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Abstract—The construction and analysis of an abstract reach-
ability tree (ART) are the basis for a successful method for
software verification. The ART represents unwindings of the
control-flow graph of the program. Traditionally, a transition
of the ART represents a single block of the program, and
therefore, we call this approach single-block encoding (SBE).
SBE may result in a huge number of program paths to be
explored, which constitutes a fundamental source of inefficiency.
We propose a generalization of the approach, in which transitions
of the ART represent larger portions of the program; we call
this approach large-block encoding (LBE). LBE may reduce the
number of paths to be explored up to exponentially. Within
this framework, we also investigate symbolic representations: for
representing abstract states, in addition to conjunctions as used
in SBE, we investigate the use of arbitrary Boolean formulas;
for computing abstract-successor states, in addition to Cartesian
predicate abstraction as used in SBE, we investigate the use of
Boolean predicate abstraction. The new encoding leverages the
efficiency of state-of-the-art SMT solvers, which can symbolically
compute abstract large-block successors. Our experiments on
benchmark C programs show that the large-block encoding
outperforms the single-block encoding.

I. Introduction

Software model checking is an effective technique for software

verification. Several advances in the field have lead to tools

that are able to verify programs of considerable size, and show

significant advantages over traditional techniques in terms of

precision of the analysis (e.g., SLAM [3] and BLAST [4]).

However, efficiency and scalability remain major concerns in

software model checking and hamper the adaptation of the

techniques in industrial practice. A successful approach to

software model checking is based on the construction and

analysis of an abstract reachability tree (ART), and predicate

abstraction is one of the favorite abstract domains. The ART

represents unwindings of the control-flow graph of the pro-

gram. The search is usually guided by the control flow of the

program. Nodes of the ART typically consist of the control-

flow location, the call stack, and formulas that represent the

data states. During the refinement process, the ART nodes are

incrementally refined.

In the traditional ART approach, each program operation

(assignment operation, assume operation, function call, func-

tion return) is represented by a single edge in the ART.

Therefore, we call this approach single-block encoding (SBE).

A fundamental source of inefficiency of this approach is the
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fact that the control-flow of the program can induce a huge

number of paths (and nodes) in the ART, which are explored

independently of each other.

We propose a novel, broader view on ART-based software

model checking, where a much more compact abstract space

is used, resulting thus in a much smaller number of paths

to be enumerated in the ART. Instead of using edges that

represent single program operations, we encode entire parts

of the program in one edge. In contrast to SBE, we call our

new approach large-block encoding (LBE). In general, the new

encoding may result in an exponential reduction of the number

of ART nodes.

The generalization from SBE to LBE has two main con-

sequences. First, LBE requires a more general representation

of abstract states than SBE. SBE is typically based on mere

conjunctions of predicates. Because the LBE approach sum-

marizes large portions of the control flow, conjunctions are not

sufficient, and we need to use arbitrary Boolean combinations

of predicates to represent the abstract states. Second, LBE

requires a more accurate abstraction in the abstract-successor

computations. Intuitively, an abstract edge represents many

different paths of the program, and therefore it is necessary

that the abstract-successor computations take the relationships

between the predicates into account.

In order to make this generalization practical, we rely on

efficient solvers for satisfiability modulo theories (SMT). In

particular, enabling factors are the capability of performing

Boolean reasoning efficiently (e.g., [18]), the availability of ef-

fective algorithms for abstraction computation (e.g., [8], [15]),

and interpolation procedures to extract new predicates [6], [9].

Considering Boolean abstraction and large-block encod-

ing in addition to the traditional techniques, we obtain the

following interesting observations: (i) whilst the SBE ap-

proach requires a large number of successor computations, the

LBE approach reduces the number of successor computations

dramatically (possibly exponentially); (ii) whilst Cartesian

abstraction can be efficiently computed with a linear number

of SMT solver queries, Boolean abstraction is expensive to

compute because it requires an enumeration of all satisfiable

assignments for the predicates. Therefore, two combinations of

the above strategies provide an interesting tradeoff: The com-

bination of SBE with Cartesian abstraction was successfully

implemented by tools like BLAST and SLAM. We investigate

the combination of LBE with Boolean abstraction, by first for-

mally defining LBE in terms of a summarization of the control-

flow automaton for the program, and then implementing this

LBE approach together with a Boolean predicate abstraction.

We evaluate the performance and precision by comparing it

with the model checker BLAST and with an own implemen-

tation of the traditional approach. Our own implementation of
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the SBE and LBE approach is integrated as a new component

into CPACHECKER [5]1. The experiments show that our new

approach outperforms the previous approach.

Example. We illustrate the advantage of LBE over SBE on the

example program in Fig. 1 (a). In SBE, each program location

is modeled explicitly, and an abstract-successor computation is

performed for each program operation. Figure 1 (b) shows the

structure of the resulting ART. In the figure, abstract states are

drawn as ellipses, and labeled with the location of the abstract

state; the arrows indicate that there exists an edge from the

source location to the target location in the control-flow. The

ART represents all feasible program paths. For example, the

leftmost program path is taking the ‘then’ branch of every ‘if’

statement. For every edge in the ART, an abstract-successor

computation is performed, which potentially includes several

SMT solver queries. The problems given to the SMT solver

are usually very small, and the runtime sums up over a large

amount of simple queries. Therefore, model checkers that are

based on SBE (like BLAST) experience serious performance

problems on programs with such an exploding structure (cf. the

test_locks examples in Table I). In LBE, the control-flow

graph is summarized, such that control-flow edges represent

entire subgraphs of the original control-flow. In our example,

most of the program is summarized into one control-flow edge.

Figure 1 (c) shows the structure of the resulting ART, in which

all the feasible paths of the program are represented by a single

edge. The exponential growth of the ART does not occur. �

Related Work. The model checkers SLAM and BLAST are

typical examples for the SBE approach [3], [4], both based on

counterexample-guided abstraction refinement (CEGAR) [10].

Also the tool SATABS is based on CEGAR, but it performs a

fully symbolic search in the abstract space [12]. In contrast,

our approach still follows the lazy-abstraction paradigm [14],

but it abstracts and refines chunks of the program “on-the-fly”.

The work of McMillan is also based on lazy abstraction, but

instead of using predicate abstraction for the abstract domain,

Craig interpolants from infeasible error paths are directly

used, thus avoiding abstract-successor computations [16]. A

fundamentally different approach to software model checking

is bounded model checking (BMC), with the most prominent

example CBMC [11]. Programs are unrolled up to a given

depth, and a formula is constructed which is satisfiable iff

one of the considered program executions reaches a certain

error location. The analysis tool CALYSTO is an example of

an “extended static checker”, following an approach similar

to BMC when generating verification conditions [1], while

possibly abstracting away some irrelevant parts of the program.

