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Abstract

We propose two straightforward methods for deriving the priority vector associated

with a fuzzy preference relation. Then, using transformations between multiplica-

tive preference relations and fuzzy preference relations, we study the relationships

between the priority vectors associated with these two types of preference relations.
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Introduction

The two most popular ways for eliciting the expert’s preferences by pair-
wise comparisons between alternatives are multiplicative preference relations
and fuzzy preference relations. Multiplicative preference relations have been
widely used in many well-known decision making approaches, such as, for
example, Saaty’s Analytic Hierarchy Process (AHP) [16]. Fuzzy preference
relations have been first introduced in fuzzy sets theory as an extension of
crisp (ordinal) preference relations, in order to provide a more flexible tool to
represent expert’s preferences [2, 12, 15]. Later, they have been widely used
in decision processes as a cardinal representation of preferences equivalent



to, and interchangeable with, multiplicative preference relations. A large
number of methods for deriving weights have been proposed in the frame-
work of multiplicative preference relations. Two well-known examples are
Saaty’s eigenvector method [16] and the geometric mean method [4]. Other
methods are based on some optimization models and a comparative study is
[3]. Many methods have also been proposed for deriving weights from fuzzy
preference relations and some of them will be briefly recalled in section 2.
The aim of this paper is to propose two straightforward methods for deriving
the weight vector associated with a fuzzy preference relation and to study
the relationship between the weight vectors associated with multiplicative
and fuzzy preference relations. Some very simple transformations between
the different types of weights are derived and discussed in section 2.2.

1 Multiplicative and Fuzzy Preference Rela-

tions

We assume that the reader is familiar with multiplicative and fuzzy prefer-
ence relations, so that we only recall the main ideas. Let Λ = {A1, . . . , An}
be a set of alternatives. A multiplicative preference relation, MPR in the
following, is represented by a matrix A = (aij)n×n whose entries aij estimate
the ratios wi/wj between the preference intensities (weights) of alternatives
Ai and Aj. Saaty’s ratio scale is used, aij ∈ {1

9
, 1

8
, . . . , 1

2
, 1, 2, . . . , 8, 9} and

multiplicative reciprocity is assumed, aijaji = 1, ∀i, j. If the following mul-
tiplicative transitivity condition

aij = aikakj i, j, k = 1, . . . , n (1)

is satisfied, A is called consistent. If A = (aij) is consistent, then a positive
vector w = (w1, . . . , wn) exists such that

aij = wi/wj i, j = 1, . . . , n . (2)

A fuzzy preference relation, FPR in the following, is a nonnegative re-
lation R : Λ × Λ → [0, 1] represented by a matrix R = (rij)n×n, where
rij := R (Ai, Aj) . Additive reciprocity is assumed, rij + rji = 1 ∀i, j. Anal-
ogously to the MPR, if the following transitivity condition

(rij − 0.5) = (rik − 0.5) + (rkj − 0.5) i, j, k = 1, . . . , n. (3)

is satisfied, R is called additively consistent. Tanino [18] proves that R = (rij)
is additively consistent, i.e. (3) holds, if and only if a nonnegative vector

2



u = (u1, . . . , un) exists with |ui − uj| ≤ 1 such that

rij = 0.5 + 0.5(ui − uj) i, j = 1, . . . , n . (4)

Components ui are unique up to addition of a constant. Tanino [18] also
states an alternative kind of consistency for FPR which is called multiplica-
tive. A FPR R = (rij) with rij 6= 0 is multiplicatively consistent if and only
if the following condition of transitivity holds

rik

rki

=
rijrjk

rkjrji

i, j, k = 1, . . . , n . (5)

If (5) holds, then a positive vector v = (v1, . . . , vn) exists such that

rij =
vi

vi + vj

i, j = 1, . . . , n. (6)

Components vi are unique up to multiplication by a positive constant. Let’s
also note that property (5) formally corresponds to a property already intro-
duced in [17].

