

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

D3.7 SUMMATIVE REPORT ON MATCHING
IMPLEMENTATION AND BENCHMARKING RESULTS

Lorenzino Vaccari, Juan Pane, Pavel Shvaiko, Maurizio Marchese,
Fausto Giunchiglia, Paolo Besana and Fiona McNeill

February 2009

Technical Report # DISI-09-017

.

OpenKnowledge

FP6-027253

D3.7 Summative report on matching
implementation and benchmarking results

Lorenzino Vaccari1, Juan Pane1, Pavel Shvaiko 1, Maurizio Marchese1, Fausto
Giunchiglia 1, Paolo Besana3,Fiona McNeill3

1 University of Trento
{vaccari;pane;pavel;marchese,fausto}@disi.unitn.it

2 University of Edinburgh
p.besana@sms.ed.ac.uk;f.j.mcneill@ed.ac.uk

Report Version: Final
Report Preparation Date: 15/11/08
Classification: deliverable 3.7
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)
Partners: IIIA(CSIC) Barcelona

Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

Abstract. In this deliverable we report on the work carried out for the
evaluation and benchmarking of the matching component of the Open-
Knowldge kernel. The main goal of the present work has been a extensive
evaluation of the approximate Structure-Preserving Semantic Matching
(SPSM) algorithm both on a set of synthesized benchmarks, as well as on
a set of real world GIS ESRI ArcWeb services. The results demonstrate
the robustness and the performance of the SPSM approach on a large
number (ca 700.000) of matching tasks. Moreover, the SPSM approach is
capable of reproducing similar results to state-of-the-art matchers when
only syntactic variation are considered, while outperforming them when
semantic variations are applied
The rest of the deliverable is organized as follows: (1) a brief introduction
of the goals and main results of the deliverable and (2) the collection of
two papers that describe the approach, the related work and discuss the
results so far achieved.

1 Introduction

1.1 SPSM algorithm and specificity

The matching in the OpenKnowledge project is done by the Structure-Preserving
Semantic Matching (SPSM) algorithm presented in detail in the previous de-
liverables (see in particular D3.4 and D3.6). To briefly summarize it, unlike
standard ontology matching (see, for example, which focusses on matching flat
terms within a structured ontology, SPSM is concerned with matching structured
terms: specifically, first-order terms.

This is essential in the OpenKnowledge kernel because the purpose of the
matching is to map between the abilities required in a role, represented by the
first-order constraints in the LCC, and the abilities of the service or peer playing
that role. The abilities of the service may not naturally be expressed as first-order
terms but in most cases it is possible to translate between the service inputs and
outputs and a first-order term. We have already created a translation process
from WSDL services to first-order terms. These first-order terms then represent
the service within its OK Component (OKC), and matching between a service
and a role becomes a matter of matching between first-order terms: those of the
service abilities in the OKC and those of the role requirements, which are the
constraints in the IM.

The SPSM algorithm is a two-step process, consisting of (i) node matching
and (ii) tree matching. The node matching step considers the individual words in
the terms to be matched. For example, when matching the term buy(car, price)
to the term purchase(price, vehicle, number), the node matching step would
look for similarities between members of the set [buy, car, price] and the set
[purchase, price, vehicle, number].

This step is done using conventional ontology matching methods, particularly
through the use of S-Match (see Deliverable D3.4). LCC allows for annotations
of terms, meaning that these terms may be annotated with the ontology from
which they are drawn, which can then be used in matching. If this is not the case

then methods such as consulting WordNet are used. The tree matching step uses
the results of the node matching step to consider the global similarities between
the trees by preserving a set of structural properties. The algorithm for this part
of the matching is based on a tree-edit distance algorithm, augmented using the
theory of abstraction to ensure the matches remain semantically meaningful. For
the node matching step, we are able to rely on a large body of existing work but
there has been little work done on semantically meaningful tree matching and
our approach to this problem is novel.

The SPSM algorithm searches not only for perfect matches, which in an
unconstrained system we would expect to encounter only rarely, but also for
good enough matches, where by good enough we mean that the similarity of the
terms is above a certain threshold. The algorithm therefore returns a numerical
score in [0 1] indicating the similarity of the terms, which can be compared to
the threshold value for the IM. Those exceeding the threshold are considered
good enough; otherwise the terms are considered not to be similar. The level of
the threshold will depend on the type of interaction and the desires of the users.

2 Evaluation Goals

Matching in OpenKnowledge has two purposes:

1. To allow peers with abilities that are not identical to the required abilities
for a role to understand how they may satisfy the constraints on that role.
This is done through building up a map between each element of the peer’s
ability to each element of a constraint. In the case of non-perfect matching,
there may be elements in either the ability or the constraint that remain
unmatched, and the matches that do exist may not be between things that
are semantically identical. Nevertheless this map enables the peer to use its
own abilities to satisfy constraints to the highest degree possible.

2. To allow peers to determine how similar their own abilities are to those re-
quired of the role, by considering how close the numerical similarity returned
is to a perfect score (1). This judgement can be used:
(a) to enable a peer to decide whether it wishes to play that particular role,

or whether it should look for a similar role in a different IM where the
abilities may match better. If a peer opts to play a role for which it is
has poor matching, it is likely to either fail completely in that role or
else to produce a low-quality performance. This is both a waste of the
peer’s own time and resources and will lead to a lowering of other peers’
trust in it.

(b) in the case that there are several peers subscribed to play a single role, to
assist other peers in judging which of those peers they wish to play with.
In the OpenKnowledge kernel, this is done through the combination of
the matching score reported by the subscribed peers and the trust score
that the choosing peer has in each of them - good enough answers. The
choosing peer cannot actually verify that the matching score reported
is correct, as this can only be calculated through complete observation

of the peer’s method of performing a service, which is not public, so it
must rely on the veracity of the subscribed peers. However, peers that
persistently exaggerate their matching scores will end up with a lower
trust score and therefore not be chosen.

The evaluation of the performance of the proposed matching implementation
has been the focus of this final deliverable of workpackage 3. To this end, the
evaluation of the SPSM algorithm have been carried out in various settings,
namely:

1. Test case 1: real-world ontologies. We used different versions of the
Standard Upper Merged Ontology (SUMO) and the Advance Knowledge
Transfer (AKT) ontologies. We extracted all the differences between ver-
sions 1.50 and 1.51, and between versions 1.51 and 1.52 of the SUMO ontol-
ogy and between versions 1 and 2.1, and 2.1 and 2.2 of the AKT-portal and
AKT-support ontologies. These are all first-order ontologies (hence, their ex-
pressivity is far beyond generalization/specialization hierarchies), so many
of these differences matched well to the potential differences between terms
that we are investigating. The approach, as well as the tests and the results
have been presented in the first of the two attached paper, i.e. “Approximate
structure-preserving semantic matching” by Fausto Giunchiglia, Fiona Mc-
Neill, Mikalai Yatskevich, Juan Pane, Paolo Besana, Pavel Shvaiko submitetd
and accepted at the 7th International Conference on Ontologies, DataBases,
and Applications of Semantics (ODBASE 2008).

2. Test case 2: systematic benchmarks. This test case was composed of
trees that are alterations of the original trees. Unlike the work on systematic
benchmarks in Ontology Alignment Evaluation Initiative-OAEI [5], the orig-
inal trees here were generated automatically. We have used here both generic
trees (see “Approximate structure-preserving semantic matching” paper)
and real world GIS ESRI ArcWeb services (see the second attached paper
“An evaluation of approximate sontology matching in GIS applications” by
Lorenzino Vaccari , Pavel Shvaiko , Paolo Besana , Maurizio Marchese to be
submitted to GeoInformatica)

3. Test case 3: classification. In this third test, we have investigated the
ability of the SPSM algorithm in the unsupervised clustering of a set of
meaningful related Web Service operations. In this experiments, the evalua-
tion ssetup corresponded to a manual classication (reference alignment) of a
selected set (50) of ARCWeb service operations. We thus compared the con-
structed manual classication of the selected Web Service operations with the
automatic one obtained with the SPSM approach. The theory, the evalua-
tion set-up and the results are presented in the second paper “An evaluation
of approximate ontology matching in GIS applications”.

A more specific evaluation of the SPSM approach focused not only on the
performance of the matching component, but also on the the evaluation of the
fulfillment of original purposes envisioned for the matching plug-in in the Open-
Knowledge project, have been addressed and detailed in the Trust and GEA
deliverable (D4.9) and in the e-Response summative experiment (D6.8)

2.1 Summary of results

We report here a brief summary of the main results of our benchmarking exper-
iments, in order to facilitate the reading of the deliverable. The complete details
of the evaluation set-up, the evaluation methodology and the complete results
are described in the two following papers.

1. Test case 1: real-world ontologies The SPSM solution demonstrates high
matching quality on the wide range of the internal parameters (cut-off thresh-
old) values. In particular, F-Measure values exceed 70% the extended range
0.2−1.0 of cut-off threshold. A more detailed analysis of the performance of
the individual matchers (i.e. string-based, edit-distance, semantic matchers
etc..) indicates the quality and range of applicability of each matchers (see
also the brief discussion of the results for following test case).

2. Test case 2: systematic benchmarks. We have developed evaluation
tests to explore the overall behavior and robustness of the proposed SPSM
approach towards both typical syntactic alterations and alterations of word
meanings in real GIS service operation signatures. All experiments demon-
strated the capability of the SPSM approach to self-adapt (i.e. to provide
best results) to the empirical threshold used in the experiment to simulate
the users’ tolerance to errors (i.e. to calculate the set of true positive, false
positive and false negative correspondences).
Moreover, the results show the robustness of the SPSM algorithm over signif-
icant ranges of parameters’ variation (thresholds and alteration operations’
probability); while maintaining high (over 50-60 %) overall matching rele-
vance quality (F-measure).
Comparison with a baseline matcher (based on edit-distance algorithm)
showed how the SPSM approach is always comparable with the baseline
when only syntactic alteration are considered, whereas SPSM results were
always better (in average more than 20%) when “meaning” alterations were
introduced. This is exactly what one would expect, since SPSM approach
includes a number of state-of-the-art syntactic matchers (that are first used
in the internal matching algorithm) plus a number of semantic matchers that
enter into play for the alterations in the meaning of nodes labels. .

3. Test case 3: classification. In this experiment, we have investigated how
the proposed SPSM approach could be used in determining (in an unsu-
pervised manner) the “class” of a specific GIS operation directly from the
information present in its WSDL operation signature. We thus compared a
manual classication for the selected Web Service operations with the auto-
matic one obtained with the SPSM approach.
Classification quality measures despend on the cut-off threshold values and
the SPSM solution demonstrated overall good matching quality (i.e. F-
measure) on the wide range of these values. In particular, the best F-measure
values exceeded 50% for the given GIS operations set. Although the results
are encouraging, still 50% of GIS operation were incorrectly classified, due
to the limited knowledge present in the signatures only. In this case, the

presence of more informative and semantically structured annotation would
improve significantly the automatic classification, though at the expense of
a greater effort from the designer/programmer.

Moreover, during all experiments we have been able to access the overall
performance of the SPSM algorithm. The evaluations were performed on stan-
dard laptop Intel Centrino Core Duo CPU-2Ghz, 2GB RAM, with the Windows
Vista (32bit, SP1) operating system, and with no applications running but a
single matching system.

Considering all our experiments we executed approximately 700.000 match-
ing tasks using SPSM. The efficiency of SPSM solution is such that the average
execution time per matching task in the evaluation under consideration was 43ms
(with an average number of the parameters of the WSDL operations around 4).
The quantity of main memory used by SPSM during matching did not rise more
than 2.3Mb higher than the standby level.

Approximate structure-preserving semantic matching

Fausto Giunchiglia1, Fiona McNeill2, Mikalai Yatskevich1, Juan Pane1, Paolo
Besana2, Pavel Shvaiko3

1 University of Trento, Povo, Trento, Italy,
{fausto|yatskevi|pane|pavel|}@dit.unitn.it

2 University of Edinburgh, Scotland,
f.j.mcneill@ed.ac.uk|p.besana@sms.ed.ac.uk

3 TasLab, Informatica Trentina, Italy,
Pavel.Shvaiko@infotn.it

Abstract. Typical ontology matching applications, such as ontology integration,
focus on the computation of correspondences holding between the nodes of two
graph-like structures, e.g., between concepts in two ontologies. However, for ap-
plications such as web service integration, we need to establish whether full graph
structures correspond to one another globally, preservingcertain structural prop-
erties of the graphs being considered. The goal of this paperis to provide a new
matching operation, calledstructure-preserving semantic matching. This opera-
tion takes two graph-like structures and produces a set of correspondences,(i)
still preserving a set of structural properties of the graphs being matched,(ii)
only in the case if the graphs areglobally similar to one another. Our approach
is based on a formal theory of abstraction and on a tree edit distance measure.
We have evaluated our solution in various settings. Empirical results show the
efficiency and effectiveness of our approach.

1 Introduction

Ontology matching is a critical operation in many applications, such as Artificial In-
telligence, the Semantic Web and e-commerce. It takes two graph-like structures, for
instance, lightweight ontologies [9], and produces an alignment, that is, a set of cor-
respondences, between the nodes of those graphs that correspond semantically to one
another [6].

Many varied solutions of matching have been proposed so far;see [6,28,23] for re-
cent surveys4. In this paper we introduce a particular type of matching, namelyStructure-
preserving semantic matching (SPSM). In contrast to conventional ontology matching,
which aims to match single words through considering their position in hierarchical
ontologies, structure-preserving semantics matching aims to match complex, structured
terms. These terms are not structured according to their semantics, as terms are in an
ontology, but are structured to express relationships: in the case of our approach, first-
order relationships. This structure-preserving matchingis therefore a two-step process,
the first step of which is to match individual words within theterms through tech-
niques used for conventional ontology matching, and the second - and novel - step of

4 See,http://www.ontologymatching.org for a complete information on the topic.

http://www.ontologymatching.org

which is to match the structure of the terms. For example, consider a first-order rela-
tion buy(car, price) and another,purchase(price, vehicle, number), both expressing
buying relations between vehicles and cost. If the words used in these terms are from
known ontologies, then we can use standard ontology matching techniques to deter-
mine, for example, thatbuy is equivalent topurchase and thatcar is a sub-type of
vehicle. If they are not from known ontologies we can still use WordNet to gather
this information. Our work is concerned with understandingand using this information
about how the words are related to determine how the full structured terms are related.
Therefore, SPSM needs to preserve a set of structural properties (e.g., vertical ordering
of nodes) to establish whether two graphs are globally similar and, if so, how similar
they are and in what way. These characteristics of matching are required in web service
integration applications, see, e.g., [20,22,17].