The BMC approaches are targeted towards discovering bugs,

and can not be used to prove program safety.

Structure. Section II provides the necessary background. Sec-

tion III explains our contribution in detail. We experimentally

evaluate our novel approach in Sect. IV. In Sect. V, we draw

some conclusions and outline directions for future research.

1Available at http://www.cs.sfu.ca/∼dbeyer/CPAchecker

II. Background

A. Programs and Control-Flow Automata

We restrict the presentation to a simple imperative program-

ming language, where all operations are either assignments

or assume operations, and all variables range over integers.2

We represent a program by a control-flow automaton (CFA).

A CFA A = (L,G) consists of a set L of program locations,

which model the program counter l and a set G⊆ L×Ops×L

of control-flow edges, which model the operations that are

executed when control flows from one program location to

another. The set of variables that occur in operations from Ops

is denoted by X . A program P = (A, l0, lE) consists of a CFA

A = (L,G) (which models the control flow of the program),

an initial program location l0 ∈ L (which models the program

entry) such that G does not contain any edge (·, ·, l0), and

a target program location lE ∈ L (which models the error

location).

A concrete data state of a program is a variable assignment

c : X → Z that assigns to each variable an integer value.

The set of all concrete data states of a program is denoted

by C . A set r ⊆ C of concrete data states is called region.

We represent regions using first-order formulas (with free

variables from X): a formula ϕ represents the set S of all

data states c that imply it (i.e. S = {c | c |= ϕ}). A concrete

state of a program is a pair (l,c) where l ∈ L is a program

location and c is a concrete data state. A pair (l,ϕ) represents

the following set of all concrete states: {(l,c) | c |= ϕ}. The

concrete semantics of an operation op ∈ Ops is defined by

the strongest postcondition operator SPop: for a formula ϕ ,

SPop(ϕ) represents the set of data states that are reachable

from any of the states in region represented by ϕ after the

execution of op. Given a formula ϕ that represents a set of

concrete data states, for an assignment operation s := e, we

have SPs:=e(ϕ) = ∃ŝ : ϕ[s7→ŝ]∧ (s = e[s 7→ŝ]); and for an assume

operation assume(p), we have SPassume(p)(ϕ) = ϕ ∧ p.

A path σ is a sequence 〈(op1, l1), ...,(opn, ln)〉 of pairs of op-

erations and locations. The path σ is called program path if for

every i with 1≤ i≤ n there exists a CFA edge g = (li−1,opi, li),
i.e., σ represents a syntactical walk through the CFA. The con-

crete semantics for a program path σ = 〈(op1, l1), ...,(opn, ln)〉
is defined as the successive application of the strongest post-

operator for each operation: SPσ (ϕ) = SPopn
(...SPop1

(ϕ)...).
The set of concrete states that result from running σ is

represented by the pair (ln,SPσ (true)). A program path σ is

feasible if SPσ (true) is satisfiable. A concrete state (ln,cn)
is called reachable if there exists a feasible program path σ

whose final location is ln and such that cn |= SPσ (true). A

location l is reachable if there exists a concrete state c such

that (l,c) is reachable. A program is safe if lE is not reachable.

B. Predicate Abstraction

Let P be a set of predicates over program variables in a

quantifier-free theory T . A formula ϕ is a Boolean combi-

2Our implementation is based on CPACHECKER, which operates on
C programs that are given in the CIL intermediate language [17]; function
calls are supported.
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L1: if(p1) {

L2: x1 = 1;

}

L3: if(p2) {

L4: x2 = 2;

}

L5: if(p3) {

L6: x3 = 3;

}

L7: if(p1) {

L8: if (x1 != 1) goto ERR;

}

L9: if (p2) {

L10: if (x2 != 2) goto ERR;

}

L11: if (p3) {

L12: if (x3 != 3) goto ERR;

}

L13: return EXIT_SUCCESS;

ERR: return EXIT_FAILURE;
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(a) Example C program (b) ART for SBE (c) ART for LBE

Fig. 1. Example program and corresponding ARTs for SBE and LBE; this example was mentioned as verification challenge for ART-based approaches by
several colleagues.

nation of predicates from P . A precision for a formula is a

finite subset π ⊂P of predicates.

Cartesian Predicate Abstraction. Let π be a precision. The

Cartesian predicate abstraction ϕπ

C
of a formula ϕ is the

strongest conjunction of predicates from π entailed by ϕ:

ϕπ

C
:=

∧
{p ∈ π | ϕ ⇒ p}. Such a predicate abstraction of a

formula ϕ that represents a region of concrete program states,

is used as an abstract state (i.e., an abstract representation of

the region) in program verification. For a formula ϕ and a

precision π , the Cartesian predicate abstraction ϕπ

C
of ϕ can

be computed by |π| SMT-solver queries. The abstract strongest

postoperator SP
π for a predicate abstraction π transforms the

abstract state ϕπ

C
into its successor ϕ ′

π

C for a program oper-

ation op, written as ϕ ′
π

C = SP
π
op(ϕ

π

C
), if ϕ ′

π

C is the Cartesian

predicate abstraction of SPop(ϕ
π

C
), i.e., ϕ ′

π

C = (SPop(ϕ
π

C
))π

C
.

For more details, we refer the reader to the work of Ball et

al. [2].

Boolean Predicate Abstraction. Let π be a precision. The

Boolean predicate abstraction ϕπ

B
of a formula ϕ is the

strongest Boolean combination of predicates from π that is

entailed by ϕ . For a formula ϕ and a precision π , the Boolean

predicate abstraction ϕπ

B
of ϕ can be computed by querying an

SMT solver in the following way: For each predicate pi ∈ π ,

we introduce a propositional variable vi. Now we ask an SMT

solver to enumerate all satisfying assignments of v1, ...,v|π|
in the formula ϕ ∧

∧
pi∈π(pi ⇔ vi). For each satisfying as-

signment, we construct a conjunction of all predicates from

π whose corresponding propositional variable occurs positive

in the assignment. The disjunction of all such conjunctions is

the Boolean predicate abstraction for ϕ . The abstract strongest

postoperator SP
π for a predicate abstraction π transforms

the abstract state ϕπ

B
into its successor ϕ ′

π

B for a program

operation op, written as ϕ ′
π

B = SP
π
op(ϕ

π

B
), if ϕ ′

π

B is the Boolean

predicate abstraction of SPop(ϕ
π

B
), i.e., ϕ ′

π

B = (SPop(ϕ
π

B
))π

B
.

For more details, we refer the reader to the work of Lahiri et

al. [15].

C. ART-based Software Model Checking with SBE

The precision for a program is a function Π : L→ 2P , which

assigns to each program location a precision for a formula.