Throughout the paper we will indicate by A = (aij) a multiplicative
preference relation and by R = (rij) a fuzzy preference relation, without
distinguishing between a preference relation and the corresponding matrix.
Moreover, although it should be already clear because of our premises, we
want to specify that we consider the range of possible values for aij and rij

to be bounded while some other authors prefer to deal with open intervals.
It is interesting to observe that each MPR A = (aij) can be transformed into
a FPR using the following function g : [1

9
; 9] → [0; 1] introduced by Fedrizzi

[8],

rij = g(aij) =
1

2
(1 + log9 aij) . (7)

Function (7) transforms the aij values into the rij values in such a way
that all the relevant properties of A = (aij) are transformed into the corre-
sponding properties for R = (rij). In particular, multiplicative reciprocity
is transformed into additive reciprocity and multiplicative consistency (1) is
transformed into additive consistency (3). Clearly, the inverse function g−1

transforms rij into aij with the corresponding properties.

Furthermore, MPRs are also related with FPRs by the following trans-
formation f : [1

9
; 9] → [ 1

10
; 9

10
],

rij = f(aij) =
aij

aij + 1
. (8)
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Function (8) plays the same role of (7), but it transforms (1) into (5) instead
of (3). We will refer to functions (7) and (8) to state the results presented
in subsection 2.2. Moreover, we will denote a weight vector by w, u and v
referring to (2), (4) and (6) respectively. Finally we observe that a MPR is
also called pairwise comparison matrix.

To clarify what has already been stated in literature (and simply recalled
so far), Figure 1 may be of great help. Additively consistent FPRs are
denoted by R+ and they are illustrated in diagram (a). Conversely, multi-
plicatively consistent FPRs are denoted by R× and they are exposed in (b).
The symbol ∗ indicates that the relation at issue has not been defined in
literature yet.

A R+

w u

rij = 1
2(1 + log9 aij)

aij = 92(rij−0.5)

a
ij

=
w

i

w
j

w
i
=

(∏
n j
=

1
a

ij
)

1 n

∗

∗

r i
j
=

1 2
+

1 2
(u

i
−

u
j
)

∗

(a) Matrices A, R+ and corresponding
vectors w and u

A R×

w v

rij =
aij

1+aij

aij =
rij

rji

a
ij

=
w

i

w
j

w
i
=

(∏
n j
=

1
a

ij
)

1 n

∗

∗

r i
j
=

v
i

v
i
+

v
j

∗

(b) Matrices A, R× and corresponding
vectors w and v

Figure 1: Already known transformations

Finally, we observe that given rik, rkj ∈ [0, 1], there may not exist rij ∈
[0, 1] such that (3) is satisfied. The same result holds for (5) and analogously
for (1) referring to MPRs. These boundary problems for consistency are well
known and unavoidable when using bounded scales. Clearly the problem does
not exist when an open scale is used [1] [9]. On the other hand, despite the
elegant mathematical results, every unbounded scale yields serious drawbacks
in practical applications.
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2 Priority Vectors

Among the large number of methods for deriving weights from MPRs, Saaty’s
eigenvector method [16] and geometric mean method [4] are, as mentioned
before, the two best known. Saaty’s method suggests to choose, as weight
vector w, the normalized principal eigenvector of MPR A. On the other
hand, according to the geometric mean method, the weights wi are derived
from A by means of

wi =

(

n
∏

k=1

aik

) 1

n

. (9)

Both methods, if applied to a consistent MPR, give a vector w satisfying (2).
For what concerns FPRs, we cite, as examples, the approaches of Fan et al
[5], Fan et al. [6], Fan et al. [7], Gong [11], Lipovetsky and Conklin [13],
Xu [19], Xu [20], Xu and Da [21], Wang and Fan [22], Wang et al. [23],
Wang and Parkan [24]. Some of the methods mentioned above share one
of the following two desirable properties: (i) the weight vector u calculated
from an additively consistent FPR satisfies (4) ; (ii) the weight vector v
calculated from a multiplicatively consistent FPR satisfies (6). In spite of
the large number of proposed methods, they still remain rather complex to
be implemented and there is not one method which leads to such vectors u
and v, respectively, with a simple formula. Their complexity is sometimes
justified by the fact that some of the proposals can be applied to some special
cases, e.g. group decisions and incomplete information. Nevertheless, when
the single decision maker deals with a complete FPR this complexity does
not seem to be justified and that is why we aim at finding a simpler approach.

2.1 New methods

As mentioned above, given a consistent MPR, the weight vector calculated
by the geometric mean method (9) satisfies characterization (2). With the
following proposition we give a simple expression of the weight vector u that
satisfies the corresponding property (4) for a consistent FPR.