More specifically, most of the previous solutions to web service matching employ a
single ontology approach, that is, the web services are assumed to be described by the
concepts taken from a shared ontology. This allows for the reduction of the matching
problem to the problem of reasoning within the shared ontology [20,26]. In contrast,
following the work in [1,25,30], we assume that web servicesare described using terms
from different ontologies and that their behavior is described using complex terms; we
consider first-order terms. This allows us to provide detailed descriptions of the web
services’ input and output behavior. The problem becomes therefore that of matching
two web service descriptions, which in turn, can be viewed asfirst-order terms and
represented as tree-like structures. An alignment betweenthese structures is considered
as successful only if two trees areglobally similar, e.g.,tree1 is 0.7 similar totree2,
according to some measure in [0 1]. A further requirement is that the alignment must
preserve certain structural properties of the trees being considered. In particular, the
syntactic types and sorts have to be preserved:(i) a function symbol must be matched
to a function symbol and(ii) a variable must be matched to a variable. We are mainly
interested in approximate matching, since two web service descriptions may only rarely
match perfectly.

The contributions of this paper include:(i) a new approach to approximate web
service matching, calledStructure-preserving semantic matching (SPSM), and(ii) an
implementation and evaluation of the approach in various settings (both with automat-
ically generated tests and real-world first-order ontologies) with encouraging results.
SPSM takes two tree-like structures and produces an alignment between those nodes of
the trees that correspond semantically to one another, preserving the above mentioned
two structural properties of the trees being matched, and only in the case that the trees
are globally similar. Technically, the solution is based onthe fusion of ideas derived
from the theory of abstraction [11,12] and tree edit distance algorithms [3]. To the best
of our knowledge, this is the first work taking this view.

The rest of the paper is organized as follows. Section 2 explains how calls to web
services can be viewed as first-order trees. It also providesa motivating example. We
overview the approximate SPSM approach in Section 3, while its details, such as ab-
straction operations, their correspondence to tree edit operations as well as computation
of global similarity between trees are presented in Section4 and Section 5, respectively.

Evaluation is discussed in Section 6. Section 7 relates our work to similar approaches.
Finally, Section 8 summarizes the major findings.

2 Matching Web Services

Our hypothesis is that we can consider web services inputs and outputs as trees and
therefore apply SPSM to calls to web services. This kind of structural matching can
then allow us to introduce flexibility to calls to web services so that we no longer need
to rely on (i) terms used in these calls coming from a global ontology; instead local
ontologies adapted to purpose can be used;(ii) the structuring of these calls being
fixed.

The structure is important because each argument in a call toa web service is de-
fined according to its position in the input or output. However, expecting this structure
to be fixed is just as problematic as expecting a global ontology. Individual web ser-
vice designers will use different structure just as they will use different vocabulary and
changes to web service descriptions over time will be mean that previous calls to web
services become inappropriate. In order to remove the need both for a global ontology
and a fixed structure for every web service call, we thereforeneed to employ struc-
tured matching techniques for matching between web servicecalls and returns and web
service inputs and outputs.

The first-order terms that we match do not distinguish between inputs and outputs in
the same manner as, for example, Web Service Description Language (WSDL). Instead,
both inputs and outputs are arguments of the same predicate.In Prolog notation, this is
indicated by using a+ for an input and a− for an output. Thus the term:

purchase(−Price, +V ehicle, +Number)

indicates thatV ehicle andNumber are inputs andPrice is an output. During run-time,
we can distinguish between inputs and outputs because inputs must be instantiated and
outputs must be uninstantiated. In order to use our tree matching techniques for web
services, we therefore make use of an automated translationprocess we have created
that will map between a first-order term such as the above and astandard WSDL rep-
resentation of the same information. This approach can alsobe used for other kinds of
services in addition to web services; all that is required isthat a translation process is
created to convert between the representation of the service and first-order terms.

We make the assumption that web services written in WSDL willcontain some kind
of semantic descriptions of what the inputs and outputs are:that arguments are labelled
descriptively and not merely as ‘input1’ and so on. This is after all what WSDL, as
a description language, is designed to do. We appreciate that in practice designers of
web services adopt a lazy approach and label inputs and outputs with terms that do
not describe their semantics, especially when the WSDL filesare generated automati-
cally from classes or interfaces written in a programming language. In such cases, our
techniques will have a very low success rate. However, such web services are of little
value for any automated process and do not make use of the fullpotential of WSDL.
We believe that as they become more widely used, the need for them to be properly de-
scriptive becomes imperative so that they can be located andinvoked automatically. In

the meantime, any mark-up that is used to provide semantics for web services outside
of the WSDL can also be amenable to our techniques, provided,as is usually the case,
that descriptions of inputs and outputs can be expressed as atree.

Let us consider an example of approximate SPSM between the following web ser-
vices:get wine(Region, Country, Color, Price, Number of bottles) andget wine(Region(Country,
Area), Colour, Cost, Year, Quantity), see Figure 1. In this case the first web service de-
scription requires the fourth argument of theget wine function (Color) to be matched to
the second argument (Colour) of theget wine function in the second description. Also,
Region in T 2 is defined as a function with two arguments (Country andArea), while in
T 1, Region is an argument ofget wine. Thus,Region in T 1 must be passed toT 2 as
the value of theArea argument of theRegion function. Moreover,Year in T 2 has no
corresponding term inT 1. Notice that detecting these correspondences would have not
been possible in the case of exact matching by its definition.

get_Wineget_Wine

RegionRegion
Country
Price
Color
Number_of_bottles

Country
Area

Colour
Cost
Year

Quantity

Fig. 1: Two approximately matched web services representedas trees:T1: get wine(Region,
Country, Color, Price, Number of bottles) and T2: get wine(Region(Country, Area),
Colour, Cost, Year, Quantity). Functions are in rectangles with rounded corners; they arecon-
nected to their arguments by dashed lines. Node correspondences are indicated by arrows.

In order to guarantee successful web service integration, we are only interested in
the correspondences holding among the nodes of the trees underlying the given web
services in the case when the web services themselves are similar enough. At the same
time the correspondences have to preserve two structural properties of the descriptions
being matched:(i) functions have to be matched to functions and(ii) variables to vari-
ables. Thus, for example,Region in T 1 is not linked toRegion in T 2. Finally, let us
suppose that the correspondences on the example of Figure 1 are aggregated into a sin-
gle similarity measure between the trees under consideration, e.g., 0.62. If this global
similarity measure is higher than empirically establishedthreshold (e.g., 0.5), the web
services under scrutiny are considered to be similar enough, and the set of correspon-
dences showed in Figure 1 is further used for the actual web service integration.

3 Overview of the Approach

The matching process is organized in two steps:(i) node matching and(ii) tree match-
ing. Node matching solves the semantic heterogeneity problem by considering only
labels at nodes and contextual information of the trees. We use here the S-Match sys-
tem [14]. Technically, two nodesn1 ∈ T 1 andn2 ∈ T 2 match iff:c@n1 R c@n2 holds,

Matcher name Execution order Approximation level Matcher type Schema info

WordNet 1 1 Sense-basedWordNet senses

Prefix 2 2 String-based Labels

Suffix 3 2 String-based Labels

Edit distance 4 2 String-based Labels

Ngram 5 2 String-based Labels

Table 1: Element level matchers. The first column contains the names of the matchers. The sec-
ond column lists the order in which they are executed. The third column introduces the matcher’s
approximation level. The relations produced by a matcher with the first approximation level are
always correct. Notice that matchers are executed following the order of increasing approxima-
tion. The fourth column reports the matcher’s type, while the fifth column describes the matcher’s
input, see [14] for details.

wherec@n1 andc@n2 are the concepts at nodesn1 andn2, andR ∈ {=,⊑,⊒}. In
semantic matching [10] as implemented in the S-Match system[14] the key idea is that
the relations, e.g., equivalence and subsumption, betweennodes are determined by(i)
expressing the entities of the ontologies as logical formulas and by(ii) reducing the
matching problem to a logical validity problem. Specifically, the entities are translated
into logical formulas which explicitly express the conceptdescriptions as encoded in the
ontology structure and in external resources, such as WordNet [8]. Besides WordNet,
the basic version of S-Match also uses four string-based matchers, see Table 1. This
allows for a translation of the matching problem into a logical validity problem, which
can then be efficiently resolved using sound and complete state of the art satisfiability
solvers [13]. Notice that the result of this stage is the set of one-to-many correspon-
dences holding between the nodes of the trees. For example, initially Region in T 1 is
matched to bothRegion andArea in T 2.

Tree matching, in turn, exploits the results of the node matching and the structure
of the trees to find if these globally match each other. Specifically, given the correspon-
dences produced by the node matching, the abstraction operations (§4) are used in order
to select only those correspondences that preserve the desired properties, namely that
functions are matched to functions and variables to variables. Thus, for example, the
correspondence that bindsRegion in T 1 andRegion in T 2 should be discarded, while
the correspondence that bindsRegion in T 1 andArea in T 2 should be preserved. Then,
the preserved correspondences are used as allowed operations of a tree edit distance
in order to determine global similarity (§5) between trees under consideration. If this
global similarity measure is higher than an empirically established threshold, the trees
are considered to be similar enough, and not similar otherwise. Technically, two trees
T 1 andT 2 approximately match iff there is at least one noden1i in T 1 and a noden2j

in T 2 such that:(i) n1i approximately matchesn2j, and(ii) all ancestors ofn1i are
approximately matched to the ancestors ofn2j , wherei=1,. . . ,N1;j=1,. . . ,N2; N1 and
N2 are the number of nodes inT 1 andT 2, respectively.

Semantic heterogeneity is therefore reduced to two steps:(i) matching the web
services, thereby obtaining an alignment, and(ii) using this alignment for the actual
web service integration. This paper focuses only on the matching step.

4 Matching Via Abstraction

In this section we first discuss the abstraction operations (§4.1), then discuss how these
operations are used in order to drive a tree edit distance computation (§4.2), and, finally,
discuss the implementation details (§4.3).

4.1 Abstraction Operations

The work in [12] categorizes the various kinds of abstraction operations in a wide-
ranging survey. It also introduces a new class of abstractions, called TI-abstractions
(where TI means “Theorem Increasing”), which have the fundamental property of main-
taining completeness, while loosing correctness. In otherwords, any fact that is true of
the original term is also true of the abstract term, but not vice versa. Similarly, if a
ground formula is true, so is the abstract formula, but not vice versa. Dually, by taking
the inverse of each abstraction operation, we can define a corresponding refinement op-
eration which preserves correctness while loosing completeness. The second fundamen-
tal property of the abstraction operations is that they provide all and onlythe possible
ways in which two first-order terms can be made to differ by manipulations of their sig-
nature, still preserving completeness. In other words, this set of abstraction/refinement
operations defines all and only the possible ways in which correctness and complete-
ness are maintained when operating on first-order terms and atomic formulas. This is
the fundamental property which allows us to study and consequently quantify the se-
mantic similarity (distance) between two first-order terms. To this extent it is sufficient
to determine which abstraction/refinement operations are necessary to convert one term
into the other and to assign to each of them a cost that models the semantic distance
associated to the operation.

The work in [12] provides the following major categories of abstraction operations:
Predicate: Two or more predicates are merged, typically to the least general gener-

alization in the predicate type hierarchy, e.g.,Bottle(X)+ Container(X) 7→ Con-
tainer(X). We callContainer(X)a predicate abstraction ofBottle(X)or
Container(X)⊒Pd Bottle(X). Conversely, we callBottle(X)a predicate refinement
of Container(X)or Bottle(X)⊑Pd Container(X).

Domain: Two or more terms are merged, typically by moving the functions or con-
stants to the least general generalization in the domain type hierarchy, e.g.,
Micra + Nissan7→ Nissan. Similarly to the previous item we callNissana domain
abstraction ofMicra or Nissan⊒D Micra. Conversely, we callMicra a domain
refinement ofNissanor Micra ⊑D Nissan.

Propositional: One or more arguments are dropped, e.g.,Bottle(A) 7→ Bottle. We call
Bottlea propositional abstraction ofBottle(A)or Bottle⊒P Bottle(A). Conversely,
Bottle(A)is a propositional refinement ofBottleor Bottle(A)⊑P Bottle.

Let us consider the following pair of first-order terms(Bottle A)and(Container).
In this case there is no abstraction/refinement operation that makes them equivalent.
However, consequent applications of propositional and domain abstraction operations
make the two terms equivalent:

(Bottle A) 7→⊑P (Bottle) 7→⊑D (Container)

In fact the relation holding among the terms is a compositionof two refinement opera-
tions, namely(Bottle A)⊑P (Bottle)and(Bottle)⊑D (Container).

The abstraction/refinement operations discussed above allow us to preserve the de-
sired properties: that functions are matched to functions and variables to variables. For
example, predicate and domain abstraction/refinement operations do not convert a func-
tion into a variable. Therefore, the one-to-many correspondences returned by the node
matching should be further filtered based on the allowed abstraction/refinement opera-
tions:{=,⊒,⊑}, where= stands for equivalence;⊒ represents an abstraction relation
and connects the precondition and the result of a composition of arbitrary number of
predicate, domain and propositional abstraction operations; and⊑ represents a refine-
ment relation and connects the precondition and the result of a composition of arbitrary
number of predicate, domain and propositional refinement operations.

Since abstractions and refinements cover every way in which first-order terms can
differ (either in the predicate, in the number of arguments or in the types of arguments),
we can consider every relation between terms that are in someway related as a com-
bination of these six basic refinements and abstractions. Therefore, every map between
first-order trees can be described using these operations. The only situation in which we
cannot use these techniques is if there is no semantic relation between the predicates of
the two terms, but in this situation, a failed mapping is the appropriate outcome since
we do not consider them to be related even though the arguments may agree. Note that
we can match non-related arguments using these operations by applying propositional
abstraction and then propositional refinement.

4.2 Tree Edit Distance Via Abstraction Operations

Now that we have defined the operations that describe the differences between trees,
we need some way of composing them so that we can match entire trees to one another.
We look for a composition of the abstraction/refinement operations allowed for the
given relationR (see§3) that are necessary to convert one tree into another. In order
to solve this problem we propose to represent abstraction/refinement operations as tree
edit distance operations applied to the term trees.

In its traditional formulation, the tree edit distance problem considers three opera-
tions:(i) vertex deletion,(ii) vertex insertion, and(iii) vertex replacement [31]. Often
these operations are presented as rewriting rules:

(i) υ → λ (ii) λ → υ (iii) υ → ω

whereυ andω correspond to the labels of nodes in the trees whileλ stands for the
special blank symbol.