An ART-based algorithm for software model checking takes

an initial precision Π (which is typically very coarse) for the

predicate abstraction, and constructs an ART for the input

program and Π. An ART is a tree whose nodes are labeled

with program locations and abstract states [4] (i.e., n = (l,ϕ)).
For a given ART node, all children nodes are labeled with

successor locations and abstract successor states, according

to the strongest postoperator and the predicate abstraction. A

node n = (l,ϕ) is called covered if there exists another ART

node n′ = (l,ϕ ′) that entails n (i.e., s.t. ϕ ′ |= ϕ). An ART is

called complete if every node is either covered or all possible

abstract successor states are present in the ART as children of

the node. If a complete ART is constructed and the ART does

not contain any error node, then the program is considered

correct [14]. If the algorithm adds an error node to the ART,

then the corresponding path σ is checked to determine if σ

is feasible (i.e., if the corresponding concrete program path

is executable) or infeasible (i.e., if there is no corresponding

program execution). In the former case the path represents

a witness for a program bug. In the latter case the path is

analyzed, and a refinement Π
′ of Π is generated, such that the

same path cannot occur again during the ART exploration. The

concept of using an infeasible error path for abstraction refine-

ment is called counterexample-guided abstraction refinement

(CEGAR) [10]. The concept of iteratively constructing an ART

and refining only the precisions along the considered path is

called lazy abstraction [14]. Craig interpolation is a successful

approach to predicate extraction for refinement [13]. After the

refining the precision, the algorithm continues with the next

iteration, using Π
′ instead of Π to construct the ART, until

either a complete error-free ART is obtained, or an error is

found (note that the procedure might not terminate). For more

details and a more in-depth illustration of the overall ART

algorithm, we refer the reader to the BLAST article [4].
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In order to make the algorithm scale on practical examples,

implementations such as BLAST or SLAM use the simple

but coarse Cartesian abstraction, instead of the expensive

but precise Boolean abstraction. Despite its potential impre-

cision, Cartesian abstraction has been proved successful for

the verification of many real-world programs. In the SBE

approach, given the large number of successor computations,

the computation of the Boolean predicate abstraction is in fact

too expensive, as it may require an SMT solver to enumerate

an exponential number of assignments on the predicates in

the precision, for each single successor computation. The

reason for the success of Cartesian abstraction if used together

with SBE, is that for a given program path, state overap-

proximations that are expressible as conjunctions of atomic

predicates —for which Boolean and Cartesian abstractions are

equivalent— are often good enough to prove that the error

location is not reachable in the abstract space.

III. Large-Block Encoding

A. Summarization of Control-Flow Automata

The first, main step of LBE is the summarization of the

program CFA, in which each large control-flow subgraph that

is free of loops is replaced by a single control-flow edge with

a large formula that represents the removed subgraph. This

process, which we call summarization of the CPA, consists

of the fixpoint application of three rewriting rules that we

describe below: first we apply Rule 0 once, and then we

repeatedly apply Rules 1 and 2, until no rule is applicable

anymore.

Let P = (A, l0, lE) be a program with CFA A = (L,G).

Rule 0 (Error Sink). We remove all edges (lE , ·, ·) from

G, i.e., the target location lE becomes a sink node with no

outgoing edges.

Rule 1 (Sequence). If G con-

tains an edge (l1,op1, l2) with l1 6= l2
l1 l1

l3 l4

op1 ; op2

op1 ; op3

l2

l3 l4

op2 op3

op1

and no other incoming edges

for l2 (i.e. edges (·, ·, l2)), and

G→l2
is the subset of G of out-

going edges for l2, then we

change the CFA A in the fol-

lowing way: (1) we remove lo-

cation l2 from L, and (2) we

remove the edges (l1,op1, l2) and all the edges in G→l2
from

G, and for each edge (l2,opi, li) ∈ G→l2
, we add the edge

(l1,op1 ; opi, li) to G, where SPop1 ;opi
(ϕ) = SPopi

(SPop1
(ϕ)).

(Note that G→l2
might contain an edge (l2, ·, l1).)

Rule 2 (Choice). If L2 = {l1, l2} and A|L2
= (L2,G2)

l2

l1

op1 op2

l2

l1

op1 ‖ op2

is the subgraph of A with nodes

from L2 and the set G2 of edges

contains the two edges (l1,op1, l2)
and (l1,op2, l2), then we change

the CFA A in the following way:

(1) we remove the two edges (l1,op1, l2) and (l1,op2, l2)
from G and add the edge (l1,op1 ‖ op2, l2) to G, where

SPop1‖op2
(ϕ) = SPop1

(ϕ)∨SPop2
(ϕ). (Note that there might

be a backwards edge (l2, ·, l1).)

Let P = (A, l0, lE) be a program and let A′ be another CFA

for P. The CFA A′ is the summarization of A if A′ is obtained

from A via stepwise application of the two rules, and none of

the two rules can be further applied.

Example. Figure 2 shows a program (a) and its correspond-

ing CFA (b). The control-flow automaton (CFA) is stepwise

transformed to its summarization CFA (h) as follows: Rule 1

eliminates location 6 to (c), Rule 1 eliminates location 3 to

(d), Rule 1 eliminates location 4 to (e), Rule 2 eliminates one

edge 2–5 to (f), Rule 1 eliminates location 5 to (g), Rule 1

eliminates location 2 to (h). �

In the context of this article, we use the summarization CFA

for program analysis, i.e., we want to verify if an error state

of the program is reachable. The following theorem, which

is proved in Appendix A, states that our summarization of a

CFA is correct in this sense.

Theorem 3.1 (Correctness of Summarization): Let

P = (A, l0, lE) be a program and let A′ = (L′,G′) be the

summarization of A. Then: (i) {l0, lE} ⊆ L′, and (ii) lE is

reachable in (A′, l0, lE) if and only if lE is reachable in P.

The summarization can be performed in polynomial time.

The time taken by Rule 0 is proportional to the number

of outgoing edges for lE . Since each application of Rule

1 or Rule 2 removes at least one edge, there can be at

most |G| − 1 such applications. A naive way to determine

the set of locations and edges to which to apply each rule

requires O(|V | · k) time, where k is the maximum out-degree

of locations. Finally, each application of Rule 2 requires O(1)
time, and each application of Rule 1 O(k) time. Therefore,

a naive summarization algorithm requires O(|G| · |V | ·k) time,

which reduces to O(|G| · |V |) if k is bounded (i.e., if we rewrite

a priori all switches into nested ifs).3

B. LBE versus SBE for Software Model Checking

The use of LBE instead of the standard SBE requires no

modification to the general model-checking algorithm, which

is still based on the construction of an ART with CEGAR-

based refinement. The main difference is that the LBE has no

one-to-one correspondence between ART paths and syntactical

program paths. A single CFA edge corresponds to a set of

paths between its source and target location, and a single

ART path corresponds to a set of program paths; an ART

node represents an overapproximation of the data region that

is reachable by following any of the program paths represented

by the ART path that leads to it. This difference leads to two

observations.