Proposition 1. Given an additively consistent FPR R+ = (rij), i.e. satis-
fying (3), the weight vector u = (u1 . . . , un) defined by

ui =
2

n

n
∑

k=1

rik (10)

is the unique vector, up to an additive constant, that satisfies Tanino’s char-
acterization (4).
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Proof. By substituting (10) in (4), it is

0.5 + 0.5

(

2

n

n
∑

k=1

rik −
2

n

n
∑

k=1

rjk

)

=

= 0.5 +
1

n

( n
∑

k=1

rik −
n
∑

k=1

rjk

)

=

= 0.5 +
1

n

n
∑

k=1

(rik − rjk).

From additive consistency condition (3), it is (rik − rjk) = (rij − 0.5). Then,

0.5 +
1

n

n
∑

k=1

(rij − 0.5) = 0.5 +
1

n
(rij − 0.5)n = rij.

To prove uniqueness, let us rewrite (4) in the form

2rij − 1 = ui − uj.

Then, by summing with respect to j,

2
n
∑

j=1

rij − n = nui −

n
∑

j=1

uj

ui =
2

n

n
∑

j=1

rij − 1 +
1

n

n
∑

j=1

uj.

Since c = −1 + 1
n

∑n

j=1 uj is constant with respect to i, it is

ui =
2

n

n
∑

j=1

rij + c

and uniqueness is proved.

It may be noted that ui is nothing else but the arithmetic mean of the
entries in the i-th row of R multiplied by 2. Due to the uniqueness of this
characterization, we can state that the simple arithmetic mean does not

6



satisfy Tanino’s characterization (4).
Ma et al. [14] propose a consistency improving method which is coherent
with (10). We state now a proposition for multiplicatively consistent FPR
similar to Proposition 1.

Proposition 2. Given a multiplicatively consistent FPR R× = (rij), i.e.
satisfying (5), the weight vector v = (v1 . . . , vn) defined by

vi =

(

n
∏

k=1

rik

rki

) 1

n

(11)

is the unique vector, up to a multiplicative constant, that satisfies Tanino’s
characterization (6).

Proof. In conformity with the Proof of Proposition 1, we take the right hand
side of (6) and substitute vi and vj thanks to (11)

vi

vi + vj

=
1

1 +
vj

vi

=
1

1 +
(
∏n

k=1

rjk

rkj
)
1
n

(
∏n

k=1

rik
rki

)
1
n

=
1

1 + (
∏n

k=1
rjkrki

rkjrik
)

1

n

at this point, due to the multiplicative transitivity condition we know that
rjkrki

rkjrik
=

rji

rij

1

1 + (
∏n

k=1
rji

rij
)

1

n

=
1

1 +
rji

rij

=
rij

rij + rji

= rij.

To prove uniqueness, let us rewrite (6) in the form

vi

(

1 − rij

rij

)

= vj.

Then, by multiplying with respect to j and exploiting the additive reciprocity,

n
∏

j=1

(

vi

rji

rij

)

=
n
∏

j=1

vj

vi =

(

n
∏

j=1

rij

rji

) 1

n

×

(

n
∏

j=1

vj

) 1

n

.
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Since c = (
∏n

j=1 vj)
1

n is constant with respect to i, it is

vi =

(

n
∏

j=1

rij

rji

) 1

n

× c

and uniqueness is proved.

Let us only highlight that we derive the explicit form of the priority vectors
involved in Tanino’s two characterization theorems. While Tanino’s charac-
terizations give a nice interpretation of the weights, formulas (10) and (11)
give simple expressions of those weights. Furthermore, they can clearly be
applied in the non–consistent case too, as it is common practice with (9).
The analogy with (9) will be better clarified in the following subsection.

2.2 Transformations between weight vectors

Let us now investigate the relationships between weight vectors u, v and w
given by (10), (11) and (9) respectively. Keeping in mind that u is unique
up to addition of a constant, while w and v are unique up to a multiplication
by a constant, the following propositions hold.