Our proposal is to restrict the formulation of the tree edit distance problem in or-
der to reflect the semantics of the first-order terms. In particular, we propose to rede-
fine the tree edit distance operations in a way that will allowthem to have one-to-one
correspondence to the abstraction/refinement operations.Table 2 illustrates the corre-
spondence between abstraction/refinement and tree edit operations. Let us focus for the
moment on the first three columns of Table 2. The first column presents the abstrac-
tion/refinement operations. The second column lists corresponding tree edit operations.
The third column describes the preconditions of the tree edit operation use.

Table 2: The correspondence between abstraction operations, tree edit operations and costs.

Abstraction Tree edit Preconditions of operations CostT1=T2 CostT1⊑T2 CostT1⊒T2

operations operations

t1 ⊒P d t2 a → b a ⊒ b; 1 ∞ 1
a andb correspond to predicates

t1 ⊒D t2 a → b a ⊒ b; 1 ∞ 1
a andb correspond to functions or constants

t1 ⊒P t2 a → λ a corresponds to predicates, 1 ∞ 1
functions or constants

t1 ⊑P d t2 a → b a ⊑ b; 1 1 ∞

a andb correspond to predicates
t1 ⊑D t2 a → b a ⊑ b; 1 1 ∞

a andb correspond to functions or constants
t1 ⊑P t2 a → λ a corresponds to predicates, 1 1 ∞

functions or constants
t1 = t2 a = b a = b; a andb correspond to 0 0 0

predicates, functions or constants

Let us consider, for example, the first line of Table 2. The predicate abstraction
operation applied to first-order termt1 results with termt2 (t1 ⊒Pd t2). This abstraction
operation corresponds to a tree edit replacement operationapplied to the termt1 of the
first tree that replaces the nodea with the nodeb of the second tree(a → b). Moreover,
the operation can be applied only in the case that:(i) labela is a generalization of label
b and(ii) both nodes with labelsa andb in the term trees correspond to predicates in
the first-order terms.

4.3 Implementation

We have implemented our approximate SPSM solution in Java. Many existing tree edit
distance algorithms allow the tracking of the nodes to whicha replace operation is
applied. According to [31], the minimal cost correspondences are:(i) one-to-one,(ii)
horizontal order preserving between sibling nodes, and(iii) vertical order preserving.
The alignment depicted in Figure 1 complies with(i), (iii) and violates(ii). In fact,
the fourth siblingColor in T 1 is matched to the second siblingColour in T 2 (see below
for an explanation).

For the tree edit distance operations depicted in Table 2, wepropose to keep track
of nodes to which the tree edit operations derived from the replace operation are ap-
plied. In particular, we consider the operations that correspond to predicate and domain
abstraction/refinement (t1 ⊒Pd, t1 ⊑Pd, t1 ⊒D, t1 ⊑D). This allows us to obtain an
alignment among the nodes of the term trees with the desired properties, i.e., that there
are only one-to-one correspondences in it and that functions are matched to functions
and variables are matched to variables. This is the case because(i) predicate and do-
main abstraction/refinement operations do not convert, forexample, a function into a
variable and(ii) the tree edit distance operations, as from Table 2, have a one-to-one
correspondence with abstraction/refinement operations.

At the same time, an alignment used in a tree edit distance computation preserves
the horizontal order among the sibling nodes, but this is nota desirable property for
the web service integration purposes. In fact, we would wantthe fourth siblingColour

in T 1 to match the second siblingColor in T 2 of Figure 1. However, as from Table 2,
the tree edit operations corresponding to predicate and domain abstraction/refinement
(t1 ⊒Pd, t1 ⊑Pd, t1 ⊒D, t1 ⊑D) can be applied only to those nodes of the trees
whose labels are either generalizations or specializations of each other, as computed
by the S-Match node matching algorithm. Therefore, given the alignment produced by
the S-Match node matching algorithm, we identify the cases when the horizontal order
between sibling nodes is not preserved and change the ordering of the sibling nodes to
make the alignment horizontal order preserving. For example, swapping the nodesCost
andColour in T 2 of Figure 1 does not change the meaning of these terms but it allows
the correspondence holding betweenColour andColor in Figure 1 to be included in the
alignment without increasing the cost during the tree edit distance computation. This
switching means that the original horizontal order of siblings is not preserved in most
cases. If there are arguments with identical names, such cases are resolved with the help
of indexing schemes.

5 Global Similarity Between Trees

Our goal now is to compute the similarity between two term trees. Since we compute
the composition of the abstraction/refinement operations that are necessary to convert
one term tree into the other, we are interested in a minimal cost of this composition.
Therefore, we have to determine the minimal set of operations which transforms one
tree into another, see Eq. 1:

Cost= min
∑

i∈S

ki ∗ Costi (1)

where,S stands for the set of the allowed tree edit operations;ki stands for the number
of i-th operations necessary to convert one tree into the other andCosti defines the
cost of thei-th operation. Our goal here is to define theCosti in a way that models the
semantic distance.

A possible uniform proposal is to assign the same unit cost toall tree edit operations
that have their abstraction theoretic counterparts. The last three columns of Table 2 il-
lustrate the costs of the abstraction/refinement (tree edit) operations, depending on the
relation (equivalence, abstraction or refinement) being computed between trees. Notice
that the costs for estimating abstraction (⊒) and refinement (⊑) relations have to be ad-
justed according to their definitions. In particular, the tree edit operations corresponding
to abstraction/refinement operations that are not allowed by definition of the given re-
lation have to be prohibited by assigning to them an infinite cost. Notice also that we
do not give any preference to a particular type of abstraction/refinement operations. Of
course this strategy can be changed to satisfy certain domain specific requirements.

Let us consider, for example, the first line of Table 2. The cost of the tree edit dis-
tance operation that corresponds to the predicate abstraction (t1 ⊒Pd t2) is equal to 1
when used for the computation of equivalence (CostT1=T2) and abstraction (CostT1⊒T2)
relations between trees. It is equal to∞ when used for the computation of refinement
(CostT1⊑T2) relation.

Eq. 1 can now be used for the computation of the tree edit distance score. However,
when comparing two web service descriptions we are interested in similarity rather than
in distance. We exploit the following equation to convert the distance produced by a tree
edit distance into the similarity score:

TreeSim= 1 −
Cost

max(T1, T2)
(2)

whereCost is taken from Eq. 1 and is normalized by the size of the biggesttree. Note
that for the special case ofCostequal to∞, TreeSimis estimated as 0. Finally, the high-
est value ofTreeSimcomputed forCostT1=T2, CostT1⊑T2 andCostT1⊒T2 is selected
as the one ultimately returned. For example, in the case of example of Figure 1, when
we matchT 1 with T 2 this would be 0.62 for bothCostT1=T2 andCostT1⊑T2.

6 Evaluation

On top of the implementation discussed in§4.3 we exploited a modification of simple
tree edit distance algorithm from [33]. The evaluation set-up is discussed in§6.1, while
the evaluation results are presented in§6.2.

6.1 Evaluation Set-up

Ontology and web service engineering practices suggest that often the underlying trees
to be matched are derived or inspired from one another. Therefore, it is reasonable
to compare a tree with another one derived from the original one. We have evaluated
efficiency and quality of the results of our matching solution on two test cases.

Test case 1: real-world ontologies. We used different versions of the Standard Upper
Merged Ontology (SUMO)5 and the Advance Knowledge Transfer (AKT)6 ontologies.
We extracted all the differences between versions 1.50 and 1.51, and between versions
1.51 and 1.52 of the SUMO ontology and between versions 1 and 2.1, and 2.1 and
2.2 of the AKT-portal and AKT-support ontologies7. These are all first-order ontolo-
gies (hence, their expressivity is far beyond generalization/specialization hierarchies),
so many of these differences matched well to the potential differences between terms
that we are investigating. However, some of them were more complex, such as differ-
ences in inference rules, and had no parallel in our work; therefore, these were dis-
carded, and our tests were run on all remaining differences.Specifically, 132 pairs of
trees (first-order logic terms) were used. Half of the pairs were composed of the equiv-
alent terms (e.g.,journal(periodical-publication) andmagazine (periodical-publication))
while the other half was composed from similar but not equivalent terms (e.g.,web-
reference(publication-reference) andthesis-reference (publication-reference)).

5 http://ontology.teknowledge.com/
6 http://www.aktors.org
7 Seehttp://dream.inf.ed.ac.uk/projects/dor/ for full versions of these on-

tologies and analysis of their differences.

http://ontology.teknowledge.com/
http://www.aktors.org
http://dream.inf.ed.ac.uk/projects/dor/

Test case 2: systematic benchmarks. Different application programming interfaces
(APIs) suggest that the terms within a tree are likely not to be semantically related
to each other. Examples from the Java API include:set(index, element) andput(key,
value). Thus, trees can be considered as being composed of nodes whose labels are
random terms.

This test case was composed of trees that are alterations of the original trees. Unlike
the work on systematic benchmarks in Ontology Alignment Evaluation Initiative-OAEI
[5], the original trees here were generated automatically.We have generated 100 trees.
For each original tree, 30 altered ones were created, see Table 3. Pairs composed of
the original tree and one varied tree were fed to our SPSM solution. The experiment
described above was repeated 5 times in order to remove noisein the results.

For tree generation, node labels were composed of a random number of words, se-
lected from 9000 words extracted from the Brown Corpus8. The average number of
nodes per tree was 8; in fact, functions usually have fewer parameters. In turn, the
tree alterations were inspired by the approach in [5]. Theseare summarized in Table 3
and include:(i) syntactic alterations, such as adding or removing characters, and(ii)
semantic alterations, word addition in labels by using related words (e.g., synonyms)
extracted from the Moby thesaurus9. The probabilities used for these two types of alter-
ations represent the fact that in most of the cases (0.8) the modifications made during an
evolution process concern the altering in meaning, while syntactic modifications, such
as introducing acronyms, usually have less occurrences (0.3).

Table 3: Parameters used for generating and modifying the trees

Parameter Syntactic Semantic Combined

Number of trees 100 100 100

Number of modifications per tree 30 30 30

Average number of nodes per tree 8 8 8

Probability of replacing a word in a node label for a related one 0.0 0.8 0.8

Probability of making a syntactic change in a word of a node label 0.3 0.0 0.3

Since the tree alterations made are known, these provide theground truth, and
hence, the reference results are available for free by construction, see also [5,21]. This
allows for the computation of the matching quality measures. In particular, the standard
matching quality measures, such asRecall, PrecisionandF-measurefor the similarity
between trees have been computed [6]. In computation of these quality measures we
considered the correspondences holding among first-order terms rather than the nodes
of the term trees. Thus, for instance,journal(periodical-publication1)=magazine(periodical-
publication2) was considered as a single correspondence rather than two correspon-
dences, namelyjournal=magazine andperiodical-publication1=periodical-publication2.

The evaluation was performed on a standard laptop Core Duo CPU-2Ghz, 2GB
RAM, with the Windows Vista operating system, and with no applications running but
a single matching system.

8 http://icame.uib.no/brown/bcm.html
9 http://www.mobysaurus.com/. Since the SPSM node matching uses WordNet 2.1, an

alternative thesaurus was used here.

http://icame.uib.no/brown/bcm.html
http://www.mobysaurus.com/

6.2 Evaluation Results

The matching quality results for the first test case are shownin Figure 2. Quality mea-
sures depend on the cut-off threshold values and the SPSM solution demonstrates high
matching quality on the wide range of these values. In particular, F-Measure values
exceed 70% for the given range.

Fig. 2: Test case 1: Evaluation results.

The evaluation results for the second test case are summarized in Figures 3, 4 and
5. In order to obtain those results there have been used:(i) the tree matcher discussed
in §4 and§5 and(ii) the various matchers used in isolation (namely, edit distance,
NGram, prefix, suffix and WordNet) and all these matchers as combined by S-Match,
see Table 1. Figures 3, 4 and 5 are composed of four plots (fromtop to bottom):(i)
standard precision-recall plot,(ii) recall vs various cut-off threshold values in [0 1],
(iii) precisionvsvarious cut-off threshold values in [0 1], and(iv) F-measurevsvarious
cut-off threshold values in [0 1].

In particular, Figure 3 shows that for the syntactic alterations, as expected, string-
based matchers outperform the WordNet matcher. Also, edit distance performs as well
as S-Match. The best performance in terms of F-Measure (which is 0.52) is reached
at the threshold of 0.8. In turn, Figure 4 shows that for the semantic alterations, as
expected, the WordNet matcher outperforms the string-based matchers. The best per-
formance in terms of F-Measure (which is 0.73) is demonstrated by S-Match and is
reached at the threshold of 0.8. Finally, Figure 5 shows thatwhen both types of alter-
ations, namely syntactic and semantics, are applied the best performance in terms of
F-Measure (which is 0.47) is demonstrated by S-Match and is reached at the threshold
of 0.8.

The efficiency of our solution is such that the average execution time per matching
task in the two test cases under consideration was 93ms. The quantity of main memory
used by SPSM during matching did not rise more than 3Mb higherthan the standby
level. Finally, the evaluation results show that conventional ontology matching technol-
ogy that we previously applied to matching classifications and XML schemas (see [14])

can also provide encouraging results in the web services domain. Of course, additional
extensive testing is needed, especially with WSDL services, for example as done in
[30].

7 Related Work

We believe that this approach to structured matching is unique and therefore it is dif-
ficult to perform any comparative analysis. In order to demonstrate that we make use
of powerful ontology matching tools for the standard ontology matching step of the
process, we can compare S-Match against other ontology matching tools. However, the
full structure-preserving semantic matching addresses a previously unsolved problem.
In this section, we discuss other methods that address similar problems.

Our work builds on standard work in tree-edit distance measures, for example, as
espoused by [27]. The key difference with our work is the integration of the semantics
that we gain through the application of the abstraction and refinement rules. This allows
us to consider questions such aswhat is the effect to the overallmeaningof the term
(tree) if node ais relabelled tonode b?, orhow significant is the removal of a node to the
overall semantics of the term? These questions are crucial in determining an intuitive
and meaningful similarity score between two terms, and are very context dependent.
Altering the scores given in Table 2 enables us to provide different answers to these
questions depending on the context, and we are working on giving providing even more
subtle variations of answers reflecting different contexts(see Section 8).

Work based on these ideas, such as Mikhaiel and Stroudi’s work on HTML differ-
encing [15], tends to focus only on the structure and not on the semantics. This work
never considers what the individual nodes in their HTML trees mean and only considers
context in the sense that, for example, the cost of deleting anode with a large subtree
is higher than the cost of deleting a leaf node; the semantic meanings of these nodes is
not considered.