First, LBE can lead to exponentially-smaller ARTs than

SBE, and thus it can drastically reduce the number successor

computations (cf. example in Sect. I) and the number of

abstraction-refinement steps for infeasible error paths. Each

of these operations, however, is typically more expensive than

with SBE, because the formulas involved are larger and have

a more complex structure.

3In our implementation, we use a more efficient algorithm, which we do
not describe here for lack of space.
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4: else3: then

i = i−1

[i > 0]
[i≤ 0]

[x 6= 1][x == 1]

z = 0 z = 1

i = i−1
5

7

1: while

2: if

4: else3: then

[i > 0]
[i≤ 0]

i = i−1

[x == 1]
z = 0

[x 6= 1]
z = 1

2: if

5

7

1: while
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2: if

1: while
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7

1: while
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1: while
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[x 6= 1] 7

1: while

4: else

5

2: if

L1: while (i>0) {
L2: if (x==1) {
L3: z = 0;

} else {
L4: z = 1;

}
L5: i = i-1;

L6: }

Fig. 2. CFA Transformation: a) Program, b) CFA, c)–g) Intermediate CFAs, h) Summarization CFA. In the CFAs, assume(p) is represented as [p], op1 ; op2

is represented by putting op2 under op1, and op1 ‖ op2 by putting op2 beside op1.

Second, LBE requires a more general representation of ab-

stract states. When using SBE, abstract states are typically rep-

resented as sets/conjunctions of predicates. This is sufficient

for practical examples because each abstract state represents

a data region reachable by a single program path, which can

be encoded essentially as a conjunction of atomic formulas.

With LBE, such representation would be too coarse, since

each abstract state represents a data region that is reachable on

several different program paths. Therefore, we need to use a

representation for arbitrary (and larger) Boolean combinations

of predicates. This generalization of the representation of the

abstract state requires a generalization of the representation of

the transition, i.e., the replacement of the Cartesian abstraction

with a more precise form of abstraction. In this paper, we

evaluate the use of the Boolean abstraction, which allows for

a precise representation of arbitrary Boolean combinations of

predicates.

With respect to the traditional SBE approach, LBE allows

us to trade part of the cost of the explicit enumeration of

program paths with that of the symbolic computation of

abstract successor states: rather than having to build large

ARTs by performing a substantial amount of relatively cheap

operations (Cartesian abstract postoperator applications along

single edges and counterexample analysis of individual pro-

gram paths), with LBE we build smaller ARTs by performing

more expensive symbolic operations (Boolean abstract postop-

erator applications along large portions of the control flow and

counterexample analysis of multiple program paths), involving

formulas with a complex Boolean structure. With LBE, the

cost of each symbolic operation, rather than their number,

becomes a critical performance factor.

To this extent, LBE makes it possible to fully exploit

the power and functionality of modern SMT solvers: First,

the capability of modern SMT solvers of performing large

amounts of Boolean reasoning allows for handling possibly-

big Boolean combinations of atomic expressions, instead of

simple conjunctions. Second, the capability of some SMT

solvers to perform All-SMT and interpolant computation

(see, e.g., [7]) allows for effectively performing SMT-based

Boolean abstraction computation [8], [15] and interpolation-

based counterexample analysis [9] respectively, which was

shown to outperform previous approaches, especially when

dealing with complex formulas. With SBE, instead, the use

of modern SMT technology does not lead to significant im-

provements of the whole ART-based algorithm, because each

SMT query involves simple (and often small) conjunctions

only.

IV. Performance Evaluation

Implementation. In order to evaluate the proposed verification

method, we integrate our algorithm as a new component into

the configurable software verification toolkit CPACHECKER [5].

This implementation is written in JAVA. All example programs

are preprocessed and transformed into the simple intermediate

language CIL [17]. For parsing C programs, CPACHECKER

uses a library from the Eclipse C/C++ Development Kit. For

efficient querying of formulas in the quantifier-free theory

of rational linear arithmetic and equality with uninterpreted

function symbols, we leverage the SMT solver MATHSAT [7],

which is integrated as a library (written in C++). We use binary

decision diagrams (BDDs) for the representation of abstract-

state formulas.

We run all experiments on a 1.8 GHz Intel Core2 machine

with 2 GB of RAM and 2 MB of cache, running GNU/Linux.

We used a timeout of 1 800 s and a memory limit of 1.8 GB.

Example Programs. We use three categories of benchmark

programs. First, we experiment with programs that are specif-

ically designed to cause an exponential blowup of the ART

when using SBE (test_locks*, in the style of the example in

Sect. I). Second, we use the device-driver programs that were

previously used as benchmarks in the BLAST project. Third,

we solve various verification problems for the SSH client and

server software (s3_clnt* and s3_srvr*), which share the

same program logic, but check different safety properties. The

safety property is encoded as conditional calls of a failure

location and therefore reduces to the reachability of a certain

error location. All benchmarks programs from the BLAST
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web page are preprocessed with CIL. For the second and

third groups of programs, we also performed experiments with

artificial defects introduced.

Experimental Configurations. For a careful and fair perfor-

mance comparison, we run experiments on three different con-

figurations. First, we use BLAST, version 2.5, which is a highly

optimized state-of-the-art software model checker. BLAST is

implemented in the programming language OCAML. We run

BLAST using all four combinations of breadth-first search

(-bfs) versus depth-first search (-dfs), both with and without

heuristics for improving the predicate discovery. BLAST pro-

vides five different levels of heuristics for predicate discovery,

and we use only the lowest (-predH 0) and the highest option

(-predH 7). Interestingly, every combination is best for some

particular example programs, with considerable differences in

runtime and memory consumption. The configuration using

-dfs -predH 7 is the winner (in terms of solved problems and

total runtime) for the programs without defects, but is not able

to verify four example programs (timeout). In the performance

table, we provide results obtained using this configuration

(column -dfs -predH 7), and also the best result among

the four configurations for every single instance (column

best result). For the unsafe programs, -bfs -predH 7 per-

forms best. All four configurations use the command-line op-

tions -craig 2 -nosimplemem -alias "", which specify that

BLAST runs with lazy, Craig-interpolation-based refinement,

no CIL preprocessing for memory access, and without pointer

analysis. In all experiments with BLAST, we use the same

interpolation procedure (MATHSAT) as in our CPACHECKER-

based implementation. (The results of all four configurations

are provided in Appendix B, to the reviewers.)