Proposition 3. Let A = (aij) be a consistent MPR and R+ = (rij) the
corresponding FPR obtained by applying (7) to A. If u and w are given by
(10) and (9) respectively, then, up to addition of a constant,

ui = log9 wi , i = 1, . . . , n . (12)

Proof. Let us consider equation (10) and substitute rik with the aid of (7).
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We obtain

ui =
2

n

n
∑

k=1

1

2
(1 + log9 aik)

=
1

n

n
∑

k=1

1 +
1

n

n
∑

k=1

log9 aik

= 1 +
1

n
log9

n
∏

k=1

aik

= 1 + log9

(

n
∏

k=1

aik

) 1

n

which, according to (9), can be rewritten

ui = 1 + log9 wi

Finally, since u is unique up to addition of a constant, we can write

ui = log9 wi.

Proposition 4. Let A = (aij) be a consistent MPR and R× = (rij) the
corresponding FPR obtained by applying (8) to A. If v and w are given by
(11) and (9) respectively, then they are equal up to a multiplication by a
constant,

vi = wi , i = 1, . . . , n . (13)

Proof. Substituting
rij

rji
for aij due to the inverse of (8) in (11), we obtain the

right hand side of equation (9).

According to propositions 3 and 4, clearly we obtain also ui = log9 vi and
ui = 2g(wi).

3 Example

Let us now present an example involving pairwise comparison matrices and
both additively and multiplicatively consistent fuzzy preference relations. We

9



start considering the following additively consistent fuzzy preference relation

R+ =









0.5 0.55 0.65 0.85
0.45 0.5 0.6 0.8
0.35 0.4 0.5 0.7
0.15 0.2 0.3 0.5









.

We can derive the priority vector with the aid of (10) and it is easy to verify
that relation (4) is satisfied

u =









1.275
1.175
0.975
0.575









.

At this point we proceed using the inverse of (12), that is wi = 9ui . After a
multiplication for a proper scalar and taking into account the equality v = w
we derive the following two vectors

w = v =









0.394505
0.316686
0.204070
0.084739









,

which are respectively associated to the following two matrices

A =









1 1.24573 1.93318 4.65554
0.802742 1 1.55185 3.73719
0.517282 0.644394 1 2.40822
0.214798 0.267581 0.415244 1









,

R× =









0.5 0.554711 0.659073 0.823182
0.445289 0.5 0.608127 0.788905
0.340927 0.391873 0.5 0.706592
0.176818 0.211095 0.293408 0.5









.

To conclude, it can be verified that v can be derived directly from R× by
using (11)

4 Conclusion and Remarks

By way of summarizing, we want to present in Figure 2 the same diagrams
presented above but completed with the relations that we have been intro-
ducing in this paper. As already stressed, some of them are particularly

10



A R+

w u

rij = 1
2(1 + log9 aij)

aij = 92(rij−0.5)

a
ij

=
w

i

w
j

w
i
=

(∏
n j
=

1
a

ij
)

1 n

ui = log9 wi

wi = 9ui

r i
j
=

1 2
+

1 2
(u

i
−

u
j
)

u
i
=

2 n

∑

n j
=

1
r i

j

(a) Matrices A, R+ and corresponding
vectors w and u

A R×

w v

rij =
aij

1+aij

aij =
rij

rji

a
ij

=
w

i

w
j

w
i
=

(∏
n j
=

1
a

ij
)

1 n

vi = wi

wi = vi

r i
j
=

v
j

v
i
+

v
j

v i
=

(∏
n j
=

1
r
ij

r
j
i
)

1 n

(b) Matrices A, R× and corresponding
vectors w and v

Figure 2: Complete diagrams of transformations

interesting because with the aid of them it is possible to estimate priority
vectors in a rapid, but also reliable and fully justified, way.

Tanino [18] demonstrates the existence of vectors u and v satisfying (4) and
(6) respectively. With (10) and (11), we provide the simplest representation
of such vectors, which can be considered to be the counterpart of (9) for FPR
satisfying (3) and (5) respectively. Note that if we interpret (rij − 0.5) to be
the intensity of preference of Ai over Aj, then additive consistency (3) is the
right type of consistency to be chosen and weights ui are given on an interval
scale. Conversely, if rij/rji indicates the ratio of the preference intensity for
Ai to that for Aj, then multiplicative consistency (5) has to be chosen and
weights vi are given on a ratio scale [18].
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