The problem of location of web services on the basis of the capabilities that they
provide (often referred as the matchmaking problem) has recently received consider-
able attention. Most of the approaches to the matchmaking problem so far employed
a single ontology approach (i.e., the web services are assumed to be described by the
concepts taken from the shared ontology). See [20,22,26] for example. Probably the
most similar to ours is the approach taken in METEOR-S [1] andin [25], where the
services are assumed to be annotated with the concepts takenfrom various ontologies.
Then the matchmaking problem is solved by the application ofthe matching algorithm.
The algorithm combines the results of atomic matchers that roughly correspond to the
element level matchers exploited as part of our algorithm. In contrast to this work, we
exploit a more sophisticated matching technique that allows us to utilise the structure
provided by the first order term.

Many diverse solutions to the ontology matching problem have been proposed so
far. See [28] for a comprehensive survey and [7,24,4,16,2,19,29] for individual solu-
tions. However most efforts has been devoted to computationof the correspondences
holding among the classes of description logic ontologies.Recently, several approaches
allowed computation of correspondences holding among the object properties (or binary

predicates) [32]. The approach taken in [18] facilitates the finding of correspondences
holding among parts of description logic ontologies or subgraphs extracted from the
ontology graphs. In contrast to these approaches, we allow the computation of corre-
spondences holding among first order terms.

In summary, much work has been done on structure-preservingmatching and much
has been done on semantic matching, and our work depends heavily on the work of
others in these fields. The novelty of our work is in the combination of these two ap-
proaches to produce a structure-preserving semantic matching algorithm, thus allowing
us to determine fully how structured terms, such as web service calls, are related to one
another.

8 Conclusions and Future Work

We have presented an approximate SPSM approach that implements theSPSMopera-
tion. It is based on a theory of abstraction and a tree edit distance. We have evaluated
our solution on test cases composed of hundreds of trees. Theevaluation results look
promising, especially with reference to the efficiency indicators.

Future work proceeds at least along the following directions: (i) studying a best
suitable cost model,(ii) incorporating preferences in order to drive approximation, thus
allowing/prohibiting certain kinds of approximation (e.g., not approximating red wine
with white wine, although these are both wines), and(iii) conducting extensive and
comparative testing in real-world scenarios.

Acknowledgements. We appreciate support from the OpenKnowledge European STREP
(FP6-027253).

References

1. R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor. Constraint driven web service compo-
sition in METEOR-S. InProceedings of IEEE SCC, 2004.

2. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistructured and
structured data sources.SIGMOD Record, 28(1), 1999.

3. W. Chen. New algorithm for ordered tree-to-tree correction problem.Journal of Algorithms,
40(2), 2001.

4. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with APFEL.
In Proceedings of ISWC, 2005.

5. J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O.Šváb, V. S., W. van
Hage, and M. Yatskevich. Results of the ontology alignment evaluation initiative 2007. In
Proceedings of the ISWC + ASWC International Workshop on Ontology Matching (OM),
2007.

6. J. Euzenat and P. Shvaiko.Ontology matching. Springer, 2007.
7. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. InProceedings

of ECAI, 2004.
8. C. Fellbaum.WordNet: an electronic lexical database. MIT Press, 1998.
9. F. Giunchiglia, M. Marchese, and I. Zaihrayeu. Encoding classifications into lightweight

ontologies.Journal on Data Semantics, VIII, 2007.

10. F. Giunchiglia and P. Shvaiko. Semantic matching.The Knowledge Engineering Review,
18(3), 2003.

11. F. Giunchiglia and T. Walsh. Abstract theorem proving. In Bassi S., Sridharan N., Bertacco
S., and Bonicelli R., editors,11th international joint conference on artificial intelligence
(IJCAI’89), volume 1, Detroit, Mich., 20-25 August 1989.

12. F. Giunchiglia and T. Walsh. A theory of abstraction.Artificial Intelligence, 57(2-3), 1992.
13. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching. InProceed-

ings of ESWC, 2005.
14. F. Giunchiglia, M. Yatskevich, and P. Shvaiko. Semanticmatching: Algorithms and imple-

mentation.Journal on Data Semantics, IX, 2007.
15. R. Gligorov, Z. Aleksovski, W. ten Kate, and F. van Harmelen. Accurate and efficient html

differencing. InProceedings of the 13th IEEE International Workshop on Software Technol-
ogy and Engineering Practice (STEP), pages 163–172. IEEE Press, 2005.

16. R. Gligorov, Z. Aleksovski, W. ten Kate, and F. van Harmelen. Using google distance to
weight approximate ontology matches. InProceedings of WWW, 2007.

17. N. Gooneratne and Z. Tari. Matching independent global constraints for composite web
services. InIn Proceedings of WWW, pages 765–774, 2008.

18. W. Hu and Y. Qu. Block matching for ontologies. InProceedings of ISWC, 2006.
19. Y. Kalfoglou and M. Schorlemmer. IF-Map: an ontology mapping method based on infor-

mation flow theory.Journal on Data Semantics, I, 2003.
20. M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discovery with OWLS-

MX. In Proceedings of AAMAS, 2006.
21. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTuner: tuning schema matching software

using synthetic scenarios.VLDB Journal, 16(1), 2007.
22. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web

technology. InProceedings of WWW, 2003.
23. N. Noy, A. Doan, and A. Halevy. Semantic integration.AI Magazine, 26(1), 2005.
24. N. Noy and M. Musen. The PROMPT suite: interactive tools for ontology merging and

mapping.International Journal of Human-Computer Studies, 59(6), 2003.
25. S. Oundhakar, K. Verma, K. Sivashanugam, A. Sheth, and J.Miller. Discovery of web

services in a multi-ontology and federated registry environment. Journal of Web Services
Research, 2(3), 2005.

26. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web services
capabilities. InProceedings of ISWC, 2002.

27. Dennis Shasha and Kaizhong Zhang. Approximate tree pattern matching. InIn Pattern
Matching Algorithms, pages 341–371. Oxford University Press, 1997.

28. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches.Journal on Data
Semantics, IV, 2005.

29. U. Straccia and R. Troncy. oMAP: Combining classifiers for aligning automatically OWL
ontologies. InProceedings of WISE, 2005.

30. E. Stroulia and Y. Wang. Structural and semantic matching for assessing web-service simi-
larity. International Journal of Cooperative Information Systems, 14(4):407–438, 2005.

31. K.-C. Tai. The tree-to-tree correction problem.Journal of the ACM, 26(3), 1979.
32. J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and K. Wang. UsingBayesian decision for ontology

mapping.Journal of Web Semantics, 4(1), 2006.
33. G. Valiente.Algorithms on Trees and Graphs. Springer, 2002.

Fig. 3: Test case 2: Evaluation results for syntactic changes.

Fig. 4: Test case 2: Evaluation results for semantic changes.

Fig. 5: Test case 2: Evaluation results for combined changes.

An evaluation of approximate ontology matching
in GIS applications

Lorenzino Vaccari1,, Pavel Shvaiko2, Paolo Besana3,
Maurizio Marchese1, Juan Pane1

1 DISI, University of Trento, Italy
{vaccari|pane|marchese@disi.unitn.it}
2 TasLab, Informatica Trentina Spa, Italy

{pavel.shvaiko@infotn.it}
3 University of Edinburgh, UK
{p.besana@sms.ed.ac.uk}

Abstract. Matching between concepts describing the meaning of rep-
resenting for heterogeneous information sources is a key operation in
many application domains, including web service coordination, data in-
tegration, peer-to-peer information sharing, query answering, and so on.
In this paper we present an evaluation of an ontology matching approach,
specifically of Structure-Preserving Semantic Matching (SPSM) solution
which we applied within an emergency response scenario for GIS web
service coordination. First we provide a detailed description and formal-
ization of scenario under consideration. Then, we discuss the SPSM ap-
proach used to resolve the semantic heterogeneity problem among web
services. We evaluate the SPSM solution both on a set of synthesized
benchmarks, as well as on real world GIS ESRI ArcWeb services. The
results demonstrate the robustness and the performance of the SPSM
approach on a large number (ca. 700.000) of matching tasks.

Keywords. Ontology matching, ontology matching evaluation, seman-
tic heterogeneity, GIS web services, SDI integration, similarity measure-
ment.

1 Introduction

Geospatial semantics and ontologies are keep gaining an increasing attention
within and outside geospatial information communities. The main reason is that
there is an overwhelming necessity to share this information between different
stakeholders, such as departments in public administration, professionals and cit-
izens; thus, diverse information systems are tackling with interoperability issues,
in order to obtain a coherent and contextual use of geographic information.

This necessity forms the basis for a number of international and national
initiatives, to set up global, international, national and regional infrastructures
for the collection and dissemination of geographical data. The key initiatives

2

include: the INfrastructure for SPatial InfoRmation in Europe (INSPIRE) di-
rective1, the Shared Environmental Information System (SEIS) initiative2, the
Water Information System for Europe (WISE) system3, the Global Monitor-
ing for Environmental and Security (GMES - Kopernikus) initiative4 and the
Global Earth Observation System of Systems (GEOSS)5. All these initiatives
are based on the integration of geographic information locally maintained by
Geographic Information Systems (GIS) and globally shared using Spatial Data
Infrastructures (SDI) [3,17,27,24,31].

Based on these recent developments pushed by the above mentioned ini-
tiatives, access to geographic data has radically changed in the past decade.
Previously, it was a specific task, for which complex desktop GIS were built
and geographic data were maintained locally, managed by a restricted number
of technicians. Thus, each organization maintained its local domain vocabulary
of terms related to geographic features and relations among them. These sys-
tems were often based on semantics, sometimes even with an explicitly encoded,
though not shared locally, defined semantics.

With the advent of the (Semantic) Web an increasing and different number of
Geo Web services became available from different sources. Nowadays, the chal-
lenge is to discover and chain these services in order to obtain a user defined goal.
Of course, each service provider publishes its services based on its background
knowledge and discovering and chaining services requires a semantic interoper-
ability level between different providers. As described in [19] , in today’s GIS
service architectures, the interfaces between agents, computational and human,
are those of web services...and...the interface of a service is formally captured by
its signature. If we consider signatures (name, inputs and outputs) of web ser-
vices to be tree-like structures, we can use some of-the-shelf ontology matching
systems to facilitate the resolution of the semantic heterogeneity problem.

In fact, ontology matching is often proposed as a solution to this hetero-
geneity problem in many applications, including integration of web services,
and specifically GIS services. Ontology matching takes two graph-like structures
such as, for instance, lightweight ontologies [9] and produces an alignment (set
of correspondences) between the nodes of those graphs that correspond seman-
tically to one another. Many solution to the ontology matching problem has
been proposed so far (see [8,29,38] for recent surveys). In this paper we focus on
a particular type of ontology matching, namely Structure-Preserving Semantic
Matching (SPSM) and evaluate a concrete solution proposed in [10], on a set
of ESRI ArcWeb services SOAP methods6. We base the evaluation, both on a
set of synthesized benchmarks, as well as between services from real world GIS
ESRI ArcWeb services.

1 http://www.ec-gis.org/inspire/
2 http://ec.europa.eu/environment/seis/index.htm
3 http://ec.europa.eu/environment/water/index en.htm
4 http://www.gmes.info/index.php?id=home
5 http://www.earthobservations.org/geoss.shtml
6 http://www.arcwebservices.com/v2006/help/index.htm

http://www.ec-gis.org/inspire/
http://ec.europa.eu/environment/seis/index.htm
http://ec.europa.eu/environment/water/index_en.htm
http://www.gmes.info/index.php?id=home
http://www.earthobservations.org/geoss.shtml
http://www.arcwebservices.com/v2006/help/index.htm

3

The contributions of this paper include: (i) a description of an emergency
response scenario focused on GIS web services coordination and (ii) an exten-
sive evaluation of the SPSM approach using ESRI ArcWeb services in various
settings. This paper is an expanded and updated version of an earlier conference
paper [23], where the first contribution mentioned above was originally claimed
and substantiated. The most important extension of this paper over the previous
work in [23] includes an extensive evaluation of the SPSM matching approach
on a set of real-world ESRI ArcWeb services.

The structure of the rest of the paper is as follows. We discuss the related
work in Section 2. We introduce our application scenario and its formalization
in Section 3. In Section 4 we outline a Structure-Preserving Semantic Matching
approach used to reduce the semantic heterogeneity problem as required by
the scenario. We provide the evaluation of the solution discussed in Sections 5
(dataset description), (evaluation method) and (evaluation results). Finally, we
present the major findings of the paper as well as future work in Section 8.

2 Related Work

In this section we first review advances in the GIS semantic heterogeneity man-
agement for service integration (2.1). Then, we overview relevant ontology match-
ing solutions in artificial intelligence, semantic web and database communities
(2.2). Finally, we discuss evaluation efforts made so far in ontology matching
evaluation (2.3), including evaluation of web service.

2.1 GIS web service management

Heterogeneity of GIS ontologies has been addressed in many works during the
last decades, see, e.g., [30] and [42]. The importance of semantics in the GIS
domain has been described in [21] where the authors presented an approach to
ontology based GI retrieval. In the case of GIS Web services, in [22]7 the authors
presented a rule-based description framework (a simple top-level ontology as well
as a domain ontology) and an associated discovery and composition method
that helps service developers to create such service chains from existing services.
In [20] the authors developed a methodology that combines service discovery,
abstract composition, concrete composition, and execution. In this approach,
the authors presented the use of domain ontologies for the different steps in
geographic service chaining.

For geo-services specific case a comparison between Business Process Ex-
ecution Language (BPEL)8 and Web Services Modeling Ontology (WSMO)9

approaches has been made in [16]. In this work the authors proposed semantic
web service composition using WSMO as an improvement of BPEL limitations.
7 ORCHESTRA project, http://www.eu-orchestra.org/
8 http://www.oasis-open.org/apps/group public/download.php/23974/wsbpel-v2.0-

primer.pdf
9 http://www.wsmo.org/

http://www.eu-orchestra.org/
http://www.oasis-open.org/apps/group_public/download.php/23974/wsbpel-v2.0-primer.pdf
http://www.oasis-open.org/apps/group_public/download.php/23974/wsbpel-v2.0-primer.pdf
http://www.wsmo.org/

4

The work in [43] proposed a toolset to compose geo-web services using BPEL. In
turn, the work in [40] combined WSMO and IRS-III for semantically composing
geo-spatial web services. The composition of geo-web services is analyzed also in
in [6], where the authors used OWL [2], OWL-S10 and BPEL to give meaning to
diverse data sources and geo-processing services. To chain and discover geo-web
services the authors applied an OWL reasoner as the inference engine for the
knowledge-base.