Second, in order to separate the optimization efforts in

BLAST from the conceptual essence of the traditional lazy

abstraction algorithm, we developed a re-implementation of

the traditional algorithms as described in the BLAST tool

article [4]. This re-implementation is integrated as component

into CPACHECKER, so that the difference between SBE and

LBE is only in the algorithms, not in the environment (same

parser, same BDD package, same query optimization, etc.).

Our SBE implementation uses a DFS algorithm. This column

is labeled as SBE.

Third, we run the experiments using our new LBE algo-

rithm, which is also implemented within CPACHECKER. Our

LBE implementation uses a DFS algorithm. This column is

labeled as LBE. Note that the purpose of our experiments is

to give evidence of the performance difference between SBE

and LBE, because these two settings are closest to each other,

since SBE and LBE differ only in the CFA summarization and

Boolean abstraction. The other two columns are provided to

give evidence that the new approach beats the highly optimized

traditional implementation BLAST.

We actually configured and ran experiments with all four

combinations: SBE versus LBE, and Cartesian versus Boolean

abstraction. The experimentation clearly showed that SBE

does not benefit from Boolean abstraction in terms of pre-

cision, with substantial degrade in performance: the only pro-

grams for which it terminated successfully were the first five

TABLE III
PERFORMANCE RESULTS, PROGRAMS WITH ARTIFICIAL BUGS.

BLAST CPACHECKER

Program (best result) SBE LBE

cdaudio.BUG.i.cil.c 18.79 74.39 9.85

diskperf.BUG.i.cil.c 889.79 26.53 6.78

floppy.BUG.i.cil.c 119.60 36.49 4.30

kbfiltr.BUG.i.cil.c 46.80 75.45 11.52

parport.BUG.i.cil.c 1.67 14.62 2.64

s3 clnt.blast.01.BUG.i.cil.c 8.84 1514.90 3.33

s3 clnt.blast.02.BUG.i.cil.c 9.02 843.42 3.27

s3 clnt.blast.03.BUG.i.cil.c 6.64 780.72 2.61

s3 clnt.blast.04.BUG.i.cil.c 9.78 724.04 3.18

s3 srvr.blast.01.BUG.i.cil.c 7.59 MO 2.09

s3 srvr.blast.02.BUG.i.cil.c 7.16 >1800.00 2.10

s3 srvr.blast.03.BUG.i.cil.c 7.42 >1800.00 2.08

s3 srvr.blast.04.BUG.i.cil.c 7.33 >1800.00 1.93

s3 srvr.blast.06.BUG.i.cil.c 39.81 MO 5.08

s3 srvr.blast.07.BUG.i.cil.c 310.84 >1800.00 28.35

s3 srvr.blast.08.BUG.i.cil.c 40.51 >1800.00 36.47

s3 srvr.blast.09.BUG.i.cil.c 265.48 >1800.00 4.94

s3 srvr.blast.10.BUG.i.cil.c 40.24 >1800.00 12.01

s3 srvr.blast.11.BUG.i.cil.c 49.05 >1800.00 4.80

s3 srvr.blast.12.BUG.i.cil.c 38.66 >1800.00 6.11

s3 srvr.blast.13.BUG.i.cil.c 251.56 >1800.00 15.20

s3 srvr.blast.14.BUG.i.cil.c 39.94 1656.54 4.63

s3 srvr.blast.15.BUG.i.cil.c 40.19 >1800.00 10.19

s3 srvr.blast.16.BUG.i.cil.c 39.54 >1800.00 5.21

TOTAL (solved/time) 24 / 2296.25 10 / 5747.10 24 / 188.67

instances of the test_locks group. Similarly, the combination

of LBE with Cartesian abstraction fails to solve any of the

experiments, due to loss of precision. Thus, we report only on

the two successful configurations, i.e., SBE in combination

with Cartesian abstraction, and LBE in combination with

Boolean abstraction.

Discussion of Evaluation Results. Tables I and III present

performance results of our experiments, for the safe and unsafe

programs respectively. All runtimes are given in seconds of

processor time, ‘>1800.00’ indicates a timeout, ‘MO’ indi-

cates an out-of-memory. Table II shows statistics about the

algorithms for SBE and LBE only.

The first group of experiments in Table I shows that the

time complexity of SBE (and BLAST) can grow exponentially

in the number of nested conditional statements, as expected.

Table II explains why the SBE approach exhausts the memory:

the number of abstract nodes in the reachability tree grows

exponentially in the number of nested conditional statements.

Therefore, this approach does not scale. The LBE approach

reduces the loop-free part of the branching control-flow struc-

ture to a few edges (cf. example in the introduction), and

the size of the ART is constant, because only the structure

inside the body of the loop changes. There are no refinement

steps necessary in the LBE approach, because the edges to

the error location are infeasible. Therefore, no predicates are

used. The runtime of the LBE approach slightly increases with

the size of the program, because the formulas that are sent to

the SMT solver are slightly increasing. Although in principle

the complexity of the SMT problem grows exponentially in

the size of the formulas, the heuristics used by SMT solvers
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TABLE I
PERFORMANCE RESULTS

