ∆; y : 1 ⊢ C′[v] : ζ, we have:

(88) ∆; y : 1 ⊢ C′[v] : W∅,U (ζ) = νN̄ . W∅,U (τ̄ ) ⊲ H̄{?/U}

Since fn(νN̄ . H̄{?/U}) = ∅, then by the induction hypothesis:

(89) H(C′, R) ⊆? JνN̄ . H̄{?/U}K(R)

Also, since H ′ · ζ ⊑ νN. τ ⊲ H , then by Lemma 16a:

νN̄ . W∅,U (τ̄ ). (H ′ ·H̄){?/U} = W∅,U (H ′ ·ζ) ⊑ W∅,U (νN. τ ⊲H) = νN. τ ⊲H

There are now two subcases, depending on either τ 6= {?} or τ = {?}.

If τ 6= {?}, let N̂ = N̄ ∩ fn(W∅,U (τ̄ )) and Ň = N̄ \ fn(W∅,U (τ̄ )). Then, by
Lemma B12:

(90) ∃σ : N̂ ↔ N : (νŇ . (H ′ · H̄){?/U})σ ⊑ H
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Therefore:

H(C, R) = { !} ∪ {α(ξ)η | η ∈ H(C′, R) }

⊆? { !} ∪ {α(ξ)η | η ∈ JνN̄ . H̄{?/U}K(R) } by (89)

= J
∑

ρ∈∆(ξ) α(ρ)K(R) ⊙ JνN̄ . H̄{?/U}K(R) by fv (C) = ∅

⊆? JH ′K(R) · JνN̄ . H̄{?/U}K(R) by Lemma 14a

= JνN̄ . H ′ · H̄{?/U}K(R) by N 6∩ fn(H ′)

⊆? JνN̄ . (H ′ · H̄){?/U}K(R)

= JνN̂ . νŇ . (H ′ · H̄){?/U}K(R)

= JνN̂σ. (νŇ . (H ′ · H̄){?/U})σK(R) by ran(σ)6∩ fn(H ′ · H̄)

⊆? JνN. HK(R) by (90)

If τ = {?}, the proof proceeds similarly using the second item of Lemma 2.

– C = new x in C′. Any typing derivation for C[v] = new x in C′[v] =
(λx. C′[v])new has the following form:

T-Wk

...

∆; x : S ⊢ C′[v] : ζ

∆ ⊢ λx. C′[v] : S → ζ ⊲ ε
T-Wk

∆ ⊢ new : νn. {n} ⊲ ε

∆ ⊢ new : νM. S ⊲ H ′

∆ ⊢ (λx. C′[v])new : νM. H ′ · ζ

∆ ⊢ (λx. C′[v])new : ζ′

where νn. {n} ⊲ ε ⊑ νM. S ⊲ H ′, and νM. H ′ · ζ ⊑ ζ′ = νN. τ ⊲ H . Let
ζ = νN̄ . τ ⊲ H̄ , and w.l.o.g. choose N̄, M, N such that:

N̄ 6∩ (M ∪ fn(H ′)) N 6∩ (M ∪ N̄ ∪ fn(H ′) ∪ fn(H̄))

Let U = fn(H̄) \ N̄ . By Lemma B17, ζ ⊑ W∅,U (ζ), and by using (T-Wk) on
the judgement ∆; x : S ⊢ C′[v] : ζ, we have:

(91) ∆; x : S ⊢ C′[v] : W∅,U (ζ) = νN̄ . W∅,U (τ̄ ) ⊲ H̄{?/U}

Assume τ 6= {?} (the other case is simpler). There are two further subcases.

If S 6= {?}, then let M = {m} = S ∩ Nam. By using Lemma (18d) on (91),
we have that ∆; x : {m} ⊢ C′[v] : W∅,U (ζ), and then by (18c), for all r:

∆; x : {r} ⊢ C′[v]{r/x} : W∅,U (ζ{r/m})(92)

= νN̄ . W∅,U (τ̄ ){r/m} ⊲ H{?/U}{r/m}

Note that fn(νN̄ . H̄{r/m}) ⊆ fn(H{?/U}) \ N̄ = ∅. Thus, we can apply the
induction hypothesis on (92) and obtain, for all r and R:

(93) H(C′{r/x}, R ∪ {r}) ⊆? JνN̄ . H̄{?/U}{r/m}K(R ∪ {r})
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Therefore:

H(C, R) = { !} ∪
⋃

r 6∈R H(C′{r/x}, R ∪ {r})

and so by (93):

⊆? { !} ∪
⋃

r 6∈R JνN̄ . H̄{?/U}{r/m}K(R ∪ {r})

by Def. 9, choosing n 6∈ N̄ :

= Jνn. ε · νN̄ . H̄{?/U}K(R)

since S 6= {?}, by Lemma 2, there exists σ′ : {n} ↔ {m} such that εσ ⊑ H ′.
Since {m}6∩ fn(νN̄ . H̄{?/U}), we have that:

= Jνnσ. εσ · νN̄ . H̄{?/U}K(R)

⊆? Jνm. H ′ · νN̄ . H̄{?/U}K(R)

since N̄ 6∩ fn(H ′):

= Jν(M ∪ N̄). H ′ · H̄{?/U}K(R)

⊆? Jν(M ∪ N̄). (H ′ · H̄){?/U}K(R)

Since νM. H ′ ·ζ ⊑ ζ′, then by Lemma 16a W∅,U (νM. H ′ ·ζ) ⊑ W∅,U (ζ′) = ζ′.

Let N̂ = (M ∪N̄)∩fn(τ̄ ) and Ň = (M ∪N̄ )\ fn(τ̄ ). Since W∅,U (νM. H ′ ·ζ) =
ν(M ∪ N̄). W∅,U (τ̄ ) ⊲ (H ′ · H){?/U} and τ 6= {?}, then by Lemma 2 there

exists σ : N̂ ↔ N such that (νŇ . (H ′ · H){?/U})σ ⊑ H . Therefore:

= JνN̂ . νŇ. (H ′ · H̄){?/U}K(R)

= JνN̂σ. (νŇ . (H ′ · H̄){?/U})σK(R)

⊆? JνN. HK(R)

If S = {?}, then M = ∅, and the proof proceeds as in the previous case. ⊓⊔
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