Most of the previous solutions employs a single ontology approach, that is,
the web services are assumed to be described by the concepts taken from a
shared ontology [20,16,40]. This allows for the reduction of the matching problem
to the problem of reasoning within the shared ontology [18,33]. Moreover, the
adoption of a common ontology for the geographic information communities is
not practical, because the development of a common ontology has proven to
be difficult and expensive [?]. In contrast, following the works in [1,32,39], we
assume that web services are described using terms from different ontologies
and that their behavior is described using complex terms. The problem becomes
therefore that of matching two web service descriptions, which in turn, can be
represented as tree-like structures [10].

2.2 Ontology matching

A substantial amount of work that tackles the problem of semantic heterogeneity
has been done in the semantic web, artificial intelligence and database domains,
where ontology matching is viewed as a plausible solution, see, e.g., [28], [38] for
recent surveys, while examples of individual approaches addressing the matching
problem can be found on http://www.OntologyMatching.org. These solutions
take advantage of the various properties of ontologies11 (e.g., labels, structures)
and use techniques from different fields (e.g., statistics and data analysis, ma-
chine learning, linguistics). These solutions share some techniques and attack
similar problems, but differ in the way they combine and exploit their results. A
detailed analysis of the different techniques in ontology matching has been given
in [8].

The most similar to the solution that we used in our scenario are the ap-
proaches taken in [1,32,39], where the services are assumed to be annotated
with the concepts taken from various ontologies. The matching algorithms of
those works combine the results of atomic matchers that roughly correspond to
the element level matchers12 exploited as part of the work in [15] and [10] which
we applied in our scenario.

10 http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
11 The term ontology is used here in a wide sense, and, hence, encompasses sets of

terms, classifications, database schemas, thesauri, etc.
12 Element level matching techniques compute correspondences by analyzing concepts

in isolation, ignoring their relationships with other concepts. In turn, structure level
matching techniques compute correspondences by exploiting the results of element
level matchers and by analyzing relationships between concepts.

http://www.OntologyMatching.org
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

5

2.3 Ontology matching evaluation

The ontology matching evaluation theme has been given a chapter account in [8].
There are several individual approaches to the evaluation of matching approaches
in general, see, e.g., [13], as well as with web services in particular, see, e.g.,
[39,25,32]. Beside, there are annual Ontology Alignment Evaluation Initiative
(OAEI) campaigns [4,7]. OAEI is a coordinated international initiative that or-
ganizes the evaluation of the increasing number of ontology matching systems.
The main goal of OAEI is to support the comparison of the systems and algo-
rithms on the same basis and to allow anyone to draw conclusions about the
best matching strategies. Unfortunately, at present, matching of web services
has not been addressed by OAEI. In turn, there is the Semantic Web Service
(SWS) challenge initiative which aims at evaluation of various web service me-
diation approaches [35]. However, as also noticed in [37], the key problem with
the current evaluations of web service matching approaches is the lack of real
world web service data sets as well as their size, for example as from [35], the
participants of SWS were operating with 20 web services.

The goal of this paper is the evaluation of the SPSM approach on real world
GIS web services. Specifically, we conduct two kinds of experiments: (i) an evo-
lution experiment with ca. individual 1.600 matching tasks (that we repeat for
varying thresholds parameters and strength of the alteration operations) where
we deal with meaning and syntactic robustness tests, and (ii) a classification
robustness experiment with 50 matching tasks, where we compare the results of
an automatic and a manual classification of a selected set of GIS ESRI ArcWeb
service operations.

3 Application scenario

Emergency management activities, that in the following we will reference as
emergency response (eResponse) activities, are developed and implemented by
means of the essential analysis of information and the coordination of the in-
volved actors, including emergency personnel, army, volunteers, etc. Disaster
data and events can be acquired, modeled, fused and displayed in state-of-the-
art SDIs using distributed data sources, the majority of which are spatial. SDIs
are pervaded by interoperability problems, including: (i) (geo) data interoper-
ability, specifically, geographical datasets have particular properties (e.g., maps
as implicit interfaces) to be handled, which are different from other types of
data (see [34]) and (ii) web-service interoperability issues, such as discovery,
composition and coordination [21].

We have analyzed the organizational model of the distributed GIS Agency
infrastructure of Trentino, Italy. The framework is represented by a number
of specialized GIS agencies: civilian protection, urban planning, forestry, roads,
agriculture, cadastral, environment, and geologic survey. Each GIS agency is
responsible for providing a subset of the geographic information for the local
region. To support interoperability among different GIS agencies the regional

6

information infrastructure is shifting from a traditional GIS system to a dis-
tributed SDI.

Within the general Trentino SDI management scenario, we focus here - for
descriptive purposes - on the most commonly used specific use case, i.e., Map
Request Service. Let us discuss one particular, but the most typical, request that
can be made by a service requestor peer of a GIS agency: a digital map request.
The service requestor, both in an emergency or normal situation, needs to visual-
ize a map of a region with geo-referenced information. Usually, the searched map
is a composition of different geographic layers offered by a GIS service provider.
A simplified interaction for the Map Request Service is illustrated in Figure 1.

Fig. 1. Map request service.

Interactions between a map service requestor and a map service provider are
briefly described as follows:

– The requestor (GIS Agency Service Requestor, GA SR) asks the provider
(GIS Agency Service Provider, GA SP) for the characteristics of the pro-
vided services (requestCapabilities()).

– GA SP returns its characteristics (returnCapabilities), in particular: the list
of available services (AvServices), the list of geographic datasets managed
by the server (AvLayers), the file format of the returned services (For-
mat), the geographic bounds of the available services (XMin ME, YMin ME,
XMax ME, YMax ME) and the software version (Version) of the adopted
service.

– Then, GA SR asks for the map service (requestMap) using the information
received from the previous step . This message contains the software version
of the adopted service (Version), the requested geographic layers (Layers, a
subset of the AvailLayers), the image dimension of the map (Width, Heigth),
the image format of the map (Format) and the spatial coverage of the map
(XMin BB, YMin BB, Xmax BB, YMax BB).

– GA SP provides the map (return(Map)) requested by the requestor.

7

– Finally, GA SR asks for the graphic legend that describes the previous map
(requestLegend(Layers)) and GA SP sends the legend (returnLegend(Legend))
to GA SR.

3.1 Use case formalization

In this subsection, we first describe the Lightweight Coordination Calculus (LCC)
[36], the choreography language employed to specify the interactions among par-
ticipants of our scenario. Then, we focus on the selected coordination problem
depicted in the previous subsection and provide its formalization with LCC.

LCC basics. LCC is a protocol language used to describe interactions among
distributed processes, e.g., agents and web services. LCC was designed specifi-
cally for expressing P2P style interactions within multi-agent systems, i.e., with-
out any central control; therefore, it is well suited for modeling coordination
(choreography) of software components running in an open environment. The
applicability of P2P style protocol modeling, such as LCC, in the eResponse do-
main is driven by its potential to deal with a distributed-knowledge and dynamic
environment.

Interactions in LCC are expressed as message passing behaviors associated
with roles. The most basic behaviors are to send or receive messages, where
sending a message may be conditional on satisfying a constraint (pre-condition)
and receiving a message may imply constraints (post-condition) on the peer
accepting it.

a(r1, A1) ::
ask(X)⇒ a(r2, A2)← need(X) then
update(X)← return(X)⇐ a(r2, A2)

a(r2, A2) ::
ask(X)⇐ a(r1, A1) then
return(X)⇒ a(r1, A1)← get(X)

Fig. 2. LCC example: double arrows (⇒,⇐) indicate message passing, single
arrow (←) indicates constraint satisfaction.

A basic LCC interaction is shown in Figure 2. The peer identified by the value
of the variable A1 playing the role r1 verifies if it needs the info X (pre-condition
need(X)); if it does, A1 asks the peer identified by the value of the variable A2 for
X by sending the message ask(X). A2 receives the message, ask(X) from A1 and
then obtains the info X (pre-condition get(X)) before sending back a reply to A1
through the message return(X). After having received the message return(X), A1
updates its knowledge (post-condition update(X)). The constraints embedded
into the protocol express its semantics and could be written as first-order logic
predicates (e.g., in Prolog) as well as methods in an object-oriented language
(e.g., in Java). The characteristic of modularity allows separating the protocol

8

from the agent engineering. While performing the protocol, peers can therefore
exchange messages, satisfy constraints before/after messages are sent/received
and jump from one role to another so that a flexible interaction mechanism
is enabled still following a structured policy, which is absolutely necessary for
team-execution of coordinated tasks.

Use case formalization with LCC. Figure 3 and Figure 4 show the LCC code
for the interaction model depicted in Figure 1. The interaction model contains
the interactions from the viewpoint of a GIS agency (map) service Requestor
(ga sr, Figure 3) and of the GIS agency (map) service provider (ga sp, Figure 4).

– Specifically, in Figure 3, the GIS agency service requestor (ga sr) asks the
service provider (ga sr) its capabilities.

a(ga sr, R) ::
requestCapabilities()⇒ a(ga sr, R) then
returnCapabilities(AvailableServices, AvailableLayers, Format,

XMin ME, Y Min ME, XMax ME, Y Max ME, V ersion)
⇐ a(ga sp, P) then

requestMap(V ersion, Layers, Width, Height, Format
XMin BB, Y Min BB, XMax BB, Y Max BB)⇒ a(ga sp, P)

← selectLayers(AvailableLayers, Layers) ∧ needMap(Width, Height)∧
selectBoundingBox(XMin ME, Y Min ME, XMax ME, Y Max ME,

XMin BB, Y Min BB, XMax BB, Y Max BB) then
returnMap(Map)⇒ a(ga sp, P) then
requestLegend(Layers)⇒ a(ga sp, P) then
returnLegend(Legend)⇐ a(ga sp, P)

Fig. 3. LCC fragment for the GIS agency service requestor role.

After that, the service requestor waits until the service provider returns
the list of the available services (AvailableServices), the list of the avail-
able layers (AvailableLayers), the format of the returned file (Format), and
the geographic coverage of the available services (map extent, XMin ME,
YMin ME, Xmax ME, YMax ME). Then the map requestor asks the ser-
vice provider for a map. It selects some of the available geographic layers
(selectLayers(AvailableLayers, Layers)), defines the map dimension (need-
Map(Width, Height)) and selects an area from the available geographic ex-
tension (selectBoundingBox(XMin ME, YMin ME, XMax ME, YMax ME,
XMin BB, YMin BB, XMax BB, YMax BB)). Finally it requests the map
legend of the selected layers (requestLegend(Layers)).

– In Figure 4 the GIS agency service provider (ga sp) waits for one of the
following requests: requestCapabilities, requestMap and requestLegend. After
receiving one of them, it performs, respectively, the following actions:
• it builds its capabilities (getCapabilities(MapFile, Version, Available-

Services, AvailableLayers, Format, Xmin ME, YMin ME, Xmax ME,
YMax ME) constraint) and passes them to the requestor;

• it builds a digital map (getMap constraint) and sends it to the service
requestor;

9

a(ga sp, P) ::
requestCapabilities()⇐ a(ga sp, P) then
returnCapabilities(AvailableServices, AvailableLayers, Format,

XMin ME, Y Min ME, XMax ME, Y Max ME, V ersion)
⇒ a(ga sr, R)
← getCapabilities(Version, AvailableServices, AvailableLayers,

Format, XMin ME, YMin ME, XMax ME, YMax ME)

 or

requestMap(V ersion, Layers, Width, Height, Format,

XMin BB, Y Min BB, XMax BB, Y Max BB)⇐ a(ga sr, R) then
returnMap(Map)⇒ a(ga sr, R)

← getMap(Version, Layers, Width, Height, Format,

XMin BB, YMin BB, XMax BB, YMax BB)

 or

(
requestLegend(Layers)⇐ a(ga sr, R) then
returnLegend(Legend)⇒ a(ga sr, R)
← getLegend(Layers, Legend)

)
Fig. 4. LCC fragment for the GIS agency service provider role.

• it builds a legend of the requested layers (getLegend(Layers, Legend)
constraint) and returns it to the service requestor.

In the following section we will use getMap constraint (underlined in Fig-
ure 4) as part of the motivating example to the matching approach employed.

The emergency GUI. In order to complete the scenario, let us to describe,
as an example, how the detailed procedures and their formalization discussed
previously are actually used by final users. To this end, we developed an initial
prototype in which the coordination of the web services between the network
peers can be executed, visualised and analysed. In this prototype, the ongoing
simulation of an emergency situation and the resulting map acquired by the
interaction proposed in the previous subsection, together with movements of the
emergency peers are visualized through a GUI as shown in Figure 5.

The GUI represents a control panel used by the emergency coordinators.
Through the emergency GUI the users can visualize the map and the events of
the emergency situation. The map shows static geographic datasets (topographic
map, probable flooding areas, escape roads, meeting points, refuge centers, sen-
sor network) as well as dynamic datasets (e.g. Figure 5 shows the position of the
firefighters involved in the simulation). Moreover, through the GUI, emergency
coordinators can perform actions (enact the emergency plan, recall digital ser-
vices, change the map legend, search for other GIS datasets, send statements to
the emergency peers, etc) as well as ask information about the emergency situa-
tion (i.e., evacuated people, list of the emergency peers, blocked roads, situation
of the meeting points and of the refuge centers, etc).

4 Structure-Preserving Semantic Matching

In our scenario peers are selected at run time and they can change every time. Let
us suppose that we want to match a constraint on a role, such as: getMap(Version,
Layers, Width, Height, Format, XMin BB, YMin BB, XMax BB, YMax BB)
(T1 in Figure 6, see also highlighted in Figure 4) with the capabilities of a peer

10

Fig. 5. Emergency response visualiser.

willing to play that role, such as: getMap(Dimension(Width, Height), Edition,
Layers, DataFormat, Request, Xmin, Ymin, Xmax, Ymax) (T2 in Figure 6).
These can be also viewed as a web service operation descriptions, which in turn,
can be represented as tree-like structures.

As shown in Figure 6, the first description requires the second argument of
getMap function (Layers) to be matched to the fourth one (Layers) of getMap
function in the second description. The value of Version in the first description
must be passed to the second web service operation as the Edition argument.
Moreover, Request (this parameter indicates which web service operation (map
service, download service, etc) is being invoked) in T2 has no corresponding
term in T1.