BLAST CPACHECKER

Program (best result) (-dfs -predH 7) SBE LBE

test locks 5.c 4.50 4.96 4.01 0.29

test locks 6.c 7.81 8.81 7.22 0.32

test locks 7.c 13.91 15.15 12.63 0.34

test locks 8.c 25.00 26.49 23.93 0.57

test locks 9.c 46.84 49.29 52.04 0.38

test locks 10.c 94.57 97.85 131.39 0.40

test locks 11.c 204.55 208.78 MO 0.70

test locks 12.c 529.16 533.97 MO 0.46

test locks 13.c 1229.27 1232.87 MO 0.49

test locks 14.c >1800.00 >1800.00 MO 0.50

test locks 15.c >1800.00 >1800.00 MO 0.56

cdaudio.i.cil.c 175.76 264.12 MO 53.55

diskperf.i.cil.c >1800.00 >1800.00 MO 232.00

floppy.i.cil.c 218.26 >1800.00 MO 56.36

kbfiltr.i.cil.c 23.55 32.80 41.12 7.82

parport.i.cil.c 738.82 915.79 MO 378.04

s3 clnt.blast.01.i.cil.c 33.01 1000.41 755.81 19.51

s3 clnt.blast.02.i.cil.c 62.65 312.77 1075.45 16.00

s3 clnt.blast.03.i.cil.c 60.62 314.74 746.31 49.50

s3 clnt.blast.04.i.cil.c 63.96 197.65 730.80 25.45

s3 srvr.blast.01.i.cil.c 811.27 1036.89 >1800.00 125.33

s3 srvr.blast.02.i.cil.c 360.47 360.47 >1800.00 122.83

s3 srvr.blast.03.i.cil.c 276.19 276.19 >1800.00 98.47

s3 srvr.blast.04.i.cil.c 175.64 301.85 >1800.00 71.77

s3 srvr.blast.06.i.cil.c 304.63 304.63 >1800.00 59.70

s3 srvr.blast.07.i.cil.c 478.05 666.53 >1800.00 85.82

s3 srvr.blast.08.i.cil.c 115.76 115.76 >1800.00 61.29

s3 srvr.blast.09.i.cil.c 445.21 1037.09 >1800.00 126.47

s3 srvr.blast.10.i.cil.c 115.10 115.10 >1800.00 63.36

s3 srvr.blast.11.i.cil.c 367.98 844.28 >1800.00 162.76

s3 srvr.blast.12.i.cil.c 304.05 304.05 >1800.00 170.33

s3 srvr.blast.13.i.cil.c 580.33 878.54 >1800.00 74.49

s3 srvr.blast.14.i.cil.c 303.21 303.21 >1800.00 50.38

s3 srvr.blast.15.i.cil.c 115.88 115.88 >1800.00 21.01

s3 srvr.blast.16.i.cil.c 305.11 305.11 >1800.00 127.82

TOTAL (solved/time) 32 / 8591.12 31 / 12182.03 11 / 3580.71 35 / 2265.07

TOTAL w/o test_locks* 23 / 6435.51 22 / 10003.06 5 / 3349.48 24 / 2260.07

avoid the exponential enumeration that we observe in the case

of SBE.

For the two other classes of experiments, we see that LBE

is able to successfully complete all benchmarks, and shows

significant performance gains over SBE. SBE is able to solve

only about one third of all benchmarks, and for the ones that

complete, it is clearly outperformed by LBE. In Table II, we

see that SBE has in general a much larger ART. In Table I

we observe not only that LBE performs significantly better

than the -dfs -predH 7 configuration of BLAST, but that

LBE is better than any BLAST configuration (column best

result). LBE performed best also in finding the error paths

(cf. Table III), clearly outperforming both SBE and BLAST.

In summary, the experiments show that the LBE approach

outperforms the SBE approach, both for correct and defective

programs. This provides evidence of the benefits of a “more

symbolic” analysis as performed in the LBE approach. One

might argue that our CPACHECKER-based SBE implementation

might be sub-optimal although it uses the same implemen-

tation and execution environment as LBE; this is why we

compare with BLAST as well, and the experiments become

even more impressive when considering that BLAST is the

result of several years of fine-tuning.

V. Conclusion and Future Work

We have proposed LBE as an alternative to the SBE model-

checking approach, based on the idea that transitions in the

abstract space represent larger fragments of the program.

Our novel approach results in significantly smaller ARTs,

where abstract successor computations are more involved, and

thus trading cost of many explicit enumerations of program

paths with the cost of symbolic successor computations. A

thorough experimental evaluation shows the advantages of

LBE against both our implementation of SBE and the state-

of-the-art BLAST system.

In our future work, we plan to implement McMillan’s

interpolation-based lazy-abstraction approach [16], and ex-

periment with SBE versus LBE versions of his algorithm.

Furthermore, we plan to investigate the use of adjustable

precision-based techniques for the construction of the large

blocks on-the-fly (instead of the current preprocessing step).
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TABLE II
DETAILED COMPARISON BETWEEN SBE AND LBE ENCODINGS; ENTRIES MARKED WITH (*) DENOTE PARTIAL STATISTICS FOR ANALYSES THAT

TERMINATED UNSUCCESSFULLY (IF AVAILABLE).

SBE LBE

ART # ref # predicates ART # ref # predicates

Program size steps Tot Avg Max size steps Tot Avg Max

test locks 5.c 1344 50 10 3 10 4 0 0 0 0

test locks 6.c 2301 72 12 4 12 4 0 0 0 0

test locks 7.c 3845 98 14 5 14 4 0 0 0 0

test locks 8.c 6426 128 16 6 16 4 0 0 0 0

test locks 9.c 10926 162 18 7 18 4 0 0 0 0

test locks 10.c 19091 200 20 8 20 4 0 0 0 0

test locks 11.c 24779(*) 242(*) 22(*) 9(*) 22(*) 4 0 0 0 0

test locks 12.c 28119(*) 288(*) 24(*) 10(*) 24(*) 4 0 0 0 0

test locks 13.c 31739(*) 338(*) 26(*) 10(*) 26(*) 4 0 0 0 0

test locks 14.c 35178(*) 392(*) 28(*) 11(*) 28(*) 4 0 0 0 0

test locks 15.c 38777(*) 450(*) 30(*) 12(*) 30(*) 4 0 0 0 0

cdaudio.i.cil.c 53323(*) 445(*) 147(*) 9(*) 78(*) 6909 140 79 5 16

diskperf.i.cil.c – – – – – 4890 145 56 6 21

floppy.i.cil.c 31079(*) 301(*) 79(*) 7(*) 35(*) 9668 176 58 4 13

kbfiltr.i.cil.c 19640 153 53 5 27 1577 47 18 2 6

parport.i.cil.c 26188(*) 360(*) 143(*) 4(*) 41(*) 38488 474 168 4 17

s3 clnt.blast.01.i.cil.c 122678 557 59 20 59 36 5 47 11 47

s3 clnt.blast.02.i.cil.c 354132 532 55 19 55 36 5 51 12 51

s3 clnt.blast.03.i.cil.c 196599 534 55 19 55 39 5 75 18 75

s3 clnt.blast.04.i.cil.c 172444 538 55 19 55 36 5 47 11 47

s3 srvr.blast.01.i.cil.c 232195(*) 774(*) 70(*) 20(*) 70(*) 101 6 88 22 88

s3 srvr.blast.02.i.cil.c 254667(*) 745(*) 79(*) 19(*) 78(*) 109 7 75 18 75

s3 srvr.blast.03.i.cil.c – – – – – 91 6 85 21 85

s3 srvr.blast.04.i.cil.c – – – – – 103 7 82 20 82

s3 srvr.blast.06.i.cil.c 295698(*) 576(*) 63(*) 14(*) 63(*) 94 6 84 21 84

s3 srvr.blast.07.i.cil.c – – – – – 92 5 85 21 85

s3 srvr.blast.08.i.cil.c 279991(*) 549(*) 57(*) 15(*) 57(*) 89 5 88 22 88

s3 srvr.blast.09.i.cil.c 189541(*) 720(*) 72(*) 16(*) 71(*) 193 4 72 18 72

s3 srvr.blast.10.i.cil.c 307671(*) 597(*) 55(*) 16(*) 55(*) 91 5 79 19 79

s3 srvr.blast.11.i.cil.c – – – – – 48 6 69 17 69

s3 srvr.blast.12.i.cil.c 258546(*) 563(*) 57(*) 15(*) 57(*) 99 6 94 23 94

s3 srvr.blast.13.i.cil.c 167333(*) 682(*) 70(*) 18(*) 69(*) 90 5 81 20 81

s3 srvr.blast.14.i.cil.c 318982(*) 643(*) 65(*) 13(*) 64(*) 92 6 83 20 83

s3 srvr.blast.15.i.cil.c 279319(*) 579(*) 58(*) 15(*) 58(*) 71 4 71 17 71

s3 srvr.blast.16.i.cil.c 346185(*) 596(*) 59(*) 12(*) 58(*) 98 6 86 21 86

This would enable a dynamic adjustment of the size of the

large blocks, and thus we could fine-tune the amount of work

that is delegated to the SMT solver. Also, we plan to explore

other techniques for computing abstract successors which are

more precise than Cartesian abstraction but less expensive than

Boolean abstraction.

Acknowledgments. We thank Roman Manevich for interest-

ing discussions about BLAST’s performance bottlenecks.
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Appendix

A. Proof of Theorem 3.1

In order to prove Theorem 3.1, we introduce some auxiliary

lemmas.

Lemma A.1: Let (l,op, l′) be a CFA edge, and {ϕi}i a

collection of formulas. Then

SPop(
∨

i ϕi)≡
∨

i SPop(ϕi).

Proof: If op is an assignment operation s := e, then

SPs:=e(
∨

i ϕi) = ∃ ŝ.((
∨

i ϕi)[s 7→ŝ]∧ (s = e[s 7→ŝ]))

≡ ∃ ŝ.(
∨

i(ϕi[s 7→ŝ]∧ (s = e[s7→ŝ])))

≡
∨

i(∃ ŝ.(ϕi[s 7→ŝ]∧ (s = e[s7→ŝ])))

≡
∨

i SPs:=e(ϕi)

If op is an assume operation assume(p), then

SPassume(p)(
∨

i ϕi) = (
∨

i ϕi)∧ p

≡
∨

i(ϕi∧ p)

≡
∨

i SPassume(p)(ϕi)

The remaining two cases can be proven by induction.

If op = op1 ; op2, then

SPop1 ;op2
(
∨

i ϕi) = SPop2
(SPop1

(
∨

i ϕi))

≡ SPop2
(
∨

i SPop1
(ϕi))

≡
∨

i SPop2
(SPop1

(ϕi))

≡
∨

i SPop1 ;op2
(ϕi)

If op = op1 ‖ op2, then

SPop1‖op2
(
∨

i ϕi) = SPop1
(
∨

i ϕi)∨SPop2
(
∨

i ϕi)

≡ (
∨

i SPop1
(ϕi))∨ (

∨
i SPop2

(ϕi))

≡
∨

i(SPop1
(ϕi)∨SPop2

(ϕi))

≡
∨

i SPop1‖op2
(ϕi)

�

Lemma A.2: Let A = (L,G) be a CFA, and let A′ = (L′,G′)
be a summarization of A. Let σ be a path in A such that its

initial and final locations occur also in L′. Then for all ϕ , there

exists a path σ ′ in A′, with the same initial and final locations

as σ , such that SPσ (ϕ) |= SPσ ′(ϕ).

Proof: CFA A′ is obtained from A by a sequence of n

rule applications. If n = 0 we have A′ = A. If the lemma holds

for one rule application, we can show by induction that the

lemma holds for any finite sequence of rule applications.

We now show that the lemma holds for one rule application.

Let σ = σ1,(li,opi, l j). The proof is by induction on the length

of σ . (The base case is when σ1 is empty.)

If li ∈ L′, by the inductive hypothesis there exists a path

σ ′1 in A′ such that SPσ1
(ϕ) |= SPσ ′1

(ϕ). If (li,opi, l j) ∈ G′,

then we can take σ ′ = σ ′1,(li,opi, l j). Otherwise, (li,opi, l j)
must have been removed by an application of Rule 2, 4 and

so G′ contains an edge (li,opi ‖ ·, l j). Therefore, we can take

σ ′ = σ ′1,(li,opi ‖ ·, l j).
If li 6∈ L′, then by hypothesis σ ≡ σ2,(lk,opk, li),(li,opi, l j).

Moreover, li has been removed by an application of Rule 1. By

the definition of Rule 1, (lk,opk, li) is the only incoming edge

for li in G. Therefore, G′ contains an edge (lk,opk ; opi, l j) and

clearly lk ∈ L′. Thus, by the inductive hypothesis there exists

a path σ ′2 in A′ such that SPσ2
(ϕ) |= SPσ ′2

(ϕ), and so we can

take σ ′ = σ ′2,(lk,opk ; opi, l j). �

Lemma A.3: Let A = (L,G) be a CFA, and let A′ = (L′,G′)
be a summarization of A. Let σ ′ be a path in A′. Then for all

ϕ , there exists a set Σ of paths in A, with the same initial and

final locations as σ ′, such that SPσ ′(ϕ)≡
∨

σ∈Σ SPσ (ϕ).

Proof: CFA A′ is obtained from A by a sequence of n

rule applications. If n = 0 we have A′ = A. If the lemma holds

for one rule application, we can show by induction that the

lemma holds for any finite sequence of rule applications.

We now show that the lemma holds for one rule application.

Let σ ′ = σ ′p,(li,opi, l j) be a path in A′. The proof is by

induction on the length of σ ′. (The base case is when σ ′p

is empty.)

First, we observe that all locations in σ ′ occur also in G.

By the inductive hypothesis, there exists a set Σp of paths

in A, with the same initial and final locations as σ ′p, such that

SPσ ′p
(ϕ)≡

∨
σp∈Σp

SPσp(ϕ).

If (li,opi, l j) ∈ G, then we can take Σ =
{σp,(li,opi, l j) | σp ∈ Σp} (by Lemma A.1).

Otherwise, (li,opi, l j) was generated by an application of

one of the Rules. If it was generated by Rule 1, then G contains

two edges (li,op′i, lk) and (lk,opk, l j) such that opi = op′i ; opk.

Then we can take Σ = {σp,(li,op′i, lk),(lk,opk, l j) | σp ∈ Σp}
(by Lemma A.1). If (li,opi, l j) was generated by Rule 2,

then G contains two edges (li,op′i, l j) and (li,op′′i , l j) such

that opi = op′i ‖ op′′i . Let Σ1 = {σp,(li,op′i, l j) | σp ∈ Σp}
and Σ2 = {σp,(li,op′′i , l j) | σp ∈ Σp}. Then we can take

Σ = Σ1∪Σ2 (by Lemma A.1).

�

Proof: Now we prove Theorem 3.1.

(i) The only Rule that removes locations is Rule 1. Since

l0 has no incoming edges (by definition) and lE has

no outgoing edges (because of Rule 0), they cannot be

removed by Rule 1.