The purpose of Structure-Preserving Semantic Matching is to reduce seman-
tic heterogeneity in peer role descriptions. Specifically, a semantic similarity
measure is used to estimate similarity between peer role descriptions under con-
sideration. This scenario poses additional constraints on conventional ontology
matching. In particular, we need to compute the correspondences holding among
the full graph structures and preserve certain structural properties of the graphs
under consideration. Thus, the goal here is to have a Structure-Preserving Se-
mantic Matching operation. This operation takes two graph-like structures and
produces a set of correspondences between those nodes of the graphs that corre-
spond semantically to one another, (i) still preserving a set of structural proper-

11

Fig. 6. Two web service descriptions (trees) and correspondences (lines) between
them.

ties of the graphs being matched, namely that functions are matched to functions
and variables to variables; and (ii) only in the case if the graphs are globally
similar to one another, e.g., graph1 is 0.65 similar to graph2 according to some
measure.

4.1 The approach

We briefly report here the approach (see [10] for the in-depth discussion) and
present it with the help of examples from the GIS domain. We focus on tree-
like-structures, see Figure 6. The SPSM matching process is organized in two
steps: (i) node matching and (ii) tree matching.

Node matching tackles the semantic heterogeneity problem by considering
only labels at nodes and domain specific contextual information of the trees.
SPSM uses the S-Match system as proposed in [15]. Technically, two nodes n1
and n2 in trees T1 and T2 match if and only if: c@n1 R c@n2 holds based on
S-Match. c@n1 and c@n2 are the concepts, that represent entities of the local
ontologies, at nodes n1 and n2 and R ∈ {=,v,w,“not related”}. In particular,
in semantic matching [11] as implemented in the S-Match system the key idea
is that the relations (e.g., =,v) between nodes are determined by (i) expressing
the entities, that is the concepts, of the ontologies as logical formulas and (ii)
reducing the matching problem to a logical validity problem.

Specifically, the concepts are translated into logical formulas which explicitly
express the concept descriptions as encoded in the ontology structure and in
external resources, such as WordNet [26]. This allows for a translation of the
matching problem into a logical validity problem, which can then be efficiently
resolved using sound and complete state-of-the-art satisfiability solvers [14]. No-
tice that the result of this stage is the set of correspondences holding between
the nodes of the trees. For example, that getMap and Version in T1 correspond
to getMap and Edition in T2, respectively.

12

Tree matching, in turn, exploits the results of the node matching and the
structure of the trees to find if these globally match each other. Technically, two
trees T1 and T2 approximately match if and only if there is at least one node
n2i in T1 and node n2j in T2 such that: (i) n1i matches n2j , (ii) all ancestors
of n1i are matched to the ancestors of n2j , where i = 1 . . . N1; j = 1 . . . N2; N1
and N2 are the number of nodes in T1 and T2, respectively.

4.2 The implementation

The implementation of SPSM is based on (i) a formal theory of abstraction and
(ii) a tree edit-distance algorithm [41]. Let us present, in the following, a brief
summary of them.

Abstraction operations . The work in [12] categorizes the various kinds of
abstraction operations, including:

Predicate (Pd) : two or more predicates are merged, typically to the least
general generalization in the predicate type hierarchy, e.g., Height(X) +
Dimension(X) → Dimension(X). We call Dimension(X) a predicate ab-
straction of Height(X), namely Dimension(X) wPd Height(X). Conversely,
we call Height(X) a predicate refinement of Dimension(X), namely Height
(X) vPd Dimension(X).

Domain (D) : two or more terms are merged, typically by moving constants to
the least general generalization in the domain type hierarchy, e.g., Xmin BB+
Xmin→ Xmin. We call Xmin a domain abstraction of Xmin BB, namely
Xmin wD Xmin BB. Conversely, we call Xmin BB a domain refinement
of Xmin, namely Xmin BB vD Xmin.

Propositional (P) : one or more arguments are dropped, e.g., Layers(L1)→
Layers. We call Layers a propositional abstraction of Layers(L1), namely
Layers vP Layers(L1). Conversely, Layers(L1) is a propositional refine-
ment of Layers, namely Layers(L1) vP Layers.

Let us consider the following example: (Height(H)) and (Dimension). In
this case there is no abstraction/refinement operation that makes those first-
order terms equivalent. However, consequent applications of propositional and
domain abstraction operations make the two terms equivalent: Height(X) vP

Height vD Dimension.
The abstraction/refinement operations discussed above preserve the desired

properties: that functions are matched to functions and variables to variables.
For example, predicate and domain abstraction/refinement operations do not
convert a function into a variable. Thus, for instance, the correspondences be-
tween Height (variable) and Width (variable) in T1 and Dimension (function)
in T2, although returned by the node matching, should be further discarded,
and therefore, are not shown in Figure 6.

13

Global similarity measurement . The key idea is to use abstractions / refine-
ments as allowed tree edit-distance operations in order to estimate the similarity
of two tree structures. Tree edit-distance is the minimum number of tree edit
operations, namely node insertion, deletion, replacement, required to transform
one tree to another. The goal is to: (i) minimize the editing cost, i.e., computa-
tion of the minimal cost composition of abstractions/refinements, (ii) allow only
those tree edit operations that have their abstraction theoretic counterparts in
order to reflect semantics of the first-order terms.

A uniform proposal here is to assign an empirical unit cost (see Table 1) to all
operations that have their abstraction theoretic counterparts, while operations
not allowed by definition of abstractions/refinements are assigned an infinite cost.
The following three relations between trees are considered: T1 = T2, T1 v T2,
and T1 w T2. A global similarity (TreeSim) between two trees T1 and T2 ranges
in [0 . . . 1] and is computed as follows:

TreeSim(T1, T2) = 1−

min
∑
i∈S

ni · Costi

max(N1, N2)
(1)

where, S is the set of allowed tree edit operations, ni is the number of i-th
operation necessary to convert one tree into the other, Costi is the cost of the
i-th operation. The minimal edit-distance is normalized by the size of the biggest
tree. Finally, a normalized distance (denoting dissimilarity) is converted into a
similarity score. When Costi is infinite (see Table 1), TreeSim is estimated as
zero.

The highest value of TreeSim among T1 = T2, T1 v T2, and T1 w T2
is returned as the final similarity score. For the example of Figure 6, 10 node-
to-node correspondences, namely 6 equivalence and 4 abstraction/refinement
relations, were identified by the node matching algorithm. The biggest tree is
T2 with 12 nodes. Then, these are used to compute TreeSim between T1 and
T2 by exploiting the above mentioned formula. In our example TreeSim is
0.54 for both T1 = T2 and T1 v T2 (while it is 0 for T1 w T2). The tree
similarity value could be useful to select trees whose similarity value is greater
than a cut-off threshold. In our example Treesim is higher than the cut-off
threshold of 0.5, and, therefore, the two trees globally match as expected and
the correspondences connecting the nodes of the term trees are further used for
data translation purposes.

5 The GIS web service evaluation dataset

The SPSM solution allows that the web services are described, in the correspond-
ing WSDL files and eventually in other formats, such as OWL-S and WSMO.
However, until actual services with such semantic specifications are not pub-
lished, we limit our evaluation to the names of the WSDL SOAP methods (opera-
tions) and of their parameters as carriers of meaningful information about the be-
havior and the semantics of the services. The SPSM approach thus assumes that

14

Table 1. The correspondence between abstraction operations, tree edit opera-
tions and costs.

Abstractions Operation Preconditions CostT1=T2 CostT1vT2 CostT1wT2

t1 wP d t2 replace(a, b)
a w b;

a and b correspond
to predicates

1 ∞ 1

t1 wD t2 replace(a, b)

a w b;
a and b correspond

to functions or
constants

1 ∞ 1

t1 wP t2 insert(a)
a corresponds
to predicates,

functions or constants
1 ∞ 1

t1 vP d t2 replace(a, b)
a v b; a and b

correspond
to predicates

1 1 ∞

t1 vD t2 replace(a, b)
a v b; a and b
correspond to

functions or constants
1 1 ∞

t1 vP t2 delete(a)
a corresponds
to predicates,

functions or constants
1 1 ∞

t1 = t2 a = b

a = b;
a and b correspond

to predicates,
functions or constants

0 0 0

the web services described in WSDL will be annotated with some kind of mean-
ingful descriptions of: (i) what the operations are (e.g. find Address By Point);
(ii) what the inputs and outputs are: i.e. that arguments are labeled descrip-
tively and not merely as “input1 ”, “var1 ” and so on. Any additional mark-up
that is used to provide semantics for web services outside of the WSDL files
can also be amenable to our techniques, provided, as is usually the case, that
descriptions of inputs and outputs can be captured in a tree structure.

In our scenario, we base our test cases on ESRI ArcWeb WSDL operations
and we compare labeled trees that correspond to their signatures.

We conducted two different kinds of tests. The first one has been inspired
by the work on systematic benchmarks of the Ontology Alignment Evaluation
Initiative (OAEI) [7]13. In this experiment we matched original labeled trees
to synthetically alterated trees. Moreover, we compared the performance of the
SPSM algorithm against the performance of a baseline algorithm, such as edit-
distance14. In the second experiment we compared a manual classification of
our GIS ArcWeb services dataset, the so-called “reference alignment”, to the
unsupervised one discovered by SPSM.

Finally, we evaluated efficiency and quality of the results of SPSM matching
solution on these test cases. The evaluation was performed on a standard laptop
Intel Centrino Core Duo CPU-2Ghz, 2GB RAM, with the Windows Vista (32bit,

13 http://oaei.ontologymatching.org/2006
14 The edit-distance between two strings is given by the minimum number of operations

needed to transform one string into the other, where an operation is an insertion,
deletion, or substitution of a single character

http://oaei.ontologymatching.org/2006

15

SP1) operating system, and with no applications running but a single matching
system.

5.1 Test case 1: evolution scenario

Ontology and web service engineering practices suggest that often the underly-
ing trees to be matched are derived or inspired from one another using different
kind of operations to change the meaning and the syntax of the original tree [10].
Therefore, it is reasonable to compare a tree with another one (derived from the
original tree). We evaluated SPSM following this scenario in which we performed
syntactical and semantical alterations to the nodes in trees, with a random prob-
ability ranging in [0.1. . . 0.9].

The evaluation dataset was composed of trees that are alterations of several
original trees. Initially, 80 “original” trees were extracted from the ESRI ArcWeb
services collection. Some examples include:

– find Address By Point(point, address Finder Options, part),
– get Distance(location1, location2, num Points, return Geometry, token, units)

and
– convert Map Coords To Pixel Coords(map Area, map Size, map Coords, to-

ken).

Then, 20 altered tree were automatically generated for each original tree. Pairs
composed of the original tree and one varied tree, thereby resulting in 1600
matching tasks, were then used as input by the SPSM solution. The alteration
operations were applied to node names (node names being composed of labels, as
discussed in Section 4), and correspond to the following four alteration categories
(the underscored labels indicate modifications):

1. Replace a node name with an unrelated node name: a node name
was replaced with an unrelated node name randomly selected from a generic
dictionary. In our test we used the Brown corpus15, a standard corpus of
present-day American English. Some examples include:
– Original tree:

find Address By Point(point, address Finder Options, part)
– Modified tree:

find Address By Point(atom firmer, discussion, part)
2. Add or remove a label in a node name: the label of a node name

was either dropped or added. A label was dropped only if the node name
contained more than one label. Label addition in node names was performed
by using words extracted from the Brown corpus. Some examples include:
– Original tree:

find Address By Point(point,address Finder Options,part)
– Modified tree:

find By Point(toast point, address Milledgeville Finder Options, part)

15 http://icame.uib.no/brown/bcm.html

http://icame.uib.no/brown/bcm.html

16

3. Alter syntactically a label: this test aimed at mimicking potential mis-
spellings of the node labels. First we decided randomly whether or not to
modify a node name. Then, we randomly generated the number of labels to
be modified and, for each word, we randomly decided how to modify it by
using three types of alterations: character dropped, added, or changed. Some
examples include:
– Original tree:

find Address By Point(point,address Finder Options,part)
– Modified tree:

finm Address By Poioat(einqt,ddress Finder Optxions,vparc)
4. Replace a label in a node name with a related (e.g. synonyms,

hyponyms, hypernyms) one: this test aimed at simulating the selection
of an operation which meaning was similar (equivalent, more general or less
general) to the original one. In the implementation of these type of alterations
we used a number of generic sources like WordNet 3.0 and Moby16. Some
examples include:
– Original tree:

find Address By Point(point,address Finder Options,part)
– Modified tree:

locate Address By Point(sail, address Finder Options, part)

We implemented evaluation tests to explore the robustness of the SPSM
approach towards both typical syntactic alterations (i.e. replacements of node
names, modification of node names and misspellings) and typical meaning alter-
ations (i.e. usage of related synonyms, hyponyms, hypernyms) of node names.

5.2 Test case 2: classification scenario

In this test case, we aimed at investigating the capability of the SPSM algorithm
in the unsupervised clustering of a set of meaningfully related web service op-
erations. The evaluation setup corresponds to a manual classification (reference
alignment) of a selected set (50) of ArcWeb service operations. The rest of the
previously discussed 80 operations were dropped during the second step of the
construction procedure. The construction of the reference alignment included
the following steps.

1. Classify manually the set of operation conforming to the WSDL file descrip-
tion of the operations.

2. Eliminate some general (valid for all the group) operations, e.g., get Info
(data Sources, token); these operations did not contribute to operation-
specific information to the classification process.

3. Refine the classification by logically regrouping some operations, e.g., find
Place(place Name, place Finder Options, token) was grouped with the “ad-

dress finder” set of operations.

16 http://www.mobysaurus.com

http://www.mobysaurus.com

17

We thus compared the constructed manual classification of the selected Web
Service operations with the automatically obtained by SPSM approach. Specif-
ically, we:

– compared each operation signature with all other one signatures;
– computed a similarity measure between each signature and all the other

signatures;
– classified the operations depending on a given similarity threshold.