(ii) “→” Follows from Lemma A.2 and (i).

“←” Follows from Lemma A.3 and (i).

�

B. Comparison among different BLAST configurations

4It could not have been removed by Rule 1, because when Rule 1 removes
the edges (·, ·, l) and (l, ·, ·), it removes also the location l.
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TABLE IV
COMPARISON AMONG DIFFERENT CONFIGURATIONS OF BLAST. (NP INDICATES ’NO NEW PREDICATES FOUND DURING REFINEMENT’.)

BLAST 1 BLAST 2 BLAST 3 BLAST 4 BLAST B

Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

test locks 5.c 8.36 8.40 4.50 4.96 4.50

test locks 6.c 17.63 17.29 7.81 8.81 7.81

test locks 7.c 39.90 37.83 13.91 15.15 13.91

test locks 8.c 86.98 86.69 25.00 26.49 25.00

test locks 9.c 173.63 189.96 46.84 49.29 46.84

test locks 10.c 500.30 483.07 94.57 97.85 94.57

test locks 11.c 1645.90 1534.20 204.55 208.78 204.55

test locks 12.c >1800.00 >1800.00 529.16 533.97 529.16

test locks 13.c >1800.00 >1800.00 1229.27 1232.87 1229.27

test locks 14.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00

test locks 15.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00

cdaudio.i.cil.c 380.83 475.67 175.76 264.12 175.76

diskperf.i.cil.c – >1800.00 NP >1800.00 >1800.00

floppy.i.cil.c 218.26 >1800.00 NP >1800.00 218.26

kbfiltr.i.cil.c 23.55 69.07 NP 32.80 23.55

parport.i.cil.c 738.82 >1800.00 NP 915.79 738.82

s3 clnt.blast.01.i.cil.c 72.55 526.77 33.01 1000.41 33.01

s3 clnt.blast.02.i.cil.c 80.57 268.67 62.65 312.77 62.65

s3 clnt.blast.03.i.cil.c 124.99 440.25 60.62 314.74 60.62

s3 clnt.blast.04.i.cil.c 140.60 138.75 63.96 197.65 63.96

s3 srvr.blast.01.i.cil.c 1030.27 MO 811.27 1036.89 811.27

s3 srvr.blast.02.i.cil.c >1800.00 811.77 1088.43 360.47 360.47

s3 srvr.blast.03.i.cil.c 1166.38 424.53 961.72 276.19 276.19

s3 srvr.blast.04.i.cil.c 208.89 175.64 1393.08 301.85 175.64

s3 srvr.blast.06.i.cil.c >1800.00 >1800.00 653.62 304.63 304.63

s3 srvr.blast.07.i.cil.c >1800.00 >1800.00 478.05 666.53 478.05

s3 srvr.blast.08.i.cil.c >1800.00 411.92 647.87 115.76 115.76

s3 srvr.blast.09.i.cil.c >1800.00 1296.56 445.21 1037.09 445.21

s3 srvr.blast.10.i.cil.c >1800.00 >1800.00 645.23 115.10 115.10

s3 srvr.blast.11.i.cil.c 1692.77 1011.15 367.98 844.28 367.98

s3 srvr.blast.12.i.cil.c >1800.00 1188.43 658.16 304.05 304.05

s3 srvr.blast.13.i.cil.c >1800.00 MO 580.33 878.54 580.33

s3 srvr.blast.14.i.cil.c >1800.00 463.95 653.85 303.21 303.21

s3 srvr.blast.15.i.cil.c >1800.00 604.01 645.35 115.88 115.88

s3 srvr.blast.16.i.cil.c >1800.00 653.87 651.30 305.11 305.11

TOTAL (solved/time) 19 / 8351.18 23 / 11318.45 29 / 13233.06 31 / 12182.03 32 / 8591.12
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TABLE V
COMPARISON AMONG DIFFERENT CONFIGURATIONS OF BLAST, PROGRAMS WITH ARTIFICIAL BUGS. (NP INDICATES ’NO NEW PREDICATES FOUND

DURING REFINEMENT’.)

BLAST 1 BLAST 2 BLAST 3 BLAST 4 BLAST B

Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

cdaudio.BUG.i.cil.c 108.85 99.82 26.83 18.79 18.79

diskperf.BUG.i.cil.c 889.79 >1800.00 926.70 >1800.00 889.79

floppy.BUG.i.cil.c 119.60 >1800.00 127.68 >1800.00 119.60

kbfiltr.BUG.i.cil.c 70.83 144.25 NP 46.80 46.80

parport.BUG.i.cil.c 5.70 10.95 1.67 2.24 1.67

s3 clnt.blast.01.BUG.i.cil.c 1003.92 28.30 304.63 8.84 8.84

s3 clnt.blast.02.BUG.i.cil.c 118.48 9.02 131.42 12.26 9.02

s3 clnt.blast.03.BUG.i.cil.c 167.73 6.64 133.97 12.20 6.64

s3 clnt.blast.04.BUG.i.cil.c 187.18 9.78 139.04 11.70 9.78

s3 srvr.blast.01.BUG.i.cil.c 103.06 7.59 >1800.00 162.90 7.59

s3 srvr.blast.02.BUG.i.cil.c 123.00 7.16 >1800.00 183.34 7.16

s3 srvr.blast.03.BUG.i.cil.c 55.21 7.42 1434.01 49.74 7.42

s3 srvr.blast.04.BUG.i.cil.c 79.16 7.33 >1800.00 53.22 7.33

s3 srvr.blast.06.BUG.i.cil.c 1623.73 56.11 558.18 39.81 39.81

s3 srvr.blast.07.BUG.i.cil.c 1582.86 310.84 1327.50 MO 310.84

s3 srvr.blast.08.BUG.i.cil.c >1800.00 73.59 530.10 40.51 40.51

s3 srvr.blast.09.BUG.i.cil.c >1800.00 265.48 1284.77 MO 265.48

s3 srvr.blast.10.BUG.i.cil.c >1800.00 66.88 528.29 40.24 40.24

s3 srvr.blast.11.BUG.i.cil.c 722.64 49.05 1515.26 207.09 49.05

s3 srvr.blast.12.BUG.i.cil.c 620.03 38.66 555.60 39.28 38.66

s3 srvr.blast.13.BUG.i.cil.c 831.45 251.56 1600.65 626.93 251.56

s3 srvr.blast.14.BUG.i.cil.c 773.26 53.93 557.13 39.94 39.94

s3 srvr.blast.15.BUG.i.cil.c >1800.00 77.51 530.85 40.19 40.19

s3 srvr.blast.16.BUG.i.cil.c 973.44 55.97 558.44 39.54 39.54

TOTAL (solved/time) 20 / 10159.92 22 / 1637.84 20 / 12772.72 20 / 1675.56 24 / 2296.25