6 Evaluation method

We used standards measures as precision, recall and F-measure to evaluate qual-
ity of the SPSM matching results[8]. Specifically, for both the experiments, we
based calculation of these measures on the comparison of the correspondences
produced by a matching system (R) with the reference correspondences con-
sidered to be correct (C). We also define the sets of true positives (TP), false
positives (FP) and false negatives (FN), as, respectively, the set of the correct
correspondences which have been found, the set of the wrong correspondences
which have been found and the set of the correct correspondences which have
not been found. Thus:

R = TP ∪ FP (2)

C = TP ∪ FN (3)

Precision, recall and F-measure are defined as follows:

– Precision: varies in the [0 . . . 1] range; the higher the value, the smaller the
set of false positives which have been computed. Precision is a measure of
correctness and it is computed as follows:

Precision =
| TP |
| R |

(4)

– Recall: varies in the [0 . . . 1] range; the higher the value, the smaller the
set of true positives which have not been computed. Recall is a measure of
completeness and it is computed as follows:

Recall =
| TP |
| C |

(5)

– F-measure: varies in the [0 . . . 1] range; it is global measure of the match-
ing quality, which increases if the matching quality increases. The version
presented here was computed as a harmonic mean of precision and recall:

F −measure =
2 ∗Recall ∗ Precision

Recall + Precision
(6)

18

6.1 Test case 1 (evolution scenario) evaluation set-up.

Since the generated tree alterations were known, these provided the ground
truth, and hence, the reference results were available by construction (see also [7]).
This allowed for the computation of the matching quality measures. In partic-
ular, we computed the standard matching quality measures, such as precision,
recall, and F-measure for the similarity between trees. In the computation of the
quality measures, the proposed SPSM considered discovered correspondences
between first-order terms rather than the nodes of the term trees. Thus, for
instance:

– get Standard Geography Report(standard Geographies) = pickup(standard
Geographiejournal)

was considered as a single correspondence rather than two correspondences,
namely:

– get Standard Geography Report = pickup

and

– standard Geographies = standard Geographiejournal

Moreover, we assigned to each node a label that described the type of the relation
with the original one. Initially we set the value of similarity to 1 and the value of
the relation to “equivalent”. Then each alteration operation, applied sequentially
to each node, reduced the similarity value and changed the relation value. We
changed the rate of the reduction and the value of the relation according to the
following empirical rules.

1. Replace a label with an unrelated label: when applied, we classified
the two nodes as “not related” and we set the node score to 0.

2. Add or remove a label in a node name: when applied, we multiplied
the current node score by 0.5. If the parent node was still related, we con-
sidered the initial node either “more general” (when the label was added) or
“less general” (when the label was removed) than the modified node . Some
examples include:
– “more general”:
• Original node:

find Address By Point(part)
• Modified node (label added):

find disturbed Address By Point(part)

– “less general”:
• Original node:

find Address By Point(address Finder Options)
• Modified node (label removed):

find Address By Point(address Finder)

19

3. Alter syntactically a label: when applied, for each letter dropped, added
or changed, we empirically decreased the similarity value by (0.5/(total
number of letters of the node label)). We did not change the relation value
between the original node and the modified one.

4. Replace a label in a node name with a related one: when applied, if
the two nodes were related, we did not change the score if the new label was
a synonym. If the new label was a hypernym or a hyponym of the original
node, we changed the relation value to, respectively, “less general” and “more
general” and therefore we applied to the similarity value a reduction of 0.5.

When all the alteration operations were applied, the expected score (Exp-
Score) between two trees T1 (the original one) and T2 (the modified one) ranged
between [0 . . . 1] and was computed as follows:

ExpScore(T1, T2) =

∑
i∈N

Scorei

N
(7)

where N is the node number of T1, T2 and Scorei is the resulting similarity
value assigned to each node of T2. The expected score is normalized by the size
of the trees.

The reference correspondences, used to compute true positive and false posi-
tive correspondences, were the altered trees whose expected score is higher than
a fixed threshold (corrThresh). This threshold separates the trees that a human
user would, on average, consider as still similar to the original from those that
are too different.

We computed recall, precision and F-measure values as shown by the equa-
tions 4, 5 and 6. We calculated the correspondences produced by SPSM solution
(R) and the reference correspondences considered to be correct (C) as follows:

R = {T2 ∈ Res | TreeSim(T1, T2) ≥ thresh} (8)

C = {T2 ∈ Res | ExpScore(T1, T2) ≥ corrThresh} (9)

where ExpScore was computed for each tree modification (T2), TreeSim was
the similarity value returned by the SPSM solution, thresh was the Treesim
cut-off threshold and Res was, for each original tree T1, the set of the modified
trees.

The set of true positive, false positive and false negative correspondences
were computed as follows:

TP = {T2 | T2 ∈ R ∧ T2 ∈ C} (10)

FP = {T2 | T2 ∈ R ∧ T2 /∈ C} (11)

FN = {T2 | T2 ∈ C ∧ T2 /∈ R} (12)

Examples in Table 2 show results for the alteration operation “Add or remove
a label in a node name”.

20

Table 2. Example of quality measures results.

Number of Cut-off C R TP FP FN Recall Precision F-measure
matching threshold

tasks

1600 0.1 593 1598 593 1005 0 1.000 0.371 0.541
1600 0.2 593 1585 593 992 0 1.000 0.374 0.545
1600 0.3 593 1568 593 975 0 1.000 0.378 0.549
1600 0.4 593 1496 593 903 0 1.000 0.396 0.568
1600 0.5 593 1391 593 798 0 1.000 0.426 0.598
1600 0.6 593 758 588 170 5 0.992 0.776 0.871
1600 0.7 593 642 513 129 80 0.865 0.799 0.831
1600 0.8 593 397 315 82 278 0.531 0.794 0.636
1600 0.9 593 143 112 31 481 0.189 0.783 0.304

In addition, for a fixed threshold, we compared SPSM recall, precision and
F-measure values with the ones obtained from a baseline matcher, such as edit-
distance.

Also, we evaluated recall and precision using combined results obtained by
varying the “add or remove a label in a node name with a related one” (meaning)
alteration operation combined with the “alter syntactically a label” (syntactic)
alteration operation. We computed recall, precision and F-measure for each al-
teration precision. Also in this case, we compared our results with the ones
calculated by the edit-distance baseline matcher.

We repeated all experiments described above 10 times and the presented
results correspond to the average values. The maximum value of standard devi-
ation for the plotted average values was 0.013.

6.2 Test case 2: (classification scenario) evaluation set-up.

In this second test, a selected set of ArcWeb operations was first manually clas-
sified. As described in the evaluation set-up, this classification followed mainly
the WSDL description of the operations. We built a n x n matrix (where n was
the number of the WSDL operations) that contained our “ground truth”, i.e,
the manual classification of each pair of operations, which we considered to be
correct. Then, we used the SPSM algorithm to independently classify the same
operations in an automatic way. For each pair of operations, the SPSM algorithm
returned a similarity measure that was compared with a cut-off threshold in the
range [0 . . . 0.9].

We computed recall, precision and F-measure comparing the set of the rele-
vant (manual) classifications and the set of the retrieved (automatic) correspon-
dences. The set of true positives (TP) contained the pairs of operations which
were manually classified in the same group and which similarity calculated by
SPSM (TreeSim) was greater than the cut-off threshold. The set of false pos-
itives (FP) contained the pairs of operations that were not manually classified
in the same group and which (TreeSim) similarity was greater than the cut-off
threshold. The set of false negatives (FN) contained the pairs of the operations
that were manually classified in the same group but which (TreeSim) similarity
was lower than the cut-off threshold.

21

For example, we manually classified the pair of operations:

– find Address By Point(point, address Finder Options)

and

– find Location By Phone Number(phone Number, address Finder Options)

in the same group. SPSM returned a TreeSim similarity value of 0.67. The
returned SPSM correspondence is a true positive or a false negative depending
on the value of the set cut-off threshold(i.e. for a cut-off threshold of 0.60 is a
true positive, for a cut-off threshold of 0.70 is a false negative).

7 Evaluation results

7.1 Test case 1 (evolution scenario) results.

For each alteration operation, quality measures are functions of the TreeSim
cut-off threshold values and are given in the following as recall, precision and
F-measure 3D diagrams. In all 3D graphs, we represent the variation of the
probability of the alteration operation on Y axis, the used TreeSim cut-off
threshold on X axis and the resulting measures of recall, precision and F-measure
on Z axis. Moreover, in all reported graphs, we used an empirically established
threshold corrThresh = 0.6 . We also investigated the variation of this threshold
and we discuss the results in the following subsections.

1. Replace a node name with an unrelated node name: this alteration
operation replaced an entire node name with an unrelated one, randomly
selected from a thesaurus. Graphs in Figures 7 and 8, show the relationship
between the variation of the probability of the alteration operation, the vari-
ation of the used TreeSim cut-off threshold and the resulting measures of
recall, precision and F-measure.
Figures 7 and 8 indicate that for all alterations’ probability the value of recall
is very high up to a TreeSim cut-off threshold (around 0.6), after which it
drops rapidly. Thus, we can say that, in our experiments, the SPSM approach
retrieves all the expected (relevant) correspondences until the empirically
fixed threshold (corrThresh = 0.6), that mimics the user’s tolerance to
errors, is reached. We made similar experiments and we observed that, when
we varied corrThresh, all our diagrams shifted to the new value of the
empirical threshold.
The behavior of the precision is complementary: precision improves rapidly
as the TreeSim threshold exceeds the empirically fixed threshold. On the
other hand, precision decreases steadily as a function of the alterations’ prob-
ability while the TreeSim threshold is below the empirically fixed threshold.
We observed that this behavior, when we increased the probability of the
alteration operation, depended on the decreasing number of true positives,
while the number of false positives remained stable.

22

Fig. 7. Recall (on the left) and precision (on the right) figures of “Replace a
node name with an unrelated one” alteration operation.

Fig. 8. F-measure figure of “Replace a node name with an unrelated one” alter-
ation operation.

F-measure diagram 8 summarizes clearly the overall quality performance for
the SPSM algorithm: the best global measures of matching quality are ob-
tained around a threshold of TreeSim = 0.6, i.e. around the empirically
fixed threshold (corrThresh) used to calculate the set of true positives, false
positives and false negatives correspondences (see equations 10, 11 and 12).
Analyzing the data, we observe that this is in fact the threshold where we
can find a good balance between the number of the true positives correspon-
dences and the number of the false positives correspondences. Even when
the probability of the alteration is very high the balance between correct-
ness and completeness is high. For instance, at the optimal TreeSim cut-off
threshold (0.6), for an alteration probability of 80%, F-measure is more than
74%. These data prove the robustness of the SPSM approach up to signifi-
cant syntactic modifications in the node names.

2. Add or remove a label in a node name: this alteration operation added
or removed a label in a node name. Figures 9 and 10 show the relation-

23

ship between the variation of the probability of the alteration operation,
the applied TreeSim cut-off threshold and the resulting measures for recall,
precision and F-measure.

Fig. 9. Recall (on the left) and precision (on the right) figures of “Add or remove
a label in a node name” alteration operation.

Fig. 10. F-measure figure of “Add or remove a label in a node name” alteration
operation.

The behavior is similar to the ones of the previous test. Thus, the pre-
vious arguments hold also here and we can conclude equally in this case
that the SPSM approach is robust up to significant syntactic alteration
(probability∼ 80%) of node names.

3. Alter syntactically a label in a node name: this alteration operation
altered syntactically a label in a node name, by modifying (drop, add, delete)
its characters. See Figures 11 and 12 for the evaluation results.

24

Fig. 11. Recall (on the left) and precision (on the right) figures of “Alter syn-
tactically a label” alteration operation.

Fig. 12. F-measure figure of “Alter syntactically a label” alteration operation.

This test evaluated the robustness of the SPSM approach simulating errors
and alterations that a programmer could make while writing the service op-
erations signatures. In this test, recall decreases steadily as a function of
increasing both probability of the alteration and TreeSim cut-off threshold.
Precision is always high, in the range [0.87 . . . 1.0]. This is due to a high
number of true positive correspondences and to a simultaneous low number
of false positive correspondences. This means that such “misspelling” alter-
ations were always recognized as potential correspondences by the SPSM
algorithm.
Therefore, F-measure diagram (Figure 12) essentially reproduces the recall
diagram (Figure 11). F-measures values of ∼ 70% were obtained for alter-
ations’ probability up to 70% and TreeSim cut-off thresholds up to 0.6.

4. Replace a label in a node name with a related one: this alteration
operation replaced a label in a node name with a related one, by using syn-
onyms, hyponyms, hypernyms from a number of generic thesauri. Diagrams
in Figure 13, report the resulting measures of recall and F-measure. Preci-

25

sion results are not shown as the values were always close to 1. In fact we
“always” used related (i.e. synonyms, hyponyms, hypernym) terms in the
alteration operations. Therefore, almost all the semantic correspondences
between the labels were found by SPSM (by construction of the alterated
set). Thus, a very small number of false positives correspondences were found
and precision was always close to 1.

Fig. 13. Recall (on the left) and F-measure (on the right) figures of “Replace a
label in a node name with a related one” alteration operation.

In this experiment, we evaluated the robustness of the SPSM approach to
“semantic” alterations of the nodes: we did not change the core concept of
the node name, but we used either an “equivalent” or a “more general” or a
“less general” label in a node name. In this case recall decreases slowly when
both the alteration operation probability and the Treesim cut-off threshold
increase.

Test case 1: comparison of SPSM and baseline. The goal of this ex-
periment was to compare SPSM results with a baseline matcher. In order to
appropriately compare the two series of results, we used the same evaluation
method of the previous experiment. Thus: (i) we used the same alteration oper-
ations, described in the previous section, to modify the original trees, and (ii) we
used the results of the previous experiments to identify the best alteration prob-
ability to make the comparison between the best results. The baseline matcher
was built using a simple edit-distance algorithm. We made the comparison us-
ing all the alteration operations: “Replace a node name with an unrelated node
name”, “Add or remove a label in a node name”, “Alter syntactically a label”
and “Replace a label in a node name with a related one”.

Results for the syntactic modification are, as expected, very similar. There-
fore, we focused our analysis to node’s names “meaning” alterations. Figure 14
shows the results when “Replace a node name with an unrelated node name”
is applied and Figure 15 shows the results when “Replace a label in a node

26

name with a related one” is applied. We plot the results for the most interest-
ing alteration operation probability (∼ 0.6) for both the syntactic and semantic
alterations.

Fig. 14. SPSM vs. baseline on “Replace a label with an unrelated one” alteration
operation.

Fig. 15. SPSM vs. baseline on “Replace a label in a node name with a related
one” alteration operation.

27

As the figures 14 and 15 show, SPSM approach is always comparable with
the baseline matcher when we made syntactic alterations (Figure 14). SPSM
approach results are significantly better than the baseline matcher (more than
20%, Figure 15) when we made meaning alterations.

Figure 16 shows the comparison between our approach and the baseline when
“Replace a label in a node name with a related one” and “Alter syntactically a
label” alterations were combined together. The diagrams show the scores of F-
measure (we selected a cut-off threshold of 0.7) for both SPSM and edit-distance
(baseline) matchers.

Fig. 16. F-measure values for SPSM (on the left) and edit-distance (baseline,
on the right) matchers.

Again the diagrams suggest the same conclusion: the SPSM approach be-
havior is similar to the one of the baseline matcher when syntactic alterations
were made, while its performance is constantly better than the baseline when
the “meaning” of the label was modified.

7.2 Test case 2: classification scenario.

In this experiment, we wanted to investigate whether the proposed SPSM ap-
proach can be used in determining (in an unsupervised way) the “class” of a
specific GIS operation from the its signature. To this end we first classified a
selected set of ArcWeb, in order to obtain the “truth” classification set for our
evaluation. This manual classification followed mainly the WSDL description
of the operations. Subsequently, we used the SPSM matcher to independently
classify the same operations in an automatic way. For each operation the SPSM
matcher returned similarity measures in respect to all others operations. These
were compared with a selected threshold and similar signatures were grouped
together. Finally, we compared the manual classification with the automatic one
performed by SPSM. Figure 17 shows, for each TreeSim threshold, recall, preci-
sion and F-measure scores. Classification quality measures depend on the cut-off
threshold values and the SPSM solution demonstrates good overall matching

28

Fig. 17. Recall, precision and F-measure values for classification robustness test.

quality (i.e. F-measure) on the wide range of these values. In particular, the best
F-measure values exceed 50% for the given GIS operations set. For example, for
a TreeSim threshold of 0.5, precision is 0.44, recall is 0.65, and F-measure is
0.52.

7.3 Evaluation Summary

We can summarize the extensive evaluation of the SPSM matching approach on
the selected set of real-world GIS web services as follows:

SPSM behavior and robustness. We developed evaluation tests to explore
the overall behavior and robustness of the proposed SPSM approach towards
both typical syntactic alterations and meaning alterations of the GIS service
operation signatures. All experiments demonstrated the capability of the
SPSM approach to self-adapt (i.e. to provide best results) to the empirical
threshold (ExpScore) used in the experiment to simulate the users’ toler-
ance to errors (i.e. to calculate the set of true positive, false positive and
false negative correspondences). Moreover, the results showed the robust-
ness of the SPSM algorithm over significant ranges of parameters’ variation
(thresholds and alteration operations’ probability); while maintaining high
(over 50-60%) overall matching relevance quality (F-measure).
Comparison with a baseline matcher (based on edit-distance algorithm)
showed how the SPSM approach is always comparable with the baseline
when only syntactic alteration are considered, whereas SPSM results were
always better (in average more than 20%) when “meaning” alterations were
introduced. This is what we expected, since the SPSM approach includes
a number of state-of-the-art syntactic matchers (that are first used in the
internal matching algorithm) plus a number of semantic matchers that enter
into play for the alterations in the meaning of nodes labels [10].

29

SPSM unsupervised clustering capabilities. In this experiment, we inves-
tigated how the proposed SPSM approach could be used in determining
(in an unsupervised manner) the “class” of a specific GIS operation directly
from the information present in its WSDL operation signature. Classification
quality measures depended on the cut-off threshold values and the SPSM so-
lution demonstrated overall good matching quality (i.e. F-measure) on the
wide range of these values. In particular, the best F-measure values exceeded
50% for the given GIS operations set. Although, the results are encourag-
ing, still 50% of GIS operation were incorrectly classified, due to the limited
knowledge presented in the signatures only. In this case, the presence of more
informative and semantically structured annotation would improve signifi-
cantly the automatic classification at the expense obviously of a greater effort
from the designer/programmer.

SPSM performance. With all our experiments we executed approximately
700.000 matching tasks using SPSM. The efficiency of the SPSM solution is
such that the average execution time per matching task in the evaluation
under consideration was 43ms (the average number of the parameters of
the WSDL operations was 4). The quantity of main memory used by SPSM
during matching did not rise more than 2.3Mb higher than the standby level.
These number are very good for the application domain we want to address,
i.e the run-time replaning of web services composition chains.

8 Conclusions and future work

In this paper, we tackled the semantic heterogeneity problem in typical spa-
tial data infrastructures, which include geo-data sharing through geo-services
provided by GIS agencies. We formalized specific GIS service requests in a e-
Response scenario. The scenario was based on the current organizational model
for the distributed GIS Agency infrastructure of Trentino, Italy.

We discussed an application of the approximate Structure Preserving Seman-
tic Matching approach in the field of coordination of Web services. We reported
theoretically foundation of the approach and, finally, we conducted an extensive
set of empirically tests to evaluate quality and efficiency indicators of the SPSM
approach on a set of 80 real ArcWeb WSDL operations. After an extensive in-
vestigation (ca. 700.000 matching tasks) we analysed in details both the SPSM
robustness and its clustering capabilities.

We recall here, that matching in our OpenKnowledge framework, and in
particular in our e-Response scenario, has two main purposes:

1. To support unsupervised or semi supervised service chaining between services
operations that are not identical to the one required in a formally described
interaction model. This is done through building up a map between each
element of the service signature to each element of a interaction constraint. In
the case of non-perfect matching, there may be elements in either the ability
or the constraint that remain unmatched, and the matches that do exist may
not be between things that are semantically identical. Nevertheless this map

30

enables the service’ users to use its own abilities to satisfy constraints to the
highest degree possible.

2. To allow service’s users to determine how similar their own abilities are to
those required of the role, by considering how close the numerical similarity
returned is to a perfect score.

Currently, the matching solution is elementary in the sense that it provides
means to match web services available in the LCC interaction models. However,
to run an interaction model, a peer should know which interaction model it wants
to execute and with which peers it will be interacting. The ultimate goal is to
provide a unifying framework based on interaction models that are mobile among
peers, being a mechanism for web service composition, capable of capturing
(local) peers semantics emerging from their interactions and enabling ad hoc
peer coalition formation as required by hastily formed networks [5].

Moreover, the evaluation approach followed for the first test case in this
paper, based on random alteration of the signatures, may suffer from some lim-
itations. In particular, the generation of the reference score (“ExpScore”) has
to be further investigate in order to statistically compare the computed score to
the one that a human user would make.

In turn, future work on the approximate SPSM proceeds at least in the follow-
ing directions: (i) conducting extensive and comparative evaluation, including
other kind of GIS web services like the ones available from OGC specifications
and GRASS package, (ii) extending the matching approach for dealing with
fully-fledged GIS ontologies like the ones provided by INSPIRE directive, (iii)
incorporating domain specific preferences in order to drive approximation, thus
allowing/prohibiting certain kinds of approximation (e.g not approximating vec-
tor maps with raster maps, although these are both maps), and (iv) use different
kind of thesaurus like the multilingual GEMET or AGROVOC thesauri or to
support multilingual matching.

Acknowledgments. This work has been supported by the FP6 OpenKnowledge
European STREP (FP6-027253)17. We thank Fausto Giunchiglia and Fiona Mc-
Neill for many fruitful discussions on the Structure-Preserving Semantic Match-
ing and on the evaluation set-up. We thank David Dupplaw for the development
of the emergency GUI.

References

1. Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint driven
web service composition in METEOR-S. In Proceedings of the 1st IEEE Interna-
tional Conference of Services Computing (SCC), pages 23–30, 2004.

2. Grigoris Antoniou and Frank van Harmelen. Web Ontology Language: OWL.
Springer-Verlag, 2003.

17 www.openk.org

file:www.openk.org

31

3. Lars Bernard, Max Craglia, Michael Gould, and Werner Kuhn. Towards an SDI
research agenda. In Proceedings of the 11th European Commission-Geographic
Information (EC-GI) and GIS Workshop, pages 147–151, 2005.

4. Caterina Caracciolo, Jérôme Euzenat, Laura Hollink, Ryutaro Ichise, Antoine
Isaac, Vŕonique Malaiś, Christian Meilicke, Juan Pane, Pavel Shvaiko, Heiner
Stuckenschmidt, Ondřej Šváb Zamazal, and Vojtěch Svátek. Results of the on-
tology alignment evaluation initiative 2008. In Proceedings of the International
Workshop on Ontology Matching (OM) at the 7th International Semantic Web
Conference (ISWC), 2008.

5. Peter J. Denning. Hastily formed networks. Communication of the ACM, 49(4):15–
20, 2006.

6. Liping Di, Peisheng Zhao, Wenli Yang, and Peng Yue. Ontology-driven automatic
geospatial-processing modeling based on web-service chaining. In Proceedings of
the 6th Earth Science Technology Conference (ESTC) - CDROM, 2006.

7. Jérôme Euzenat, Antoine Isaac, Christian Meilicke, Pavel Shvaiko, Heiner Stucken-
schmidt, O. Šváb, Vojtech Svátek, Willem Robert van Hage, and Mikalai Yatske-
vich. Results of the ontology alignment evaluation initiative OAEI. In Proceedings
of the Workshop on Ontology Matching (OM) at the 6th International Semantic
Web Conference (ISWC) + the 2nd Asian Semantic Web Conference (ASWC),
pages 96–132, 2007.

8. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007.
9. Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding classifica-

tions into lightweight ontologies. Journal of Data Semantics, VIII:57–81, 2007.
10. Fausto Giunchiglia, Fiona McNeill, Mikalai Yatskevich, Juan Pane, Paolo Besana,

and Pavel Shvaiko. Approximate structure-preserving semantic matching, 2008.
11. Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. The Knowledge Engi-

neering Review, 18(3):265–280, 2003.
12. Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artificial Intelligence,

57(2-3):323–389, 1992.
13. Fausto Giunchiglia, Mikalai Yatskevich, Paolo Avesani, and Pavel Shvaiko. A large

scale dataset for the evaluation of ontology matching systems. The Knowledge
Engineering Review Journal, 24(2), 2009, to appear.

14. Fausto Giunchiglia, Mikalai Yatskevich, and Enrico Giunchiglia. Efficient semantic
matching. In Proceedings of the 2nd European Semantic Web Conference (ESWC),
pages 272–289, 2005.

15. Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic matching:
Algorithms and implementation. Journal on Data Semantics, IX:1–38, 2007.

16. Moses Gone and Sven Shade. Towards semantic composition of geospatial web
services using WSMO in comparison to BPEL. submitted to International Journal
of Spatial Data Infrastructures Research (IJSDIR), 3(2008), 2008.

17. Richard Groot and John McLaughlin. Geospatial Data Infrastructure: Concepts,
Cases and Good Practice. Oxford University Press, 2000.

18. Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web
service discovery with OWLS-MX. In Proceedings of the 4th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2006.

19. Werner Kuhn. Geospatial semantics: Why, of what, and how? Journal on Data
Semantics, special issue on Semantic-based Geographical Information Systems,
3534:1–24, 2005.

20. Rob Lemmens, Andreas Wytzisk A., Rolf de By, Carlos Granell, Michael Gould
M., and Peter van Oosterom. Integrating semantic and syntactic descriptions to
chain geographic services. IEEE Internet Computing, 10(5):42–52, 2006.

32

21. Michael Lutz and Eva Klien. Ontology-based retrieval of geographic information.
International Journal of Geographic Information Science, 20(3):233–260, 2006.

22. Michael Lutz, Roberto Lucchi, Anders Friis-christensen, and Nicole Ostländer. A
rule-based description framework for the composition of geographic information
services. Geospatial Semantics, 4853:114–127, 2007.

23. Maurizio Marchese, Lorenzo Vaccari, Pavel Shvaiko, and Juan Pane. An appli-
cation of approximate ontology matching in eresponse. In Proceedings of the 5th
International Conference on Information Systems for Crisis Response and Man-
agement (ISCRAM), pages 294–304, 2008.

24. Ian Masser. Creating Spatial Data Infrastructures. ESRI Press - RedLands - Cali-
fornia, 2005.

25. Rimon Mikhaiel and Eleni Stroulia. Examining usage protocols for service dis-
covery. In Proceedings of the 4th International Conference on Service Oriented
Computing (ICSOC), pages 496–502, 2006.

26. George A. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

27. Douglas Nebert. Developing Spatial Data Infrastructures. The SDI CookBook.
Global Spatial Data Infrastructure (GSDI), 2004.

28. Natalia F. Noy. Semantic integration: A survey of ontology-based approaches.
SIGMOD Record, 33(4):65–70, 2004.

29. Natalya F. Noy, AnHai Doan, and Alon Y. Halevy. Semantic integration. AI
Magazine, 26(1):7–9, 2007.

30. Timothy L. Nyerges. Schema integration analysis for the development of GIS
databases. International Journal of Geographical Information Systems, 3(2):153–
183, 1989.

31. H. Onsrud. Research and Theory in Advancing Creating Spatial Data Infrastructure
Concepts. ESRI Press - RedLands - California, 2007.

32. Swapna Oundhakar, Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, and
John Miller. Discovery of web services in a multi-ontology and federated registry
environment. International Journal of Web Services Research, 2(3):1–32, 2005.

33. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In Proceedings of the 1st International
Semantic Web Conference (ISWC), pages 333–347, 2002.

34. Christine Parent, Stefano Spaccapietra, and Esteban Zimanyi. Conceptual model-
ing for traditional and spatio-temporal applications. The MADS approach. Springer,
2006.

35. Charles Petrie, Tiziana Margaria, Ulrich Kuster, Holger Lausen, and Michal
Zaremba. Sws challenge: Status, perspectives, and lessons learned so far. In Pro-
ceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS), pages 447–452.

36. David Robertson. A lightweight coordination calculus for agent systems. Declara-
tive Agent Languages and Technologies, pages 183–197, 2004.

37. Stefan Schulte, Julian Eckert, Nicolas Repp, and Ralf Steinmetz. An approach
to evaluate and enhance the retrieval of semantic web services. In Proceedings
of the 5th International Conference on Service Systems and Service Management
(ICSSSM), pages 237–243, 2008.

38. Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching ap-
proaches. Journal on Data Semantics, IV:146–171, 2005.

39. Eleni Stroulia and Yiqiao Wang. Structural and semantic matching for assessing
web-service similarity. International Journal of Cooperative Information System,
14(4):407–438, 2005.

33

40. Vlad Tanasescu, Alessio Gugliotta, John Domingue, Rob Davies, Leticia Gutiérrez-
Villaŕıas, Mary Rowlatt, Marc Richardson, and Sandra Stinčić. A semantic web
services gis based emergency management application. pages 959–966, 2006.

41. Gabriel Valiente. Algorithms on Trees and Graphs. Springer, 2002.
42. Michael F. Worboys and S. Misbah Deen. Semantic heterogeneity in distributed

geographic databases. SIGMOD Record, 20(4):30–34, 1991.
43. Peisheng Zhao and Liping Di. Semantic web service based geospatial knowledge

discovery. pages 3490–3493.

	odbase-08-final.pdf
	Approximate structure-preserving semantic matching
	Fausto Giunchiglia, Fiona McNeill, Mikalai Yatskevich, Juan Pane, Paolo Besana, Pavel Shvaiko

	geoInformatica_Final_d37.pdf
	An evaluation of approximate ontology matching in GIS applications

